WorldWideScience

Sample records for puzzle solver university

  1. A Play on Words: Using Cognitive Computing as a Basis for AI Solvers in Word Puzzles

    Science.gov (United States)

    Manzini, Thomas; Ellis, Simon; Hendler, James

    2015-12-01

    In this paper we offer a model, drawing inspiration from human cognition and based upon the pipeline developed for IBM's Watson, which solves clues in a type of word puzzle called syllacrostics. We briefly discuss its situation with respect to the greater field of artificial general intelligence (AGI) and how this process and model might be applied to other types of word puzzles. We present an overview of a system that has been developed to solve syllacrostics.

  2. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 (Japan); Bian, Xin, E-mail: xin_bian@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Li, Zhen, E-mail: zhen_li@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Collaboratory on Mathematics for Mesoscopic Modeling of Materials, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)

  3. Puzzling Mechanisms

    Science.gov (United States)

    van Deventer, M. Oskar

    2009-01-01

    The basis of a good mechanical puzzle is often a puzzling mechanism. This article will introduce some new puzzling mechanisms, like two knots that engage like gears, a chain whose links can be interchanged, and flat gears that do not come apart. It illustrates how puzzling mechanisms can be transformed into real mechanical puzzles, e.g., by…

  4. Geneva University - Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle

    CERN Multimedia

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 12 May 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Measurement of the Lamb shift in muonic hydrogen: the proton radius puzzle Dr Aldo Antogninia , CREMA Collaboration, Max Planck Institute, Germany At the Paul Scherrer Institut, Switzerland, we have measured several 2S-2P transition frequencies in muonic hydrogen (µp) and deuterium (µd) by means of laser spectroscopy. This results in an order of magnitude improvement on the rms charge radius values of the proton and the deuteron. Additionally the Zemach radii and the deuteron polarizability are also inferred. The new proton radius value is deduced with a relative accuracy of 0.1% but strongly disagrees from CODATA. The origin of this discrepancy is not yet known. It may come from theo...

  5. Puzzle of the particles and the universe. The inner life of the elementary particles IX d

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2013-01-01

    The series The Inner Life of the Elementary Particles attempts to develop the elementary particles along of a genealogical tree, which begins before the ''big bang''. The simple presentation without mathematics opens also for the interested layman a plastic understanding. Volume IX discusses the known puzzles of particle physics and cosmology and offers for many of them explanation models. Explanation approaches are among others the ''DNA'' of the elementary particles and the interpretation of the quanta and the spin.

  6. Phthalate Puzzle

    Indian Academy of Sciences (India)

    Abstract. The most common plasticizer, phthalates, are facing stricterregulations due to their omnipresence and possible effects onhuman health, and environment. But high cost, lack of applicationrange, and unknown long-term effects of non-phthalatealternatives make the scenario puzzling.

  7. Idea Puzzle

    OpenAIRE

    Parente, C.; Ferro, L.

    2016-01-01

    WOS:000387124100017 (Nº de Acesso Web of Science) The Idea Puzzle is a software application created in 2007. It is a support tool to assist PhD students and researchers in the process of designing research projects through a focus on three central dimensions of research that are collectively represented by a triangle. Each side of the Idea Puzzle triangle corresponds to one of the three dimensions that every empirical research project should ideally include: ontology (data), epistemology (...

  8. Puzzles in B physics

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 67; Issue 5. Puzzles in physics. Hsiang-Nan Li ... Author Affiliations. Hsiang-Nan Li1 2. Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China; Department of Physics, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China ...

  9. Deductive Puzzling

    Science.gov (United States)

    Wanko, Jeffrey J.

    2010-01-01

    To help fifth- through eighth-grade students develop their deductive reasoning skills, the author used a ten-week supplementary curriculum so that students could answer logic questions. The curriculum, a series of lessons built around language-independent logic puzzles, has been used in classrooms of fifth through eighth grades. In most cases,…

  10. Incomplete Puzzle

    Science.gov (United States)

    2006-01-01

    15 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of a portion of the south polar residual cap of Mars. The large, relatively flat-lying, puzzle-like pieces in this scene are mesas composed largely of solid carbon dioxide. Location near: 85.5oS, 76.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  11. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  12. The infinity puzzle

    CERN Document Server

    Close, Frank

    2011-01-01

    We are living in a Golden Age of Physics. Forty or so years ago, three brilliant, yet little-known scientists - an American, a Dutchman, and an Englishman - made breakthroughs which later inspired the construction of the Large Hadron Collider at CERN in Geneva: a 27 kilometer-long machine which has already costs ten billion dollars, taken twenty years to build, and now promises to reveal how the universe itself came to be. The Infinity Puzzle is the inside story of those forty years of research, breakthrough, and endeavour. Peter Higgs, Gerard 't Hooft and James Bjorken, were the three scienti

  13. Current puzzles in nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    A meeting on ''Current puzzles in nuclear physics'' was held at Research Center for Nuclear Physics, Osaka University, on June 27 - 28, 1984. The meeting put emphasis on several puzzles which have not been solved for a long time in nuclear physics, and also on the puzzles. This collective report is composed of following eleven papers presented at the meeting. Almost all the papers are witten in English : (1) M1, GT excitations and configuration mixing (in Japanese). (2) Hadronic excitation of pionic states. (3) Microscopic analyses of 28 Si(α,α') 28 Si scattering and single particle strength in A = 29 nuclei. (4) Few-body physics and its incentives to nuclear physics. (5) Is it necessary to introduce three body interactions ? (in Japanese). (6) Puzzles in the neutron-deuteron elastic scattering. (7) Puzzles in NN, NΔ, πN and Nanti N interactions. (8) Problems in Hadron-Nucleus interaction. (9) Unified approach to the meson- and quark- theory of nuclear forces and currents. (10) Pion photoproduction in two Chiral bag models. (11) The dynamic bag model : The electromagnetic properties of nucleon. (Aoki, K.)

  14. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  15. Puzzling antimatter

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    For many years, the absence of antimatter in the Universe has tantalised particle physicists and cosmologists: while the Big Bang should have created equal amounts of matter and antimatter, we do not observe any primordial antimatter today. Where has it gone? The LHC experiments have the potential to unveil natural processes that could hold the key to solving this paradox.   Every time that matter is created from pure energy, equal amounts of particles and antiparticles are generated. Conversely, when matter and antimatter meet, they annihilate and produce light. Antimatter is produced routinely when cosmic rays hit the Earth's atmosphere, and the annihilations of matter and antimatter are observed during physics experiments in particle accelerators. If the Universe contained antimatter regions, we would be able to observe intense fluxes of photons at the boundaries of the matter/antimatter regions. “Experiments measuring the diffuse gamma-ray background in the Universe would be able...

  16. Right frontal gamma and beta band enhancement while solving a spatial puzzle with insight.

    Science.gov (United States)

    Rosen, A; Reiner, M

    2017-12-01

    Solving a problem with an "a-ha" effect is known as insight. Unlike incremental problem solving, insight is sudden and unique, and the question about its distinct brain activity, intrigues many researchers. In this study, electroencephalogram signals were recorded from 12 right handed, human participants before (baseline) and while they solved a spatial puzzle known as the '10 coin puzzle' that could be solved incrementally or by insight. Participants responded as soon as they reached a solution and reported whether the process was incremental or by sudden insight. EEG activity was recorded from 19 scalp locations. We found significant differences between insight and incremental solvers in the Gamma and Beta 2 bands in frontal areas (F8) and in the alpha band in right temporal areas (T6). The right-frontal gamma indicates a process of restructuring which leads to an insight solution, in spatial problems, further suggesting a universal role of gamma in restructuring. These results further suggest that solving a spatial puzzle via insight requires exclusive brain areas and neurological-cognitive processes which may be important for meta-cognitive components of insight solutions, including attention and monitoring of the solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  18. Tangrams: Puzzles of Art

    Science.gov (United States)

    Fee, Brenda

    2009-01-01

    Challenging one's brain is the beginning of making great art. Tangrams are a great way to keep students thinking about their latest art project long after leaving the classroom. A tangram is a Chinese puzzle. The earliest known reference to tangrams appears in a Chinese book dated 1813, but the puzzles existed long before that date. The puzzle…

  19. The Anatomy Puzzle Book.

    Science.gov (United States)

    Jacob, Willis H.; Carter, Robert, III

    This document features review questions, crossword puzzles, and word search puzzles on human anatomy. Topics include: (1) Anatomical Terminology; (2) The Skeletal System and Joints; (3) The Muscular System; (4) The Nervous System; (5) The Eye and Ear; (6) The Circulatory System and Blood; (7) The Respiratory System; (8) The Urinary System; (9) The…

  20. New Sliding Puzzle with Neighbors Swap Motion

    OpenAIRE

    Prihardono, Ariyanto; Kawagoe, Kenichi

    2015-01-01

    The sliding puzzles (15-puzzle, 8-puzzle, 5-puzzle) are known to have 2 kind of puz-zle: solvable puzzle and unsolvable puzzle. In this thesis, we make a new puzzle with only 1 kind of it, solvable puzzle. This new puzzle is made by adopting sliding puzzle with several additional rules from M13 puzzle; the puzzle that is formed form The Mathieu group M13. This puzzle has a movement that called a neighbors swap motion, a rule of movement that enables every neighboring points to swap. This extr...

  1. Blood Type Puzzle.

    Science.gov (United States)

    Kelly, Janet

    1997-01-01

    Presents a blood type puzzle that provides a visual, hands-on mechanism by which students can examine blood group reactions. Offers students an opportunity to construct their own knowledge about blood types. (JRH)

  2. The Entrepreneurial Earnings Puzzle

    DEFF Research Database (Denmark)

    Chen, Jing; Åstebro, Thomas

    2014-01-01

    A review of recent evidence on relative earnings from entrepreneurship versus wage work presents a puzzle: why do individuals become entrepreneurs when entrepreneurs on average apparently earn less than employees? After considering several potential explanations, we empirically analyze one: income...

  3. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  4. The PPP Puzzle

    DEFF Research Database (Denmark)

    Juselius, Katarina

    The persistent movements away from long-run benchmark values in real exchange rates, dubbed the PPP puzzle, observed in many real exchange rates during periods of currency float have been subject to much empirical research without resolving the puzzle. The paper demonstrates how the cointegrated...... VAR approach by grouping together components of similar persistence can be used to uncover structures in the data that ultimately may help to explain theoretically the forces underlying such puzzling movements. The charaterization of the data into components which are empirically I(0), I(1), and I(2......) is shown to be a powerful organizing principle allowing us to structure the data in long-run, medium-run, and short-run behavior. Its main advantage is the ability to associate persistent movements away from fundamental benchmark values in one variable/relation with similar persistent movements somewhere...

  5. On IBM's Millennial Puzzle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. On IBM's Millennial Puzzle. A Sarangarajan. Classroom Volume 5 Issue 10 October 2000 pp 81-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0081-0089. Author Affiliations.

  6. Idiosyncratic Volatility Puzzle

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte; Lambertides, Neophytos

    from a large pool of macroeconomic and Önancial variables. Cleaning for macro-Önance e§ects reverses the puzzling negative relation between returns and idiosyncratic volatility documented previously. Portfolio analysis shows that the e§ects from macro-Önance factors are economically strong...

  7. La Francophonie. Puzzle Corner.

    Science.gov (United States)

    Andrews, Ian A.

    2000-01-01

    Discusses the organization La Francophonie, which is an international community of people who speak French and convene to address issues. Presents a crossword puzzle that introduces readers to some of the nations involved in La Francophonie. Provides the across and down clues, a word list, and answer key. (CMK)

  8. Users are problem solvers!

    NARCIS (Netherlands)

    Brouwer-Janse, M.D.

    1991-01-01

    Most formal problem-solving studies use verbal protocol and observational data of problem solvers working on a task. In user-centred product-design projects, observational studies of users are frequently used too. In the latter case, however, systematic control of conditions, indepth analysis and

  9. Reviews Equipment: BioLite Camp Stove Game: Burnout Paradise Equipment: 850 Universal interface and Capstone software Equipment: xllogger Book: Science Magic Tricks and Puzzles Equipment: Spinthariscope Equipment: DC Power Supply HY5002 Web Watch

    Science.gov (United States)

    2013-05-01

    WE RECOMMEND BioLite CampStove Robust and multifaceted stove illuminates physics concepts 850 Universal interface and Capstone software Powerful data-acquisition system offers many options for student experiments and demonstrations xllogger Obtaining results is far from an uphill struggle with this easy-to-use datalogger Science Magic Tricks and Puzzles Small but perfectly formed and inexpensive book packed with 'magic-of-science' demonstrations Spinthariscope Kit for older students to have the memorable experience of 'seeing' radioactivity WORTH A LOOK DC Power Supply HY5002 Solid and effective, but noisy and lacks portability HANDLE WITH CARE Burnout Paradise Car computer game may be quick off the mark, but goes nowhere fast when it comes to lab use WEB WATCH 'Live' tube map and free apps would be a useful addition to school physics, but maths-questions website of no more use than a textbook

  10. Nature's Greatest Puzzles

    International Nuclear Information System (INIS)

    Quigg, Chris

    2005-01-01

    It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit

  11. High performance simplex solver

    OpenAIRE

    Huangfu, Qi

    2013-01-01

    The dual simplex method is frequently the most efficient technique for solving linear programming (LP) problems. This thesis describes an efficient implementation of the sequential dual simplex method and the design and development of two parallel dual simplex solvers. In serial, many advanced techniques for the (dual) simplex method are implemented, including sparse LU factorization, hyper-sparse linear system solution technique, efficient approaches to updating LU factors and...

  12. Use of Tabu Search in a Solver to Map Complex Networks onto Emulab Testbeds

    National Research Council Canada - National Science Library

    MacDonald, Jason E

    2007-01-01

    The University of Utah's solver for the testbed mapping problem uses a simulated annealing metaheuristic algorithm to map a researcher's experimental network topology onto available testbed resources...

  13. Isotope puzzle in sputtering

    International Nuclear Information System (INIS)

    Zheng Liping

    1998-01-01

    Mechanisms affecting multicomponent material sputtering are complex. Isotope sputtering is the simplest in the multicomponent materials sputtering. Although only mass effect plays a dominant role in the isotope sputtering, there is still an isotope puzzle in sputtering by ion bombardment. The major arguments are as follows: (1) At the zero fluence, is the isotope enrichment ejection-angle-independent or ejection-angle-dependent? (2) Is the isotope angular effect the primary or the secondary sputter effect? (3) How to understand the action of momentum asymmetry in collision cascade on the isotope sputtering?

  14. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  15. Advanced calculus problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of advanced calculus currently av

  16. Musings on the puzzle piece.

    Science.gov (United States)

    Goin-Kochel, Robin P

    2016-02-01

    Following is a brief musing on Roy Grinker's discussion of what the puzzle piece symbolizes for autism during his presentation at the 2015 International Meeting for Autism Research. In his words, "The puzzle piece is ubiquitous." It likely holds a different meaning for each of us, and this is how one autism researcher sees it. © The Author(s) 2015.

  17. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  18. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  19. The birth order puzzle.

    Science.gov (United States)

    Zajonc, R B; Markus, H; Markus, G B

    1979-08-01

    Studies relating intellectual performance to birth order report conflicting results, some finding intellectual scores to increase, others to decrease with birth order. In contrast, the relationship between intellectual performance and family size is stable and consistently replicable. Why do these two highly related variables generate such divergent results? This birth order puzzle is resolved by means of the confluence model that quantifies the influences upon intellectual growth arising within the family context. At the time of a new birth, two opposing influences act upon intellectual growth of the elder sibling: (a) his or her intellectual environment is "diluted" and (b) he or she loses the "last-born's handicap" and begins serving as an intellectual resource to the younger sibling. Since these opposite effects are not equal in magnitude, the differences in intellectual performance among birth ranks are shown to be age dependent. While elder children may surpass their younger siblings in intellectual performance at some ages, they may be overtaken by them at others. Thus when age is taken into consideration, the birth order literature loses its chaotic character and an orderly pattern of results emerges.

  20. Sherlock Holmes, Master Problem Solver.

    Science.gov (United States)

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  1. Seven (and a half) reasons to believe in mirror matter: from neutrino puzzles to the inferred dark matter in the universe

    International Nuclear Information System (INIS)

    Foot, R.

    2001-02-01

    Parity and time reversal are obvious and plausible candidates for fundamental symmetries of nature. Hypothesising that these symmetries exist implies the existence of a new form of matter, called mirror matter. The mirror matter theory (or exact parity model) makes four main predictions: 1) Dark matter in the form of mirror matter should exist in the Universe (i.e. mirror galaxies, stars, planets, meteoroids...), 2) Maximal ordinary neutrino - mirror neutrino oscillations if neutrinos have mass, 3) Orthopositronium should have a shorter effective lifetime than predicted by QED (in 'vacuum' experiments) because of the effects of photon-mirror photon mixing and 4) Higgs production and decay rate should be 50% lower than in the standard model due to Higgs mirror - Higgs mixing (assuming that the separation of the Higgs masses is larger than their decay widths). At the present time there is strong experimental/observational evidence supporting the first three of these predictions, while the fourth one is not tested yet because the Higgs boson, predicted in the standard model of particle physics, is yet to be found. This experimental/observational evidence is rich and varied ranging from the atmospheric and solar neutrino deficits, MACHO gravitational microlensing events, strange properties of extra-solar planets, the existence of 'isolated' planets, orthopositronium lifetime anomaly, Tunguska and other strange 'meteor' events including perhaps, the origin of the moon. The purpose of this article is to provide a not too technical review of these ideas along with some new results

  2. Astroparticle physics: puzzles and discoveries

    International Nuclear Information System (INIS)

    Berezinsky, V

    2008-01-01

    Puzzles often give birth to the great discoveries, the false discoveries sometimes stimulate the exiting ideas in theoretical physics. The historical examples of both are described in Introduction and in section 'Cosmological Puzzles'. From existing puzzles most attention is given to Ultra High Energy Cosmic Ray (UHECR) puzzle and to cosmological constant problem. The 40-years old UHECR problem consisted in absence of the sharp steepening in spectrum of extragalactic cosmic rays caused by interaction with CMB radiation. This steepening is known as Greisen-Zatsepin-Kuzmin (GZK) cutoff. It is demonstrated here that the features of interaction of cosmic ray protons with CMB are seen now in the spectrum in the form of the dip and beginning of the GZK cutoff. The most serious cosmological problem is caused by large vacuum energy of the known elementary-particle fields which exceeds at least by 45 orders of magnitude the cosmological vacuum energy. The various ideas put forward to solve this problem during last 40 years, have weaknesses and cannot be accepted as the final solution of this puzzle. The anthropic approach is discussed

  3. Imaginary Cubes and Their Puzzles

    Directory of Open Access Journals (Sweden)

    Hideki Tsuiki

    2012-05-01

    Full Text Available Imaginary cubes are three dimensional objects which have square silhouette projections in three orthogonal ways just as a cube has. In this paper, we study imaginary cubes and present assembly puzzles based on them. We show that there are 16 equivalence classes of minimal convex imaginary cubes, among whose representatives are a hexagonal bipyramid imaginary cube and a triangular antiprism imaginary cube. Our main puzzle is to put three of the former and six of the latter pieces into a cube-box with an edge length of twice the size of the original cube. Solutions of this puzzle are based on remarkable properties of these two imaginary cubes, in particular, the possibility of tiling 3D Euclidean space.

  4. Famous puzzles of great mathematicians

    CERN Document Server

    Petković, Miodrag S

    2009-01-01

    This entertaining book presents a collection of 180 famous mathematical puzzles and intriguing elementary problems that great mathematicians have posed, discussed, and/or solved. The selected problems do not require advanced mathematics, making this book accessible to a variety of readers. Mathematical recreations offer a rich playground for both amateur and professional mathematicians. Believing that creative stimuli and aesthetic considerations are closely related, great mathematicians from ancient times to the present have always taken an interest in puzzles and diversions. The goal of this

  5. Sleep for Kids: Games and Puzzles

    Science.gov (United States)

    ... and puzzles can help you learn more about sleep! Learn about sleep with this fun crossword puzzle! Test your memory and learn how to get better sleep! Find the hidden sleep words! Avoid things that ...

  6. The universe strikes back

    International Nuclear Information System (INIS)

    Steigman, G.

    1983-01-01

    The approach to particle physics via cosmology may meet with an obstacle in a series of cosmological puzzles studied in this paper: the flatness-longevity puzzle, the horizon-homogenity puzzle, and the cosmological constant puzzle. An analysis of the geometry and dynamics of the universe leads to an understanding (but not solution) of the flatness-longevity puzzle: possible universes are distinguished by the value of the dimensionless quantity N, the coordinate density of ER particles, such that the longevity of the universe is fixed by N. Universes where nonrelativistic particles dominate are then studied. An inflationary scenario proposed as a solution to these puzzles is studied, but found to have some difficulties

  7. Do Puzzle Pieces and Autism Puzzle Piece Logos Evoke Negative Associations?

    Science.gov (United States)

    Gernsbacher, Morton Ann; Raimond, Adam R.; Stevenson, Jennifer L.; Boston, Jilana S.; Harp, Bev

    2018-01-01

    Puzzle pieces have become ubiquitous symbols for autism. However, puzzle-piece imagery stirs debate between those who support and those who object to its use because they believe puzzle-piece imagery evokes negative associations. Our study empirically investigated whether puzzle pieces evoke negative associations in the general public.…

  8. Modern solvers for Helmholtz problems

    CERN Document Server

    Tang, Jok; Vuik, Kees

    2017-01-01

    This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to b...

  9. À chacun son puzzle

    Directory of Open Access Journals (Sweden)

    Jean-Noël Ferrié

    2012-05-01

    Full Text Available Le texte soutient que le « tournant naturaliste » que l’on nous invite à négocier ne donne aucun moyen supplémentaire pour parvenir à une description perspicace de ce que les gens font dans des circonstances précises, l’existence humaine pouvant être considérée comme une collection de circonstances précises. Sans doute le naturalisme nous permet-il de comprendre comment certaines actions humaines sont possibles, mais cela ne nous dit pas pourquoi et comment elles font sens pour tout un chacun. La méthodologie nécessaire pour éclaircir le premier point obscurcit généralement le second. Le mieux est donc de considérer que les deux approches ne vont pas de pair. Ce point de vue est soutenu à partir d’exemple tirés de l’anthropologie de la religion.To each one his puzzle. For a serene methodological pluralismThe text argues that the « naturalistic turn » that we are invited to negotiate does not give any additional means to achieve an insightful description of what people do in specific circumstances, and human existence can be considered as a collection of specific circumstances. Probably naturalism allows us to understand how some human actions are possible, but that does not tell us why and how they make sense for everyone. The methodology needed to clarify the first point usually obscures the second one. The best way is to consider that the two approaches do not go together. The text supports this view from an example drawn from the anthropology of religion.A cada uno su rompecabezas. En favor de un pluralismo metodológico serenoEl texto argumenta que la inflexión naturalista a la que se nos invita a participar no proporciona ningún medio suplementario que desemboque en una descripción perspicaz de lo que la gente hace en circunstancias concretas ya que la existencia humana puede ser considerada como una concatenación de circunstancias concretas. Sin duda el naturalismo nos permite comprender como son

  10. Matter-antimatter puzzle: LHCb improves resolution

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In 2010, Fermilab’s DØ experiment reported a one percent difference in the properties of matter and antimatter in decays of B mesons (that is, particles containing beauty quarks) to muons. Saturday, at the ICHEP Conference in Melbourne, the LHCb experiment at CERN presents new results, which do not confirm this anomaly and are consistent with the Standard Model predictions. The same experiment has also presented the first evidence of asymmetry arising in other decays of the same family of mesons. The image becomes clearer but the puzzle has not yet been solved.   Inside the LHCb detector. The matter-antimatter imbalance in the Universe is a very hot topic in physics. The conundrum arises from the fact that, although objects made of antimatter are not observed in the Universe, theory predicts that matter and antimatter be created equally in particle interactions and in the Big Bang. Only small deviations from this very symmetric behaviour are incorporated in the theory. E...

  11. Self-correcting Multigrid Solver

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2004-01-01

    A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work

  12. Teaching Inductive Reasoning with Puzzles

    Science.gov (United States)

    Wanko, Jeffrey J.

    2017-01-01

    Working with language-independent logic structures can help students develop both inductive and deductive reasoning skills. The Japanese publisher Nikoli (with resources available both in print and online) produces a treasure trove of language-independent logic puzzles. The Nikoli print resources are mostly in Japanese, creating the extra…

  13. Iterative solvers in forming process simulations

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Rietman, Bert; Huetink, Han

    1998-01-01

    The use of iterative solvers in implicit forming process simulations is studied. The time and memory requirements are compared with direct solvers and assessed in relation with the rest of the Newton-Raphson iteration process. It is shown that conjugate gradient{like solvers with a proper

  14. Current puzzles and future possibilities

    International Nuclear Information System (INIS)

    Nagamiya, S.

    1982-02-01

    Four current puzzles and several future experimental possibilities in high-energy nuclear collision research are discussed. These puzzles are (1) entropy, (2) hydrodynamic flow, (3) anomalon, and (4) particle emission at backward angles in proton-nucleus collisions. The last one seems not to be directly related to the subject of the present school. But it is, because particle emission into the region far beyond the nucleon-nucleon kinematical limit is an interesting subject common for both proton-nucleus and nucleus-nucleus collisions, and the basic mechanism involved is strongly related in these two cases. Future experimental possibilities are described which include: (1) possibilities of studying multibaryonic excited states, (2) applications of neutron-rich isotopes, and (3) other needed experimental tasks. 72 references

  15. Neutron star news and puzzles

    International Nuclear Information System (INIS)

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted

  16. Construction-Paper Puzzle Masterpieces

    Science.gov (United States)

    Vance, Shelly

    2010-01-01

    Creating an appreciation of art history in her junior-high students has always been one of the author's greatest challenges as an art teacher. In this article, the author describes how her eighth-grade students re-created a famous work of art--piece by piece, like a puzzle or a stained-glass window--out of construction paper. (Contains 1 resource.)

  17. A generalized gyrokinetic Poisson solver

    International Nuclear Information System (INIS)

    Lin, Z.; Lee, W.W.

    1995-03-01

    A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms

  18. Modified and fuzzified general problem solver for the 'monkey and banana' problem, 1

    International Nuclear Information System (INIS)

    Sano, Norihide; Takahashi, Ryoichi.

    1991-01-01

    The master-and-slave control system should be extensively implemented for the in-service inspection of operating nuclear power stations or the decommission of retired plants. The performance of this system depends on the intelligent slave. In this paper the degree of intelligence is approximated by the given amount of prior knowledge or suggestions. This paper aims at improving the general problem solver (GPS) by incorporating the learning process in order to solve the puzzle of the 'monkey and banana'. The monkey in this puzzle may be a reasonable alternative to represent the intelligent slave. Also, this paper deals with fuzzified problem solving since the master's command is not always crisp to the slave. (author)

  19. The puzzle of neutron lifetime

    International Nuclear Information System (INIS)

    Paul, Stephan

    2009-01-01

    In this paper we review the role of the neutron lifetime and discuss the present status of measurements. In view of the large discrepancy observed by the two most precise individual measurements so far we describe the different techniques and point out the principle strengths and weaknesses. In particular we discuss the estimation of systematic uncertainties and its correlation to the statistical ones. In order to solve the present puzzle, many new experiments are either ongoing or being proposed. An overview on their possible contribution to this field will be given.

  20. Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students--a pilot study.

    Science.gov (United States)

    Rubinstein, Jack; Dhoble, Abhijeet; Ferenchick, Gary

    2009-01-13

    Most medical professionals are expected to possess basic electrocardiogram (EKG) interpretation skills. But, published data suggests that residents' and physicians' EKG interpretation skills are suboptimal. Learning styles differ among medical students; individualization of teaching methods has been shown to be viable and may result in improved learning. Puzzles have been shown to facilitate learning in a relaxed environment. The objective of this study was to assess efficacy of teaching puzzle in EKG interpretation skills among medical students. This is a reader blinded crossover trial. Third year medical students from College of Human Medicine, Michigan State University participated in this study. Two groups (n = 9) received two traditional EKG interpretation skills lectures followed by a standardized exam and two extra sessions with the teaching puzzle and a different exam. Two other groups (n = 6) received identical courses and exams with the puzzle session first followed by the traditional teaching. EKG interpretation scores on final test were used as main outcome measure. The average score after only traditional teaching was 4.07 +/- 2.08 while after only the puzzle session was 4.04 +/- 2.36 (p = 0.97). The average improvement after the traditional session was followed up with a puzzle session was 2.53 +/- 1.94 while the average improvement after the puzzle session was followed with the traditional session was 2.08 +/- 1.73 (p = 0.67). The final EKG exam score for this cohort (n = 15) was 84.1 compared to 86.6 (p = 0.22) for a comparable sample of medical students (n = 15) at a different campus. Teaching EKG interpretation with puzzles is comparable to traditional teaching and may be particularly useful for certain subgroups of students. Puzzle session are more interactive and relaxing, and warrant further investigations on larger scale.

  1. Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students – a pilot study

    Science.gov (United States)

    Rubinstein, Jack; Dhoble, Abhijeet; Ferenchick, Gary

    2009-01-01

    Background Most medical professionals are expected to possess basic electrocardiogram (EKG) interpretation skills. But, published data suggests that residents' and physicians' EKG interpretation skills are suboptimal. Learning styles differ among medical students; individualization of teaching methods has been shown to be viable and may result in improved learning. Puzzles have been shown to facilitate learning in a relaxed environment. The objective of this study was to assess efficacy of teaching puzzle in EKG interpretation skills among medical students. Methods This is a reader blinded crossover trial. Third year medical students from College of Human Medicine, Michigan State University participated in this study. Two groups (n = 9) received two traditional EKG interpretation skills lectures followed by a standardized exam and two extra sessions with the teaching puzzle and a different exam. Two other groups (n = 6) received identical courses and exams with the puzzle session first followed by the traditional teaching. EKG interpretation scores on final test were used as main outcome measure. Results The average score after only traditional teaching was 4.07 ± 2.08 while after only the puzzle session was 4.04 ± 2.36 (p = 0.97). The average improvement after the traditional session was followed up with a puzzle session was 2.53 ± 1.94 while the average improvement after the puzzle session was followed with the traditional session was 2.08 ± 1.73 (p = 0.67). The final EKG exam score for this cohort (n = 15) was 84.1 compared to 86.6 (p = 0.22) for a comparable sample of medical students (n = 15) at a different campus. Conclusion Teaching EKG interpretation with puzzles is comparable to traditional teaching and may be particularly useful for certain subgroups of students. Puzzle session are more interactive and relaxing, and warrant further investigations on larger scale. PMID:19144134

  2. Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students – a pilot study

    Directory of Open Access Journals (Sweden)

    Dhoble Abhijeet

    2009-01-01

    Full Text Available Abstract Background Most medical professionals are expected to possess basic electrocardiogram (EKG interpretation skills. But, published data suggests that residents' and physicians' EKG interpretation skills are suboptimal. Learning styles differ among medical students; individualization of teaching methods has been shown to be viable and may result in improved learning. Puzzles have been shown to facilitate learning in a relaxed environment. The objective of this study was to assess efficacy of teaching puzzle in EKG interpretation skills among medical students. Methods This is a reader blinded crossover trial. Third year medical students from College of Human Medicine, Michigan State University participated in this study. Two groups (n = 9 received two traditional EKG interpretation skills lectures followed by a standardized exam and two extra sessions with the teaching puzzle and a different exam. Two other groups (n = 6 received identical courses and exams with the puzzle session first followed by the traditional teaching. EKG interpretation scores on final test were used as main outcome measure. Results The average score after only traditional teaching was 4.07 ± 2.08 while after only the puzzle session was 4.04 ± 2.36 (p = 0.97. The average improvement after the traditional session was followed up with a puzzle session was 2.53 ± 1.94 while the average improvement after the puzzle session was followed with the traditional session was 2.08 ± 1.73 (p = 0.67. The final EKG exam score for this cohort (n = 15 was 84.1 compared to 86.6 (p = 0.22 for a comparable sample of medical students (n = 15 at a different campus. Conclusion Teaching EKG interpretation with puzzles is comparable to traditional teaching and may be particularly useful for certain subgroups of students. Puzzle session are more interactive and relaxing, and warrant further investigations on larger scale.

  3. Hypersonic simulations using open-source CFD and DSMC solvers

    Science.gov (United States)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  4. The Magnets Puzzle is NP-Complete

    DEFF Research Database (Denmark)

    Kölker, Jonas

    2012-01-01

    In a Magnets puzzle, one must pack magnets in a box subjet to polarity and numeric constraints. We show that solvability of Magnets instances is NP-complete.......In a Magnets puzzle, one must pack magnets in a box subjet to polarity and numeric constraints. We show that solvability of Magnets instances is NP-complete....

  5. Hadronic decay puzzle in charmonium physics

    International Nuclear Information System (INIS)

    Gu Yifan

    1996-01-01

    Recent experimental results obtained at Beijing Electron-proton Collider sensitivity level the crisply defined nature of the hadronic decay puzzle in charmonium physics. Discovery of new anomalous decay modes breaks with the previously established pattern of the puzzle, and poses new challenges for its theoretical understanding

  6. Solving the BM Camelopardalis puzzle

    Science.gov (United States)

    Teke, Mathias; Busby, Michael R.; Hall, Douglas S.

    1989-01-01

    BM Camelopardalis (=12 Cam) is a chromospherically active binary star with a relatively large orbital eccentricity. Systems with large eccentricities usually rotate pseudosynchronously. However, BM Cam has been a puzzle since its observed rotation rate is virtually equal to its orbital period indicating synchronization. All available photometry data for BM Cam have been collected and analyzed. Two models of modulated ellipticity effect are proposed, one based on equilibrium tidal deformation of the primary star and the other on a dynamical tidal effect. When the starspot variability is removed from the data, the dynamical tidal model was the better approximation to the real physical situation. The analysis indicates that BM Cam is not rotating pseudosynchronously but rotating in virtual synchronism after all.

  7. Test set for initial value problem solvers

    NARCIS (Netherlands)

    W.M. Lioen (Walter); J.J.B. de Swart (Jacques)

    1998-01-01

    textabstractThe CWI test set for IVP solvers presents a collection of Initial Value Problems to test solvers for implicit differential equations. This test set can both decrease the effort for the code developer to test his software in a reliable way, and cross the bridge between the application

  8. The RPA Atomization Energy Puzzle.

    Science.gov (United States)

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  9. PSQP: Puzzle Solving by Quadratic Programming.

    Science.gov (United States)

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  10. The Human Mind As General Problem Solver

    Science.gov (United States)

    Gurr, Henry

    2011-10-01

    Since leaving U Cal Irvine Neutrino Research, I have been a University Physics Teacher, and an Informal Researcher Of Human Functionality. My talk will share what I discovered about the best ways to learn, many of which are regularities that are to be expected from the Neuronal Network Properties announced in the publications of physicist John Joseph Hopfield. Hopfield's Model of mammalian brain-body, provides solid instructive understanding of how best Learn, Solve Problems, Live! With it we understand many otherwise puzzling features of our intellect! Examples Why 1) Analogies and metaphors powerful in class instruction, ditto poems. 2) Best learning done in physical (Hands-On) situations with tight immediate dynamical feedback such as seen in learning to ride bike, drive car, speak language, etc. 3) Some of the best learning happens in seeming random exploration, bump around, trial and error. 4) Scientific discoveries happen, with no apparent effort, at odd moments. 5) Important discoveries DEPEND on considerable frustrating effort, then Flash of Insight AHA EURIKA.

  11. ALPS - A LINEAR PROGRAM SOLVER

    Science.gov (United States)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  12. The Puzzle of Male Chronophilias.

    Science.gov (United States)

    Seto, Michael C

    2017-01-01

    In this article, I return to the idea that pedophilia, a sexual interest in prepubescent children, can be considered a sexual orientation for age, in conjunction with the much more widely acknowledged and discussed sexual orientation for gender. Here, I broaden the scope to consider other chronophilias, referring to paraphilias for age/maturity categories other than young sexually mature adults. The puzzle of chronophilias includes questions about etiology and course, how chronophilias are related to each other, and what they can tell us about how human (male) sexuality is organized. In this article, I briefly review research on nepiophilia (infant/toddlers), pedophilia (prepubescent children), hebephilia (pubescent children), ephebophilia (postpubescent, sexually maturing adolescents), teleiophilia (young sexually mature adults, typically 20s and 30s), mesophilia (middle-aged adults, typically 40s and 50s), and gerontophilia (elderly adults, typically 60s and older) in the context of a multidimensional sexual orientations framework. Relevant research, limitations, and testable hypotheses for future work are identified.

  13. ALPS: A Linear Program Solver

    Science.gov (United States)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  14. Modular Extracellular Matrices: Solutions for the Puzzle

    Science.gov (United States)

    Serban, Monica A.; Prestwich, Glenn D.

    2008-01-01

    The common technique of growing cells in two-dimensions (2-D) is gradually being replaced by culturing cells on matrices with more appropriate composition and stiffness, or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm has been constrained by the absence of a commercially available, biocompatible material that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. The challenge – the puzzle that needs a solution – is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild and replicate a given tissue. For use in drug discovery, toxicology, cell banking, and ultimately in reparative medicine, the ideal matrix would therefore need to be highly reproducible, manufacturable, approvable, and affordable. Herein we describe the development of a set of modular components that can be assembled into biomimetic materials that meet these requirements. These semi-synthetic ECMs, or sECMs, are based on hyaluronan derivatives that form covalently crosslinked, biodegradable hydrogels suitable for 3-D culture of primary and stem cells in vitro, and for tissue formation in vivo. The sECMs can be engineered to provide appropriate biological cues needed to recapitulate the complexity of a given ECM environment. Specific applications for different sECM compositions include stem cell expansion with control of differentiation, scar-free wound healing, growth factor delivery, cell delivery for osteochondral defect and liver repair, and development of vascularized tumor xenografts for personalized chemotherapy. PMID:18442709

  15. Geoscience Data Puzzles: Developing Students' Ability to Make Meaning from Data

    Science.gov (United States)

    Kastens, K. A.; Turrin, M.

    2010-12-01

    One of the most fundamental aspects of geoscience expertise is the ability to extract insights from observational earth data. Where an expert might see trends, patterns, processes, and candidate causal relationships, a novice could look at the same data representation and see dots, wiggles and blotches of color. The problem is compounded when the student was not personally involved in collecting the data or samples and thus has no experiential knowledge of the Earth setting that the data represent. In other words, the problem is especially severe when students tap into the vast archives of professionally-collected data that the geoscience community has worked so hard to make available for instructional use over the internet. Moreover, most high school and middle school teachers did not themselves learn Earth Science through analyzing data, and they may lack skills and/or confidence needed to scaffold students through the process of learning to interpret realistically-complex data sets. We have developed “Geoscience Data Puzzles” with the paired goals of (a) helping students learn about the earth from data, and (b) helping teachers learn to teach with data. Geoscience Data Puzzles are data-using activities that purposefully present a low barrier-to-entry for teachers and a high ratio of insight-to-effort for students. Each Puzzle uses authentic geoscience data, but the data are carefully pre-selected in order to illuminate a fundamental Earth process within tractable snippets of data. Every Puzzle offers "Aha" moments, when the connection between data and process comes clear in a rewarding burst of insight. Every Puzzle is accompanied by a Pedagogical Content Knowledge (PCK) guide, which explicates the chain of reasoning by which the puzzle-solver can use the evidence provided by the data to construct scientific claims. Four types of reasoning are stressed: spatial reasoning, in which students make inferences from observations about location, orientation, shape

  16. Java Based Symbolic Circuit Solver For Electrical Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Ruba Akram Amarin

    2012-11-01

    Full Text Available The interactive technical electronic book, TechEBook, currently under development at the University of Central Florida (UCF, introduces a paradigm shift by replacing the traditional electrical engineering course with topic-driven modules that provide a useful tool for engineers and scientists. The TechEBook comprises the two worlds of classical circuit books and interactive operating platforms such as iPads, laptops and desktops. The TechEBook provides an interactive applets screen that holds many modules, each of which has a specific application in the self learning process. This paper describes one of the interactive techniques in the TechEBook known as Symbolic Circuit Solver (SymCirc. The SymCirc develops a versatile symbolic based linear circuit with a switches solver. The solver works by accepting a Netlist and the element that the user wants to find the voltage across or current on, as input parameters. Then it either produces the plot or the time domain expression of the output. Frequency domain plots or Symbolic Transfer Functions are also produced. The solver gets its input from a Web-based GUI circuit drawer developed at UCF. Typical simulation tools that electrical engineers encounter are numerical in nature, that is, when presented with an input circuit they iteratively solve the circuit across a set of small time steps. The result is represented as a data set of output versus time, which can be plotted for further inspection. Such results do not help users understand the ultimate nature of circuits as Linear Time Invariant systems with a finite dimensional basis in the solution space. SymCirc provides all simulation results as time domain expressions composed of the basic functions that exclusively include exponentials, sines, cosines and/or t raised to any power. This paper explains the motivation behind SymCirc, the Graphical User Interface front end and how the solver actually works. The paper also presents some examples and

  17. Lepton mixing and the ''solar neutrino puzzle''

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1977-01-01

    The results of the well known solar neutrino experiment of Davis et al. are discussed, in which the Cl-Ar method is used. The result of the experiment, a too small neutrino signal (the so-called ''solar neutrino puzzle'), has been tentatively accounted for in a number of quite exotic explanations. It appears that the explanation in terms of lepton mixing and neutrino sterility is quite attractive from the point of view of present day elementary particle physics and is much more natural than the other explanations of the ''puzzle''

  18. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    Science.gov (United States)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  19. Difficult Sudoku Puzzles Created by Replica Exchange Monte Carlo Method

    OpenAIRE

    Watanabe, Hiroshi

    2013-01-01

    An algorithm to create difficult Sudoku puzzles is proposed. An Ising spin-glass like Hamiltonian describing difficulty of puzzles is defined, and difficult puzzles are created by minimizing the energy of the Hamiltonian. We adopt the replica exchange Monte Carlo method with simultaneous temperature adjustments to search lower energy states efficiently, and we succeed in creating a puzzle which is the world hardest ever created in our definition, to our best knowledge. (Added on Mar. 11, the ...

  20. Using SPARK as a Solver for Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  1. New iterative solvers for the NAG Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Salvini, S.; Shaw, G. [Numerical Algorithms Group Ltd., Oxford (United Kingdom)

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  2. Puzzle Pedagogy: A Use of Riddles in Mathematics Education

    Science.gov (United States)

    Farnell, Elin

    2017-01-01

    In this article, I present a collection of puzzles appropriate for use in a variety of undergraduate courses, along with suggestions for relevant discussion. Logic puzzles and riddles have long been sources of amusement for mathematicians and the general public alike. I describe the use of puzzles in a classroom setting, and argue for their use as…

  3. Algorithmic Puzzles: History, Taxonomies, and Applications in Human Problem Solving

    Science.gov (United States)

    Levitin, Anany

    2017-01-01

    The paper concerns an important but underappreciated genre of algorithmic puzzles, explaining what these puzzles are, reviewing milestones in their long history, and giving two different ways to classify them. Also covered are major applications of algorithmic puzzles in cognitive science research, with an emphasis on insight problem solving, and…

  4. Gamma-ray bursts, a puzzle being resolved

    CERN Multimedia

    Piran, T

    1999-01-01

    Gamma Ray Bursts (GRBs), short and intense bursts of Gamma-Rays, have puzzled astrophysicists since their accidental discovery in the seventies. BATSE, launched in 1991, has established the cosmological origin of GRBs and has shown that they involve energies much higher than previously expected, corresponding to the most powerful explosions known in the Universe. The fireball model, which has been developed during the last ten years, explains most of the observed features of GRBs . According to this model, GRBs are produced in internal collisions of ejected matter flowing at ultra-relativistic energy. This ultra-relativistic motion reaches Lorentz factors of order 100 or more, higher than seen elsewhere in the Universe. The GRB afterglow was discovered in 1997. It was predicted by this model and it takes place when this relativistic flow is slowed down by the surrounding material. This model was confirmed recently with the discovery last January of the predicted prompt optical emission from GRB 990123. Unfort...

  5. Cafesat: A modern sat solver for scala

    OpenAIRE

    Blanc Régis

    2013-01-01

    We present CafeSat a SAT solver written in the Scala programming language. CafeSat is a modern solver based on DPLL and featuring many state of the art techniques and heuristics. It uses two watched literals for Boolean constraint propagation conict driven learning along with clause deletion a restarting strategy and the VSIDS heuristics for choosing the branching literal. CafeSat is both sound and complete. In order to achieve reasonable performance low level and hand tuned data structures a...

  6. A Puzzle Guide to Gödel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Forever Undecided: A Puzzle Guide to Gödel. R Ramanujam. Book Review Volume 6 Issue 7 July 2001 pp 97-98. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/07/0097-0098 ...

  7. Solving jigsaw puzzles using image features

    DEFF Research Database (Denmark)

    Nielsen, Ture R.; Drewsen, Peter; Hansen, Klaus

    2008-01-01

    In this article, we describe a method for automatic solving of the jigsaw puzzle problem based on using image features instead of the shape of the pieces. The image features are used for obtaining an accurate measure for edge similarity to be used in a new edge matching algorithm. The algorithm i...

  8. New data and an old puzzle

    DEFF Research Database (Denmark)

    Lee, S Hong; Byrne, Enda M; Hultman, Christina M

    2015-01-01

    BACKGROUND: A long-standing epidemiological puzzle is the reduced rate of rheumatoid arthritis (RA) in those with schizophrenia (SZ) and vice versa. Traditional epidemiological approaches to determine if this negative association is underpinned by genetic factors would test for reduced rates of one...

  9. A generalization of the Pasadena puzzle

    NARCIS (Netherlands)

    Peterson, M.B.

    2013-01-01

    By generalizing the Pasadena puzzle introduced by Nover and Hájek (2004) we show that the sum total of value produced by an act can be made to converge to any real number by applying the Riemann rearrangement theorem, even if the scenario faced by the decision maker is non-probabilistic and fully

  10. Puzzles in studies of quantum chaos

    International Nuclear Information System (INIS)

    Xu Gongou

    1994-01-01

    Puzzles in studies of quantum chaos are discussed. From the view of global properties of quantum states, it is clarified that quantum chaos originates from the break-down of invariant properties of quantum canonical transformations. There exist precise correspondences between quantum and classical chaos

  11. The Crossword Puzzle as a Teaching Tool.

    Science.gov (United States)

    Crossman, Edward K.

    1983-01-01

    In courses such as the history of psychology, it is necessary to learn a variety of relationships, events, and sequences, in addition to the task of having to pair certain key concepts with related names, e.g., phrenology--Hall. One tool useful in this type of learning is the crossword puzzle. (RM)

  12. Mathematical History: Activities, Puzzles, Stories, and Games.

    Science.gov (United States)

    Mitchell, Merle

    Based on the history of mathematics, these materials have been planned to enrich the teaching of mathematics in grades four, five, and six. Puzzles and games are based on stories about topics such as famous mathematicians, numerals of ancient peoples, and numerology. The sheets are arranged by grade level and are designed for easy duplication.…

  13. Peelle's pertinent puzzle: Way of solution

    International Nuclear Information System (INIS)

    Pronyaev, V.G.

    2003-01-01

    The effect of evident bias of evaluated data below the majority of experimental data observed in general least-squares model fitting of these data is called as Peelle's Pertinent Puzzle (PPP). Since the transformation of the central values is trivial, the solution by transformation of covariance matrices is deducted

  14. Bullet-Block Science Video Puzzle

    Science.gov (United States)

    Shakur, Asif

    2015-01-01

    A science video blog, which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a…

  15. Simultaneous explanation of the RK and R (D (*)) puzzles

    Science.gov (United States)

    Bhattacharya, Bhubanjyoti; Datta, Alakabha; London, David; Shivashankara, Shanmuka

    2015-03-01

    At present, there are several hints of lepton flavor non-universality. The LHCb Collaboration has measured RK ≡ B (B+ →K+μ+μ-) / B (B+ →K+e+e-), and the BaBar Collaboration has measured R (D (*)) ≡ B (B bar →D (*) +τ-νbarτ) / B (B bar →D (*) +ℓ-νbarℓ) (ℓ = e , μ). In all cases, the experimental results differ from the standard model predictions by 2- 3 σ. Recently, an explanation of the RK puzzle was proposed in which new physics (NP) generates a neutral-current operator involving only third-generation particles. Now, assuming the scale of NP is much larger than the weak scale, this NP operator must be made invariant under the full SU (3)C × SU (2)L × U(1)Y gauge group. In this Letter, we note that, when this is done, a new charged-current operator can appear, and this can explain the R (D (*)) puzzle. A more precise measurement of the double ratio R (D) / R (D*) can rule out this model.

  16. 3D casing-distributor analysis with a novel block coupled OpenFOAM solver for hydraulic design application

    International Nuclear Information System (INIS)

    Devals, C; Zhang, Y; Dompierre, J; Guibault, F; Vu, T C; Mangani, L

    2014-01-01

    Nowadays, computational fluid dynamics is commonly used by design engineers to evaluate and compare losses in hydraulic components as it is less expensive and less time consuming than model tests. For that purpose, an automatic tool for casing and distributor analysis will be presented in this paper. An in-house mesh generator and a Reynolds Averaged Navier-Stokes equation solver using the standard k-ω SST turbulence model will be used to perform all computations. Two solvers based on the C++ OpenFOAM library will be used and compared to a commercial solver. The performance of the new fully coupled block solver developed by the University of Lucerne and Andritz will be compared to the standard 1.6ext segregated simpleFoam solver and to a commercial solver. In this study, relative comparisons of different geometries of casing and distributor will be performed. The present study is thus aimed at validating the block solver and the tool chain and providing design engineers with a faster and more reliable analysis tool that can be integrated into their design process

  17. Benchmarking optimization solvers for structural topology optimization

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana; Stolpe, Mathias

    2015-01-01

    solvers in IPOPT and FMINCON, and the sequential quadratic programming method in SNOPT, are benchmarked on the library using performance profiles. Whenever possible the methods are applied to both the nested and the Simultaneous Analysis and Design (SAND) formulations of the problem. The performance...

  18. On a construction of fast direct solvers

    Czech Academy of Sciences Publication Activity Database

    Práger, Milan

    2003-01-01

    Roč. 48, č. 3 (2003), s. 225-236 ISSN 0862-7940 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : Poisson equation * boundary value problem * fast direct solver Subject RIV: BA - General Mathematics

  19. vZ - An Optimizing SMT Solver

    DEFF Research Database (Denmark)

    Bjørner, Nikolaj; Dung, Phan Anh; Fleckenstein, Lars

    2015-01-01

    vZ is a part of the SMT solver Z3. It allows users to pose and solve optimization problems modulo theories. Many SMT applications use models to provide satisfying assignments, and a growing number of these build on top of Z3 to get optimal assignments with respect to objective functions. vZ provi...

  20. Extending the Finite Domain Solver of GNU Prolog

    NARCIS (Netherlands)

    Bloemen, Vincent; Diaz, Daniel; van der Bijl, Machiel; Abreu, Salvador; Ströder, Thomas; Swift, Terrance

    This paper describes three significant extensions for the Finite Domain solver of GNU Prolog. First, the solver now supports negative integers. Second, the solver detects and prevents integer overflows from occurring. Third, the internal representation of sparse domains has been redesigned to

  1. Vývoj aplikace pro řešení úloh lineárního programování pomocí nástroje Microsoft Solver Foundation

    OpenAIRE

    VYSUŠIL, Pavel

    2017-01-01

    The goal of this thesis is to create a software application for solving selected problem of linear programming by using tools of Microsoft Solver Foundation library. This software library is finally integrated into the target application in order to accomplish solving Sudoku puzzle. It contains description of a mathematical model of Sudoku game that is implemented. Problem is defined as an Integer Linear Programming problem which is solved using Simplex method.

  2. Lepton mixing and the 'solar neutrino puzzle'

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1977-01-01

    The results of the well-known solar neutrino experiments in which the Cl-Ar method was employed are discussed; the results of this experiment gave a too-small neutrino signal and were referred to as the 'solar neutrino puzzle'. A number of explanations have been offered to account for the results, but it is stated that the explanation in terms of lepton mixing and neutrino sterility is attractive in terms of present day elementary particle physics and much more natural than the other explanations offered. Headings are as follows: neutrino oscillations and lepton charge, oscillations and solar neutrino experiments, lepton mixing according to old and present ideas, neutrino oscillations and the 'solar neutrino puzzle'. (U.K.)

  3. Interfacial depinning transitions in disordered media: revisiting an old puzzle

    International Nuclear Information System (INIS)

    Moglia, Belén; Albano, Ezequiel V; Villegas, Pablo; Muñoz, Miguel A

    2014-01-01

    Interfaces advancing through random media represent a number of different problems in physics, biology and other disciplines. Here, we study the pinning/depinning transition of the prototypical non-equilibrium interfacial model, i.e. the Kardar–Parisi–Zhang equation, advancing in a disordered medium. We will separately analyze the cases of positive and negative non-linearity coefficients, which are believed to exhibit qualitatively different behavior: the positive case shows a continuous transition that can be related to directed-percolation-depinning, while in the negative case there is a discontinuous transition and faceted interfaces appear. Some studies have argued from different perspectives that both cases share the same universal behavior. By using a number of computational and scaling techniques we will shed light on this puzzling situation and conclude that the two cases are intrinsically different. (paper)

  4. 'Super' Japanese site gears up to sole neutrino puzzle

    International Nuclear Information System (INIS)

    Normile, D.

    1995-01-01

    Ever since Wolfgang Pauli proposed the existence of neutrinos in 1930 to explain some puzzling features of the radioactive decay of certain atoms, expermentalists have labored hard to detect enough of the elusive particles to determine their properties. It took 26 years to prove that Pauli's particle even exits-a feat for which Frederick Reines of the University of California (UC), Irvine, won the Nobel Prize last month. Soon, however, physicists will be capturing neutrinos in unprecedented numbers in a 50,000-metric-ton tank that will fill with water starting next month. Researchers hope that this colossal waterbath will yield an answer to one of the most pressing questions is cosmology and high-energy physics: Do neutrinos have mass?The $100 million experiment, called Super-Kamiokande, in located in a lead mine west of Tokyo. This article describes the work to be conducted

  5. THE PUZZLE TECHNIQUE, COOPERATIVE LEARNING STRATEGY TO IMPROVE ACADEMIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    M.ª José Mayorga Fernández

    2012-04-01

    Full Text Available This  article  presents  an  innovative  experience  carried  out  in  the  subject Pedagogical Bases of Special Education, a 4.5 credit core subject taught at the second year of the Degree in Physical Education Teacher Training (to be extinguish, based on the use of a methodological strategic in accordance with the new demands of the EEES. With the experience we pursue a double purpose: firstly, to present the technique of jigsaw or puzzle as a useful methodological strategy for university learning and, on the other hand, to show whether this strategy improves students results. Comparing the results with students previous year results shows that the performance of students who participated in the innovative experience has improved considerably, increasing their motivation and involvement towards the task.

  6. Mankiw's Puzzle on Consumer Durables: A Misspecification

    OpenAIRE

    Tam Bang Vu

    2005-01-01

    Mankiw (1982) shows that consumer durables expenditures should follow a linear ARMA(1,1) process, but the data analyzed supports an AR(1) process instead; thus, a puzzle. In this paper, we employ a more general utility function than Mankiw's quadratic one. Further, the disturbance and depreciation rate are respecified, respectively, as multiplicative and stochastic. The analytical consequence is a nonlinear ARMA(infinity,1) process, which implies that the linear ARMA(1,1) is a misspecificatio...

  7. Social Security and the Equity Premium Puzzle

    OpenAIRE

    Olovsson, Conny

    2004-01-01

    This paper shows that social security may be an important factor in explaining the equity premium puzzle. In the absence of shortselling constraints, the young shortsell bonds to the middle-aged and buy equity. Social security reduces the bond demand of the middle-aged, thereby restricting the possibilities of the young to finance their equity purchases. Their equity demand increases as does the average return to equity. Social security also increases the covariance between future consumption...

  8. The Ay puzzle and the nuclear force

    International Nuclear Information System (INIS)

    Hueber, D.

    1999-01-01

    The nucleon-deuteron analyzing power A y in elastic nucleon-deuteron scattering poses a longstanding puzzle. At energies E lab below approximately 30 MeV, A y cannot be described by any realistic NN force. The inclusion of existing three-nucleon forces does not improve the situation. Because of recent questions about the 3 P J NN phases, we examine whether reasonable changes in the NN force can resolve the puzzle. In order to do this, we investigate the effect on the 3 P J waves produced by changes in different parts of the potential (viz., the central force, tensor force, etc.), as well as on the 2-body observables and on A y . We find that it is not possible with reasonable changes in the NN potential to increase the 3-body A y , and at the same time to keep the 2-body observables unchanged. We therefore conclude that the A y puzzle is likely to be solved by new three-nucleon forces, such as those of spin-orbit type, which have not yet been taken into account. Refs. 7, tab. 1 (author)

  9. Dissolving the Puzzle of Resultant Moral Luck.

    Science.gov (United States)

    Levy, Neil

    The puzzle of resultant moral luck arises when we are disposed to think that an agent who caused a harm deserves to be blamed more than an otherwise identical agent who did not. One popular (but controversial) perspective on resultant moral luck explains our dispositions to produce different judgments with regard to the agents who feature in these cases as a product not of what they genuinely deserve but of our epistemic situation. On this account, there is no genuine resultant moral luck; there is only luck in what evidence becomes available to observers. In this paper, I develop an evolutionary account of our inclination to take the results of actions as evidence for the mental states of agents, thereby explaining why the resulting intuitions are recalcitrant to correction. The account explains why the puzzle of resultant moral luck arises: because our disposition to take the harms agents cause as evidence of their mental states can produce intuitions which conflict with those that arise when we examine agents' mental states without reference to the results of their actions. The account also helps to solve the puzzle of resultant moral luck, by providing a strong reason to ignore the intuitions caused by our disposition to regard actual harms as evidence of mental states. Since these intuitions arise using an unreliable proxy for agents' mental states, they ought to be trumped by more reliable evidence.

  10. The Ay puzzle and the nuclear force

    International Nuclear Information System (INIS)

    Hueber, D.; Friar, J.L.

    1998-01-01

    The nucleon-deuteron analyzing power A y in elastic nucleon-deuteron scattering poses a longstanding puzzle. At energies E lab below approximately 30 MeV A y cannot be described by any realistic nucleon-nucleon (NN) force. The inclusion of existing three-nucleon forces does not improve the situation. Because of recent questions about the 3 P J NN phases, we examine whether reasonable changes in the NN force can resolve the puzzle. In order to do this we investigate the effect on the 3 P J waves produced by changes in different parts of the potential (viz., the central force, tensor force, etc.), as well as on the two-body observables and on A y . We find that it is not possible with reasonable changes in the NN potential to increase the three-body A y and at the same time to keep the two-body observables unchanged. We therefore conclude that the A y puzzle is likely to be solved by new three-nucleon forces, such as those of the spin-orbit type, which have not yet been taken into account. copyright 1998 The American Physical Society

  11. Fostering Creative Problem Solvers in Higher Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang

    2016-01-01

    to meet such challenges. This chapter aims to illustrate how to understand: 1) complexity as the nature of professional practice; 2) creative problem solving as the core skill in professional practice; 3) creativity as interplay between persons and their environment; 4) higher education as the context......Recent studies have emphasized issues of social emergence based on thinking of societies as complex systems. The complexity of professional practice has been recognized as the root of challenges for higher education. To foster creative problem solvers is a key response of higher education in order...... of fostering creative problem solvers; and 5) some innovative strategies such as Problem-Based Learning (PBL) and building a learning environment by Information Communication Technology (ICT) as potential strategies of creativity development. Accordingly, this chapter contributes to bridge the complexity...

  12. Mathematical programming solver based on local search

    CERN Document Server

    Gardi, Frédéric; Darlay, Julien; Estellon, Bertrand; Megel, Romain

    2014-01-01

    This book covers local search for combinatorial optimization and its extension to mixed-variable optimization. Although not yet understood from the theoretical point of view, local search is the paradigm of choice for tackling large-scale real-life optimization problems. Today's end-users demand interactivity with decision support systems. For optimization software, this means obtaining good-quality solutions quickly. Fast iterative improvement methods, like local search, are suited to satisfying such needs. Here the authors show local search in a new light, in particular presenting a new kind of mathematical programming solver, namely LocalSolver, based on neighborhood search. First, an iconoclast methodology is presented to design and engineer local search algorithms. The authors' concern about industrializing local search approaches is of particular interest for practitioners. This methodology is applied to solve two industrial problems with high economic stakes. Software based on local search induces ex...

  13. Aleph Field Solver Challenge Problem Results Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched modeling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challenging problems important to Sandia's mission that Aleph was specifically designed to address.

  14. VDJSeq-Solver: in silico V(DJ recombination detection tool.

    Directory of Open Access Journals (Sweden)

    Giulia Paciello

    Full Text Available In this paper we present VDJSeq-Solver, a methodology and tool to identify clonal lymphocyte populations from paired-end RNA Sequencing reads derived from the sequencing of mRNA neoplastic cells. The tool detects the main clone that characterises the tissue of interest by recognizing the most abundant V(DJ rearrangement among the existing ones in the sample under study. The exact sequence of the clone identified is capable of accounting for the modifications introduced by the enzymatic processes. The proposed tool overcomes limitations of currently available lymphocyte rearrangements recognition methods, working on a single sequence at a time, that are not applicable to high-throughput sequencing data. In this work, VDJSeq-Solver has been applied to correctly detect the main clone and identify its sequence on five Mantle Cell Lymphoma samples; then the tool has been tested on twelve Diffuse Large B-Cell Lymphoma samples. In order to comply with the privacy, ethics and intellectual property policies of the University Hospital and the University of Verona, data is available upon request to supporto.utenti@ateneo.univr.it after signing a mandatory Materials Transfer Agreement. VDJSeq-Solver JAVA/Perl/Bash software implementation is free and available at http://eda.polito.it/VDJSeq-Solver/.

  15. Evolving effective incremental SAT solvers with GP

    OpenAIRE

    Bader, Mohamed; Poli, R.

    2008-01-01

    Hyper-Heuristics could simply be defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT. We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

  16. Asynchronous Parallelization of a CFD Solver

    OpenAIRE

    Abdi, Daniel S.; Bitsuamlak, Girma T.

    2015-01-01

    The article of record as published may be found at http://dx.doi.org/10.1155/2015/295393 A Navier-Stokes equations solver is parallelized to run on a cluster of computers using the domain decomposition method. Two approaches of communication and computation are investigated, namely, synchronous and asynchronous methods. Asynchronous communication between subdomains is not commonly used inCFDcodes; however, it has a potential to alleviate scaling bottlenecks incurred due to process...

  17. Chemical Mechanism Solvers in Air Quality Models

    Directory of Open Access Journals (Sweden)

    John C. Linford

    2011-09-01

    Full Text Available The solution of chemical kinetics is one of the most computationally intensivetasks in atmospheric chemical transport simulations. Due to the stiff nature of the system,implicit time stepping algorithms which repeatedly solve linear systems of equations arenecessary. This paper reviews the issues and challenges associated with the construction ofefficient chemical solvers, discusses several families of algorithms, presents strategies forincreasing computational efficiency, and gives insight into implementing chemical solverson accelerated computer architectures.

  18. Early puzzle play: a predictor of preschoolers' spatial transformation skill.

    Science.gov (United States)

    Levine, Susan C; Ratliff, Kristin R; Huttenlocher, Janellen; Cannon, Joanna

    2012-03-01

    Individual differences in spatial skill emerge prior to kindergarten entry. However, little is known about the early experiences that may contribute to these differences. The current study examined the relation between children's early puzzle play and their spatial skill. Children and parents (n = 53) were observed at home for 90 min every 4 months (6 times) between 2 and 4 years of age (26 to 46 months). When children were 4 years 6 months old, they completed a spatial task involving mental transformations of 2-dimensional shapes. Children who were observed playing with puzzles performed better on this task than those who did not, controlling for parent education, income, and overall parent word types. Moreover, among those children who played with puzzles, frequency of puzzle play predicted performance on the spatial transformation task. Although the frequency of puzzle play did not differ for boys and girls, the quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) was higher for boys than for girls. In addition, variation in puzzle play quality predicted performance on the spatial transformation task for girls but not for boys. Implications of these findings as well as future directions for research on the role of puzzle play in the development of spatial skill are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  19. Early Puzzle Play: A predictor of preschoolers’ spatial transformation skill

    Science.gov (United States)

    Levine, S.C.; Ratliff, K.R.; Huttenlocher, J.; Cannon, J.

    2011-01-01

    Individual differences in spatial skill emerge prior to kindergarten entry. However, little is known about the early experiences that may contribute to these differences. The current study examines the relation between children’s early puzzle play and their spatial skill. Children and parents (n = 53) were observed at home for 90 minutes every four months (six times) between 2 and 4 years of age (26 to 46 months). When children were 4 years 6 months old, they completed a spatial task involving mental transformations of 2D shapes. Children who were observed playing with puzzles performed better on this task than those who did not, controlling for parent education, income, and overall parent word types. Moreover, among those children who played with puzzles, frequency of puzzle play predicted performance on the spatial transformation task. Although the frequency of puzzle play did not differ for boys and girls, the quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) was higher for boys than girls. In addition, variation in puzzle play quality predicted performance on the spatial transformation task for girls but not boys. Implications of these findings as well as future directions for research on the role of the role of puzzle play in the development of spatial skill are discussed. PMID:22040312

  20. Nuclear clustering and the electron screening puzzle

    Science.gov (United States)

    Bertulani, C. A.; Spitaleri, C.

    2018-01-01

    Electron screening changes appreciably the magnitude of astrophysical nuclear reactions within stars. This effect is also observed in laboratory experiments on Earth, where atomic electrons are present in the nuclear targets. Theoretical models were developed over the past 30 years and experimental measurements have been carried out to study electron screening in thermonuclear reactions. None of the theoretical models were able to explain the high values of the experimentally determined screening potentials. We explore the possibility that the "electron screening puzzle" is due to nuclear clusterization and polarization e_ects in the fusion reactions. We will discuss the supporting arguments for this scenario.

  1. Nature's Greatest Puzzles

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab

    2005-02-01

    It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit.

  2. Last piece of the puzzle for ATLAS

    CERN Multimedia

    Clare Ryan

    At around 15.40 on Friday 29th February the ATLAS collaboration cracked open the champagne as the second of the small wheels was lowered into the cavern. Each of ATLAS' small wheels are 9.3 metres in diameter and weigh 100 tonnes including the massive shielding elements. They are the final parts of ATLAS' muon spectrometer. The first piece of ATLAS was installed in 2003 and since then many detector elements have journeyed down the 100 metre shaft into the ATLAS underground cavern. This last piece completes this gigantic puzzle.

  3. The Openpipeflow Navier–Stokes solver

    Directory of Open Access Journals (Sweden)

    Ashley P. Willis

    2017-01-01

    Full Text Available Pipelines are used in a huge range of industrial processes involving fluids, and the ability to accurately predict properties of the flow through a pipe is of fundamental engineering importance. Armed with parallel MPI, Arnoldi and Newton–Krylov solvers, the Openpipeflow code can be used in a range of settings, from large-scale simulation of highly turbulent flow, to the detailed analysis of nonlinear invariant solutions (equilibria and periodic orbits and their influence on the dynamics of the flow.

  4. New multigrid solver advances in TOPS

    International Nuclear Information System (INIS)

    Falgout, R D; Brannick, J; Brezina, M; Manteuffel, T; McCormick, S

    2005-01-01

    In this paper, we highlight new multigrid solver advances in the Terascale Optimal PDE Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing (SciDAC) program. We discuss two new algebraic multigrid (AMG) developments in TOPS: the adaptive smoothed aggregation method (αSA) and a coarse-grid selection algorithm based on compatible relaxation (CR). The αSA method is showing promising results in initial studies for Quantum Chromodynamics (QCD) applications. The CR method has the potential to greatly improve the applicability of AMG

  5. Metaheuristics progress as real problem solvers

    CERN Document Server

    Nonobe, Koji; Yagiura, Mutsunori

    2005-01-01

    Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen current, cutting-edge papers by leading researchers in the field. Included are an invited paper by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with path-relinking. Other papers discuss problem-solving approaches to timetabling, automated planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling, colorectal cancer and cartography. A final group of methodology papers clarify various aspects of Metaheuristics from the computational view point.

  6. A finite different field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL

  7. A finite element field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-01-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs

  8. Sampling Random Bioinformatics Puzzles using Adaptive Probability Distributions

    DEFF Research Database (Denmark)

    Have, Christian Theil; Appel, Emil Vincent; Bork-Jensen, Jette

    2016-01-01

    We present a probabilistic logic program to generate an educational puzzle that introduces the basic principles of next generation sequencing, gene finding and the translation of genes to proteins following the central dogma in biology. In the puzzle, a secret "protein word" must be found by asse...

  9. Decoding Codewords: Statistical Analysis of a Newspaper Puzzle

    Science.gov (United States)

    Meacock, Susan; Meacock, Geoff

    2012-01-01

    In recent years English newspapers have started featuring a number of puzzles other than the ubiquitous crossword. Many of the puzzles are of Japanese origin such as Sudoku, Kakuro or Hidato. However, one recent one is very English and is called variously Cross-code, Alphapuzzle or some other name. In this article, it will be known as Codeword.…

  10. A Puzzle Used to Teach the Cardiac Cycle

    Science.gov (United States)

    Marcondes, Fernanda K.; Moura, Maria J. C. S.; Sanches, Andrea; Costa, Rafaela; Oliveira de Lima, Patricia; Groppo, Francisco Carlos; Amaral, Maria E. C.; Zeni, Paula; Gaviao, Kelly Cristina; Montrezor, Luís H.

    2015-01-01

    The aim of the present article is to describe a puzzle developed for use in teaching cardiac physiology classes. The puzzle presents figures of phases of the cardiac cycle and a table with five columns: phases of cardiac cycle, atrial state, ventricular state, state of atrioventricular valves, and pulmonary and aortic valves. Chips are provided…

  11. The Clock Is Ticking: Library Orientation as Puzzle Room

    Science.gov (United States)

    Reade, Tripp

    2017-01-01

    Tripp Reade is the school librarian at Cardinal Gibbons High School in Raleigh, North Carolina. This article describes how he redesigned his school's library orientation program after learning about escape rooms and a variant known as puzzle rooms. Puzzle rooms present players with a set of challenges to solve; they require "teamwork,…

  12. PCX, Interior-Point Linear Programming Solver

    International Nuclear Information System (INIS)

    Czyzyk, J.

    2004-01-01

    1 - Description of program or function: PCX solves linear programming problems using the Mehrota predictor-corrector interior-point algorithm. PCX can be called as a subroutine or used in stand-alone mode, with data supplied from an MPS file. The software incorporates modules that can be used separately from the linear programming solver, including a pre-solve routine and data structure definitions. 2 - Methods: The Mehrota predictor-corrector method is a primal-dual interior-point method for linear programming. The starting point is determined from a modified least squares heuristic. Linear systems of equations are solved at each interior-point iteration via a sparse Cholesky algorithm native to the code. A pre-solver is incorporated in the code to eliminate inefficiencies in the user's formulation of the problem. 3 - Restriction on the complexity of the problem: There are no size limitations built into the program. The size of problem solved is limited by RAM and swap space on the user's computer

  13. Optimización con Solver

    Directory of Open Access Journals (Sweden)

    Sánchez Álvarez , I.

    1998-01-01

    Full Text Available La relevancia de los problemas de optimización en el mundo empresarial ha generado la introducción de herramientas de optimización cada vez más sofisticadas en las últimas versiones de las hojas de cálculo de utilización generalizada. Estas utilidades, conocidas habitualmente como «solvers», constituyen una alternativa a los programas especializados de optimización cuando no se trata de problemas de gran escala, presentado la ventaja de su facilidad de uso y de comunicación con el usuario final. Frontline Systems Inc es la empresa que desarrolla el «solver» de Excel, si bien existen asimismo versiones para Lotus y Quattro Pro con ligeras diferencias de uso. En su dirección de internet (www.frontsys.com se puede obtener información técnica sobre las diferentes versiones de dicha utilidad y diversos aspectos operativos del programa, algunos de los cuales se comentan en este trabajo.

  14. A sparse-grid isogeometric solver

    KAUST Repository

    Beck, Joakim

    2018-02-28

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  15. A sparse version of IGA solvers

    KAUST Repository

    Beck, Joakim

    2017-07-30

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  16. A sparse-grid isogeometric solver

    KAUST Repository

    Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo

    2018-01-01

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  17. A sparse version of IGA solvers

    KAUST Repository

    Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo

    2017-01-01

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  18. Baby universes

    International Nuclear Information System (INIS)

    Strominger, A.

    1988-01-01

    This paper discusses how the subject of baby universes and their effects on spacetime coupling constants is in its infancy and rapidly developing. The subject is based on the non-existent (even by physicists' standards) Euclidean formulation of quantum gravity, and it is therefore necessary to make a number of assumptions in order to proceed. Nevertheless, the picture which has emerged is quite appealing: all spacetime coupling constants become dynamical variables when the effects of baby universes are taken into account. This fact might even solve the puzzle of the cosmological constant. The subject therefore seems worth further investigation

  19. A new piece of the puzzle

    CERN Multimedia

    2005-01-01

    The team responsible for the installation of the hadronic calorimeter's central barrel after completion of the assembly work. Assembly of the great ATLAS puzzle continues underground. On 10 December, the final module of the central barrel of the tile hadronic calorimeter was assembled. This piece of the tile calorimeter had already been assembled above ground during a "dress rehearsal" in 2003 (see Bulletin no 46/2003, 10 November 2003). The hadronic calorimeter's two other barrels, the so-called "extended barrels", remain to be assembled with this first central barrel, which now surrounds the electromagnetic calorimeter barrel that was lowered into the cavern at the end of October. At the end of November, the second of the eight barrel toroid coils was also installed.

  20. Heavy quarkonium: progress, puzzles, and opportunities

    CERN Document Server

    Brambilla, N; Heltsley, B K; Vogt, R; Bodwin, G T; Eichten, E; Frawley, A D; Meyer, A B; Mitchell, R E; Papadimitriou, V; Petreczky, P; Petrov, A A; Robbe, P; Vairo, A; Andronic, A; Arnaldi, R; Artoisenet, P; Bali, G; Bertolin, A; Bettoni, D; Brodzicka, J; Bruno, G E; Caldwell, A; Catmore, J; Chang, C H; Chao, K T; Chudakov, E; Cortese, P; Crochet, P; Drutskoy, A; Ellwanger, U; Faccioli, P; Gabareen Mokhtar, A; Garcia i Tormo, X; Hanhart, C; Harris, F A; Kaplan, D M; Klein, S R; Kowalski, H; Lansberg, J P; Levichev, E; Lombardo, V; Lourenco, C; Maltoni, F; Mocsy, A; Mussa, R; Navarra, F S; Negrini, M; Nielsen, M; Olsen, S L; Pakhlov, P; Pakhlova, G; Peters, K; Polosa, A D; Qian, W; Qiu, J W; Rong, G; Sanchis-Lozano, M A; Scomparin, E; Senger, P; Simon, F; Stracka, S; Sumino, Y; Voloshin, M; Weiss, C; Wohri, H K; Yuan, C Z

    2011-01-01

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA, JLab, and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing ...

  1. The Eco-Efficiency Premium Puzzle

    International Nuclear Information System (INIS)

    Guenster, N.; Derwall, J.; Bauer, R.; Koedijk, K.

    2004-09-01

    Conventional investment theory suggests that socially responsible investing (SRI) leads to inferior, rather than superior, portfolio performance. Using Innovest's well-established corporate eco-efficiency scores, we provide evidence supporting the contrary. We compose two equity portfolios that differ in ecoefficiency characteristics and find that our high-ranked portfolio provided substantially higher average returns compared to its low-ranked counterpart over the period 1995-2003. Using a wide range of performance attribution techniques to address common methodological concerns, we show that this performance differential cannot be explained by differences in market sensitivity, investment style, or industry-specific components. We finally investigate whether this ecoefficiency premium puzzle withstands the inclusion of transaction costs scenarios, and evaluate how excess returns can be earned in a practical setting via a best-in-class stock selection strategy. The results remain significant under all levels of transactions costs, thus suggesting that the incremental benefits of SRI can be substantial

  2. SOLVING THE PUZZLE OF SUBHALO SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Lin, Weipeng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030 (China); Pearce, Frazer R.; Lux, Hanni; Onions, Julian [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Muldrew, Stuart I., E-mail: wangyang@shao.ac.cn, E-mail: linwp@shao.ac.cn [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)

    2015-03-10

    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario.

  3. A Novel Interactive MINLP Solver for CAPE Applications

    DEFF Research Database (Denmark)

    Henriksen, Jens Peter; Støy, S.; Russel, Boris Mariboe

    2000-01-01

    This paper presents an interactive MINLP solver that is particularly suitable for solution of process synthesis, design and analysis problems. The interactive MINLP solver is based on the decomposition based MINLP algorithms, where a NLP sub-problem is solved in the innerloop and a MILP master pr...

  4. Experiences with linear solvers for oil reservoir simulation problems

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  5. Solar Twins and the Barium Puzzle

    International Nuclear Information System (INIS)

    Reddy, Arumalla B. S.; Lambert, David L.

    2017-01-01

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La−Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s -process, the difficulty to replicate higher Ba abundance and normal La−Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measured the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba ii relative to La−Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba ii lines by the upper photospheric layers from where the Ba ii lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba ii lines but the change of microturbulence in the upper photosphere has only a minor affect on La−Sm abundances measured from the weak lines.

  6. Exfoliation syndrome: assembling the puzzle pieces.

    Science.gov (United States)

    Pasquale, Louis R; Borrás, Terete; Fingert, John H; Wiggs, Janey L; Ritch, Robert

    2016-09-01

    To summarize various topics and the cutting edge approaches to refine XFS pathogenesis that were discussed at the 21st annual Glaucoma Foundation Think Tank meeting in New York City, Sept. 19-20, 2014. The highlights of three categories of talks on cutting edge research in the field were summarized. Exfoliation syndrome (XFS) is a systemic disorder with a substantial ocular burden, including high rates of cataract, cataract surgery complications, glaucoma and retinal vein occlusion. New information about XFS is akin to puzzle pieces that do not quite join together to reveal a clear picture regarding how exfoliation material (XFM) forms. Meeting participants concluded that it is unclear how the mild homocysteinemia seen in XFS might contribute to the disarrayed extracellular aggregates characteristic of this syndrome. Lysyl oxidase-like 1 (LOXL1) variants are unequivocally genetic risk factors for XFS but exactly how these variants contribute to the assembly of exfoliation material (XFM) remains unclear. Variants in a new genomic region, CACNA1A associated with XFS, may alter calcium concentrations at the cell surface and facilitate XFM formation but much more work is needed before we can place this new finding in proper context. It is hoped that various animal model and ex vivo systems will emerge that will allow for proper assembly of the puzzle pieces into a coherent picture of XFS pathogenesis. A clear understanding of XFS pathogenesis may lead to 'upstream solutions' to reduce the ocular morbidity produced by XFS. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Solar Twins and the Barium Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Arumalla B. S.; Lambert, David L., E-mail: bala@astro.as.utexas.edu [W.J. McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712-1205 (United States)

    2017-08-20

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La−Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s -process, the difficulty to replicate higher Ba abundance and normal La−Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measured the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba ii relative to La−Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba ii lines by the upper photospheric layers from where the Ba ii lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba ii lines but the change of microturbulence in the upper photosphere has only a minor affect on La−Sm abundances measured from the weak lines.

  8. Parallel sparse direct solver for integrated circuit simulation

    CERN Document Server

    Chen, Xiaoming; Yang, Huazhong

    2017-01-01

    This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques. · Introduces complicated algorithms of sparse linear solvers, using concise principles and simple examples, without complex theory or lengthy derivations; · Describes a parallel sparse direct solver that can be adopted to accelerate any SPICE-like integrated circuit simulato...

  9. High order Poisson Solver for unbounded flows

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2015-01-01

    This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...

  10. Optimising a parallel conjugate gradient solver

    Energy Technology Data Exchange (ETDEWEB)

    Field, M.R. [O`Reilly Institute, Dublin (Ireland)

    1996-12-31

    This work arises from the introduction of a parallel iterative solver to a large structural analysis finite element code. The code is called FEX and it was developed at Hitachi`s Mechanical Engineering Laboratory. The FEX package can deal with a large range of structural analysis problems using a large number of finite element techniques. FEX can solve either stress or thermal analysis problems of a range of different types from plane stress to a full three-dimensional model. These problems can consist of a number of different materials which can be modelled by a range of material models. The structure being modelled can have the load applied at either a point or a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a thermal load can be applied with a given initial temperature. The displacement of the structure can be constrained by having a fixed boundary or by prescribing the displacement at a boundary.

  11. A Resolution of the Purchasing Power Parity Puzzle

    DEFF Research Database (Denmark)

    Frydman, Roman; Goldberg, Michael D.; Johansen, Søren

    Asset prices undergo long swings that revolve around benchmark levels. In currency markets, fluctuations involve real exchange rates that are highly persistent and that move in near-parallel fashion with nominal rates. The inability to explain these two regularities with one model has been called...... the "Purchasing Power Parity puzzle". In this paper, we trace the puzzle to exchange rate modelers' use of the "Rational Expectations Hypothesis". We show that once imperfect knowledge is recognized, a monetary model is able to account for the puzzle, as well as other salient features of the data, including...

  12. Real exchange rate persistence and the excess return puzzle

    DEFF Research Database (Denmark)

    Juselius, Katarina; Assenmacher, Katrin

    2017-01-01

    The PPP puzzle refers to the wide swings of nominal exchange rates around their long-run equilibrium values whereas the excess return puzzle represents the persistent deviation of the domestic-foreign interest rate differential from the expected change in the nominal exchange rate. Using the I(2......) cointegrated VAR model, much of the excess return puzzle disappears when an uncertainty premium in the foreign exchange market, proxied by the persistent PPP gap, is introduced. Self-reinforcing feedback mechanisms seem to cause the persistence in the Swiss-US parity conditions. These results support imperfect...

  13. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    Science.gov (United States)

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  14. Teaching the Blue-Eyed Islanders Puzzle in a Liberal Arts Mathematics Course

    Science.gov (United States)

    Shea, Stephen

    2012-01-01

    The blue-eyed islanders puzzle is an old and challenging logic puzzle. This is a narrative of an experience introducing a variation of this puzzle on the first day of classes in a liberal arts mathematics course for non-majors. I describe an exercise that was used to facilitate the class's understanding of the puzzle.

  15. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    Science.gov (United States)

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  16. (Mis)perception of sleep in insomnia: a puzzle and a resolution.

    Science.gov (United States)

    Harvey, Allison G; Tang, Nicole K Y

    2012-01-01

    Insomnia is prevalent, causing severe distress and impairment. This review focuses on illuminating the puzzling finding that many insomnia patients misperceive their sleep. They overestimate their sleep onset latency (SOL) and underestimate their total sleep time (TST), relative to objective measures. This tendency is ubiquitous (although not universal). Resolving this puzzle has clinical, theoretical, and public health importance. There are implications for assessment, definition, and treatment. Moreover, solving the puzzle creates an opportunity for real-world applications of theories from clinical, perceptual, and social psychology as well as neuroscience. Herein we evaluate 13 possible resolutions to the puzzle. Specifically, we consider the possible contribution, to misperception, of (1) features inherent to the context of sleep (e.g., darkness); (2) the definition of sleep onset, which may lack sensitivity for insomnia patients; (3) insomnia being an exaggerated sleep complaint; (4) psychological distress causing magnification; (5) a deficit in time estimation ability; (6) sleep being misperceived as wake; (7) worry and selective attention toward sleep-related threats; (8) a memory bias influenced by current symptoms and emotions, a confirmation bias/belief bias, or a recall bias linked to the intensity/recency of symptoms; (9) heightened physiological arousal; (10) elevated cortical arousal; (11) the presence of brief awakenings; (12) a fault in neuronal circuitry; and (13) there being 2 insomnia subtypes (one with and one without misperception). The best supported resolutions were misperception of sleep as wake, worry, and brief awakenings. A deficit in time estimation ability was not supported. We conclude by proposing several integrative solutions.

  17. Formative Assessment Probes: Mountaintop Fossil: A Puzzling Phenomenon

    Science.gov (United States)

    Keeley, Page

    2015-01-01

    This column focuses on promoting learning through assessment. This month's issue describes using formative assessment probes to uncover several ways of thinking about the puzzling discovery of a marine fossil on top of a mountain.

  18. Comparison of open-source linear programming solvers.

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

    2013-10-01

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

  19. Stateless Puzzles for Real Time Online Fraud Preemption

    OpenAIRE

    Rahman, Mizanur; Recabarren, Ruben; Carbunar, Bogdan; Lee, Dongwon

    2017-01-01

    The profitability of fraud in online systems such as app markets and social networks marks the failure of existing defense mechanisms. In this paper, we propose FraudSys, a real-time fraud preemption approach that imposes Bitcoin-inspired computational puzzles on the devices that post online system activities, such as reviews and likes. We introduce and leverage several novel concepts that include (i) stateless, verifiable computational puzzles, that impose minimal performance overhead, but e...

  20. The Puzzle of the Scandinavian Welfare State and Social Trust

    DEFF Research Database (Denmark)

    Svendsen, Gunnar Lind Haase; Svendsen, Gert Tinggaard

    2015-01-01

    The Scandinavian welfare model is a puzzle to economists: It works economically, even though free-riding should prevail with its explosive cocktail of high taxation and high social benefits. One overlooked solution to the puzzle could be the unique stock of social trust present in Scandinavia. Here......, the four Scandinavian countries (Norway, Denmark, Sweden, and Finland) form the top three with scores above 60 percent social trust on a ranking that covers 94 countries from all over the world....

  1. Modified and fuzzified general problem solver for 'monkey and banana' problem, 2

    International Nuclear Information System (INIS)

    Sano, Norihide; Takahashi, Ryoichi.

    1991-01-01

    The automatic operation is important for the in-service inspection of the operating nuclear power station or the decommission of retired plants. The master and slave control will be introduced for work-robot control. It is desirable that the slave involves the capability of problem solving. This paper assumed that the slave involved the general problem solver algorithm. In view of having solved the puzzle of the 'monkey and banana', the slave system is regarded as the reasonable alternative which incorporates the capability of problem solving. Basically, the GPS solves a problem by reducing the difference between an initial state and a goal state, and hence the performance of GPS depends on selecting the difference to be reduced. The usual GPS is given in advance the ordering which indicates the importance of the differences. In this paper, the GPS was improved by making use of the rules which decide the order. When several choices are found on the given difference, the fuzzified decision to determine the action is demonstrated in this paper. (author)

  2. CROSSWORD PUZZLE INCREASE ATTENTION OF CHILDREN WITH ADHD

    Directory of Open Access Journals (Sweden)

    Ah. Yusuf

    2017-07-01

    Full Text Available Introduction: Attention deficit is one of three main problems of children with Attention Deficit Hyperactivity Disorder (ADHD. Children experience difficulty of paying attention and concentrating to one or more things or objects. As a results these children cannot perform the task well. Crossword puzzle is one of games that may increase attention and concentration. The aim of this study was to analyze the effect of crossword puzzle to increase attention of children with ADHD. Method: Pre-experimental design was employed in this study. The population was ADHD students in Cakra Autisme Therapy. Seven students were recruited by means of purposive sampling. The independent variable was crossword puzzle and the dependent variable was the increase of attention. Data were collected using observation sheet and analyzed using Wilcoxon Signed Rank Test with level of significance of α≤ 0.05. Result: Result showed that crossword puzzle could increase attention. Respondent’s attention improved from less to good attention, particularly in playing activities (p=0.014. Analysis: This finding suggests that there was differences of attention between pre and post-test. It can be concluded that crossword puzzle can increase attention of the students with ADHD. Discussion: It is recommended for teachers and parents of ADHD children to give them crossword puzzle game everyday at school or at home. Further studies should involve larger sample size and employs another game not only to increase attention, but also reduce hyperactivity and impulsivity of ADHD child.

  3. Learning Domain-Specific Heuristics for Answer Set Solvers

    OpenAIRE

    Balduccini, Marcello

    2010-01-01

    In spite of the recent improvements in the performance of Answer Set Programming (ASP) solvers, when the search space is sufficiently large, it is still possible for the search algorithm to mistakenly focus on areas of the search space that contain no solutions or very few. When that happens, performance degrades substantially, even to the point that the solver may need to be terminated before returning an answer. This prospect is a concern when one is considering using such a solver in an in...

  4. A non-conforming 3D spherical harmonic transport solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Commissariat a l' Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  5. A non-conforming 3D spherical harmonic transport solver

    International Nuclear Information System (INIS)

    Van Criekingen, S.

    2006-01-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  6. Universe

    CERN Document Server

    2009-01-01

    The Universe, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  7. LEARNING VOCABULARY THROUGH COLOURFUL PUZZLE GAME

    Directory of Open Access Journals (Sweden)

    Risca Dwiaryanti

    2014-05-01

    Full Text Available Vocabulary plays an important role because it links to the four skills of listening, speaking, reading, and writing. Those aspects should be integrated in teaching and learning process of English. However, the students must be able to know the meaning of each word or vocabulary of English in order to master the four skills. It is as a mean to create a sentence in daily communication to show someone’s feeling, opinion, idea, desire, etc. So that, both speakers understand what the other speaker mean. However, English as a second language in Indonesia seems very hard for the students to master vocabulary of English. It makes them not easy to be understood directly and speak fluently. The students, sometimes, get difficulties in understanding, memorizing the meaning of the vocabulary, and getting confused in using the new words. There must be an effective strategy to attract students’ interest, break the boredom, and make the class more lively. Based on the writer experience, Colourful Puzzle Game is able to make the students learn vocabulary quickly. It needs teacher’s creativity to create the materials of this game based on the class condition. The teacher just need a game board made from colourful papers, write any command and prohibition words on it. A dice is a tool to decide where the player should stop based on the number. Some pins as counter as sign of each player.

  8. Refined isogeometric analysis for a preconditioned conjugate gradient solver

    KAUST Repository

    Garcia, Daniel; Pardo, D.; Dalcin, Lisandro; Calo, Victor M.

    2018-01-01

    Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost

  9. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  10. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome; Mundani, Ralf-Peter; Rank, Ernst

    2012-01-01

    solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while

  11. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo; Sun, Shuyu; Salama, Amgad

    2015-01-01

    and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately

  12. Parallel iterative solvers and preconditioners using approximate hierarchical methods

    Energy Technology Data Exchange (ETDEWEB)

    Grama, A.; Kumar, V.; Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.

  13. A Python interface to Diffpack-based classes and solvers

    OpenAIRE

    Munthe-Kaas, Heidi Vikki

    2013-01-01

    Python is a programming language that has gained a lot of popularity during the last 15 years, and as a very easy-to-learn and flexible scripting language it is very well suited for computa- tional science, both in mathematics and in physics. Diffpack is a PDE library written in C++, made for easier implementation of both smaller PDE solvers and for larger libraries of simu- lators. It contains large class hierarchies for different solvers, grids, arrays, parallel computing and almost everyth...

  14. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    International Nuclear Information System (INIS)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-01-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  15. Heavy quarkonium: progress, puzzles, and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, N; Heltsley, B K; Vogt, R; Bodwin, G T; Eichten, E; Frawley, A D; Meyer, A B; Mitchell, R E; Papdimitriou, V; Petreczky, P; Petrov, A A; Robbe, P; Vairo, A; Andronic, A; Arnaldi, R; Artoisenet, P; Bali, G; Bertolin, A; Bettoni, D; Brodzicka, J; Bruno, G E; Caldwell, A; Catmore, J; Chang, C -H; Chao, K -T; Chudakov, E; Cortese, P; Crochet, P; Drutskoy, A; Ellwanger, U; Faccioli, P; Gabareen Mokhtar, A; Garcia i Tormo, X; Hanhart, C; Harris, F A; Kaplan, D M; Klein, S R; Kowalski, H; Lansberg, J -P; Levichev, E; Lombardo, V; Loureno, C; Maltoni, F; Mocsy, A; Mussa, R; Navarra, F S; Negrini, M; Nielsen, M; Olsen, S L; Pakhlov, P; Pakhlova, G; Peters, K; Polosa, A D; Qian, W; Qiu, J -W; Rong, G; Sanchis-Lozano, M A; Scomparin, E; Senger, P; Simon, F; Stracka, S; Sumino, Y; Voloshin, M; Weiss, C; Wohri, H K; Yuan, C -Z

    2011-02-01

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA, JLab, and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\\bar{c}, b\\bar{b}, and b\\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

  16. Comparing direct and iterative equation solvers in a large structural analysis software system

    Science.gov (United States)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  17. A robust multilevel simultaneous eigenvalue solver

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1993-01-01

    Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.

  18. Evaluation of the three-nucleon analyzing power puzzle

    International Nuclear Information System (INIS)

    Tornow, W.; Witala, H.

    1998-01-01

    The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the 3 P j nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the 3 P j nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the 3 P j nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the 3 P j nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.)

  19. Three Modes of Hydrogeophysical Investigation: Puzzles, Mysteries, and Conundrums

    Science.gov (United States)

    Ferre, P. A.

    2011-12-01

    In an article in the New Yorker in 2007, Malcolm Gladwell discussed the distinction that national security expert Gregory Treverton has made between puzzles and mysteries. Specifically, puzzles are problems that we understand and that will eventually be solved when we amass enough information. (Think crossword puzzles.) Mysteries are problems for which we have the necessary information, but it is often overwhelmed by irrelevant or misleading input. To solve a mystery, we require improved analysis. (Think find-a-word.) Gladwell goes on to explain that, in the national security realm, the Cold War was a puzzle while the current national security condition is a mystery. I will discuss the past, current, and future trajectories of hydrogeophysics in terms of puzzles and mysteries. I will also add a third class of problem: conundrums - those for which we lack sufficient information about their structure to know how to solve them. A conundrum is a mystery with an unexpected twist. I hope to make the case that the future growth of hydrogeophysics lies in our ability to address this more challenging and more interesting class of problem.

  20. Evaluation of the three-nucleon analyzing power puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. [Duke Univ., Durham, NC (United States). Dept. of Physics]|[Triangle Univ. Nuclear Lab., Durham, NC (United States); Witala, H. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1998-07-20

    The current status of the three-nucleon analyzing power puzzle is reviewed. Applying tight constraints on the allowed deviations between calculated predictions and accepted values for relevant nucleon-nucleon observables reveals that energy independent correction factors applied to the {sup 3}P{sub j} nucleon-nucleon interactions can not solve the puzzle. Furthermore, using the same constraints, charge-independence breaking in the {sup 3}P{sub j} nucleon-nucleon interactions can be ruled out as a possible tool to improve the agreement between three-nucleon calculations and data. The study of the energy dependence of the three-nucleon analyzing power puzzle gives clear evidence that the {sup 3}P{sub j} nucleon-nucleon interaction obtained from phase-shift analyses and used in potential models are correct above about 25 MeV, i.e., the {sup 3}P{sub j} nucleon-nucleon interactions have to be modified only at lower energies in order to solve the three-nucleon analyzing power puzzle, unless new three-nucleon forces can be found that account for the three-nucleon analyzing power puzzle without destroying the beautiful agreement between rigorous three-nucleon calculations and a large body of accurate three-nucleon data. (orig.) 18 refs.

  1. Refined isogeometric analysis for a preconditioned conjugate gradient solver

    KAUST Repository

    Garcia, Daniel

    2018-02-12

    Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) Garcia et al. (2017). At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree p=3, the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.

  2. On puzzles and non-puzzles in B→ππ,πK decays

    International Nuclear Information System (INIS)

    Fleischer, R.; Recksiegel, S.; Schwab, F.

    2007-01-01

    Recently, we have seen interesting progress in the exploration of CP violation in B d 0 →π + π - : the measurements of mixing-induced CP violation by the BaBar and Belle collaborations are now in good agreement with each other, whereas the picture of direct CP violation is still unclear. Using the branching ratio and direct CP asymmetry of B d 0 →π - K + , this situation can be clarified. We predict A CP dir (B d →π + π - )=-0.24±0.04, which favours the BaBar result, and we extract γ=(70.0 -4.3 +3.8 ) , which agrees with the unitarity triangle fits. Extending our analysis to other B→πK modes and B s 0 →K + K - with the help of the SU(3) flavour symmetry and plausible dynamical assumptions, we find that all observables with colour-suppressed electroweak penguin contributions are measured to be in excellent agreement with the standard model. As far as the ratios R c,n of the charged and neutral B→πK branching ratios are concerned, which are sizeably affected by electroweak penguin contributions, our standard-model predictions have almost unchanged central values but significantly reduced errors. Since the new data have moved quite a bit towards these results, the ''B→πK puzzle'' for the CP conserving quantities has been significantly reduced. However, the mixing-induced CP violation of B d 0 →π 0 K S does look puzzling; if confirmed by future measurements, this effect could be accommodated through a modified electroweak penguin sector with a large CP violating new-physics phase. Finally, we point out that the established difference between the direct CP asymmetries of B ± →π 0 K ± and B d →π -+ K ± appears to be generated by hadronic and not by new physics. (orig.)

  3. Distress risk and leverage puzzles: Evidence from Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Cheng Ho

    2016-05-01

    Full Text Available Financial distress has been invoked in the asset pricing literature to explain the anomalous patterns in the cross-section of stock returns. The risk of financial distress can be measured using indexes. George and Hwang (2010 suggest that leverage can explain the distress risk puzzle and that firms with high costs choose low leverage to reduce distress intensities and earn high returns. This study investigates whether this relationship exists in the Taiwan market. When examined separately, distress intensity is found to be negatively related to stock returns, but leverage is found to not be significantly related to stock returns. The results are the same when distress intensity and leverage are examined simultaneously. After assessing the robustness by using O-scores, distress risk puzzle is found to exist in the Taiwan market, but the leverage puzzle is not

  4. International trade network: fractal properties and globalization puzzle.

    Science.gov (United States)

    Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata

    2014-12-12

    Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.

  5. The B→πK puzzle and supersymmetry

    International Nuclear Information System (INIS)

    Imbeault, Maxime; Baek, Seungwon; London, David

    2008-01-01

    At present, there are discrepancies between the measurements of several observables in B→πK decays and the predictions of the Standard Model (the 'B→πK puzzle'). Although the effect is not yet statistically significant-it is at the level of ≥3σ-it does hint at the presence of new physics. In this Letter, we explore whether supersymmetry (SUSY) can explain the B→πK puzzle. In particular, we consider the SUSY model of Grossman, Neubert and Kagan (GNK). We find that it is extremely unlikely that GNK explains the B→πK data. We also find a similar conclusion in many other models of SUSY. And there are serious criticisms of the two SUSY models that do reproduce the B→πK data. If the B→πK puzzle remains, it could pose a problem for SUSY models

  6. Using Python to Construct a Scalable Parallel Nonlinear Wave Solver

    KAUST Repository

    Mandli, Kyle

    2011-01-01

    Computational scientists seek to provide efficient, easy-to-use tools and frameworks that enable application scientists within a specific discipline to build and/or apply numerical models with up-to-date computing technologies that can be executed on all available computing systems. Although many tools could be useful for groups beyond a specific application, it is often difficult and time consuming to combine existing software, or to adapt it for a more general purpose. Python enables a high-level approach where a general framework can be supplemented with tools written for different fields and in different languages. This is particularly important when a large number of tools are necessary, as is the case for high performance scientific codes. This motivated our development of PetClaw, a scalable distributed-memory solver for time-dependent nonlinear wave propagation, as a case-study for how Python can be used as a highlevel framework leveraging a multitude of codes, efficient both in the reuse of code and programmer productivity. We present scaling results for computations on up to four racks of Shaheen, an IBM BlueGene/P supercomputer at King Abdullah University of Science and Technology. One particularly important issue that PetClaw has faced is the overhead associated with dynamic loading leading to catastrophic scaling. We use the walla library to solve the issue which does so by supplanting high-cost filesystem calls with MPI operations at a low enough level that developers may avoid any changes to their codes.

  7. THE EQUITY PREMIUM PUZZLE AND EMOTIONAL ASSET PRICING

    OpenAIRE

    MARC GÜRTLER; NORA HARTMANN

    2007-01-01

    "Since the equity premium as well as the risk-free rate puzzle question the concepts central to financial and economic modeling, we apply behavioral decision theory to asset pricing in view of solving these puzzles. U.S. stock market data for the period 1960-2003 and German stock market data for the period 1977-2003 show that emotional investors who act in accordance to Bell's (1985) disappointment theory -a special case of prospect theory- and additionally administer mental accounts demand a...

  8. An overview of heavy quark energy loss puzzle at RHIC

    International Nuclear Information System (INIS)

    Djordjevic, Magdalena

    2006-01-01

    We give a theoretical overview of the heavy quark tomography puzzle posed by recent non-photonic single electron data from central Au+Au collisions at √s = 200A GeV. We show that radiative energy loss mechanisms alone are not able to explain large single electron suppression data, as long as realistic parameter values are assumed. We argue that a combined collisional and radiative pQCD approach can solve a substantial part of the non-photonic single electron puzzle

  9. The Meissner effect puzzle and the quantum force in superconductor

    International Nuclear Information System (INIS)

    Nikulov, A.V.

    2012-01-01

    The puzzle of the acceleration of the mobile charge carriers and the ions in the superconductor in direction opposite to the electromagnetic force revealed formerly in the Meissner effect is considered in the case of the transition of a narrow ring from normal to superconducting state. It is elucidated that the azimuthal quantum force was deduced eleven years ago from the experimental evidence of this acceleration but it cannot solve this puzzle. This quantum force explains other paradoxical phenomena connected with reiterated switching of the ring between normal and superconducting states.

  10. The Closed-End Funds Puzzle: A Survey Review

    Directory of Open Access Journals (Sweden)

    Marta Charrón

    2009-09-01

    Full Text Available The main objective of this paper is to explore the most salient research aimed at explaining the closed-end fund puzzle from both the traditional and behavioral finance perspectives. It provides a better understanding of closed-end fund behavior and motivates further research of closed-end funds, market efficiency, asset pricing and the traditional and behavioral finance paradigms. So far, none of the possible explanations from either traditional finance or behavioral finance have been able to fully account for the occurrence of the puzzle. It continues to be an important issue in the long standing debate between traditional finance and behavioral finance.

  11. NICHD Research Networks Help Piece Together the Puzzle of Polycystic Ovary Syndrome

    Science.gov (United States)

    ... Print NICHD research networks help piece together the puzzle of polycystic ovary syndrome Many people think that ... more like putting together a thousand-piece jigsaw puzzle. Except that you can’t check the cover ...

  12. Parallel linear solvers for simulations of reactor thermal hydraulics

    International Nuclear Information System (INIS)

    Yan, Y.; Antal, S.P.; Edge, B.; Keyes, D.E.; Shaver, D.; Bolotnov, I.A.; Podowski, M.Z.

    2011-01-01

    The state-of-the-art multiphase fluid dynamics code, NPHASE-CMFD, performs multiphase flow simulations in complex domains using implicit nonlinear treatment of the governing equations and in parallel, which is a very challenging environment for the linear solver. The present work illustrates how the Portable, Extensible Toolkit for Scientific Computation (PETSc) and scalable Algebraic Multigrid (AMG) preconditioner from Hypre can be utilized to construct robust and scalable linear solvers for the Newton correction equation obtained from the discretized system of governing conservation equations in NPHASE-CMFD. The overall long-tem objective of this work is to extend the NPHASE-CMFD code into a fully-scalable solver of multiphase flow and heat transfer problems, applicable to both steady-state and stiff time-dependent phenomena in complete fuel assemblies of nuclear reactors and, eventually, the entire reactor core (such as the Virtual Reactor concept envisioned by CASL). This campaign appropriately begins with the linear algebraic equation solver, which is traditionally a bottleneck to scalability in PDE-based codes. The computational complexity of the solver is usually superlinear in problem size, whereas the rest of the code, the “physics” portion, usually has its complexity linear in the problem size. (author)

  13. BCYCLIC: A parallel block tridiagonal matrix cyclic solver

    Science.gov (United States)

    Hirshman, S. P.; Perumalla, K. S.; Lynch, V. E.; Sanchez, R.

    2010-09-01

    A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.

  14. MINOS: A simplified Pn solver for core calculation

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.

    2007-01-01

    This paper describes a new generation of the neutronic core solver MINOS resulting from developments done in the DESCARTES project. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed-dual finite element approximation of the simplified transport equation. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals, allowing us to treat geometries where fuel pins are exactly represented. For Cartesian geometries, the solver takes into account assembly discontinuity coefficients in the simplified P n context. The solver has been rewritten in C + + programming language using an object-oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performance of the previous version has been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal-hydraulic feedback and depletion calculations. (authors)

  15. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo

    2015-09-13

    In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

  16. Integrating Problem Solvers from Analogous Markets in New Product Ideation

    DEFF Research Database (Denmark)

    Franke, Nikolaus; Poetz, Marion; Schreier, Martin

    2014-01-01

    Who provides better inputs to new product ideation tasks, problem solvers with expertise in the area for which new products are to be developed or problem solvers from “analogous” markets that are distant but share an analogous problem or need? Conventional wisdom appears to suggest that target...... market expertise is indispensable, which is why most managers searching for new ideas tend to stay within their own market context even when they do search outside their firms' boundaries. However, in a unique symmetric experiment that isolates the effect of market origin, we find evidence...... for the opposite: Although solutions provided by problem solvers from analogous markets show lower potential for immediate use, they demonstrate substantially higher levels of novelty. Also, compared to established novelty drivers, this effect appears highly relevant from a managerial perspective: we find...

  17. An efficient spectral crystal plasticity solver for GPU architectures

    Science.gov (United States)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  18. Puzzles in modern biology. I. Male sterility, failure reveals design [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Steven A. Frank

    2016-09-01

    Full Text Available Many human males produce dysfunctional sperm. Various plants frequently abort pollen. Hybrid matings often produce sterile males. Widespread male sterility is puzzling. Natural selection prunes reproductive failure. Puzzling failure implies something that we do not understand about how organisms are designed. Solving the puzzle reveals the hidden processes of design.

  19. The Effect of Monetary Policy on Exchange Rates : How to Solve the Puzzles

    NARCIS (Netherlands)

    Kumah, F.Y.

    1996-01-01

    Recent empirical research on the effects of monetary policy shocks on exchange rate fluctuations have encountered the exchange rate puzzle and th e forward discount bias puzzle.The exchange rate puzzle is the tendency of the domestic currency (of non-US G-7 countries) to depreciate against the US

  20. Teaching Proofs and Algorithms in Discrete Mathematics with Online Visual Logic Puzzles

    Science.gov (United States)

    Cigas, John; Hsin, Wen-Jung

    2005-01-01

    Visual logic puzzles provide a fertile environment for teaching multiple topics in discrete mathematics. Many puzzles can be solved by the repeated application of a small, finite set of strategies. Explicitly reasoning from a strategy to a new puzzle state illustrates theorems, proofs, and logic principles. These provide valuable, concrete…

  1. Flaxion: a minimal extension to solve puzzles in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei [Department of Physics,The University of Tokyo, Tokyo 133-0033 (Japan); Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori [Department of Physics,The University of Tokyo, Tokyo 133-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo, Kashiwa 277-8583 (Japan)

    2017-01-23

    We propose a minimal extension of the standard model which includes only one additional complex scalar field, flavon, with flavor-dependent global U(1) symmetry. It not only explains the hierarchical flavor structure in the quark and lepton sector (including neutrino sector), but also solves the strong CP problem by identifying the CP-odd component of the flavon as the QCD axion, which we call flaxion. Furthermore, the flaxion model solves the cosmological puzzles in the standard model, i.e., origin of dark matter, baryon asymmetry of the universe, and inflation. We show that the radial component of the flavon can play the role of inflaton without isocurvature nor domain wall problems. The dark matter abundance can be explained by the flaxion coherent oscillation, while the baryon asymmetry of the universe is generated through leptogenesis.

  2. Continuous-time quantum Monte Carlo impurity solvers

    Science.gov (United States)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as

  3. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  4. On Cafesat: A Modern SAT Solver for Scala

    OpenAIRE

    Blanc, Régis William

    2013-01-01

    We present CafeSat, a SAT solver written in the Scala programming language. CafeSat is a modern solver based on DPLL and featuring many state-of-the-art techniques and heuristics. It uses two-watched literals for Boolean constraint propagation, conflict-driven learning along with clause deletion, a restarting strategy, and the VSIDS heuristics for choosing the branching literal. CafeSat is both sound and complete. In order to achieve reasonnable performances, low level and hand-tuned data ...

  5. MINARET: Towards a time-dependent neutron transport parallel solver

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.; Maday, Y.; Mula, O.

    2013-01-01

    We present the newly developed time-dependent 3D multigroup discrete ordinates neutron transport solver that has recently been implemented in the MINARET code. The solver is the support for a study about computing acceleration techniques that involve parallel architectures. In this work, we will focus on the parallelization of two of the variables involved in our equation: the angular directions and the time. This last variable has been parallelized by a (time) domain decomposition method called the para-real in time algorithm. (authors)

  6. LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators

    International Nuclear Information System (INIS)

    Gonzalez, Juan; Nunez, Rafael C

    2009-01-01

    We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.

  7. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  8. Games and puzzles for English as a second language

    CERN Document Server

    Fremont, Victoria

    2011-01-01

    Students can hone their verbal and grammatical skills with this entertaining workbook. Search-a-words, crossword puzzles, anagrams, and other challenges build vocabulary and spelling skills. They also help students understand and identify idioms, irregular past tenses and participles, and other linguistic stumbling blocks. Perfect for individual study or as a course supplement.

  9. Towards a security model for computational puzzle schemes

    NARCIS (Netherlands)

    Tang, Qiang; Jeckmans, Arjan

    2011-01-01

    In the literature, computational puzzle schemes have been considered as a useful tool for a number of applications, such as constructing timed cryptography, fighting junk emails, and protecting critical infrastructure from denial-of-service attacks. However, there is a lack of a general security

  10. General intelligence is an emerging property, not an evolutionary puzzle.

    Science.gov (United States)

    Ramus, Franck

    2017-01-01

    Burkart et al. contend that general intelligence poses a major evolutionary puzzle. This assertion presupposes a reification of general intelligence - that is, assuming that it is one "thing" that must have been selected as such. However, viewing general intelligence as an emerging property of multiple cognitive abilities (each with their own selective advantage) requires no additional evolutionary explanation.

  11. Pedagogy Corner: The Architect's Puzzle

    Science.gov (United States)

    Lovitt, Charles

    2017-01-01

    Some years back, the author found the following problem in a spatial puzzle book: how many ways can you put four blocks together, face to face (with no vertical rotation symmetry)? He gave each student just four blocks and they collectively tried combinations to eventually agree on the answer of 15. He used to think it was a halfway decent task,…

  12. Children's Task Engagement during Challenging Puzzle Tasks

    Science.gov (United States)

    Wang, Feihong; Algina, James; Snyder, Patricia; Cox, Martha

    2017-01-01

    We examined children's task engagement during a challenging puzzle task in the presence of their primary caregivers by using a representative sample of rural children from six high-poverty counties across two states. Weighted longitudinal confirmatory factor analysis and structural equation modeling were used to identify a task engagement factor…

  13. Asset pricing puzzles explained by incomplete Brownian equilibria

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Larsen, Kasper

    We examine a class of Brownian based models which produce tractable incomplete equilibria. The models are based on finitely many investors with heterogeneous exponential utilities over intermediate consumption who receive partially unspanned income. The investors can trade continuously on a finit...... markets. Consequently, our model can simultaneously help explaining the risk-free rate and equity premium puzzles....

  14. What do we learn from the ρ-π puzzle

    International Nuclear Information System (INIS)

    Li Xueqian

    2010-01-01

    The experimental observation indicates that the branching ratio of ψ' →ρπ is very small while the ρ-π channel is a main one in J/ψ decays. To understand the puzzle, various interpretations have been proposed. Meanwhile according to the hadronic helicity selection rule, this decay mode should be suppressed. Numerical calculations are needed to determine how it is suppressed.We calculate the branching ratios of J/ψ→ρπ and ππ in the framework of QCD. The results show that the branching ratios are proportional to [(m u +m d )/(M J/ψ )] 2 for the ρπ mode and [(m u -m d )/(m J/ψ )] 2 for the ππ mode which is isospin violated. The theoretical prediction of the ratio of J/ψ → ρπ is smaller than data, but not too small to invoke a completely new mechanism. Thus the puzzle is still standing even though we learn much knowledge towards the puzzle and this will help to finally interpret the puzzle and then gain a deeper insight to the heavy quarkonia. (author)

  15. Crossword Puzzles as a Learning Tool for Vocabulary Development

    Science.gov (United States)

    Orawiwatnakul, Wiwat

    2013-01-01

    Introduction: Since vocabulary is a key basis on which reading achievement depends, various vocabulary acquisition techniques have become pivotal. Among the many teaching approaches, traditional or otherwise, the use of crossword puzzles seems to offer potential and a solution for the problem of learning vocabulary. Method: This study was…

  16. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood

    Science.gov (United States)

    Arnott, Luke

    2012-01-01

    "Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…

  18. The Potential of Crossword Puzzles in Aiding English Language Learners

    Science.gov (United States)

    Merkel, Warren

    2016-01-01

    In an academic environment, teachers utilize crossword puzzles to help students learn or remember terminology. Outside the classroom, typically in daily newspapers, crosswords aid in vocabulary development, used as a learning tool, a leisure activity, or both. However, both the content and the grid structure of the crosswords in these two…

  19. Experimental status of the E/ι puzzle

    International Nuclear Information System (INIS)

    Lanaro, A.

    1996-11-01

    Despite the prolonged experimental effort devoted to the spectroscopy of the E/ι mesons, and the intense theoretical debate around this subject, many puzzling issues still prevent from a full understanding of the true scenario. The advent of new and more precise experimental measurements motivates a review on this topic

  20. Puzzling with potential : dynamic testing of analogical reasoning in children

    NARCIS (Netherlands)

    Stevenson, Claire Elisabeth

    2012-01-01

    Assessment procedures are frequent in children's school careers; however, measuring potential for learning has remained a puzzle. Dynamic testing is a method to assess cognitive potential that includes training in the assessment process. The goal of this thesis project was to develop a new dynamic

  1. A General Symbolic PDE Solver Generator: Explicit Schemes

    Directory of Open Access Journals (Sweden)

    K. Sheshadri

    2003-01-01

    Full Text Available A symbolic solver generator to deal with a system of partial differential equations (PDEs in functions of an arbitrary number of variables is presented; it can also handle arbitrary domains (geometries of the independent variables. Given a system of PDEs, the solver generates a set of explicit finite-difference methods to any specified order, and a Fourier stability criterion for each method. For a method that is stable, an iteration function is generated symbolically using the PDE and its initial and boundary conditions. This iteration function is dynamically generated for every PDE problem, and its evaluation provides a solution to the PDE problem. A C++/Fortran 90 code for the iteration function is generated using the MathCode system, which results in a performance gain of the order of a thousand over Mathematica, the language that has been used to code the solver generator. Examples of stability criteria are presented that agree with known criteria; examples that demonstrate the generality of the solver and the speed enhancement of the generated C++ and Fortran 90 codes are also presented.

  2. Numerical solver for compressible two-fluid flow

    NARCIS (Netherlands)

    J. Naber (Jorick)

    2005-01-01

    textabstractThis report treats the development of a numerical solver for the simulation of flows of two non-mixing fluids described by the two-dimensional Euler equations. A level-set equation in conservative form describes the interface. After each time step the deformed level-set function is

  3. Parallel time domain solvers for electrically large transient scattering problems

    KAUST Repository

    Liu, Yang

    2014-09-26

    Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.

  4. Using a satisfiability solver to identify deterministic finite state automata

    NARCIS (Netherlands)

    Heule, M.J.H.; Verwer, S.

    2009-01-01

    We present an exact algorithm for identification of deterministic finite automata (DFA) which is based on satisfiability (SAT) solvers. Despite the size of the low level SAT representation, our approach seems to be competitive with alternative techniques. Our contributions are threefold: First, we

  5. Fast Multipole-Based Elliptic PDE Solver and Preconditioner

    KAUST Repository

    Ibeid, Huda

    2016-01-01

    extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM

  6. Implementation and testing of a multivariate inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John; Mitchell, Dean J.

    2012-01-01

    Detection, identification, and characterization of special nuclear materials (SNM) all face the same basic challenge: to varying degrees, each must infer the presence, composition, and configuration of the SNM by analyzing a set of measured radiation signatures. Solutions to this problem implement inverse radiation transport methods. Given a set of measured radiation signatures, inverse radiation transport estimates properties of the source terms and transport media that are consistent with those signatures. This paper describes one implementation of a multivariate inverse radiation transport solver. The solver simultaneously analyzes gamma spectrometry and neutron multiplicity measurements to fit a one-dimensional radiation transport model with variable layer thicknesses using nonlinear regression. The solver's essential components are described, and its performance is illustrated by application to benchmark experiments conducted with plutonium metal. - Highlights: ► Inverse problems, specifically applied to identifying and characterizing radiation sources . ► Radiation transport. ► Analysis of gamma spectroscopy and neutron multiplicity counting measurements. ► Experimental testing of the inverse solver against measurements of plutonium.

  7. A High Performance QDWH-SVD Solver using Hardware Accelerators

    KAUST Repository

    Sukkari, Dalal E.; Ltaief, Hatem; Keyes, David E.

    2015-01-01

    few digits of accuracy, compared to the full double precision floating point arithmetic. We further leverage the single GPU QDWH-SVD implementation by introducing the first multi-GPU SVD solver to study the scalability of the QDWH-SVD framework.

  8. Implementing parallel elliptic solver on a Beowulf cluster

    Directory of Open Access Journals (Sweden)

    Marcin Paprzycki

    1999-12-01

    Full Text Available In a recent paper cite{zara} a parallel direct solver for the linear systems arising from elliptic partial differential equations has been proposed. The aim of this note is to present the initial evaluation of the performance characteristics of this algorithm on Beowulf-type cluster. In this context the performance of PVM and MPI based implementations is compared.

  9. Implementation of Generalized Adjoint Equation Solver for DeCART

    International Nuclear Information System (INIS)

    Han, Tae Young; Cho, Jin Young; Lee, Hyun Chul; Noh, Jae Man

    2013-01-01

    In this paper, the generalized adjoint solver based on the generalized perturbation theory is implemented on DeCART and the verification calculations were carried out. As the results, the adjoint flux for the general response coincides with the reference solution and it is expected that the solver could produce the parameters for the sensitivity and uncertainty analysis. Recently, MUSAD (Modules of Uncertainty and Sensitivity Analysis for DeCART) was developed for the uncertainty analysis of PMR200 core and the fundamental adjoint solver was implemented into DeCART. However, the application of the code was limited to the uncertainty to the multiplication factor, k eff , because it was based on the classical perturbation theory. For the uncertainty analysis to the general response as like the power density, it is necessary to develop the analysis module based on the generalized perturbation theory and it needs the generalized adjoint solutions from DeCART. In this paper, the generalized adjoint solver is implemented on DeCART and the calculation results are compared with the results by TSUNAMI of SCALE 6.1

  10. SolveDB: Integrating Optimization Problem Solvers Into SQL Databases

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    for optimization problems, (2) an extensible infrastructure for integrating different solvers, and (3) query optimization techniques to achieve the best execution performance and/or result quality. Extensive experiments with the PostgreSQL-based implementation show that SolveDB is a versatile tool offering much...

  11. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

    KAUST Repository

    Haase, Gundolf; Liebmann, Manfred; Douglas, Craig C.; Plank, Gernot

    2010-01-01

    -vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster

  12. Analysis of transient plasmonic interactions using an MOT-PMCHWT integral equation solver

    KAUST Repository

    Uysal, Ismail Enes; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    that discretize only on the interfaces. Additionally, IE solvers implicitly enforce the radiation condition and consequently do not need (approximate) absorbing boundary conditions. Despite these advantages, IE solvers, especially in time domain, have not been

  13. Parallel Solver for H(div) Problems Using Hybridization and AMG

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chak S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examined through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.

  14. A high-order finite-difference linear seakeeping solver tool for calculation of added resistance in waves

    DEFF Research Database (Denmark)

    Amini Afshar, Mostafa; Bingham, Harry B.; Read, Robert

    During recent years a computational strategy has been developed at the Technical University of Denmark for numerical simulation of water wave problems based on the high-order nite-dierence method, [2],[4]. These methods exhibit a linear scaling of the computational eort as the number of grid points...... increases. This understanding is being applied to develop a tool for predicting the added resistance (drift force) of ships in ocean waves. We expect that the optimal scaling properties of this solver will allow us to make a convincing demonstration of convergence of the added resistance calculations based...... on both near-eld and far-eld methods. The solver has been written inside a C++ library known as Overture [3], which can be used to solve partial dierential equations on overlapping grids based on the high-order nite-dierence method. The resulting code is able to solve, in the time domain, the linearised...

  15. A High Performance QDWH-SVD Solver using Hardware Accelerators

    KAUST Repository

    Sukkari, Dalal E.

    2015-04-08

    This paper describes a new high performance implementation of the QR-based Dynamically Weighted Halley Singular Value Decomposition (QDWH-SVD) solver on multicore architecture enhanced with multiple GPUs. The standard QDWH-SVD algorithm was introduced by Nakatsukasa and Higham (SIAM SISC, 2013) and combines three successive computational stages: (1) the polar decomposition calculation of the original matrix using the QDWH algorithm, (2) the symmetric eigendecomposition of the resulting polar factor to obtain the singular values and the right singular vectors and (3) the matrix-matrix multiplication to get the associated left singular vectors. A comprehensive test suite highlights the numerical robustness of the QDWH-SVD solver. Although it performs up to two times more flops when computing all singular vectors compared to the standard SVD solver algorithm, our new high performance implementation on single GPU results in up to 3.8x improvements for asymptotic matrix sizes, compared to the equivalent routines from existing state-of-the-art open-source and commercial libraries. However, when only singular values are needed, QDWH-SVD is penalized by performing up to 14 times more flops. The singular value only implementation of QDWH-SVD on single GPU can still run up to 18% faster than the best existing equivalent routines. Integrating mixed precision techniques in the solver can additionally provide up to 40% improvement at the price of losing few digits of accuracy, compared to the full double precision floating point arithmetic. We further leverage the single GPU QDWH-SVD implementation by introducing the first multi-GPU SVD solver to study the scalability of the QDWH-SVD framework.

  16. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    Science.gov (United States)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  17. Migration of vectorized iterative solvers to distributed memory architectures

    Energy Technology Data Exchange (ETDEWEB)

    Pommerell, C. [AT& T Bell Labs., Murray Hill, NJ (United States); Ruehl, R. [CSCS-ETH, Manno (Switzerland)

    1994-12-31

    Both necessity and opportunity motivate the use of high-performance computers for iterative linear solvers. Necessity results from the size of the problems being solved-smaller problems are often better handled by direct methods. Opportunity arises from the formulation of the iterative methods in terms of simple linear algebra operations, even if this {open_quote}natural{close_quotes} parallelism is not easy to exploit in irregularly structured sparse matrices and with good preconditioners. As a result, high-performance implementations of iterative solvers have attracted a lot of interest in recent years. Most efforts are geared to vectorize or parallelize the dominating operation-structured or unstructured sparse matrix-vector multiplication, or to increase locality and parallelism by reformulating the algorithm-reducing global synchronization in inner products or local data exchange in preconditioners. Target architectures for iterative solvers currently include mostly vector supercomputers and architectures with one or few optimized (e.g., super-scalar and/or super-pipelined RISC) processors and hierarchical memory systems. More recently, parallel computers with physically distributed memory and a better price/performance ratio have been offered by vendors as a very interesting alternative to vector supercomputers. However, programming comfort on such distributed memory parallel processors (DMPPs) still lags behind. Here the authors are concerned with iterative solvers and their changing computing environment. In particular, they are considering migration from traditional vector supercomputers to DMPPs. Application requirements force one to use flexible and portable libraries. They want to extend the portability of iterative solvers rather than reimplementing everything for each new machine, or even for each new architecture.

  18. A fast Linear Complementarity Problem (LCP) solver for separating fluid-solid wall boundary Conditions

    DEFF Research Database (Denmark)

    Andersen, Michael; Abel, Sarah Maria Niebe; Erleben, Kenny

    2017-01-01

    We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embarrassingly parallel, easy to implement, fluid LCP solver.We are able to use greater domain sizes than previous works have shown, due to our new solver. The solver exploits matr...

  19. Meson spectroscopy experiment at KEK - E/iota puzzle

    International Nuclear Information System (INIS)

    Tsuru, Tsuneaki

    1985-01-01

    Physics interests at the KEK (National Laboratory for High Energy Physics) are (1) search for exotic mesons such as glueballs (gg), meiktons (q anti q g) and multiquark states (q sup(2 - )q 2 ), (2) search for missing ordinary mesons (q anti q) and confirmation of unestablished mesons, and (3) new informations of quark contents of mesons, mixing angles of SU(3) singlet-octet and tests of conservations law. Special interest is in search for exotics such as glueballs and meiktons. (2) is a so-called meson spectroscopy experiment. This is important not only in itself but also in identifying newly discovered states as exotics because exotics have often same quantum numbers as ordinary mesons. Contents are the following: glueballs and E/iota puzzles, spectrometer system, experiments, performance of the spectrometer, physics outputs, E/iota puzzles and πI experiment, future plans. (Mori, K.)

  20. Spectroscopy of muonic atoms and the proton radius puzzle

    Science.gov (United States)

    Antognini, Aldo

    2017-09-01

    We have measured several 2 S -2 P transitions in muonic hydrogen (μp), muonic deuterium (μd) and muonic helium ions (μ3He, μ4He). From muonic hydrogen we extracted a proton charge radius 20 times more precise than obtained from electron-proton scattering and hydrogen high-precision laser spectroscopy but at a variance of 7 σ from these values. This discrepancy is nowadays referred to as the proton radius puzzle. New insight has been recently provided by the first determination of the deuteron charge radius from laser spectroscopy of μd. The status of the proton charge radius puzzle including the new insights obtained by μd spectroscopy will be discussed. Work supported by the Swiss National Science Foundation SNF-200021-165854 and the ERC CoG. #725039.

  1. The puzzle of the ultra-high energy cosmic rays

    CERN Document Server

    Tkachev, I I

    2003-01-01

    In early years the cosmic ray studies were ahead of accelerator research, starting from the discovery of positrons, through muons, to that of pions and strange particles. Today we are facing the situation that the puzzling saga of cosmic rays of the highest energies may again unfold in the discovery of new physics, now beyond the Standard Model; or it may bring to life an "extreme" astrophysics. After a short review of the Greisen-Zatsepin-Kuzmin puzzle, I discuss different models which were suggested for its resolution. Are there any hints pointing to the correct model? I argue that the small-scale clustering of arrival directions of cosmic rays gives a clue, and BL Lacs are the probable sources of the observed events. (58 refs).

  2. The Monotonicity Puzzle: An Experimental Investigation of Incentive Structures

    Directory of Open Access Journals (Sweden)

    Jeannette Brosig

    2010-05-01

    Full Text Available Non-monotone incentive structures, which - according to theory - are able to induce optimal behavior, are often regarded as empirically less relevant for labor relationships. We compare the performance of a theoretically optimal non-monotone contract with a monotone one under controlled laboratory conditions. Implementing some features relevant to real-world employment relationships, our paper demonstrates that, in fact, the frequency of income-maximizing decisions made by agents is higher under the monotone contract. Although this observed behavior does not change the superiority of the non-monotone contract for principals, they do not choose this contract type in a significant way. This is what we call the monotonicity puzzle. Detailed investigations of decisions provide a clue for solving the puzzle and a possible explanation for the popularity of monotone contracts.

  3. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.

    Science.gov (United States)

    Yao, Guangbao; Li, Jiang; Chao, Jie; Pei, Hao; Liu, Huajie; Zhao, Yun; Shi, Jiye; Huang, Qing; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-03-02

    DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw-puzzle-like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide-functionalized AuNPs function as universal joint units for the one-pot assembly of parent DNA origami of triangular shape to form sub-microscale super-origami nanostructures. AuNPs anchored at predefined positions of the super-origami exhibited strong interparticle plasmonic coupling. This AuNP-mediated strategy offers new opportunities to drive macroscopic self-assembly and to fabricate well-defined nanophotonic materials and devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Does Intrinsic Habit Formation Actually Resolve the Equity Premium Puzzle?

    OpenAIRE

    David A. Chapman

    2002-01-01

    Constantinides (1990) describes a simple model of intrinsic habit formation that appears to resolve the "equity premium puzzle" of Mehra and Prescott (1985). This finding is particularly important, since it has motivated a broader consideration of the implications of habit formation preferences in dynamic equilibrium models. However, consumption growth actually behaves very differently pre- and post-1948, and the explanatory power of the habit formation model is driven by the pre-1948 data. U...

  5. Can Equity Volatility Explain the Global Loan Pricing Puzzle?

    OpenAIRE

    Lewis Gaul; Pinar Uysal

    2013-01-01

    This paper examines whether unobservable differences in firm volatility are responsible for the global loan pricing puzzle, which is the observation that corporate loan interest rates appear to be lower in Europe than in the United States. We analyze whether equity volatility, an error prone measure of firm volatility, can explain this difference in loan spreads. We show that using equity volatility in OLS regressions will result in biased and inconsistent estimates of the difference in U.S. ...

  6. Can the magnetic moment contribution explain the Ay puzzle?

    International Nuclear Information System (INIS)

    Stoks, V.G.

    1998-01-01

    We evaluate the full one-photon-exchange Born amplitude for Nd scattering. We include the contributions due to the magnetic moment of the proton or neutron, and the magnetic moment and quadrupole moment of the deuteron. It is found that the inclusion of the magnetic-moment interaction in the theoretical description of the Nd scattering observables cannot resolve the long-standing A y puzzle. copyright 1998 The American Physical Society

  7. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures?

    Science.gov (United States)

    Deponte, Marcel

    2017-11-20

    Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal

  8. Puzzling with potential: dynamic testing of analogical reasoning in children

    OpenAIRE

    Stevenson, Claire Elisabeth

    2012-01-01

    Assessment procedures are frequent in children's school careers; however, measuring potential for learning has remained a puzzle. Dynamic testing is a method to assess cognitive potential that includes training in the assessment process. The goal of this thesis project was to develop a new dynamic test of analogical reasoning for school children. The main aims were to (1) investigate factors that influence children’s differences in performance and change during dynamic testing and (2) examine...

  9. PUZZLES – A CREATIVE WAY OF DEVELOPMENT OF LOGICAL THINKING

    Directory of Open Access Journals (Sweden)

    Milková, Eva

    2011-12-01

    Full Text Available Logical thinking of students should be enhanced at all levels of their studies. There are many possibilities how to achieve it. In the paper one possible way within the subjects “Discrete Mathematics” and “Discrete Methods and Optimization” dealing with graph theory and combinatorial optimization will be presented. These mathematical disciplines are powerful tools for teachers allowing them to develop logical thinking of students, increase their imagination and make them familiar with solutions to various problems. Thanks the knowledge gained within the subjects students should be able to describe various practical situations with the aid of graphs, solve the given problem expressed by the graph, and translate the solution back into the initial situation. Student engagement is crucial for successful education. Practical tasks and puzzles attract students to know more about the explained subject matter and to apply gained knowledge. There are an endless number of enjoyable tasks, puzzles and logic problems in books like “Mathematics is Fun”, in riddles magazines and on the Internet. In the paper, as an inspiration, four puzzles developing logical thinking appropriate to be solved using graph theory and combinatorial optimization will be introduced. On these puzzles of different level of difficulty the students’ ability to find out the appropriate graph-representation of the given task and solve it will be discussed as well. The author of the paper has been prepared with her students various multimedia applications dealing with objects appropriate to subject matter for more than 15 years. In the paper we also discuss a benefit of multimedia applications used as a support of subjects “Discrete Mathematics” and “Discrete Methods and Optimization”.

  10. Understanding the Puzzling Risk-Return Relationship for Housing

    OpenAIRE

    Lu Han

    2013-01-01

    Standard theory predicts a positive relationship between risk and return, yet recent data show that housing returns vary positively with risk in some markets but negatively in others. This paper rationalizes these cross-market differences in the risk-return relationship for housing, and in so doing, explains the puzzling negative relationship. The paper shows that when the current house provides a hedge against the risk associated with the future housing consumption, households are willing to...

  11. Puzzles, paradoxes, and problem solving an introduction to mathematical thinking

    CERN Document Server

    Reba, Marilyn A

    2014-01-01

    Graphs: Puzzles and Optimization Graphical Representation and Search Greedy Algorithms and Dynamic Programming Shortest Paths, DNA Sequences, and GPS Systems Routing Problems and Optimal Circuits Traveling Salesmen and Optimal Orderings Vertex Colorings and Edge Matchings Logic: Rational Inference and Computer Circuits Inductive and Deductive Arguments Deductive Arguments and Truth-Tables Deductive Arguments and Derivations Deductive Logic and Equivalence Modeling Using Deductive Logic Probability: Predictions and Expectations Probability and Counting Counting and Unordered Outcomes Independen

  12. Supersymmetry, the flavour puzzle and rare B decays

    Energy Technology Data Exchange (ETDEWEB)

    Straub, David Michael

    2010-07-14

    The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B {yields} K{sup *}l{sup +}l{sup -} decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b{yields}s{nu}anti {nu} decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)

  13. Food puzzles for cats: Feeding for physical and emotional wellbeing.

    Science.gov (United States)

    Dantas, Leticia Ms; Delgado, Mikel M; Johnson, Ingrid; Buffington, Ca Tony

    2016-09-01

    Many pet cats are kept indoors for a variety of reasons (eg, safety, health, avoidance of wildlife predation) in conditions that are perhaps the least natural to them. Indoor housing has been associated with health issues, such as chronic lower urinary tract signs, and development of problem behaviors, which can cause weakening of the human-animal bond and lead to euthanasia of the cat. Environmental enrichment may mitigate the effects of these problems and one approach is to take advantage of cats' natural instinct to work for their food. In this article we aim to equip veterinary professionals with the tools to assist clients in the use of food puzzles for their cats as a way to support feline physical health and emotional wellbeing. We outline different types of food puzzles, and explain how to introduce them to cats and how to troubleshoot challenges with their use. The effect of food puzzles on cats is a relatively new area of study, so as well as reviewing the existing empirical evidence, we provide case studies from our veterinary and behavioral practices showing health and behavioral benefits resulting from their use. © The Author(s) 2016.

  14. Decodoku: Quantum error rorrection as a simple puzzle game

    Science.gov (United States)

    Wootton, James

    To build quantum computers, we need to detect and manage any noise that occurs. This will be done using quantum error correction. At the hardware level, QEC is a multipartite system that stores information non-locally. Certain measurements are made which do not disturb the stored information, but which do allow signatures of errors to be detected. Then there is a software problem. How to take these measurement outcomes and determine: a) The errors that caused them, and (b) how to remove their effects. For qubit error correction, the algorithms required to do this are well known. For qudits, however, current methods are far from optimal. We consider the error correction problem of qubit surface codes. At the most basic level, this is a problem that can be expressed in terms of a grid of numbers. Using this fact, we take the inherent problem at the heart of quantum error correction, remove it from its quantum context, and presented in terms of simple grid based puzzle games. We have developed three versions of these puzzle games, focussing on different aspects of the required algorithms. These have been presented and iOS and Android apps, allowing the public to try their hand at developing good algorithms to solve the puzzles. For more information, see www.decodoku.com. Funding from the NCCR QSIT.

  15. Learning structural bioinformatics and evolution with a snake puzzle

    Directory of Open Access Journals (Sweden)

    Gonzalo S. Nido

    2016-12-01

    Full Text Available We propose here a working unit for teaching basic concepts of structural bioinformatics and evolution through the example of a wooden snake puzzle, strikingly similar to toy models widely used in the literature of protein folding. In our experience, developed at a Master’s course at the Universidad Autónoma de Madrid (Spain, the concreteness of this example helps to overcome difficulties caused by the interdisciplinary nature of this field and its high level of abstraction, in particular for students coming from traditional disciplines. The puzzle will allow us discussing a simple algorithm for finding folded solutions, through which we will introduce the concept of the configuration space and the contact matrix representation. This is a central tool for comparing protein structures, for studying simple models of protein energetics, and even for a qualitative discussion of folding kinetics, through the concept of the Contact Order. It also allows a simple representation of misfolded conformations and their free energy. These concepts will motivate evolutionary questions, which we will address by simulating a structurally constrained model of protein evolution, again modelled on the snake puzzle. In this way, we can discuss the analogy between evolutionary concepts and statistical mechanics that facilitates the understanding of both concepts. The proposed examples and literature are accessible, and we provide supplementary material (see ‘Data Availability’ to reproduce the numerical experiments. We also suggest possible directions to expand the unit. We hope that this work will further stimulate the adoption of games in teaching practice.

  16. Supersymmetry, the flavour puzzle and rare B decays

    International Nuclear Information System (INIS)

    Straub, David Michael

    2010-01-01

    The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B → K * l + l - decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b→sνanti ν decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)

  17. A possible explanation of the 'exchange rate disconnect puzzle': A common solution to three major macroeconomic puzzles?

    OpenAIRE

    Horioka, Charles Yuji; Ford, Nicholas

    2016-01-01

    Meese and Rogoff (1983) and subsequent studies find that economic fundamentals are apparently not able to explain exchange rate movements, but we argue that this so-called "Exchange Rate Disconnect Puzzle" arose because researchers such as Meese and Rogoff (1983) did not use the right fundamentals and because they did not allow for the forward-looking nature of exchange rate determination. Further, because they apparently were not aware that financial markets by themselves could not equalise ...

  18. 3D satellite puzzles for young and old kids

    Science.gov (United States)

    Biondi, Riccardo; Galoforo, Germana

    2017-04-01

    The Italian Space Agency (ASI) is active in outreach willing to increase the interest of young generations and general public toward the space activities. ASI proposes educational programmes for supporting and encouraging the development of European society based on knowledge, inspiring and motivating the young generations. One of the initiatives promoted by ASI on this regards is the 3D satellite puzzles. The idea was born in 2007 from the will to conceive an educational product for promoting and explaining to students the small all-Italian mission AGILE (Astrorivelatore Gamma ad Immagini ultra Leggero) thought as a tool for students aged 8-13. Working with this slot of students is very productive in terms of the imprints left on the kids, in fact it is useful to produce things they can use, touch and play with, with an active approach instead of a passive one. Therefore it was decided to produce something that kids could build and use at home with their parents or friends, or all together at school with teachers and mates. Other puzzles followed AGILE, one about the COSMO-SkyMED satellites about Earth Observation and also a broader one of the International Space Station. During these 10 years the puzzles were mostly used as outreach tools for school children, but they surprisingly received a great success also within older generations. So far the 3D puzzles have been printed in more than 10 thousand copies and distributed for free to students of hundreds of schools in Italy, and to the general public through science associations, planetaria and museums. Recently they have been used also during special events such as the international Geoscience Communication School (as best practice outreach tool), the EXPO 2015 and the European Researcheŕs Night at the Parlamentarium in Brussels 2016. While the students are building the puzzles, the tutor explains them the different components that they are assembling, what the importance of the satellite is and how it works

  19. Approximate Riemann solver for the two-fluid plasma model

    International Nuclear Information System (INIS)

    Shumlak, U.; Loverich, J.

    2003-01-01

    An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves

  20. Benchmarking ICRF Full-wave Solvers for ITER

    International Nuclear Information System (INIS)

    Budny, R.V.; Berry, L.; Bilato, R.; Bonoli, P.; Brambilla, M.; Dumont, R.J.; Fukuyama, A.; Harvey, R.; Jaeger, E.F.; Indireshkumar, K.; Lerche, E.; McCune, D.; Phillips, C.K.; Vdovin, V.; Wright, J.

    2011-01-01

    Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  1. Minaret, a deterministic neutron transport solver for nuclear core calculations

    International Nuclear Information System (INIS)

    Moller, J-Y.; Lautard, J-J.

    2011-01-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  2. Comparison of Einstein-Boltzmann solvers for testing general relativity

    Science.gov (United States)

    Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.

    2018-01-01

    We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.

  3. Minaret, a deterministic neutron transport solver for nuclear core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)

    2011-07-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  4. An alternative solver for the nodal expansion method equations - 106

    International Nuclear Information System (INIS)

    Carvalho da Silva, F.; Carlos Marques Alvim, A.; Senra Martinez, A.

    2010-01-01

    An automated procedure for nuclear reactor core design is accomplished by using a quick and accurate 3D nodal code, aiming at solving the diffusion equation, which describes the spatial neutron distribution in the reactor. This paper deals with an alternative solver for nodal expansion method (NEM), with only two inner iterations (mesh sweeps) per outer iteration, thus having the potential to reduce the time required to calculate the power distribution in nuclear reactors, but with accuracy similar to the ones found in conventional NEM. The proposed solver was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of the method for practical purposes. (authors)

  5. A Nonlinear Modal Aeroelastic Solver for FUN3D

    Science.gov (United States)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  6. Parallel Auxiliary Space AMG Solver for $H(div)$ Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-18

    We present a family of scalable preconditioners for matrices arising in the discretization of $H(div)$ problems using the lowest order Raviart--Thomas finite elements. Our approach belongs to the class of “auxiliary space''--based methods and requires only the finite element stiffness matrix plus some minimal additional discretization information about the topology and orientation of mesh entities. Also, we provide a detailed algebraic description of the theory, parallel implementation, and different variants of this parallel auxiliary space divergence solver (ADS) and discuss its relations to the Hiptmair--Xu (HX) auxiliary space decomposition of $H(div)$ [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509] and to the auxiliary space Maxwell solver AMS [J. Comput. Math., 27 (2009), pp. 604--623]. Finally, an extensive set of numerical experiments demonstrates the robustness and scalability of our implementation on large-scale $H(div)$ problems with large jumps in the material coefficients.

  7. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  8. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    International Nuclear Information System (INIS)

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.

    2011-01-01

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.

  9. Stochastic Partial Differential Equation Solver for Hydroacoustic Modeling: Improvements to Paracousti Sound Propagation Solver

    Science.gov (United States)

    Preston, L. A.

    2017-12-01

    Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories

  10. Matlab Geochemistry: An open source geochemistry solver based on MRST

    Science.gov (United States)

    McNeece, C. J.; Raynaud, X.; Nilsen, H.; Hesse, M. A.

    2017-12-01

    The study of geological systems often requires the solution of complex geochemical relations. To address this need we present an open source geochemical solver based on the Matlab Reservoir Simulation Toolbox (MRST) developed by SINTEF. The implementation supports non-isothermal multicomponent aqueous complexation, surface complexation, ion exchange, and dissolution/precipitation reactions. The suite of tools available in MRST allows for rapid model development, in particular the incorporation of geochemical calculations into transport simulations of multiple phases, complex domain geometry and geomechanics. Different numerical schemes and additional physics can be easily incorporated into the existing tools through the object-oriented framework employed by MRST. The solver leverages the automatic differentiation tools available in MRST to solve arbitrarily complex geochemical systems with any choice of species or element concentration as input. Four mathematical approaches enable the solver to be quite robust: 1) the choice of chemical elements as the basis components makes all entries in the composition matrix positive thus preserving convexity, 2) a log variable transformation is used which transfers the nonlinearity to the convex composition matrix, 3) a priori bounds on variables are calculated from the structure of the problem, constraining Netwon's path and 4) an initial guess is calculated implicitly by sequentially adding model complexity. As a benchmark we compare the model to experimental and semi-analytic solutions of the coupled salinity-acidity transport system. Together with the reservoir simulation capabilities of MRST the solver offers a promising tool for geochemical simulations in reservoir domains for applications in a diversity of fields from enhanced oil recovery to radionuclide storage.

  11. Boltzmann Solver with Adaptive Mesh in Velocity Space

    International Nuclear Information System (INIS)

    Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.

    2011-01-01

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  12. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome

    2012-06-01

    Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.

  13. Menu-Driven Solver Of Linear-Programming Problems

    Science.gov (United States)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  14. A contribution to the great Riemann solver debate

    Science.gov (United States)

    Quirk, James J.

    1992-01-01

    The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.

  15. Applications of 3-D Maxwell solvers to accelerator design

    International Nuclear Information System (INIS)

    Chou, W.

    1990-01-01

    This paper gives a brief discussion on various applications of 3-D Maxwell solvers to accelerator design. The work is based on our experience gained during the design of the storage ring of the 7-GeV Advanced Photon Source (APS). It shows that 3-D codes are not replaceable in many cases, and that a lot of work remains to be done in order to establish a solid base for 3-D simulations

  16. Scalable parallel prefix solvers for discrete ordinates transport

    International Nuclear Information System (INIS)

    Pautz, S.; Pandya, T.; Adams, M.

    2009-01-01

    The well-known 'sweep' algorithm for inverting the streaming-plus-collision term in first-order deterministic radiation transport calculations has some desirable numerical properties. However, it suffers from parallel scaling issues caused by a lack of concurrency. The maximum degree of concurrency, and thus the maximum parallelism, grows more slowly than the problem size for sweeps-based solvers. We investigate a new class of parallel algorithms that involves recasting the streaming-plus-collision problem in prefix form and solving via cyclic reduction. This method, although computationally more expensive at low levels of parallelism than the sweep algorithm, offers better theoretical scalability properties. Previous work has demonstrated this approach for one-dimensional calculations; we show how to extend it to multidimensional calculations. Notably, for multiple dimensions it appears that this approach is limited to long-characteristics discretizations; other discretizations cannot be cast in prefix form. We implement two variants of the algorithm within the radlib/SCEPTRE transport code library at Sandia National Laboratories and show results on two different massively parallel systems. Both the 'forward' and 'symmetric' solvers behave similarly, scaling well to larger degrees of parallelism then sweeps-based solvers. We do observe some issues at the highest levels of parallelism (relative to the system size) and discuss possible causes. We conclude that this approach shows good potential for future parallel systems, but the parallel scalability will depend heavily on the architecture of the communication networks of these systems. (authors)

  17. An immersed interface vortex particle-mesh solver

    Science.gov (United States)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  18. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.; Scacchi, S.; Zampini, Stefano

    2015-01-01

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  19. Direct solvers performance on h-adapted grids

    KAUST Repository

    Paszynski, Maciej; Pardo, David; Calo, Victor M.

    2015-01-01

    We analyse the performance of direct solvers when applied to a system of linear equations arising from an hh-adapted, C0C0 finite element space. Theoretical estimates are derived for typical hh-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of hh-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones.

  20. A Survey of Solver-Related Geometry and Meshing Issues

    Science.gov (United States)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  1. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Max La Cour [Technical Univ. of Denmark, Lyngby (Denmark); Villa, Umberto E. [Univ. of Texas, Austin, TX (United States); Engsig-Karup, Allan P. [Technical Univ. of Denmark, Lyngby (Denmark); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-22

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.

  2. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.

    2015-07-18

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  3. Direct solvers performance on h-adapted grids

    KAUST Repository

    Paszynski, Maciej

    2015-05-27

    We analyse the performance of direct solvers when applied to a system of linear equations arising from an hh-adapted, C0C0 finite element space. Theoretical estimates are derived for typical hh-refinement patterns arising as a result of a point, edge, or face singularity as well as boundary layers. They are based on the elimination trees constructed specifically for the considered grids. Theoretical estimates are compared with experiments performed with MUMPS using the nested-dissection algorithm for construction of the elimination tree from METIS library. The numerical experiments provide the same performance for the cases where our trees are identical with those constructed by the nested-dissection algorithm, and worse performance for some cases where our trees are different. We also present numerical experiments for the cases with mixed singularities, where how to construct optimal elimination trees is unknown. In all analysed cases, the use of hh-adaptive grids significantly reduces the cost of the direct solver algorithm per unknown as compared to uniform grids. The theoretical estimates predict and the experimental data confirm that the computational complexity is linear for various refinement patterns. In most cases, the cost of the direct solver per unknown is lower when employing anisotropic refinements as opposed to isotropic ones.

  4. IGA-ADS: Isogeometric analysis FEM using ADS solver

    Science.gov (United States)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  5. NITSOL: A Newton iterative solver for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

  6. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    Science.gov (United States)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  7. Europe vs. the U.S. A New Look at the Syndicated Loan Pricing Puzzle

    OpenAIRE

    Burietz, Aurore; Oosterlinck, Kim; Szafarz, Ariane

    2017-01-01

    According to the syndicated loan pricing puzzle (Carey and Nini, Journal of Finance, 2007) interest rates charged to corporate borrowers are lower in Europe than in the U.S. Our investigation suggests that controlling for region-specific credit ratings makes the Europe-U.S. gap insignificant, and solves the puzzle. We speculate that the puzzle originates from the lack of uniformity of accounting standards.

  8. Nursing education: current themes, puzzles and paradoxes.

    Science.gov (United States)

    Tanner, Christine A

    2007-01-01

    It would be tempting to declare that transformation of nursing education in the current context of faculty shortages and other scarce resources as Mission Impossible. But I believe that the opposite is true. It is my sense that the rapid changes in healthcare, the shifting population needs and the acute nursing shortage have catalyzed fundamental change, perhaps the most profound in the 50 year history of WIN. The first steps of that transformation are becoming increasingly apparent as nursing faculty begin to challenge their long-standing, taken-for-granted assumptions; as they set aside differences and their internecine warfare of the entry-into-practice debates; as they begin stronger and deeper collaborations with their clinical partners. We won't see the evidence of these changes in the literature for a while, because they are just getting started. There's not a lot to report yet. Here are some examples of the changes afoot: The Oregon Consortium for Nursing Education has resulted from unprecedented collaboration between community college and university faculty, with an eye to develop a standard, competency-based curriculum to prepare the "new" nurse, and to improve access to a seamless baccalaureate curriculum. The first students were enrolled in nursing courses in fall, 2006 on 8 campuses--the four campuses of OHSU and 4 community colleges, with additional community college campuses admitting students in '07 and '08. In this curriculum, fundamentals of nursing have been redefined as evidence-based practice, culturally sensitive and relationship-centered care, leadership and clinical judgment, with these concepts and others introduced early and spiraled throughout the curriculum. Through a 2-year faculty development program, faculty leaders in the OCNE partner programs have taken to heart the many lessons about learning, intentionally attending to content selection that will help reduce the volume while focusing on the most prevalent. Instructional approaches

  9. An AMR capable finite element diffusion solver for ALE hydrocodes [An AMR capable diffusion solver for ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaiser, T. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eder, D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Masters, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Koniges, A. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Anderson, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-01

    Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.

  10. Robust Sex Differences in Jigsaw Puzzle Solving-Are Boys Really Better in Most Visuospatial Tasks?

    Science.gov (United States)

    Kocijan, Vid; Horvat, Marina; Majdic, Gregor

    2017-01-01

    Sex differences are consistently reported in different visuospatial tasks with men usually performing better in mental rotation tests while women are better on tests for memory of object locations. In the present study, we investigated sex differences in solving jigsaw puzzles in children. In total 22 boys and 24 girls were tested using custom build tablet application representing a jigsaw puzzle consisting of 25 pieces and featuring three different pictures. Girls outperformed boys in solving jigsaw puzzles regardless of the picture. Girls were faster than boys in solving the puzzle, made less incorrect moves with the pieces of the puzzle, and spent less time moving the pieces around the tablet. It appears that the strategy of solving the jigsaw puzzle was the main factor affecting differences in success, as girls tend to solve the puzzle more systematically while boys performed more trial and error attempts, thus having more incorrect moves with the puzzle pieces. Results of this study suggest a very robust sex difference in solving the jigsaw puzzle with girls outperforming boys by a large margin.

  11. Robust Sex Differences in Jigsaw Puzzle Solving—Are Boys Really Better in Most Visuospatial Tasks?

    Science.gov (United States)

    Kocijan, Vid; Horvat, Marina; Majdic, Gregor

    2017-01-01

    Sex differences are consistently reported in different visuospatial tasks with men usually performing better in mental rotation tests while women are better on tests for memory of object locations. In the present study, we investigated sex differences in solving jigsaw puzzles in children. In total 22 boys and 24 girls were tested using custom build tablet application representing a jigsaw puzzle consisting of 25 pieces and featuring three different pictures. Girls outperformed boys in solving jigsaw puzzles regardless of the picture. Girls were faster than boys in solving the puzzle, made less incorrect moves with the pieces of the puzzle, and spent less time moving the pieces around the tablet. It appears that the strategy of solving the jigsaw puzzle was the main factor affecting differences in success, as girls tend to solve the puzzle more systematically while boys performed more trial and error attempts, thus having more incorrect moves with the puzzle pieces. Results of this study suggest a very robust sex difference in solving the jigsaw puzzle with girls outperforming boys by a large margin. PMID:29109682

  12. Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities

    KAUST Repository

    Paszyńska, Anna; Jopek, Konrad; Banaś, Krzysztof; Paszyński, Maciej; Gurgul, Piotr; Lenerth, Andrew; Nguyen, Donald; Pingali, Keshav; Dalcind, Lisandro; Calo, Victor M.

    2015-01-01

    This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.

  13. Telescopic Hybrid Fast Solver for 3D Elliptic Problems with Point Singularities

    KAUST Repository

    Paszyńska, Anna

    2015-06-01

    This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards selected point singularities and executes a parallel direct solver algorithm which has logarithmic cost with respect to refinement level. The direct solvers executed over each candidate for point singularity return local Schur complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver.

  14. The Hiroshima neutron dosimetry enigma: Missing puzzle piece No. 6

    International Nuclear Information System (INIS)

    Gold, Raymond

    1999-01-01

    More than a decade has elapsed since the serious nature of the discrepancy between neutron dosimetry experiments (E) and neutron transport calculations (C) for the Hiroshima site was identified. Since that time extensive efforts to resolve this Hiroshima neutron dosimetry enigma have not only failed, but now demonstrate that the magnitude of this discrepancy is much greater than initially estimated. The currently evaluated E/C ratio for thermal neutron fluence at the Hiroshima site increases rapidly with increasing slant range from the epicenter. In the slant range region beyond 1000 m, E/C exceeds unity by one to two orders of magnitude depending on the specific dosimetry data that are utilized. Principal features that characterize the Hiroshima neutron dosimetry enigma are summarized. Puzzle Piece No. 6: In-situ production and Prompt fallout of radionuclides from Little Boy is advanced as a possible contributory phenomenon to this enigma. (The atom bomb detonated over Hiroshima was called Little Boy.) Measurements of 60 Co and 152 Eu specific activity at the Hiroshima site are used to obtain order of magnitude numerical estimates that show this conjecture is plausible. Comparison of different 60 Co measurements at the Hiroshima site reveals that the variation of E/C with slant range depends on the method used to quantify 60 Co specific activity as well as the type of dosimetry samples that are employed. These 60 Co comparisons lend additional qualitative credence to this conjecture. Within the limits of presently available data, these assessments show that Puzzle Piece No. 6 qualitatively satisfies the principal features that characterize the Hiroshima neutron dosimetry enigma. Nevertheless, current lack of data prevent this conjecture from being conclusively confirmed or refuted. Consequently, specific recommendations are advanced to resolve the Hiroshima neutron dosimetry enigma with emphasis on experimental tests that can quantitatively evaluate Puzzle Piece

  15. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    International Nuclear Information System (INIS)

    Rodolfo, B.

    1999-01-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non-disturbing and Schroedinger-cat-like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy, Science and Technology database

  16. Precautionary Borrowing and the Credit Card Debt Puzzle

    DEFF Research Database (Denmark)

    Druedahl, Jeppe; Jørgensen, Casper Nordal

    2015-01-01

    This paper addresses the credit card debt puzzle using a generalization of the buffer-stock consumption model with long-term revolving debt contracts. Closely resembling actual US credit card law, we assume that card issuers can always deny their cardholders access to new debt, but that they cannot...... to simultaneously hold positive gross debt and positive gross assets even though the interest rate on the debt is much higher than the return rate on the assets. Including a risk of being excluded from new borrowing which is positively correlated with unemployment, we are able to simultaneously explain...

  17. The Puzzle of a Marble in a Spinning Pipe

    Science.gov (United States)

    2015-05-01

    MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Puzzle of a Marble in a Spinning Pipe 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT What trajectory does a marble follow if it is held...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Physics Education 50 (3) 279 1. Problem statement A marble is placed one-third of the length along a

  18. Hybrid Charmonium and the p-n Puzzle

    International Nuclear Information System (INIS)

    Kisslinger, L.S.; Parno, D.; Riordan, S.

    2008-01-01

    Using the method of QCD sum rules, we estimate the energy of the lowest hybrid charmonium state, and find it to be at the energy of the Ψ (2S) state, about 600 MeV above the J/Ψ(1S) state. Since our solution is not consistent with a pure hybrid at this energy, we conclude that the Ψ (2S) state is probably an admixed cc - and hybrid cc - g state. From this conjecture, we find a possible explanation of the famous ρ-p puzzle.

  19. The Puzzle of Non-proliferation and Disarmament (Part II)

    International Nuclear Information System (INIS)

    Ponga, J. de

    2011-01-01

    Since, in 1945, the World was aware of the devastating power of nuclear weapons there have been many initiatives at international level to avoid nuclear weapon proliferation: the foundation of the IAEA, the NPT, the Safeguards Agreements, the Nuclear Weapon Free Zones, the treaties banning nuclear tests or the export control regime of the NSG, among others. This article aims to offer a general picture of all of them as pieces of a puzzle the purpose of which is not to allow gaps to non pacific uses of nuclear energy. (Author)

  20. Multiple sclerosis pathogenesis: missing pieces of an old puzzle.

    Science.gov (United States)

    Rahmanzadeh, Reza; Brück, Wolfgang; Minagar, Alireza; Sahraian, Mohammad Ali

    2018-06-08

    Traditionally, multiple sclerosis (MS) was considered to be a CD4 T cell-mediated CNS autoimmunity, compatible with experimental autoimmune encephalitis model, which can be characterized by focal lesions in the white matter. However, studies of recent decades revealed several missing pieces of MS puzzle and showed that MS pathogenesis is more complex than the traditional view and may include the following: a primary degenerative process (e.g. oligodendroglial pathology), generalized abnormality of normal-appearing brain tissue, pronounced gray matter pathology, involvement of innate immunity, and CD8 T cells and B cells. Here, we review these findings and discuss their implications in MS pathogenesis.

  1. Simplified Eigen-structure decomposition solver for the simulation of two-phase flow systems

    International Nuclear Information System (INIS)

    Kumbaro, Anela

    2012-01-01

    This paper discusses the development of a new solver for a system of first-order non-linear differential equations that model the dynamics of compressible two-phase flow. The solver presents a lower-complexity alternative to Roe-type solvers because it only makes use of a partial Eigen-structure information while maintaining its accuracy: the outcome is hence a good complexity-tractability trade-off to consider as relevant in a large number of situations in the scope of two-phase flow numerical simulation. A number of numerical and physical benchmarks are presented to assess the solver. Comparison between the computational results from the simplified Eigen-structure decomposition solver and the conventional Roe-type solver gives insight upon the issues of accuracy, robustness and efficiency. (authors)

  2. Using Solver Interfaced Virtual Reality in PEACER Design Process

    International Nuclear Information System (INIS)

    Lee, Hyong Won; Nam, Won Chang; Jeong, Seung Ho; Hwang, Il Soon; Shin, Jong Gye; Kim, Chang Hyo

    2006-01-01

    The recent research progress in the area of plant design and simulation highlighted the importance of integrating design and analysis models on a unified environment. For currently developed advanced reactors, either for power production or research, this effort has embraced impressive state-of-the-art information and automation technology. The PEACER (Proliferation-resistant, Environment friendly, Accident-tolerant, Continual and Economical Reactor) is one of the conceptual fast reactor system cooled by LBE (Lead Bismuth Eutectic) for nuclear waste transmutation. This reactor system is composed of innovative combination between design process and analysis. To establish an integrated design process by coupling design, analysis, and post-processing technology while minimizing the repetitive and costly manual interactions for design changes, a solver interfaced virtual reality simulation system (SIVR) has been developed for a nuclear transmutation energy system as PEACER. The SIVR was developed using Virtual Reality Modeling Language (VRML) in order to interface a commercial 3D CAD tool with various engineering solvers and to implement virtual reality presentation of results in a neutral format. In this paper, we have shown the SIVR approach viable and effective in the life-cycle management of complex nuclear energy systems, including design, construction and operation. For instance, The HELIOS is a down scaled model of the PEACER prototype to demonstrate the operability and safety as well as preliminary test of PEACER PLM (Product Life-cycle Management) with SIVR (Solver Interfaced Virtual Reality) concepts. Most components are designed by CATIA, which is 3D CAD tool. During the construction, 3D drawing by CATIA was effective to handle and arrange the loop configuration, especially when we changed the design. Most of all, This system shows the transparency of design and operational status of an energy complex to operators and inspectors can help ensure accident

  3. Application of Nearly Linear Solvers to Electric Power System Computation

    Science.gov (United States)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  4. Computational aeroelasticity using a pressure-based solver

    Science.gov (United States)

    Kamakoti, Ramji

    A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.

  5. Nonlinear multigrid solvers exploiting AMGe coarse spaces with approximation properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Vassilevski, Panayot S.; Villa, Umberto

    2017-01-01

    discretizations on general unstructured grids for a large class of nonlinear partial differential equations, including saddle point problems. The approximation properties of the coarse spaces ensure that our FAS approach for general unstructured meshes leads to optimal mesh-independent convergence rates similar...... to those achieved by geometric FAS on a nested hierarchy of refined meshes. In the numerical results, Newton’s method and Picard iterations with state-of-the-art inner linear solvers are compared to our FAS algorithm for the solution of a nonlinear saddle point problem arising from porous media flow...

  6. Modeling Microbunching from Shot Noise Using Vlasov Solvers

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco; Zholents, Alexander

    2008-01-01

    Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a 2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the beam delivery systems for x-ray FELs and present an application to FERMI(at)Elettra. We discuss, in particular, the impact of the spreader design on microbunching

  7. Parallel implementations of 2D explicit Euler solvers

    International Nuclear Information System (INIS)

    Giraud, L.; Manzini, G.

    1996-01-01

    In this work we present a subdomain partitioning strategy applied to an explicit high-resolution Euler solver. We describe the design of a portable parallel multi-domain code suitable for parallel environments. We present several implementations on a representative range of MlMD computers that include shared memory multiprocessors, distributed virtual shared memory computers, as well as networks of workstations. Computational results are given to illustrate the efficiency, the scalability, and the limitations of the different approaches. We discuss also the effect of the communication protocol on the optimal domain partitioning strategy for the distributed memory computers

  8. Algorithms for parallel flow solvers on message passing architectures

    Science.gov (United States)

    Vanderwijngaart, Rob F.

    1995-01-01

    The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those

  9. Fast Multipole-Based Elliptic PDE Solver and Preconditioner

    KAUST Repository

    Ibeid, Huda

    2016-12-07

    Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity

  10. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

    KAUST Repository

    Haase, Gundolf

    2010-01-01

    The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster and a multi-GPU configuration with eight GPUs is about 100 times faster than a typical server CPU core. © 2010 Springer-Verlag.

  11. Modelo de selección de cartera con Solver

    Directory of Open Access Journals (Sweden)

    P. Fogués Zornoza

    2012-04-01

    Full Text Available In this paper, we present an example of linear optimization in the context of degrees in Economics or Business Administration and Management. We show techniques that enable students to go deep and investigate in real problems that have been modelled using the Excel platform. The model shown here has been developed by a student and it consists in minimizing the absolute deviations over the average expected return of a portfolio of securities, using the solver tool that it is included in this software.

  12. Tiny bubbles challenge giant turbines: Three Gorges puzzle.

    Science.gov (United States)

    Li, Shengcai

    2015-10-06

    Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element 'draft-tube' that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700-1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences.

  13. Yet another possible explanation of the solar-neutrino puzzle

    International Nuclear Information System (INIS)

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-01-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m 2 2 -m 2 1 approx.=6x10 -5 eV 2 , and the mixing angle satisfies sin THETAsub(v)>0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0x10 -8 2 2 -m 2 1 )(sin 2 2THETAsub(v)/cos2THETAsub(v)) -8 eV 2 . Our solutions result in a much smaller flux of neutrinos from the p-p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p-p process that is about the same as standard solar models. (orig.)

  14. May heavy neutrinos solve underground and cosmic-ray puzzles?

    International Nuclear Information System (INIS)

    Belotsky, K. M.; Fargion, D.; Khlopov, M. Yu.; Konoplich, R. V.

    2008-01-01

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46–47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46–70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis.

  15. Status of particle physics solutions to the UHECR puzzle

    International Nuclear Information System (INIS)

    Kachelrieb, M.

    2004-01-01

    The status of solutions to the ultra-high energy cosmic ray (UHECR) puzzle that involve particle physics beyond the standard model is reviewed. Signatures and experimental constraints are discussed for most proposals such as the Z burst model and topological defects (both allowed only as sub-dominant contributions), supermassive dark matter (no positive evidence from its key signatures galactic anisotropy and photon dominance), strongly interacting neutrinos or new primaries (no viable models known), and violation of Lorentz invariance (viable). Lorentz invariance violation should be considered seriously as an explanation for the UHECR puzzle, if there is not a considerable fraction of photon primaries at the highest energies, correlations with sources at cosmological distance can be established, and the spectrum extends well beyond the GZK (Greisen-Zatsepin-Kuzmin) cutoff. If only the two first conditions are found to be true, and the UHECR spectrum is close to the one measured in the HiRes experiment, then bottom-up scenarios are a sufficient explanation for the data

  16. May heavy neutrinos solve underground and cosmic-ray puzzles?

    International Nuclear Information System (INIS)

    Belotsky, K. M.; Fargion, D.; Khlopov, M. Yu.; Konoplich, R. V.

    2008-01-01

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46-47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46-70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis

  17. The puzzling unsolved mysteries of liquid water: Some recent progress

    Science.gov (United States)

    Stanley, H. E.; Kumar, P.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Indeed, it defies the imagination of even the most creative science fiction writer to picture what life would be like without water. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We introduce some of these unsolved mysteries, and demonstrate recent progress in solving them. We present evidence from experiments and computer simulations supporting the hypothesis that water displays a special transition point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell). The general idea is that when the liquid is near this “tipping point,” it suddenly separates into two distinct liquid phases. This concept of a new critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a protein.

  18. Yet another possible explanation of the solar-neutrino puzzle

    International Nuclear Information System (INIS)

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-04-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m 2 2 - m 1 2 approx. = 6 x 10 -5 eV 2 , and the mixing angle satisfies sin theta/sub v/ > 0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0 x 10 -8 2 2 - m 1 2 ) (sin 2 2theta/sub v//cos 2theta/sub v/) -8 eV 2 . Our solutions result in a much smaller flux of neutrinos from the p - p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p - process that is about the same as standard solar models

  19. Application-Based Crossword Puzzles: Players’ Perception and Vocabulary Retention

    Directory of Open Access Journals (Sweden)

    Dzulfikri Dzulfikri

    2016-09-01

    Full Text Available This study investigates the perceptions of students towards Application-Based Crossword Puzzles and how playing this game can affect the development of vocabulary amongst students. Drawing on Vygostky’s Socio-Cultural Theory which states that the human mind is mediated by cultural artifacts, the nature of this game poses challenges and builds curiosity, allowing players to pay more attention to the words to fill in the boxes which subsequently enhances their retention of vocabulary. This game has very good potential to build positive perceptions and to develop cognition in the linguistic domain of players, i.e. the amount of their vocabulary. In this study, the researcher conducted interviews with eligible or selected student players to find out their perceptions toward this game and administered a vocabulary test to find out how this game had added to the retention in memory of new words acquired by the players from the game. The study findings showed that the participants perceive this game positively and it affects the players’ vocabulary retention positively as indicated by their test results. It is recommended that English teachers consider using Application-Based Crossword Puzzles to help students build their vocabularies especially as part of extracurricular activities.

  20. Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts

    Science.gov (United States)

    Marzocchi, Alison S.

    2016-01-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…

  1. An Alternative Evaluation: Online Puzzle as a Course-End Activity

    Science.gov (United States)

    Genç, Zülfü; Aydemir, Emrah

    2015-01-01

    Purpose: The purpose of this study is to determine whether the use of online puzzles in the instructional process has an effect on student achievement and learning retention. This study examined students ' perception and experiences on use of puzzle as an alternative evaluation tool. To achieve this aim, the following hypotheses were tested: using…

  2. Studying the proton 'radius' puzzle with μp elastic scattering

    International Nuclear Information System (INIS)

    Gilman, R.

    2013-01-01

    The disagreement between the proton radius determined from muonic hydrogen and from electronic measurements is called the proton radius puzzle. The resolution of the puzzle remains unclear and appears to require new experimental results. An experiment to measure muon-proton elastic scattering is presented here

  3. Crossword Puzzle Makes It Fun: Introduce Green Manufacturing in Wood Technology Courses

    Science.gov (United States)

    Iley, John L.; Hague, Doug

    2012-01-01

    Sustainable, or "green," manufacturing and its practices are becoming more and more a part of today's industry, including wood product manufacturing. This article provides introductory information on green manufacturing in wood technology and a crossword puzzle based on green manufacturing terms. The authors use the puzzle at the college level to…

  4. The King and Prisoner Puzzle: A Way of Introducing the Components of Logical Structures

    Science.gov (United States)

    Roh, Kyeong Hah; Lee, Yong Hah; Tanner, Austin

    2016-01-01

    The purpose of this paper is to provide issues related to student understanding of logical components that arise when solving word problems. We designed a logic problem called the King and Prisoner Puzzle--a linguistically simple, yet logically challenging problem. In this paper, we describe various student solutions to the puzzle and discuss the…

  5. Puzzle-Based Learning in Engineering Mathematics: Students' Attitudes

    Science.gov (United States)

    Klymchuk, Sergiy

    2017-01-01

    The article reports on the results of two case studies on the impact of the regular use of puzzles as a pedagogical strategy in the teaching and learning of engineering mathematics. The intention of using puzzles is to engage students' emotions, creativity and curiosity and also to enhance their generic thinking skills and lateral thinking…

  6. What Puzzles Teachers in Rio de janeiro, and What Keeps Them Going?

    Science.gov (United States)

    Lyra, Isolina; Fish, Solange; Braga, Walewska Gomes

    2003-01-01

    Focuses on the key mechanism of "puzzling" in Exploratory Practice (EP), a form of practitioner research, and the critical issue of sustainability in the context of volunteer teacher development work in Rio de Janeiro, Brazil. Investigated puzzles (concerns) of language teachers and grouped them into six categories; motivation, anxiety,…

  7. On Non-Parallelizable Deterministic Client Puzzle Scheme with Batch Verification Modes

    NARCIS (Netherlands)

    Tang, Qiang; Jeckmans, Arjan

    A (computational) client puzzle scheme enables a client to prove to a server that a certain amount of computing resources (CPU cycles and/or Memory look-ups) has been dedicated to solve a puzzle. Researchers have identified a number of potential applications, such as constructing timed cryptography,

  8. On the implicit density based OpenFOAM solver for turbulent compressible flows

    Science.gov (United States)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  9. Making Peer-Assisted Content Distribution Robust to Collusion Using Bandwidth Puzzles

    Science.gov (United States)

    Reiter, Michael K.; Sekar, Vyas; Spensky, Chad; Zhang, Zhenghao

    Many peer-assisted content-distribution systems reward a peer based on the amount of data that this peer serves to others. However, validating that a peer did so is, to our knowledge, an open problem; e.g., a group of colluding attackers can earn rewards by claiming to have served content to one another, when they have not. We propose a puzzle mechanism to make contribution-aware peer-assisted content distribution robust to such collusion. Our construction ties solving the puzzle to possession of specific content and, by issuing puzzle challenges simultaneously to all parties claiming to have that content, our mechanism prevents one content-holder from solving many others' puzzles. We prove (in the random oracle model) the security of our scheme, describe our integration of bandwidth puzzles into a media streaming system, and demonstrate the resulting attack resilience via simulations.

  10. Gravity does not exist a puzzle for the 21st century

    CERN Document Server

    Icke, Vincent

    2014-01-01

    Every scientific fact begins as an opinion about the unknown—a theory—that becomes fact as evidence piles up to support it. But what if two theories exist that correspond perfectly to observed phenomena and they cannot be reconciled with each other? Can theory become fact? Such is the dilemma in contemporary physics. In seeking to understand the mechanisms of the universe, physicists have arrived at two conflicting theories: one explains the mystery of gravity through a precise model of space and time, and the other explains the mystery of matter via the behavior of quantum particles. Each theory reigns in its own domain. But 13.8 billion years ago, when the universe first came into being, gravity and matter belonged to a single realm. Can these theories be united, and if so, what facts will be revealed? This, contends Vincent Icke, is the central puzzle facing physics in our century. Combining Icke’s expertise with a robust argument and intellectual playfulness, Gravity Does Not Exist makes a notorious...

  11. Development of a Cartesian grid based CFD solver (CARBS)

    International Nuclear Information System (INIS)

    Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2013-12-01

    Formulation for 3D transient incompressible CFD solver is developed. The solution of variable property, laminar/turbulent, steady/unsteady, single/multi specie, incompressible with heat transfer in complex geometry will be obtained. The formulation can handle a flow system in which any number of arbitrarily shaped solid and fluid regions are present. The solver is based on the use of Cartesian grids. A method is proposed to handle complex shaped objects and boundaries on Cartesian grids. Implementation of multi-material, different types of boundary conditions, thermo physical properties is also considered. The proposed method is validated by solving two test cases. 1 st test case is that of lid driven flow in inclined cavity. 2 nd test case is the flow over cylinder. The 1 st test case involved steady internal flow subjected to WALL boundaries. The 2 nd test case involved unsteady external flow subjected to INLET, OUTLET and FREE-SLIP boundary types. In both the test cases, non-orthogonal geometry was involved. It was found that, under such a wide conditions, the Cartesian grid based code was found to give results which were matching well with benchmark data. Convergence characteristics are excellent. In all cases, the mass residue was converged to 1E-8. Based on this, development of 3D general purpose code based on the proposed approach can be taken up. (author)

  12. Riemann solvers and undercompressive shocks of convex FPU chains

    International Nuclear Information System (INIS)

    Herrmann, Michael; Rademacher, Jens D M

    2010-01-01

    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space–time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax shocks are replaced by so-called dispersive shocks. For convex–concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave–convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

  13. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS

    International Nuclear Information System (INIS)

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.

    2013-01-01

    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

  14. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  15. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    Science.gov (United States)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  16. Application of alternating decision trees in selecting sparse linear solvers

    KAUST Repository

    Bhowmick, Sanjukta; Eijkhout, Victor; Freund, Yoav; Fuentes, Erika; Keyes, David E.

    2010-01-01

    The solution of sparse linear systems, a fundamental and resource-intensive task in scientific computing, can be approached through multiple algorithms. Using an algorithm well adapted to characteristics of the task can significantly enhance the performance, such as reducing the time required for the operation, without compromising the quality of the result. However, the best solution method can vary even across linear systems generated in course of the same PDE-based simulation, thereby making solver selection a very challenging problem. In this paper, we use a machine learning technique, Alternating Decision Trees (ADT), to select efficient solvers based on the properties of sparse linear systems and runtime-dependent features, such as the stages of simulation. We demonstrate the effectiveness of this method through empirical results over linear systems drawn from computational fluid dynamics and magnetohydrodynamics applications. The results also demonstrate that using ADT can resolve the problem of over-fitting, which occurs when limited amount of data is available. © 2010 Springer Science+Business Media LLC.

  17. An Empirical Evaluation of Puzzle-Based Learning as an Interest Approach for Teaching Introductory Computer Science

    Science.gov (United States)

    Merrick, K. E.

    2010-01-01

    This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…

  18. The puzzling resilience of transnational organized criminal networks

    DEFF Research Database (Denmark)

    Leuprecht, Christian; Aulthouse, Andrew; Walther, Olivier

    2016-01-01

    international organized crime syndicate based in Jamaica, whose resilience proves particularly puzzling. We were curious to know whether there is any evidence that international borders have an effect on the structure of illicit networks that cross them. It turns out that transnational drug distribution......Why is transnational organized crime so difficult to dismantle? While organized crime networks within states have received some attention, actual transnational operations have not. In this article, we study the transnational drug and gun trafficking operations of the Shower Posse, a violent...... networks such as the Shower Posse rely on a small number of brokers whose role is to connect otherwise distinct domestic markets. Due to the high transaction costs associated with developing and maintaining transnational movement, the role of such brokers appears particularly important in facilitating...

  19. Ambiguity aversion and household portfolio choice puzzles: Empirical evidence.

    Science.gov (United States)

    Dimmock, Stephen G; Kouwenberg, Roy; Mitchell, Olivia S; Peijnenburg, Kim

    2016-03-01

    We test the relation between ambiguity aversion and five household portfolio choice puzzles: nonparticipation in equities, low allocations to equity, home-bias, own-company stock ownership, and portfolio under-diversification. In a representative US household survey, we measure ambiguity preferences using custom-designed questions based on Ellsberg urns. As theory predicts, ambiguity aversion is negatively associated with stock market participation, the fraction of financial assets in stocks, and foreign stock ownership, but it is positively related to own-company stock ownership. Conditional on stock ownership, ambiguity aversion is related to portfolio under-diversification, and during the financial crisis, ambiguity-averse respondents were more likely to sell stocks.

  20. Ambiguity aversion and household portfolio choice puzzles: Empirical evidence*

    Science.gov (United States)

    Dimmock, Stephen G.; Kouwenberg, Roy; Mitchell, Olivia S.; Peijnenburg, Kim

    2017-01-01

    We test the relation between ambiguity aversion and five household portfolio choice puzzles: nonparticipation in equities, low allocations to equity, home-bias, own-company stock ownership, and portfolio under-diversification. In a representative US household survey, we measure ambiguity preferences using custom-designed questions based on Ellsberg urns. As theory predicts, ambiguity aversion is negatively associated with stock market participation, the fraction of financial assets in stocks, and foreign stock ownership, but it is positively related to own-company stock ownership. Conditional on stock ownership, ambiguity aversion is related to portfolio under-diversification, and during the financial crisis, ambiguity-averse respondents were more likely to sell stocks. PMID:28458446

  1. Diagnosing the Cause of Scientific Standstill, Unravelling the Needham Puzzle

    Institute of Scientific and Technical Information of China (English)

    刘迎秋; 刘春江

    2007-01-01

    There are diverse opinions about how to solve the Needham Puzzle. Such opinions or schools of thought can be roughly classified into three theories of a) geographical conditions, b) empirical trial and error, and c) private property rights. Although each school of thought makes sense, they all fail to fully uncover the main reason why, in modern history, China lagged behind western countries in the development of science and technology. In our opinion, the correct solution is to draw on historical experiences, integrate all schools of thought, proceed with an emphasis on the definition and protection of property rights, boost government investment in basic scientific research, strengthen government service functionality, actively develop NGOs, and open more widely to the outside world, with a view of pushing forward China’s scientific and technological innovation and accelerating the pace of China’s modernization.

  2. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle.

    Science.gov (United States)

    Trenti, Annalisa; Tedesco, Serena; Boscaro, Carlotta; Trevisi, Lucia; Bolego, Chiara; Cignarella, Andrea

    2018-03-15

    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.

  3. Why plants make puzzle cells, and how their shape emerges.

    Science.gov (United States)

    Sapala, Aleksandra; Runions, Adam; Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne Hk; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw; Smith, Richard S

    2018-02-27

    The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. © 2018, Sapala et al.

  4. The orthopositronium lifetime puzzle and its final solution

    International Nuclear Information System (INIS)

    Liu Feng; Wu Jianda; Zhan Liang; Ye Bangjiao

    2004-01-01

    The ortho-positronium (o-Ps), which consists of an electron and positron, is a pure lepton bound system. The o-Ps lifetime can be calculated accurately by quantum electrodynamics, but there is a long-standing discrepancy between the theoretical calculations and the experimental results. Theoretical and experimental physicists have worked hard for a long time to solve the problem, and recently finally solved this lifetime puzzle. The authors briefly outline the discrepancy between the theoretical calculations of the o-Ps annihilation decay rate and some of the experimental measurements, as well as recent developments of experimental techniques, and its final solution. In particular, the final results of the Tokyo and michigan groups are discussed

  5. Gaia's view of the λ Boo star puzzle

    Science.gov (United States)

    Murphy, Simon J.; Paunzen, Ernst

    2017-04-01

    The evolutionary status of the chemically peculiar class of λ Boo stars has been intensely debated. It is now agreed that the λ Boo phenomenon affects A stars of all ages, from star formation to the terminal age main sequence, but the cause of the chemical peculiarity is still a puzzle. We revisit the debate of their ages and temperatures in order to shed light on the phenomenon, using the new parallaxes in Gaia Data Release 1 with existing Hipparcos parallaxes and multicolour photometry. We find that no single formation mechanism is able to explain all the observations, and suggest that there are multiple channels producing λ Boo spectra. The relative importance of these channels varies with age, temperature and environment.

  6. 200 more puzzling physics problems with hints and solutions

    CERN Document Server

    Gnädig, Péter; Vigh, Máté

    2016-01-01

    Like its predecessor, 200 Puzzling Physics Problems, this book is aimed at strengthening students' grasp of the laws of physics by applying them to situations that are practical, and to problems that yield more easily to intuitive insight than to brute-force methods and complex mathematics. The problems are chosen almost exclusively from classical, non-quantum physics, but are no easier for that. They are intriguingly posed in accessible non-technical language, and require readers to select an appropriate analysis framework and decide which branches of physics are involved. The general level of sophistication needed is that of the exceptional school student, the good undergraduate, or the competent graduate student; some physics professors may find some of the more difficult questions challenging. By contrast, the mathematical demands are relatively minimal, and seldom go beyond elementary calculus. This further book of physics problems is not only instructive and challenging, but also enjoyable.

  7. Lambda-nuclear interactions and hyperon puzzle in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-06-15

    Brueckner theory is used to investigate the in-medium properties of a Λ-hyperon in nuclear and neutron matter, based on hyperon-nucleon interactions derived within SU(3) chiral effective field theory (EFT). It is shown that the resulting Λ single-particle potential U{sub Λ}(p{sub Λ} = 0, ρ) becomes strongly repulsive for densities ρ of two-to-three times that of normal nuclear matter. Adding a density-dependent effective ΛN-interaction constructed from chiral ΛNN three-body forces increases the repulsion further. Consequences of these findings for neutron stars are discussed. It is argued that for hyperon-nuclear interactions with properties such as those deduced from the SU(3) EFT potentials, the onset for hyperon formation in the core of neutron stars could be shifted to much higher density which, in turn, could pave the way for resolving the so-called hyperon puzzle. (orig.)

  8. Clarifying some remaining questions in the anomaly puzzle

    International Nuclear Information System (INIS)

    Huang, Xing; Parker, Leonard

    2011-01-01

    We discuss several points that may help to clarify some questions that remain about the anomaly puzzle in supersymmetric theories. In particular, we consider a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the question of whether there is a consistent way in the quantized theory to put the R-current and the stress tensor in a single supermultiplet called the supercurrent, even though in the classical theory they are in the same supermultiplet. It was proposed that the classically conserved supercurrent bifurcates into two supercurrents having different anomalies in the quantum regime. The most interesting result we obtain is an explicit expression for the lowest component of one of the two supercurrents in 4-dimensional spacetime, namely the supercurrent that has the energy-momentum tensor as one of its components. This expression for the lowest component is an energy-dependent linear combination of two chiral currents, which itself does not correspond to a classically conserved chiral current. The lowest component of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen theorem. The lowest component of the first supercurrent has an anomaly, which we show is consistent with the anomaly of the trace of the energy-momentum tensor. Therefore, we conclude that there is no consistent way to construct a single supercurrent multiplet that contains the R-current and the stress tensor in the straightforward way originally proposed. We also discuss and try to clarify some technical points in the derivations of the two supercurrents in the literature. These latter points concern the significance of infrared contributions to the NSVZ β-function and the role of the equations of motion in deriving the two supercurrents. (orig.)

  9. High-Performance Small-Scale Solvers for Moving Horizon Estimation

    DEFF Research Database (Denmark)

    Frison, Gianluca; Vukov, Milan; Poulsen, Niels Kjølstad

    2015-01-01

    implementation techniques focusing on small-scale problems. The proposed MHE solver is implemented using custom linear algebra routines and is compared against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to a code generation tool for nonlinear model predictive control (NMPC...

  10. T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2

    International Nuclear Information System (INIS)

    Moridis, G.; Pruess, K.; Antunez, E.

    1994-03-01

    Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources

  11. Identification of severe wind conditions using a Reynolds averaged Navier-Stokes solver

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Johansen, Jeppe

    2007-01-01

    The present paper describes the application of a Navier-Stokes solver to predict the presence of severe flow conditions in complex terrain, capturing conditions that may be critical to the siting of wind turbines in the terrain. First it is documented that the flow solver is capable of predicting...

  12. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  13. Investigation on the Use of a Multiphase Eulerian CFD solver to simulate breaking waves

    DEFF Research Database (Denmark)

    Tomaselli, Pietro D.; Christensen, Erik Damgaard

    2015-01-01

    investigation on a CFD model capable of handling this problem. The model is based on a solver, available in the open-source CFD toolkit OpenFOAM, which combines the Eulerian multi-fluid approach for dispersed flows with a numerical interface sharpening method. The solver, enhanced with additional formulations...

  14. The SX Solver: A New Computer Program for Analyzing Solvent-Extraction Equilibria

    International Nuclear Information System (INIS)

    McNamara, B.K.; Rapko, B.M.; Lumetta, G.J.

    1999-01-01

    A new computer program, the SX Solver, has been developed to analyze solvent-extraction equilibria. The program operates out of Microsoft Excel and uses the built-in ''Solver'' function to minimize the sum of the square of the residuals between measured and calculated distribution coefficients. The extraction of nitric acid by tributylphosphate has been modeled to illustrate the program's use

  15. The SX Solver: A Computer Program for Analyzing Solvent-Extraction Equilibria: Version 3.0

    International Nuclear Information System (INIS)

    Lumetta, Gregg J.

    2001-01-01

    A new computer program, the SX Solver, has been developed to analyze solvent-extraction equilibria. The program operates out of Microsoft Excel and uses the built-in Solver function to minimize the sum of the square of the residuals between measured and calculated distribution coefficients. The extraction of nitric acid by tributyl phosphate has been modeled to illustrate the programs use

  16. The impact of memory load and perceptual cues on puzzle learning by 24-month olds.

    Science.gov (United States)

    Barr, Rachel; Moser, Alecia; Rusnak, Sylvia; Zimmermann, Laura; Dickerson, Kelly; Lee, Herietta; Gerhardstein, Peter

    2016-11-01

    Early childhood is characterized by memory capacity limitations and rapid perceptual and motor development [Rovee-Collier (1996). Infant Behavior & Development, 19, 385-400]. The present study examined 2-year olds' reproduction of a sliding action to complete an abstract fish puzzle under different levels of memory load and perceptual feature support. Experimental groups were compared to baseline controls to assess spontaneous rates of production of the target actions; baseline production was low across all experiments. Memory load was manipulated in Exp. 1 by adding pieces to the puzzle, increasing sequence length from 2 to 3 items, and to 3 items plus a distractor. Although memory load did not influence how toddlers learned to manipulate the puzzle pieces, it did influence toddlers' achievement of the goal-constructing the fish. Overall, girls were better at constructing the puzzle than boys. In Exp. 2, the perceptual features of the puzzle were altered by changing shape boundaries to create a two-piece horizontally cut puzzle (displaying bilateral symmetry), and by adding a semantically supportive context to the vertically cut puzzle (iconic). Toddlers were able to achieve the goal of building the fish equally well across the 2-item puzzle types (bilateral symmetry, vertical, iconic), but how they learned to manipulate the puzzle pieces varied as a function of the perceptual features. Here, as in Exp. 1, girls showed a different pattern of performance from the boys. This study demonstrates that changes in memory capacity and perceptual processing influence both goal-directed imitation learning and motoric performance. © 2016 Wiley Periodicals, Inc.

  17. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  18. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  19. VCODE, Ordinary Differential Equation Solver for Stiff and Non-Stiff Problems

    International Nuclear Information System (INIS)

    Cohen, Scott D.; Hindmarsh, Alan C.

    2001-01-01

    1 - Description of program or function: CVODE is a package written in ANSI standard C for solving initial value problems for ordinary differential equations. It solves both stiff and non stiff systems. In the stiff case, it includes a variety of options for treating the Jacobian of the system, including dense and band matrix solvers, and a preconditioned Krylov (iterative) solver. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by functional iteration or Newton iteration. For the solution of linear systems within Newton iteration, users can select a dense solver, a band solver, a diagonal approximation, or a preconditioned Generalized Minimal Residual (GMRES) solver. In the dense and band cases, the user can supply a Jacobian approximation or let CVODE generate it internally. In the GMRES case, the pre-conditioner is user-supplied

  20. Minos: a SPN solver for core calculation in the DESCARTES system

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.

    2005-01-01

    This paper describes a new development of a neutronic core solver done in the context of a new generation neutronic reactor computational system, named DESCARTES. For performance reasons, the numerical method of the existing MINOS solver in the SAPHYR system has been reused in the new system. It is based on the mixed dual finite element approximation of the simplified transport equation. The solver takes into account assembly discontinuity coefficients (ADF) in the simplified transport equation (SPN) context. The solver has been rewritten in C++ programming language using an object oriented design. Its general architecture was reconsidered in order to improve its capability of evolution and its maintainability. Moreover, the performances of the old version have been improved mainly regarding the matrix construction time; this result improves significantly the performance of the solver in the context of industrial application requiring thermal hydraulic feedback and depletion calculations. (authors)

  1. Fast Multipole-Based Preconditioner for Sparse Iterative Solvers

    KAUST Repository

    Ibeid, Huda; Yokota, Rio; Keyes, David E.

    2014-01-01

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.

  2. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    Science.gov (United States)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  3. POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid

    International Nuclear Information System (INIS)

    Orvis, W.J.

    1988-01-01

    1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic

  4. Extending the QUDA Library with the eigCG Solver

    Energy Technology Data Exchange (ETDEWEB)

    Strelchenko, Alexei [Fermilab; Stathopoulos, Andreas [William-Mary Coll.

    2014-12-12

    While the incremental eigCG algorithm [ 1 ] is included in many LQCD software packages, its realization on GPU micro-architectures was still missing. In this session we report our experi- ence of the eigCG implementation in the QUDA library. In particular, we will focus on how to employ the mixed precision technique to accelerate solutions of large sparse linear systems with multiple right-hand sides on GPUs. Although application of mixed precision techniques is a well-known optimization approach for linear solvers, its utilization for the eigenvector com- puting within eigCG requires special consideration. We will discuss implementation aspects of the mixed precision deflation and illustrate its numerical behavior on the example of the Wilson twisted mass fermion matrix inversions

  5. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  6. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  7. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.

  8. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  9. A General Symbolic PDE Solver Generator: Beyond Explicit Schemes

    Directory of Open Access Journals (Sweden)

    K. Sheshadri

    2003-01-01

    Full Text Available This paper presents an extension of our Mathematica- and MathCode-based symbolic-numeric framework for solving a variety of partial differential equation (PDE problems. The main features of our earlier work, which implemented explicit finite-difference schemes, include the ability to handle (1 arbitrary number of dependent variables, (2 arbitrary dimensionality, and (3 arbitrary geometry, as well as (4 developing finite-difference schemes to any desired order of approximation. In the present paper, extensions of this framework to implicit schemes and the method of lines are discussed. While C++ code is generated, using the MathCode system for the implicit method, Modelica code is generated for the method of lines. The latter provides a preliminary PDE support for the Modelica language. Examples illustrating the various aspects of the solver generator are presented.

  10. GPU accelerated FDTD solver and its application in MRI.

    Science.gov (United States)

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  11. Visualising magnetic fields numerical equation solvers in action

    CERN Document Server

    Beeteson, John Stuart

    2001-01-01

    Visualizing Magnetic Fields: Numerical Equation Solvers in Action provides a complete description of the theory behind a new technique, a detailed discussion of the ways of solving the equations (including a software visualization of the solution algorithms), the application software itself, and the full source code. Most importantly, there is a succinct, easy-to-follow description of each procedure in the code.The physicist Michael Faraday said that the study of magnetic lines of force was greatly influential in leading him to formulate many of those concepts that are now so fundamental to our modern world, proving to him their "great utility as well as fertility." Michael Faraday could only visualize these lines in his mind's eye and, even with modern computers to help us, it has been very expensive and time consuming to plot lines of force in magnetic fields

  12. Fast Multipole-Based Preconditioner for Sparse Iterative Solvers

    KAUST Repository

    Ibeid, Huda

    2014-05-04

    Among optimal hierarchical algorithms for the computational solution of elliptic problems, the Fast Multipole Method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxed global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, it is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity architecture supercomputers.

  13. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  14. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  15. A Resolution of the Purchasing Power Parity Puzzle: Imperfect Knowledge and Long Swings

    DEFF Research Database (Denmark)

    Frydman, Roman; Goldberg, Michael D.; Johansen, Søren

    2009-01-01

    Asset prices undergo long swings that revolve around benchmark levels. In currency markets, fluctuations involve real exchange rates that are highly persistent and that move in near-parallel fashion with nominal rates. The inability to explain these two regularities with one model has been called...... the "purchasing power parity puzzle." In this paper, we trace the puzzle to exchange rate modelers' use of the "Rational Expectations Hypothesis." We show that once imperfect knowledge is recognized, a monetary model is able to account for the puzzle, as well as other salient features of the data, including...

  16. The 20th anniversary of the three-nucleon analyzing power puzzle - a personal recollection

    International Nuclear Information System (INIS)

    Tornow, W. . Author

    2008-01-01

    The history of the three-nucleon analyzing power puzzle is described by an experimentalist who has been collaborating with few-body theoreticians in trying to unravel the physics of this long-standing phenomenon. Although surprising effects have been discovered along the way, the puzzle is still unexplained. Hopefully, some of the long-range three-nucleon force terms predicted by chiral effective field theory in N 3 LO will eventually solve the puzzle. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)

  17. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences.

    Science.gov (United States)

    Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A

    2016-10-15

    Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  18. Two approaches towards the flavour puzzle. Dynamical minimal flavour violation and warped extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Michaela E.

    2010-08-16

    The minimal-flavour-violating (MFV) hypothesis considers the Standard Model (SM) Yukawa matrices as the only source of flavour violation. In this work, we promote their entries to dynamical scalar spurion fields, using an effective field theory approach, such that the maximal flavour symmetry (FS) of the SM gauge sector is formally restored at high energy scales. The non-vanishing vacuum expectation values of the spurions induce a sequence of FS breaking and generate the observed hierarchy in the SM quark masses and mixings. The fact that there exists no explanation for it in the SM is known as the flavour puzzle. Gauging the non-abelian subgroup of the spontaneously broken FS, we interpret the associated Goldstone bosons as the longitudinal degrees of freedom of the corresponding massive gauge bosons. Integrating out the heavy Higgs modes in the Yukawa spurions leads directly to flavour-changing neutral currents (FCNCs) at tree level. The coefficients of the effective four-quark operators, resulting from the exchange of heavy flavoured gauge bosons, strictly follow the MFV principle. On the other hand, the Goldstone bosons associated with the global abelian symmetry group behave as weakly coupled axions which can be used to solve the strong CP problem within a modified Peccei-Quinn formalism. Models with a warped fifth dimension contain five-dimensional (5D) fermion bulk mass matrices in addition to their 5D Yukawa matrices, which thus represent an additional source of flavour violation beyond MFV. They can address the flavour puzzle since their eigenvalues allow for a different localisation of the fermion zero mode profiles along the extra dimension which leads to a hierarchy in the effective four-dimensional (4D) Yukawa matrices. At the same time, the fermion splitting introduces non-universal fermion couplings to Kaluza-Klein (KK) gauge boson modes, inducing tree-level FCNCs. Within a Randall-Sundrum model with custodial protection (RSc model) we carefully work

  19. Two approaches towards the flavour puzzle. Dynamical minimal flavour violation and warped extra dimensions

    International Nuclear Information System (INIS)

    Albrecht, Michaela E.

    2010-01-01

    The minimal-flavour-violating (MFV) hypothesis considers the Standard Model (SM) Yukawa matrices as the only source of flavour violation. In this work, we promote their entries to dynamical scalar spurion fields, using an effective field theory approach, such that the maximal flavour symmetry (FS) of the SM gauge sector is formally restored at high energy scales. The non-vanishing vacuum expectation values of the spurions induce a sequence of FS breaking and generate the observed hierarchy in the SM quark masses and mixings. The fact that there exists no explanation for it in the SM is known as the flavour puzzle. Gauging the non-abelian subgroup of the spontaneously broken FS, we interpret the associated Goldstone bosons as the longitudinal degrees of freedom of the corresponding massive gauge bosons. Integrating out the heavy Higgs modes in the Yukawa spurions leads directly to flavour-changing neutral currents (FCNCs) at tree level. The coefficients of the effective four-quark operators, resulting from the exchange of heavy flavoured gauge bosons, strictly follow the MFV principle. On the other hand, the Goldstone bosons associated with the global abelian symmetry group behave as weakly coupled axions which can be used to solve the strong CP problem within a modified Peccei-Quinn formalism. Models with a warped fifth dimension contain five-dimensional (5D) fermion bulk mass matrices in addition to their 5D Yukawa matrices, which thus represent an additional source of flavour violation beyond MFV. They can address the flavour puzzle since their eigenvalues allow for a different localisation of the fermion zero mode profiles along the extra dimension which leads to a hierarchy in the effective four-dimensional (4D) Yukawa matrices. At the same time, the fermion splitting introduces non-universal fermion couplings to Kaluza-Klein (KK) gauge boson modes, inducing tree-level FCNCs. Within a Randall-Sundrum model with custodial protection (RSc model) we carefully work

  20. Family caregivers of palliative cancer patients at home: the puzzle of pain management.

    Science.gov (United States)

    Mehta, Anita; Cohen, S Robin; Carnevale, Franco A; Ezer, Hélène; Ducharme, Francine

    2010-01-01

    The purpose of this grounded theory study was to understand the processes used by family caregivers to manage the pain of cancer patients at home. A total of 24 family caregivers participated. They were recruited using purposeful then theoretical sampling. The data sources were taped, transcribed (semi-structured) interviews and field notes. Data analysis was based on Strauss and Corbin's (1998) requirements for open, axial, and selective coding. The result was an explanatory model titled "the puzzle of pain management," which includes four main processes: "drawing on past experiences"; "strategizing a game plan"; "striving to respond to pain"; and "gauging the best fit," a decision-making process that joins the puzzle pieces. Understanding how family caregivers assemble their puzzle pieces can help health care professionals make decisions related to the care plans they create for pain control and help them to recognize the importance of providing information as part of resolving the puzzle of pain management.

  1. The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods

    Science.gov (United States)

    2009-08-04

    In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...

  2. Well-Defined Cyclic Triblock Terpolymers: A Missing Piece of the Morphology Puzzle

    KAUST Repository

    Polymeropoulos, George; Bilalis, Panayiotis; Hadjichristidis, Nikolaos

    2016-01-01

    Two well-defined cyclic triblock terpolymers, missing pieces of the terpolymer morphology puzzle, consisting of poly(isoprene), polystyrene, and poly(2-vinylpyridine), were synthesized by combining the Glaser coupling reaction with anionic

  3. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    Science.gov (United States)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  4. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  5. The impact of improved sparse linear solvers on industrial engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, M. [Cray Research, Inc., Eagan, MN (United States); Baddourah, M.; Poole, E.L.; Yang, Chao Wu

    1996-12-31

    There are usually many factors that ultimately determine the quality of computer simulation for engineering applications. Some of the most important are the quality of the analytical model and approximation scheme, the accuracy of the input data and the capability of the computing resources. However, in many engineering applications the characteristics of the sparse linear solver are the key factors in determining how complex a problem a given application code can solve. Therefore, the advent of a dramatically improved solver often brings with it dramatic improvements in our ability to do accurate and cost effective computer simulations. In this presentation we discuss the current status of sparse iterative and direct solvers in several key industrial CFD and structures codes, and show the impact that recent advances in linear solvers have made on both our ability to perform challenging simulations and the cost of those simulations. We also present some of the current challenges we have and the constraints we face in trying to improve these solvers. Finally, we discuss future requirements for sparse linear solvers on high performance architectures and try to indicate the opportunities that exist if we can develop even more improvements in linear solver capabilities.

  6. The Forward-Bias Puzzle: A Solution Based on Covered Interest Parity

    OpenAIRE

    Pippenger, John

    2009-01-01

    The forward-bias puzzle is probably the most important puzzle in international macroeconomics. After more than 20 years, there is no accepted solution. My solution is based on covered interest parity (CIP). CIP implies: (1) Forward rates are not rational expectations of future spot rates. Those expectations depend on future spot rates and interest rate differentials. (2) The forward bias is the result of a specification error, replacing future forward exchange rates with current forward ...

  7. The π+-emission puzzle in 4ΛHe decay

    International Nuclear Information System (INIS)

    Gibson, B.F.; Timmermans, R.G.E.

    1998-01-01

    We re-examine the puzzling π + emission from the weak decay of 4 Λ He and propose an explanation in terms of a three-body decay of the virtual Σ + . Such a resolution of the π + decay puzzle is consistent with the calculated Σ + probability in light Λ hypernuclei as well as the experimentally observed π + energy spectrum and s-wave angular distribution. (orig.)

  8. A Hierarchical Interface Design of a Puzzle Game for Elementary Education

    OpenAIRE

    Eun-Young Park; Young-Ho Park

    2010-01-01

    A basic instinct of humans for perfect completion usually drives us happy. Basically, humans purchase a certain complete match for scattered facts. The satisfaction of completing the scattered pieces gives us great pleasure. Thus many people put in their time and effort in the puzzle, and they gain strong satisfaction. The paper solves the importance of the general effects of a puzzle in building the edu-game design. Legacy online education has following problems. First, educational effects b...

  9. JIGSAW PUZZLE IMPROVE FINE MOTOR ABILITIES OF UPPER EXTREMITIES IN POST-STROKE ISCHEMIC CLIENTS

    Directory of Open Access Journals (Sweden)

    Kusnanto Kusnanto

    2017-06-01

    Full Text Available Introduction: Ischemic stroke is a disease caused by focal cerebral ischemia, where is a decline in blood flow that needed for neuronal metabolism, leading to neurologic deficit include motor deficit such as fine motor skills impairment. Therapy of fine motor skills disorders is to improve motor function, prevent contractures and complications. These study aimed to identify the effect of playing Jigsaw Puzzle on muscle strength, extensive motion, and upper extremity fine motor skills in patients with ischemic stroke at Dr. Moewardi Hospital, Surakarta. Methods: Experimental Quasi pre-posttest one group control. The number of samples were 34 respondents selected using purposive sampling technique. The samples were divided into intervention and control groups. The intervention group was 17 respondents who were given standard treatment hospital and played Jigsaw Puzzle 2 times a day for six days. Control group is one respondent given by hospital standard therapy without given additional Jigsaw Puzzle game. Evaluation of these research is done on the first and seventh day for those groups. Result: The results showed that muscle strength, the range of joint motion and fine motor skills of upper extremities increased (p = 0.001 significantly after being given the Jigsaw Puzzle games. These means playing Jigsaw Puzzle increase muscle strength, the range of joint motion and upper extremity fine motor skill of ischemic stroke patients. Discussion and conclusion: Jigsaw puzzle game administration as additional rehabilitation therapy in upper extremity fine motor to minimize the occurrence of contractures and motor disorders in patients with ischemic stroke. Jigsaw puzzle game therapy capable of creating repetitive motion as a key of neurological rehabilitation in Ischemic Stroke. This study recommends using jigsaw puzzle game as one of intervention in the nursing care of Ischemic Stroke patients.

  10. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    International Nuclear Information System (INIS)

    Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2015-01-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.

  11. A parallel direct solver for the self-adaptive hp Finite Element Method

    KAUST Repository

    Paszyński, Maciej R.

    2010-03-01

    In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p = 1 to p = 9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf. © 2009 Elsevier Inc. All rights reserved.

  12. Association of Crossword Puzzle Participation with Memory Decline in Persons Who Develop Dementia

    Science.gov (United States)

    Pillai, Jagan A.; Hall, Charles B.; Dickson, Dennis W.; Buschke, Herman; Lipton, Richard B.; Verghese, Joe

    2013-01-01

    Participation in cognitively stimulating leisure activities such as crossword puzzles may delay onset of the memory decline in the preclinical stages of dementia, possibly via its effect on improving cognitive reserve. We followed 488 initially cognitively intact community residing individuals with clinical and cognitive assessments every 12–18 months in the Bronx Aging Study. We assessed the influence of crossword puzzle participation on the onset of accelerated memory decline as measured by the Buschke Selective Reminding Test in 101 individuals who developed incident dementia using a change point model. Crossword puzzle participation at baseline delayed onset of accelerated memory decline by 2.54 years. Inclusion of education or participation in other cognitively stimulating activities did not significantly add to the fit of the model beyond the effect of puzzles. Our findings show that late life crossword puzzle participation, independent of education, was associated with delayed onset of memory decline in persons who developed dementia. Given the wide availability and accessibility of crossword puzzles, their role in preventing cognitive decline should be validated in future clinical trials. PMID:22040899

  13. PENERAPAN JIGSAW PUZZLE COMPETITION DALAM PEMBELAJARAN KONTEKSTUAL UNTUK MENINGKATKAN MINAT DAN HASIL BELAJAR FISIKA SISWA SMP

    Directory of Open Access Journals (Sweden)

    D. Yulianti

    2012-01-01

    Full Text Available Untuk mengatasi kurangnya minat dan hasil belajar fisika siswa dilakukan penelitian melalui kegiatan pembelajaran fisikakontekstual berbantuan jigsaw puzzle competititon. Subjek penelitian ini adalah siswa kelas VII H SMP Negeri 18 Semarang.Penelitian ini telah dilakukan pembelajaran dengan pendekatan kontekstual berbantuan jigsaw puzzle competition. Hasilpenelitian menunjukkan bahwa pembelajaran kontekstual berbantuan jigsaw puzzle competition mampu meningkatan minat danhasil belajar siswa kelas VII H SMPNegeri 18 Semarang tahun pelajaran 2008/2009 secara signifikan. Agar lebih efektif sebaiknyadikembangkan pembelajaran kontekstual dengan metode lain agar diperoleh peningkatan minat dan hasil belajar Model ini perludiaplikasikan dalam pembelajaran fisika untuk materi yang lain. To overcome the problem of lack of students' interest as well as their achievements a Jigsaw Puzzle Competition in physicscontextual learning process was done. The students from VIIHclass of Junior High School 18 Semarang academic year 2008/2009were chosen as the subjects. The result of this research shows that contextual teaching and learning using Jigsaw PuzzleCompetition approach was not only increase the students' interest but also improve their achievements. In order to get moreeffective result, it is necessary to develop contextual teaching and learning by combining them with other method. Because of thegreat benefit of this model, it is necessary to apply this model to other physics learning concepts.Keywords: Jigsaw Puzzle Competition, contextual, interest;

  14. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  15. Development and validation of a local time stepping-based PaSR solver for combustion and radiation modeling

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Ivarsson, Anders; Haider, Sajjad

    2013-01-01

    In the current work, a local time stepping (LTS) solver for the modeling of combustion, radiative heat transfer and soot formation is developed and validated. This is achieved using an open source computational fluid dynamics code, OpenFOAM. Akin to the solver provided in default assembly i...... library in the edcSimpleFoam solver which was introduced during the 6th OpenFOAM workshop is modified and coupled with the current solver. One of the main amendments made is the integration of soot radiation submodel since this is significant in rich flames where soot particles are formed. The new solver...

  16. The puzzling role of CXCR4 in human immunodeficiency virus infection.

    Science.gov (United States)

    Vicenzi, Elisa; Liò, Pietro; Poli, Guido

    2013-01-01

    The human immunodeficiency virus type-1 (HIV-1) is the etiological agent of the acquired immunodeficiency syndrome (AIDS), a disease highly lethal in the absence of combination antiretroviral therapy. HIV infects CD4(+) cells of the immune system (T cells, monocyte-macrophages and dendritic cells) via interaction with a universal primary receptor, the CD4 molecule, followed by a mandatory interaction with a second receptor (co-receptor) belonging to the chemokine receptor family. Apart from some rare cases, two chemokine receptors have been evolutionarily selected to accomplish this need for HIV-1: CCR5 and CXCR4. Yet, usage of these two receptors appears to be neither casual nor simply explained by their levels of cell surface expression. While CCR5 use is the universal rule at the start of every infection regardless of the transmission route (blood-related, sexual or mother to child), CXCR4 utilization emerges later in disease coinciding with the immunological deficient phase of infection. Moreover, in most instances CXCR4 use as viral entry co-receptor is associated with maintenance of CCR5 use. Since antiviral agents preventing CCR5 utilization by the virus are already in use, while others targeting either CCR5 or CXCR4 (or both) are under investigation, understanding the biological correlates of this "asymmetrical" utilization of HIV entry co-receptors bears relevance for the clinical choice of which therapeutics should be administered to infected individuals. We will here summarize the basic knowledge and the hypotheses underlying the puzzling and yet unequivocal role of CXCR4 in HIV-1 infection.

  17. Fanconi Anemia Proteins and Their Interacting Partners: A Molecular Puzzle

    Science.gov (United States)

    Kaddar, Tagrid; Carreau, Madeleine

    2012-01-01

    In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle. PMID:22737580

  18. Hyperon puzzle of neutron stars with Skyrme force models

    International Nuclear Information System (INIS)

    Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin; Lee, Chang-Hwan

    2015-01-01

    We consider the so-called hyperon puzzle of neutron star (NS). We employ Skyrme force models for the description of in-medium nucleon–nucleon (NN), nucleon–Lambda hyperon (NΛ) and Lambda–Lambda (ΛΛ) interactions. A phenomenological finite-range force (FRF) for the ΛΛ interaction is considered as well. Equation of state (EoS) of NS matter is obtained in the framework of density functional theory, and Tolman–Oppenheimer–Volkoff (TOV) equations are solved to obtain the mass-radius relations of NSs. It has been generally known that the existence of hyperons in the NS matter is not well supported by the recent discovery of large-mass NSs (M ≃ 2M⊙) since hyperons make the EoS softer than the one without them. For the selected interaction models, NΛ interactions reduce the maximum mass of NS by about 30%, while ΛΛ interactions can give about 10% enhancement. Consequently, we find that some Skyrme force models predict the maximum mass of NS consistent with the observation of 2M ⊙ NSs, and at the same time satisfy observationally constrained mass-radius relations. (author)

  19. The Puzzle of Visual Development: Behavior and Neural Limits.

    Science.gov (United States)

    Kiorpes, Lynne

    2016-11-09

    The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.

  20. Cohabitants' perspective on housing adaptations: a piece of the puzzle.

    Science.gov (United States)

    Granbom, Marianne; Taei, Afsaneh; Ekstam, Lisa

    2017-12-01

    As part of the Swedish state-funded healthcare system, housing adaptations are used to promote safe and independent living for disabled people in ordinary housing through the elimination of physical environmental barriers in the home. The aim of this study was to describe the cohabitants' expectations and experiences of how a housing adaptation, intended for the partner, would impact their everyday life. In-depth interviews were conducted with cohabitants of nine people applying for a housing adaptation, initially at the time of the application and then again 3 months after the housing adaptation was installed. A longitudinal analysis was performed including analysis procedures from Grounded Theory. The findings revealed the expectations and experiences in four categories: partners' activities and independence; cohabitants' everyday activities and caregiving; couples' shared recreational/leisure activities; and housing decisions. A core category putting the intervention into perspective was called 'Housing adaptations - A piece of the puzzle'. From the cohabitants' perspective, new insights on housing adaptations emerged, which are important to consider when planning and carrying out successful housing adaptations. © 2017 Nordic College of Caring Science.

  1. Puzzling Two-Proton Decay of 67Kr

    Science.gov (United States)

    Wang, S. M.; Nazarewicz, W.

    2018-05-01

    Ground-state two-proton (2 p ) radioactivity is a rare decay mode found in a few very proton-rich isotopes. The 2 p decay lifetime and properties of emitted protons carry invaluable information on nuclear structure in the presence of a low-lying proton continuum. The recently measured 2 p decay of 67Kr turned out to be unexpectedly fast. Since 67Kr is expected to be a deformed system, we investigate the impact of deformation effects on the 2 p radioactivity. We apply the recently developed Gamow coupled-channel framework, which allows for a precise description of three-body systems in the presence of rotational and vibrational couplings. This is the first application of a three-body approach to a two-nucleon decay from a deformed nucleus. We show that deformation couplings significantly increase the 2 p decay width of 67Kr; this finding explains the puzzling experimental data. The calculated angular proton-proton correlations reflect a competition between 1 p and 2 p decay modes in this nucleus.

  2. Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2016-10-28

    We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.

  3. Is the proton radius puzzle evidence of extra dimensions?

    Energy Technology Data Exchange (ETDEWEB)

    Dahia, F.; Lemos, A.S. [Universidade Federal da Paraiba, Department of Physics, Joao Pessoa, PB (Brazil)

    2016-08-15

    The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between the 2S and 2P states. In this scenario, the gravitational energy depends on the higher-dimensional Planck mass and indirectly on the brane thickness. Studying the behavior of the gravitational energy with respect to the brane thickness in a realistic range, we find constraints for the fundamental Planck mass that solve the proton radius puzzle and are consistent with previous experimental bounds. (orig.)

  4. Global climate change and the equity-efficiency puzzle

    International Nuclear Information System (INIS)

    Manne, Alan S.; Stephan, Gunter

    2005-01-01

    There is a broad consensus that the costs of abatement of global climate change can be reduced efficiently through the assignment of quota rights and through international trade in these rights. There is, however, no consensus on whether the initial assignment of emissions permits can affect the Pareto-optimal global level of abatement. This paper provides some insight into the equity-efficiency puzzle. Qualitative results are obtained from a small-scale model; then quantitative evidence of separability is obtained from MERGE, a multiregion integrated assessment model. It is shown that if all the costs of climate change can be expressed in terms of GDP losses, Pareto-efficient abatement strategies are independent of the initial allocation of emissions rights. This is the case sometimes described as 'market damages'. If, however, different regions assign different values to nonmarket damages such as species losses, different sharing rules may affect the Pareto-optimal level of greenhouse gas abatement. Separability may then be demonstrated only in specific cases (e.g. identical welfare functions or quasi-linearity of preferences or small shares of wealth devoted to abatement)

  5. Brodmann area 12: an historical puzzle relevant to FTLD.

    Science.gov (United States)

    Kawamura, M; Miller, M W; Ichikawa, H; Ishihara, K; Sugimoto, A

    2011-05-03

    Brodmann brain maps, assembled in 1909, are still in use, but understanding of their animal-human homology is uncertain. Furthermore, in 1909, Brodmann did not identify human area 12 (BA12), a location now important to understanding of frontotemporal lobar degeneration (FTLD). We re-examined Brodmann's areas, both animal and human, in his 1909 monograph and other literature, both historical and contemporary, and projected BA12 onto the medial surface of a fixed human brain to show its location. We found Brodmann did identify human BA12 in later maps (1910 and 1914), but that his brain areas, contrary to his own aims as a comparative anatomist, are now used as physiologic loci in human brain. Because of its current link with frontotemporal dementia, BA12's transition from animal (1909) to human (1910 and 1914) is not only an historical puzzle. It impacts how Brodmann's areas, based on comparative animal-human cytoarchitecture, are widely used in current research as functional loci in human brain.

  6. Induced hyperon-nucleon-nucleon interactions and the hyperon puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Roland; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    There is a strong experimental and theoretical interest in determining the structure of hypernuclei and the effect of strangeness in strongly interacting many-body systems. Recently, we presented the first calculations of hypernuclei in the p shell from first principles. However, these calculations showed either slow convergence with respect to model-space size or, when the hyperon-nucleon potential is transformed via the Similarity Renormalization Group, strong induced three-body terms. By including these induced hyperon-nucleon-nucleon (YNN) terms explicitly, we get precise binding and excitation energies. We present first results for p-shell hypernuclei and discuss the origin of the YNN terms, which are mainly driven by the evolution of the Λ-Σ conversion terms. We find that they are tightly connected to the hyperon puzzle, a long-standing issue where the appearance of hyperons in models of neutron star matter lowers the predicted maximum neutron star mass below the bound set by the heaviest observed objects.

  7. Verification of continuum drift kinetic equation solvers in NIMROD

    Energy Technology Data Exchange (ETDEWEB)

    Held, E. D.; Ji, J.-Y. [Utah State University, Logan, Utah 84322-4415 (United States); Kruger, S. E. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Belli, E. A. [General Atomics, San Diego, California 92186-5608 (United States); Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States)

    2015-03-15

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  8. Shared memory parallelism for 3D cartesian discrete ordinates solver

    International Nuclear Information System (INIS)

    Moustafa, S.; Dutka-Malen, I.; Plagne, L.; Poncot, A.; Ramet, P.

    2013-01-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multi-core + SIMD - Single Instruction on Multiple Data) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46*10 6 spatial cells and 1*10 12 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40.74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool. (authors)

  9. Parallelization of elliptic solver for solving 1D Boussinesq model

    Science.gov (United States)

    Tarwidi, D.; Adytia, D.

    2018-03-01

    In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.

  10. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  11. Advanced features of the fault tree solver FTREX

    International Nuclear Information System (INIS)

    Jung, Woo Sik; Han, Sang Hoon; Ha, Jae Joo

    2005-01-01

    This paper presents advanced features of a fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert). Fault tree analysis is one of the most commonly used methods for the safety analysis of industrial systems especially for the probabilistic safety analysis (PSA) of nuclear power plants. Fault trees are solved by the classical Boolean algebra, conventional Binary Decision Diagram (BDD) algorithm, coherent BDD algorithm, and Bayesian networks. FTREX could optionally solve fault trees by the conventional BDD algorithm or the coherent BDD algorithm and could convert the fault trees into the form of the Bayesian networks. The algorithm based on the classical Boolean algebra solves a fault tree and generates MCSs. The conventional BDD algorithm generates a BDD structure of the top event and calculates the exact top event probability. The BDD structure is a factorized form of the prime implicants. The MCSs of the top event could be extracted by reducing the prime implicants in the BDD structure. The coherent BDD algorithm is developed to overcome the shortcomings of the conventional BDD algorithm such as the huge memory requirements and a long run time

  12. Domain decomposition methods for core calculations using the MINOS solver

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2007-01-01

    Cell by cell homogenized transport calculations of an entire nuclear reactor core are currently too expensive for industrial applications, even if a simplified transport (SPn) approximation is used. In order to take advantage of parallel computers, we propose here two domain decomposition methods using the mixed dual finite element solver MINOS. The first one is a modal synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second one is an iterative method based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the close sub-domains estimated at the previous iteration. For these two methods, we give numerical results which demonstrate their accuracy and their efficiency for the diffusion model on realistic 2D and 3D cores. (authors)

  13. A generalized Poisson solver for first-principles device simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Nanoscale Simulations, ETH Zürich, 8093 Zürich (Switzerland); Brück, Sascha; Luisier, Mathieu [Integrated Systems Laboratory, ETH Zürich, 8092 Zürich (Switzerland)

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.

  14. Parallelizable approximate solvers for recursions arising in preconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Y. [Israel Inst. of Technology, Haifa (Israel)

    1996-12-31

    For the recursions used in the Modified Incomplete LU (MILU) preconditioner, namely, the incomplete decomposition, forward elimination and back substitution processes, a parallelizable approximate solver is presented. The present analysis shows that the solutions of the recursions depend only weakly on their initial conditions and may be interpreted to indicate that the inexact solution is close, in some sense, to the exact one. The method is based on a domain decomposition approach, suitable for parallel implementations with message passing architectures. It requires a fixed number of communication steps per preconditioned iteration, independently of the number of subdomains or the size of the problem. The overlapping subdomains are either cubes (suitable for mesh-connected arrays of processors) or constructed by the data-flow rule of the recursions (suitable for line-connected arrays with possibly SIMD or vector processors). Numerical examples show that, in both cases, the overhead in the number of iterations required for convergence of the preconditioned iteration is small relatively to the speed-up gained.

  15. Solving very large scattering problems using a parallel PWTD-enhanced surface integral equation solver

    KAUST Repository

    Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from

  16. Hybrid direct and iterative solvers for h refined grids with singularities

    KAUST Repository

    Paszyński, Maciej R.

    2015-04-27

    This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.

  17. Advanced field-solver techniques for RC extraction of integrated circuits

    CERN Document Server

    Yu, Wenjian

    2014-01-01

    Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...

  18. FATCOP: A Fault Tolerant Condor-PVM Mixed Integer Program Solver

    National Research Council Canada - National Science Library

    Chen, Qun

    1999-01-01

    We describe FATCOP, a new parallel mixed integer program solver written in PVM. The implementation uses the Condor resource management system to provide a virtual machine composed of otherwise idle computers...

  19. An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU

    International Nuclear Information System (INIS)

    Yoon, Jong Seon; Choi, Hyoung Gwon; Jeon, Byoung Jin

    2017-01-01

    The performance of the colored Gauss–Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss–Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss–Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

  20. Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis

    KAUST Repository

    Kuźnik, Krzysztof; Paszyński, Maciej; Calo, Victor M.

    2012-01-01

    at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar

  1. GPU-Accelerated Sparse Matrix Solvers for Large-Scale Simulations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — At the heart of scientific computing and numerical analysis are linear algebra solvers. In scientific computing, the focus is on the partial differential equations...

  2. Tests of a 3D Self Magnetic Field Solver in the Finite Element Gun Code MICHELLE

    CERN Document Server

    Nelson, Eric M

    2005-01-01

    We have recently implemented a prototype 3d self magnetic field solver in the finite-element gun code MICHELLE. The new solver computes the magnetic vector potential on unstructured grids. The solver employs edge basis functions in the curl-curl formulation of the finite-element method. A novel current accumulation algorithm takes advantage of the unstructured grid particle tracker to produce a compatible source vector, for which the singular matrix equation is easily solved by the conjugate gradient method. We will present some test cases demonstrating the capabilities of the prototype 3d self magnetic field solver. One test case is self magnetic field in a square drift tube. Another is a relativistic axisymmetric beam freely expanding in a round pipe.

  3. A distributed-memory hierarchical solver for general sparse linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering; Pouransari, Hadi [Stanford Univ., CA (United States). Dept. of Mechanical Engineering; Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Boman, Erik G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Darve, Eric [Stanford Univ., CA (United States). Inst. for Computational and Mathematical Engineering and Dept. of Mechanical Engineering

    2017-12-20

    We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.

  4. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  5. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    Science.gov (United States)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  6. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    Science.gov (United States)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  7. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines

    KAUST Repository

    Woźniak, Maciej; Paszyński, Maciej R.; Pardo, D.; Dalcin, Lisandro; Calo, Victor M.

    2015-01-01

    This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on parallel distributed memory machines. We show theoretically that for the Cp-1 global continuity of the isogeometric solution

  8. An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Seon; Choi, Hyoung Gwon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin [Yonsei Univ., Seoul (Korea, Republic of)

    2017-02-15

    The performance of the colored Gauss–Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss–Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss–Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

  9. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    Science.gov (United States)

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-11-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  10. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  11. Motivation, Challenge, and Opportunity of Successful Solvers on an Innovation Platform

    DEFF Research Database (Denmark)

    Hossain, Mokter

    2017-01-01

    . The main motivational factors of successful solvers engaged in problem solving are money, learning, fun, sense of achievement, passion, and networking. Major challenges solvers face include unclear or insufficient problem description, lack of option for communication, language barrier, time zone...... other experts, the ability to work in a diverse environment, options of work after retirement and from distant locations, and a new source of income....

  12. Motivations, Challenges, and Opportunities of Successful Solvers on an Innovation Intermediary Platform

    DEFF Research Database (Denmark)

    Hossain, Mokter

    2018-01-01

    . The main motivational factors of successful solvers engaged in problem solving are money, learning, fun, sense of achievement, passion, and networking. Major challenges solvers face include unclear or insufficient problem description, lack of option for communication, language barrier, time zone...... other experts, the ability to work in a diverse environment, options of work after retirement and from distant locations, and a new source of income....

  13. METODE BERMAIN PUZZLE BERPENGARUH PADA PERKEMBANGAN MOTORIK HALUS ANAK USIA PRASEKOLAH

    Directory of Open Access Journals (Sweden)

    Lilis Maghfuroh

    2018-03-01

    Full Text Available Pre-school is a period to increase fine motor development of children. This research aims to determine the increasing of fine motor development using the puzzle for preschoolers. his research is using one-group pre-post test design without control and procedures for statistical analysis through Wilcoxon Sign Rank Test with a confidence level of 95% and α: 5%. The subjects of this study were 40 children. The results of the analysis showed that there was effect of the intervention method by playing puzzle through the development of fine motor skills at pre-school children in mind that the value of Z sign p = 0.001 where significant value of p <0.05. Puzzle play method can improve child language development. The results of this research can be used as the basic for doing the puzzles therapy in children because it can improve fine motor skills development of children. Masa prasekolah merupakan masa peningkatan perkembangan motorik halus. Motorik halus adalah gerakan yang dilakukan oleh sekelompok otot-otot kecil seperti jari-jemari. Pada survey awal hampir sebagian anak mengalami perkembangan motorik suspek. Penelitian ini untuk mengetahui pengaruh metode puzzle terhadap perkembangan motorik halus anak pra sekolah. Penelitian ini menggunakan one-group pra-post test design tanpa control dan analisis statistik menggunakan Uji Wilcoxon Sign Rank Test dengan tingkat  kepercayaan 95% dan α : 5%. Populasi penelitian 50 anak dan sample 40 anak dengan tehnik Simple Random Sampling. Setelah data terkumpul dengan menggunakan DDST selanjutnya dianalisa. Hasil penelitian ini menunjukkan ada pengaruh metode bermain puzzle terhadap perkembangan motorik halus diketahui p sign = 0,001 dimana nilai signifikan p < 0,05. Hasil penelitian ini dapat dijadikan dasar untuk melakukan terapi puzzle pada anak untuk meningkatkan perkembangan motorik halus anak.

  14. Particle Laden Turbulence in a Radiation Environment Using a Portable High Preformace Solver Based on the Legion Runtime System

    Science.gov (United States)

    Torres, Hilario; Iaccarino, Gianluca

    2017-11-01

    Soleil-X is a multi-physics solver being developed at Stanford University as a part of the Predictive Science Academic Alliance Program II. Our goal is to conduct high fidelity simulations of particle laden turbulent flows in a radiation environment for solar energy receiver applications as well as to demonstrate our readiness to effectively utilize next generation Exascale machines. The novel aspect of Soleil-X is that it is built upon the Legion runtime system to enable easy portability to different parallel distributed heterogeneous architectures while also being written entirely in high-level/high-productivity languages (Ebb and Regent). An overview of the Soleil-X software architecture will be given. Results from coupled fluid flow, Lagrangian point particle tracking, and thermal radiation simulations will be presented. Performance diagnostic tools and metrics corresponding the the same cases will also be discussed. US Department of Energy, National Nuclear Security Administration.

  15. Development of RBDGG Solver and Its Application to System Reliability Analysis

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2010-01-01

    For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis

  16. Influence of an SN solver in a fine-mesh neutronics/thermal-hydraulics framework

    International Nuclear Information System (INIS)

    Jareteg, Klas; Vinai, Paolo; Demaziere, Christophe; Sasic, Srdjan

    2015-01-01

    In this paper a study on the influence of a neutron discrete ordinates (S N ) solver within a fine-mesh neutronic/thermal-hydraulic methodology is presented. The methodology consists of coupling a neutronic solver with a single-phase fluid solver, and it is aimed at computing the two fields on a three-dimensional (3D) sub-pin level. The cross-sections needed for the neutron transport equations are pre-generated using a Monte Carlo approach. The coupling is resolved in an iterative manner with full convergence of both fields. A conservative transfer of the full 3D information is achieved, allowing for a proper coupling between the neutronic and the thermal-hydraulic meshes on the finest calculated scales. The discrete ordinates solver is benchmarked against a Monte Carlo reference solution for a two-dimensional (2D) system. The results confirm the need of a high number of ordinates, giving a satisfactory accuracy in k eff and scalar flux profile applying S 16 for 16 energy groups. The coupled framework is used to compare the S N implementation and a solver based on the neutron diffusion approximation for a full 3D system of a quarter of a symmetric, 7x7 array in an infinite lattice setup. In this case, the impact of the discrete ordinates solver shows to be significant for the coupled system, as demonstrated in the calculations of the temperature distributions. (author)

  17. Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

    KAUST Repository

    Chávez, Gustavo

    2017-12-15

    We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.

  18. Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

    KAUST Repository

    Chá vez, Gustavo; Turkiyyah, George; Zampini, Stefano; Ltaief, Hatem; Keyes, David E.

    2017-01-01

    We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.

  19. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  20. HIV in Japan: Epidemiologic puzzles and ethnographic explanations

    Directory of Open Access Journals (Sweden)

    Anthony S. DiStefano

    2016-12-01

    Full Text Available Japan is widely perceived to have a low level of HIV occurrence; however, its HIV epidemics also have been the subject of considerable misunderstanding globally. I used a ground truthing conceptual framework to meet two aims: first, to determine how accurately official surveillance data represented Japan's two largest epidemics (urban Kansai and Tokyo as understood and experienced on the ground; and second, to identify explanations for why the HIV epidemics were unfolding as officially reported. I used primarily ethnographic methods while drawing upon epidemiology, and compared government surveillance data to observations at community and institutional sites (459 pages of field notes; 175 persons observed, qualitative interviews with stakeholders in local HIV epidemics (n = 32, and document research (n = 116. This revealed seven epidemiologic puzzles involving officially reported trends and conspicuously missing information. Ethnographically grounded explanations are presented for each. These included factors driving the epidemics, which ranged from waning government and public attention to HIV, to gaps in sex education and disruptive leadership changes in public institutions approximately every two years. Factors constraining the epidemics also contributed to explanations. These ranged from subsidized medical treatment for most people living with HIV, to strong partnerships between government and a well-developed, non-governmental sector of HIV interventionists, and protective norms and built environments in the sex industry. Local and regional HIV epidemics were experienced and understood as worse than government reports indicated, and ground-level data often contradicted official knowledge. Results thus call into question epidemiologic trends, including recent stabilization of the national epidemic, and suggest the need for revisions to the surveillance system and strategies that address factors driving and constraining the epidemics. Based

  1. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    International Nuclear Information System (INIS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-01-01

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) ''CRover'', which interpolates the two phases at around 3 times the nuclear matter density (ρ 0 ), it is found that the cold NSs with the gravitational mass larger than 2M CircleDot can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ 0 and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M CircleDot . The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated. (orig.)

  2. Desiccation tolerance of Sphagnum revisited: a puzzle resolved.

    Science.gov (United States)

    Hájek, T; Vicherová, E

    2014-07-01

    As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de-hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho-physiological trade-off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Kota [The University of Tokyo, Department of Physics, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); Hatsuda, Tetsuo [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); The University of Tokyo, Kavli IPMU (WPI), Chiba (Japan); Takatsuka, Tatsuyuki [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan)

    2016-03-15

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) ''CRover'', which interpolates the two phases at around 3 times the nuclear matter density (ρ{sub 0}), it is found that the cold NSs with the gravitational mass larger than 2M {sub CircleDot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ{sub 0} and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M {sub CircleDot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated. (orig.)

  4. The puzzle of immune phenotypes of childhood asthma.

    Science.gov (United States)

    Landgraf-Rauf, Katja; Anselm, Bettina; Schaub, Bianca

    2016-12-01

    new immunological molecules, the complex puzzle of childhood asthma is still far from being completed. Addressing the current challenges of distinct clinical asthma and wheeze phenotypes, including their stability and underlying endotypes, involves addressing the interplay of innate and adaptive immune regulatory mechanisms in large, interdisciplinary cohorts.

  5. Emergence of Life on Earth: A Physicochemical Jigsaw Puzzle.

    Science.gov (United States)

    Spitzer, Jan

    2017-01-01

    We review physicochemical factors and processes that describe how cellular life can emerge from prebiotic chemical matter; they are: (1) prebiotic Earth is a multicomponent and multiphase reservoir of chemical compounds, to which (2) Earth-Moon rotations deliver two kinds of regular cycling energies: diurnal electromagnetic radiation and seawater tides. (3) Emerging colloidal phases cyclically nucleate and agglomerate in seawater and consolidate as geochemical sediments in tidal zones, creating a matrix of microspaces. (4) Some microspaces persist and retain memory from past cycles, and others re-dissolve and re-disperse back into the Earth's chemical reservoir. (5) Proto-metabolites and proto-biopolymers coevolve with and within persisting microspaces, where (6) Macromolecular crowding and other non-covalent molecular forces govern the evolution of hydrophilic, hydrophobic, and charged molecular surfaces. (7) The matrices of microspaces evolve into proto-biofilms of progenotes with rudimentary but evolving replication, transcription, and translation, enclosed in unstable cell envelopes. (8) Stabilization of cell envelopes 'crystallizes' bacteria-like genetics and metabolism with low horizontal gene transfer-life 'as we know it.' These factors and processes constitute the 'working pieces' of the jigsaw puzzle of life's emergence. They extend the concept of progenotes as the first proto-cellular life, connected backward in time to the cycling chemistries of the Earth-Moon planetary system, and forward to the ancient cell cycle of first bacteria-like organisms. Supra-macromolecular models of 'compartments first' are preferred: they facilitate macromolecular crowding-a key abiotic/biotic transition toward living states. Evolutionary models of metabolism or genetics 'first' could not have evolved in unconfined and uncrowded environments because of the diffusional drift to disorder mandated by the second law of thermodynamics.

  6. Deploy production sliding mesh capability with linear solver benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Domino, Stefan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Alan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ananthan, Shreyas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Overfelt, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sprague, Mike [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rood, Jon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    overall simulation time when using the full Tpetra solver stack and nearly 35% when using a mixed Tpetra- Hypre-based solver stack. The report also highlights the project achievement of surpassing the 1 billion element mesh scale for a production V27 hybrid mesh. A detailed timing breakdown is presented that again suggests work to be done in the setup events associated with the linear system. In order to mitigate these initialization costs, several application paths have been explored, all of which are designed to reduce the frequency of matrix reinitialization. Methods such as removing Jacobian entries on the dynamic matrix columns (in concert with increased inner equation iterations), and lagging of Jacobian entries have reduced setup times at the cost of numerical stability. Artificially increasing, or bloating, the matrix stencil to ensure that full Jacobians are included is developed with results suggesting that this methodology is useful in decreasing reinitialization events without loss of matrix contributions. With the above foundational advances in computational capability, the project is well positioned to begin scientific inquiry on a variety of wind-farm physics such as turbine/turbine wake interactions.

  7. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    International Nuclear Information System (INIS)

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-01-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  8. Control of error and convergence in ODE solvers

    International Nuclear Information System (INIS)

    Gustafsson, K.

    1992-03-01

    Feedback is a general principle that can be used in many different contexts. In this thesis it is applied to numerical integration of ordinary differential equations. An advanced integration method includes parameters and variables that should be adjusted during the execution. In addition, the integration method should be able to automatically handle situations such as: initialization, restart after failures, etc. In this thesis we regard the algorithms for parameter adjustment and supervision as a controller. The controlled measures different variable that tell the current status of the integration, and based on this information it decides how to continue. The design of the controller is vital in order to accurately and efficiently solve a large class of ordinary differential equations. The application of feedback control may appear farfetched, but numerical integration methods are in fact dynamical systems. This is often overlooked in traditional numerical analysis. We derive dynamic models that describe the behavior of the integration method as well as the standard control algorithms in use today. Using these models it is possible to analyze properties of current algorithms, and also explain some generally observed misbehaviors. Further, we use the acquired insight to derive new and improved control algorithms, both for explicit and implicit Runge-Kutta methods. In the explicit case, the new controller gives good overall performance. In particular it overcomes the problem with oscillating stepsize sequence that is often experienced when the stepsize is restricted by numerical stability. The controller for implicit methods is designed so that it tracks changes in the differential equation better than current algorithms. In addition, it includes a new strategy for the equation solver, which allows the stepsize to vary more freely. This leads to smoother error control without excessive operations on the iteration matrix. (87 refs.) (au)

  9. A multi-solver quasi-Newton method for the partitioned simulation of fluid-structure interaction

    International Nuclear Information System (INIS)

    Degroote, J; Annerel, S; Vierendeels, J

    2010-01-01

    In partitioned fluid-structure interaction simulations, the flow equations and the structural equations are solved separately. Consequently, the stresses and displacements on both sides of the fluid-structure interface are not automatically in equilibrium. Coupling techniques like Aitken relaxation and the Interface Block Quasi-Newton method with approximate Jacobians from Least-Squares models (IBQN-LS) enforce this equilibrium, even with black-box solvers. However, all existing coupling techniques use only one flow solver and one structural solver. To benefit from the large number of multi-core processors in modern clusters, a new Multi-Solver Interface Block Quasi-Newton (MS-IBQN-LS) algorithm has been developed. This algorithm uses more than one flow solver and structural solver, each running in parallel on a number of cores. One-dimensional and three-dimensional numerical experiments demonstrate that the run time of a simulation decreases as the number of solvers increases, albeit at a slower pace. Hence, the presented multi-solver algorithm accelerates fluid-structure interaction calculations by increasing the number of solvers, especially when the run time does not decrease further if more cores are used per solver.

  10. KEEFEKTIFAN MODEL PEMBELAJARAN WORD SQUARE BERBANTU MEDIA PUZZLE PADA MATA PELAJARAN IPS SD

    Directory of Open Access Journals (Sweden)

    IBNATUL IZZATI

    2018-01-01

    Full Text Available Abstract                The problems of this research was: how the effectiveness of Word Square learning model supported by Puzzle media to improve learning outcome of Social subject of third grade at Public Elementary School of Wonopringgo 01 (SDN 01 Wonopringgo? The type of this research was True Experiment Design with type of pretest-posttest control group design one kind of treatment. The samples were taken from students of the third grade of A SDN 01 Wonopringgo in the academic year 2016/2017. The data in this study was obtained through tests and documentation. Experimental research on the third grade of A which was given Word Square learning model supported by Puzzle media and the third grade of B was not given Word Square learning model supported by Puzzle media. Posttest results showed that the percentage of posttest grade of the experimental class was 95% of students expressed thoroughly, while the control class is 70%, and based on t test one-party analysis obtained ttest > ttable = 3,100816112> 1.72. Thus, it could be concluded that the learning with Word Square model supported by Puzzle media was effective against student learning outcomes in Social subjects (IPS the third grade at SDN 01 Wonopringgo Pekalongan. Keywords : effectiveness, word square, puzzle

  11. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

    2014-08-14

    Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

  12. Cryptographic Puzzles and Game Theory against DoS and DDoS attacks in Networks

    DEFF Research Database (Denmark)

    Mikalas, Antonis; Komninos, Nikos; Prasad, Neeli R.

    2008-01-01

    In this chapter, we present techniques to defeat Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks. In the _rst part, we describe client puzzle techniques that are based on the idea of computationally exhausting a malicious user when he attempts to launch an attack. In the ......In this chapter, we present techniques to defeat Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks. In the _rst part, we describe client puzzle techniques that are based on the idea of computationally exhausting a malicious user when he attempts to launch an attack....... In the second part we are introducing some basic principles of game theory and we discuss how game theoretical frameworks can protect computer networks. Finally, we show techniques that combine client puzzles with game theory in order to provide DoS and DDoS resilience....

  13. Piecing It Together: The Effect of Background Music on Children's Puzzle Assembly.

    Science.gov (United States)

    Koolidge, Louis; Holmes, Robyn M

    2018-04-01

    This study explored the effects of background music on cognitive (puzzle assembly) task performance in young children. Participants were 87 primarily European-American children (38 boys, 49 girls; mean age = 4.77 years) enrolled in early childhood classes in the northeastern United States. Children were given one minute to complete a 12-piece puzzle task in one of three background music conditions: music with lyrics, music without lyrics, and no music. The music selection was "You're Welcome" from the Disney movie "Moana." Results revealed that children who heard the music without lyrics completed more puzzle pieces than children in either the music with lyrics or no music condition. Background music without distracting lyrics may be beneficial and superior to background music with lyrics for young children's cognitive performance even when they are engaged independently in a nonverbal task.

  14. A puzzling aspect of the effect of advance notice on unemployment

    DEFF Research Database (Denmark)

    Addision, John; Blackburn, McKinley L.

    1995-01-01

    Displaced male workers with generous periods of advance notice tend to move directly into reemployment faster than their non-notified counterparts but once unemployed tend to escape from unemployment much more slowly. We examine three potential explanations for this puzzle associated with unemplo......Displaced male workers with generous periods of advance notice tend to move directly into reemployment faster than their non-notified counterparts but once unemployed tend to escape from unemployment much more slowly. We examine three potential explanations for this puzzle associated...... with unemployment insurance, the endogeneity of notice, and differential search intensity. Of these alternatives, the evidence suggests that it is the additional but less productive search time during the notice interval that creates the appearance of a puzzle....

  15. The DS86 neutron dosimetry enigma: Some missing pieces to the puzzle

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    International programs have been conducted over the last four decades to quantify the exposure of atom bomb survivors from Hiroshima and Nagasaki. Unfortunately, the quest for accurate gamma-ray and neutron exposure doses of atom bomb survivors has proven illusive. Efforts in the most recent of these programs, designated as Dosimetry System 1986 (DS86), have revealed a serious and persistent discrepancy between neutron transport calculations and thermal neutron activation measurements at the Hiroshima site, which will be called the DS86 neutron dosimetry enigma. It is established that this enigma is a complex puzzle that precludes simple solutions. This conclusion is deduced through the identification of a number of missing pieces to the puzzle. Implications and conclusions that can be inferred from these missing puzzle pieces are advanced

  16. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization.

    Science.gov (United States)

    Glaser, Joshua I; Zamft, Bradley M; Church, George M; Kording, Konrad P

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, "puzzle imaging," that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples.

  17. Penyelesaian Masalah 8-Puzzle dengan Algoritma Steepest-Ascent Hill Climbing

    Directory of Open Access Journals (Sweden)

    David Abraham

    2016-03-01

    Full Text Available 8 puzzle merupakan salah satu implementasi dari Artificial Intelegence. Dalam proses penyelesaiannya banyak terdapat algoritma-algoritma pencarian yang dapat diterapkan. Solusi 8 puzzle akan lebih cepat diperoleh jika digunakan prinsip array dengan variasi algoritma Steepest-Ascent Hill Climbing (Hill Climbing dengan memilih kemiringan yang paling tajam / curam dengan parameter heuristik posisi yang benar dan heuristik jarak serta dikombinasikan dengan LogList sebagai penyimpanan state state yang pernah dilalui untuk menanggulangi permasalah pada algoritma hill climbing itu sendiri dan terhindar dari looping state yang pernah dilalui. Metode-metode yang termasuk ke dalam teknik pencarian yang berdasarkan pada fungsi heuristik salah satu diantaranya adalah Hill Climbing, Best First Search, A* (A Bintang. Loglist merupakan tempat penyimpanan setiap kunjungan dari state-state puzzle yang telah dilakukan untuk menghindari looping atau pengulangan terhadap state yang pernah dilalui. Untuk menanggulangi permasalahan pada SteepestAscent Hill Climbing.

  18. The Simple Past Puzzle. A Study of Some Aspects of the Syntax and Semantics of Tense

    Directory of Open Access Journals (Sweden)

    Nino Gulli

    2014-05-01

    Full Text Available In this paper, I claim that the so-called present perfect puzzle is, in reality, a puzzle about the simple past. It is the latter, I argue, that shows a puzzling behavior, given that it can be used not only in definite contexts but also in seemingly indefinite ones. I employ the notions of time frame and specifiability to show how the obvious distinction between the two tenses in terms of temporal logic can be accounted for. I also propose that the past morpheme -ed be considered a kind of verb determiner which selects a temporal XP as a complement. Such complement can be (and usually is expressed either in the sentence or in the larger discourse; however, it can also remain implicit, or covert.

  19. The Labyrinth of Time Introducing the Universe

    CERN Document Server

    Lockwood, Michael

    2007-01-01

    Modern physics has revealed the universe as a much stranger place than we could have imagined. The puzzle at the centre of our knowledge of the universe is time. Michael Lockwood takes the reader on a fascinating journey into the nature of things. He investigates philosophical questions about past, present, and future, our experience of time, and the possibility of time travel. And he provides the most careful, lively, and up-to-date introduction to the physics of time and thestructure of the universe. He guides us step by step through relativity theory and quantum physics, introducing and exp

  20. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    Science.gov (United States)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm

  1. Effect of a puzzle on the process of students' learning about cardiac physiology.

    Science.gov (United States)

    Cardozo, Lais Tono; Miranda, Aline Soares; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2016-09-01

    The aim of the present study was to evaluate the effects of using a puzzle to learn about cardiac physiology. Students were divided into control and game groups. In class 1, the control group had a 2-h theoretical class about cardiac physiology, including a detailed description of the phases of the cardiac cycle, whereas the game group had a 50-min theoretical class without the description of the cardiac cycle. In class 2, the control group did an assessment exercise before an activity with the cardiac puzzle and the game group answered questions after the above-mentioned activity. While solving the puzzle, the students had to describe the cardiac cycle by relating the concepts of heart morphology and physiology. To evaluate short-term learning, the number of wrong answers and grades in the assessment exercise were compared between the control and game groups. To evaluate medium-term learning, we compared the grades obtained by students of the control and game groups in questions about cardiac physiology that formed part of the academic exam. In the assessment exercise, the game group presented a lower number of errors and higher score compared with the control group. In the academic exam, applied after both groups had used the puzzle, there was no difference in the scores obtained by the control and game groups in questions about cardiac physiology. These results showed a positive effect of the puzzle on students' learning about cardiac physiology compared with those not using the puzzle. Copyright © 2016 The American Physiological Society.

  2. PetClaw: Parallelization and Performance Optimization of a Python-Based Nonlinear Wave Propagation Solver Using PETSc

    KAUST Repository

    Alghamdi, Amal Mohammed

    2012-04-01

    Clawpack, a conservation laws package implemented in Fortran, and its Python-based version, PyClaw, are existing tools providing nonlinear wave propagation solvers that use state of the art finite volume methods. Simulations using those tools can have extensive computational requirements to provide accurate results. Therefore, a number of tools, such as BearClaw and MPIClaw, have been developed based on Clawpack to achieve significant speedup by exploiting parallel architectures. However, none of them has been shown to scale on a large number of cores. Furthermore, these tools, implemented in Fortran, achieve parallelization by inserting parallelization logic and MPI standard routines throughout the serial code in a non modular manner. Our contribution in this thesis research is three-fold. First, we demonstrate an advantageous use case of Python in implementing easy-to-use modular extensible scalable scientific software tools by developing an implementation of a parallelization framework, PetClaw, for PyClaw using the well-known Portable Extensible Toolkit for Scientific Computation, PETSc, through its Python wrapper petsc4py. Second, we demonstrate the possibility of getting acceptable Python code performance when compared to Fortran performance after introducing a number of serial optimizations to the Python code including integrating Clawpack Fortran kernels into PyClaw for low-level computationally intensive parts of the code. As a result of those optimizations, the Python overhead in PetClaw for a shallow water application is only 12 percent when compared to the corresponding Fortran Clawpack application. Third, we provide a demonstration of PetClaw scalability on up to the entirety of Shaheen; a 16-rack Blue Gene/P IBM supercomputer that comprises 65,536 cores and located at King Abdullah University of Science and Technology (KAUST). The PetClaw solver achieved above 0.98 weak scaling efficiency for an Euler application on the whole machine excluding the

  3. Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion.

    Science.gov (United States)

    Zhao, Yi; Cao, Xiangyu; Gao, Jun; Liu, Xiao; Li, Sijia

    2016-05-16

    We demonstrate a simple reconfigurable metasurface with multiple functions. Anisotropic tiles are investigated and manufactured as fundamental elements. Then, the tiles are combined in a certain sequence to construct a metasurface. Each of the tiles can be adjusted independently which is like a jigsaw puzzle and the whole metasurface can achieve diverse functions by different layouts. For demonstration purposes, we realize polarization conversion, anomalous reflection and diffusion by a jigsaw puzzle metasurface with 6 × 6 pieces of anisotropic tile. Simulated and measured results prove that our method offers a simple and effective strategy for metasurface design.

  4. PuzzleArt Therapy: Connecting the Pieces in Search of Answers

    Directory of Open Access Journals (Sweden)

    Jennifer Fortuna

    2016-10-01

    Full Text Available Alli Berman, a New York based artist, provided the cover art for the Fall 2016 issue of The Open Journal of Occupational Therapy (OJOT. “Sunlight Underwater” is a 12 piece PuzzleArt painting made from acrylic on American maple that measures 22x30. The PuzzleArt concept began as a simple exercise that evolved into a therapeutic modality. When a sudden stroke impacted Berman’s well-being and quality of life, it was art that helped her to make connections during recovery.

  5. An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy

    Science.gov (United States)

    Pavlova, Iglika V.; Lewis, Kayla C.

    2013-01-01

    Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles."…

  6. Having Fun and Accepting Challenges Are Natural Instincts: Jigsaw Puzzles to Challenge Students and Test Their Abilities While Having Fun!

    Science.gov (United States)

    Rodenbaugh, Hanna R.; Lujan, Heidi L.; Rodenbaugh, David W.; DiCarlo, Stephen E.

    2014-01-01

    Because jigsaw puzzles are fun, and challenging, students will endure and discover that persistence and grit are rewarded. Importantly, play and fun have a biological place just like sleep and dreams. Students also feel a sense of accomplishment when they have completed a puzzle. Importantly, the reward of mastering a challenge builds confidence…

  7. Balancing Energy and Performance in Dense Linear System Solvers for Hybrid ARM+GPU platforms

    Directory of Open Access Journals (Sweden)

    Juan P. Silva

    2016-04-01

    Full Text Available The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.

  8. A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU

    Science.gov (United States)

    Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha

    2018-03-01

    Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.

  9. A comparison of viscous-plastic sea ice solvers with and without replacement pressure

    Science.gov (United States)

    Kimmritz, Madlen; Losch, Martin; Danilov, Sergey

    2017-07-01

    Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for a new comparison with implicit solvers for the equations of viscous-plastic sea ice dynamics. In Arctic sea ice simulations, the modified and the adaptive EVP solvers, and the implicit Jacobian-free Newton-Krylov (JFNK) solver are compared against each other. The adaptive EVP method shows convergence rates that are generally similar or even better than those of the modified EVP method, but the convergence of the EVP methods is found to depend dramatically on the use of the replacement pressure (RP). Apparently, using the RP can affect the pseudo-elastic waves in the EVP methods by introducing extra non-physical oscillations so that, in the extreme case, convergence to the VP solution can be lost altogether. The JFNK solver also suffers from higher failure rates with RP implying that with RP the momentum equations are stiffer and more difficult to solve. For practical purposes, both EVP methods can be used efficiently with an unexpectedly low number of sub-cycling steps without compromising the solutions. The differences between the RP solutions and the NoRP solutions (when the RP is not being used) can be reduced with lower thresholds of viscous regularization at the cost of increasing stiffness of the equations, and hence the computational costs of solving them.

  10. Cosmic update dark puzzles : arrow of time : future history

    CERN Document Server

    Adams, Fred; Mersini-Houghton, Laura; Nekoogar, Farzad

    2012-01-01

    "...The Multiversal book series is equally unique, providing book-length extensions of the lectures with enough additional depth for those who truly want to explore these fields, while also providing the kind of clarity that is appropriate for interested lay people to grasp the general principles involved." - Lawrence M. Krauss Cosmic Update covers: A novel approach to uncover the dark faces of the Standard Model of cosmology. The possibility that Dark Energy and Dark Matter are manifestations of the inhomogeneous geometry of our Universe. The history of cosmological model building and the general architecture of cosmological models. Illustrations of the Large Scale Structure of the Universe. A new perspective on the classical static Einstein Cosmos. Global properties of World Models including their Topology. The Arrow of Time in a Universe with a Positive Cosmological Constant. The exploration of the consequences of a fundamental Cosmological Constant for our Universe. The exploration of why the current ob...

  11. Parallelization of the preconditioned IDR solver for modern multicore computer systems

    Science.gov (United States)

    Bessonov, O. A.; Fedoseyev, A. I.

    2012-10-01

    This paper present the analysis, parallelization and optimization approach for the large sparse matrix solver CNSPACK for modern multicore microprocessors. CNSPACK is an advanced solver successfully used for coupled solution of stiff problems arising in multiphysics applications such as CFD, semiconductor transport, kinetic and quantum problems. It employs iterative IDR algorithm with ILU preconditioning (user chosen ILU preconditioning order). CNSPACK has been successfully used during last decade for solving problems in several application areas, including fluid dynamics and semiconductor device simulation. However, there was a dramatic change in processor architectures and computer system organization in recent years. Due to this, performance criteria and methods have been revisited, together with involving the parallelization of the solver and preconditioner using Open MP environment. Results of the successful implementation for efficient parallelization are presented for the most advances computer system (Intel Core i7-9xx or two-processor Xeon 55xx/56xx).

  12. Status and Perspective of the Hydraulic Solver development for SPACE code

    International Nuclear Information System (INIS)

    Lee, S. Y.; Oh, M. T.; Park, J. C.; Ahn, S. J.; Park, C. E.; Lee, E. J.; Na, Y. W.

    2008-01-01

    KOPEC has been developing a hydraulic solver for SPACE code. The governing equations for the solver can be obtained through several steps of modeling and approximations from the basic material transport principles. Once the governing equations are fixed, a proper discretization procedure should be followed to get the difference equations that can be solved by well established matrix solvers. Of course, the mesh generation and handling procedures are necessary for the discretization process. At present, the preliminary test version has been constructed and being tested. The selection of the compiler language was debated openly. C++ was chosen as a basis compiler language. But other language such as FORTRAN can be used as it is necessary. The steps mentioned above are explained in the following sections. Test results are presented by other companion papers in this meeting. Future activities will be described in the conclusion section

  13. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    Science.gov (United States)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  14. A Kohn–Sham equation solver based on hexahedral finite elements

    International Nuclear Information System (INIS)

    Fang Jun; Gao Xingyu; Zhou Aihui

    2012-01-01

    We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C 60 , C 120 , and C 275 H 172 . It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.

  15. Towards Green Multi-frontal Solver for Adaptive Finite Element Method

    KAUST Repository

    AbbouEisha, H.; Moshkov, Mikhail; Jopek, K.; Gepner, P.; Kitowski, J.; Paszyn'ski, M.

    2015-01-01

    In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data trans- ferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

  16. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    Science.gov (United States)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  17. Numerical Platon: A unified linear equation solver interface by CEA for solving open foe scientific applications

    International Nuclear Information System (INIS)

    Secher, Bernard; Belliard, Michel; Calvin, Christophe

    2009-01-01

    This paper describes a tool called 'Numerical Platon' developed by the French Atomic Energy Commission (CEA). It provides a freely available (GNU LGPL license) interface for coupling scientific computing applications to various freeware linear solver libraries (essentially PETSc, SuperLU and HyPre), together with some proprietary CEA solvers, for high-performance computers that may be used in industrial software written in various programming languages. This tool was developed as part of considerable efforts by the CEA Nuclear Energy Division in the past years to promote massively parallel software and on-shelf parallel tools to help develop new generation simulation codes. After the presentation of the package architecture and the available algorithms, we show examples of how Numerical Platon is used in sequential and parallel CEA codes. Comparing with in-house solvers, the gain in terms of increases in computation capacities or in terms of parallel performances is notable, without considerable extra development cost

  18. Towards Green Multi-frontal Solver for Adaptive Finite Element Method

    KAUST Repository

    AbbouEisha, H.

    2015-06-01

    In this paper we present the optimization of the energy consumption for the multi-frontal solver algorithm executed over two dimensional grids with point singularities. The multi-frontal solver algorithm is controlled by so-called elimination tree, defining the order of elimination of rows from particular frontal matrices, as well as order of memory transfers for Schur complement matrices. For a given mesh there are many possible elimination trees resulting in different number of floating point operations (FLOPs) of the solver or different amount of data trans- ferred via memory transfers. In this paper we utilize the dynamic programming optimization procedure and we compare elimination trees optimized with respect to FLOPs with elimination trees optimized with respect to energy consumption.

  19. Numerical Platon: A unified linear equation solver interface by CEA for solving open foe scientific applications

    Energy Technology Data Exchange (ETDEWEB)

    Secher, Bernard [French Atomic Energy Commission (CEA), Nuclear Energy Division (DEN) (France); CEA Saclay DM2S/SFME/LGLS, Bat. 454, F-91191 Gif-sur-Yvette Cedex (France)], E-mail: bsecher@cea.fr; Belliard, Michel [French Atomic Energy Commission (CEA), Nuclear Energy Division (DEN) (France); CEA Cadarache DER/SSTH/LMDL, Bat. 238, F-13108 Saint-Paul-lez-Durance Cedex (France); Calvin, Christophe [French Atomic Energy Commission (CEA), Nuclear Energy Division (DEN) (France); CEA Saclay DM2S/SERMA/LLPR, Bat. 470, F-91191 Gif-sur-Yvette Cedex (France)

    2009-01-15

    This paper describes a tool called 'Numerical Platon' developed by the French Atomic Energy Commission (CEA). It provides a freely available (GNU LGPL license) interface for coupling scientific computing applications to various freeware linear solver libraries (essentially PETSc, SuperLU and HyPre), together with some proprietary CEA solvers, for high-performance computers that may be used in industrial software written in various programming languages. This tool was developed as part of considerable efforts by the CEA Nuclear Energy Division in the past years to promote massively parallel software and on-shelf parallel tools to help develop new generation simulation codes. After the presentation of the package architecture and the available algorithms, we show examples of how Numerical Platon is used in sequential and parallel CEA codes. Comparing with in-house solvers, the gain in terms of increases in computation capacities or in terms of parallel performances is notable, without considerable extra development cost.

  20. A fast direct solver for boundary value problems on locally perturbed geometries

    Science.gov (United States)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  1. A Direct Elliptic Solver Based on Hierarchically Low-Rank Schur Complements

    KAUST Repository

    Chávez, Gustavo

    2017-03-17

    A parallel fast direct solver for rank-compressible block tridiagonal linear systems is presented. Algorithmic synergies between Cyclic Reduction and Hierarchical matrix arithmetic operations result in a solver with O(Nlog2N) arithmetic complexity and O(NlogN) memory footprint. We provide a baseline for performance and applicability by comparing with well-known implementations of the $$\\\\mathcal{H}$$ -LU factorization and algebraic multigrid within a shared-memory parallel environment that leverages the concurrency features of the method. Numerical experiments reveal that this method is comparable with other fast direct solvers based on Hierarchical Matrices such as $$\\\\mathcal{H}$$ -LU and that it can tackle problems where algebraic multigrid fails to converge.

  2. Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations

    CERN Document Server

    Terzic, Balsa; Mihalcea, Daniel; Pogorelov, Ilya V

    2005-01-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.

  3. Wavelet-based Poisson Solver for use in Particle-In-Cell Simulations

    International Nuclear Information System (INIS)

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-01-01

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors

  4. Calm water resistance prediction of a bulk carrier using Reynolds averaged Navier-Stokes based solver

    Science.gov (United States)

    Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan

    2017-12-01

    Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.

  5. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1993-12-01

    Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required

  6. Instructional Media Production for Early Childhood Education: A. B. C. Jig-Saw Puzzle, a Model

    Science.gov (United States)

    Yusuf, Mudashiru Olalere; Olanrewaju, Olatayo Solomon; Soetan, Aderonke K.

    2015-01-01

    In this paper, a. b. c. jig-saw puzzle was produced for early childhood education using local materials. This study was a production based type of research, to serve as a supplemental or total learning resource. Its production followed four phases of development referred to as information, design, production and evaluation. The storyboard cards,…

  7. Gardner's Two Children Problems and Variations: Puzzles with Conditional Probability and Sample Spaces

    Science.gov (United States)

    Taylor, Wendy; Stacey, Kaye

    2014-01-01

    This article presents "The Two Children Problem," published by Martin Gardner, who wrote a famous and widely-read math puzzle column in the magazine "Scientific American," and a problem presented by puzzler Gary Foshee. This paper explains the paradox of Problems 2 and 3 and many other variations of the theme. Then the authors…

  8. Resolutions of Several Puzzles at Intermediate pT and Recent Developments in Correlation

    International Nuclear Information System (INIS)

    Hwa, Rudolph C.

    2006-01-01

    Some of the puzzles on hadron production at intermediate p T found at RHIC are explained as natural consequences of parton recombination. In that framework for hadronization the correlation among hadrons produced in jets can be calculated. Some new results on both near-side and away-side jet structures are presented

  9. High-mass twins & resolution of the reconfinement, masquerade and hyperon puzzles of compact star interiors

    International Nuclear Information System (INIS)

    Blaschke, David; Alvarez-Castillo, David E.

    2016-01-01

    We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M ⊙ with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (by excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram

  10. The Role of Inhibitory Control in Children's Cooperative Behaviors during a Structured Puzzle Task

    Science.gov (United States)

    Giannotta, Fabrizia; Burk, William J.; Ciairano, Silvia

    2011-01-01

    This study examined the role of inhibitory control (measured by Stroop interference) in children's cooperative behaviors during a structured puzzle task. The sample consisted of 250 8-, 10-, and 12-year-olds (117 girls and 133 boys) attending classrooms in three primary schools in Northern Italy. Children individually completed an elaborated…

  11. Free-style puzzle flap: the concept of recycling a perforator flap.

    Science.gov (United States)

    Feng, Kuan-Ming; Hsieh, Ching-Hua; Jeng, Seng-Feng

    2013-02-01

    Theoretically, a flap can be supplied by any perforator based on the angiosome theory. In this study, the technique of free-style perforator flap dissection was used to harvest a pedicled or free skin flap from a previous free flap for a second difficult reconstruction. The authors call this a free-style puzzle flap. For the past 3 years, the authors treated 13 patients in whom 12 pedicled free-style puzzle flaps were harvested from previous redundant free flaps and recycled to reconstruct soft-tissue defects at various anatomical locations. One free-style free puzzle flap was harvested from a previous anterolateral thigh flap for buccal cancer to reconstruct a foot defect. Total flap survival was attained in 12 of 13 flaps. One transferred flap failed completely. This patient had received postoperative radiotherapy after the initial cancer ablation and free anterolateral thigh flap reconstruction. Another free flap was used to close and reconstruct the wound. All the donor sites could be closed primarily. The free-style puzzle flap, harvested from a previous redundant free flap and used as a perforator flap to reconstruct a new defect, has proven to be versatile and reliable. When indicated, it is an alternative donor site for further reconstruction of soft-tissue defects.

  12. Enhancing the Understanding of Government and Nonprofit Accounting with THE PUZZLE GAME: A Pilot Study

    Science.gov (United States)

    Elson, Raymond J.; Ostapski, S. Andrew; O'Callaghan, Susanne; Walker, John P.

    2012-01-01

    Nontraditional teaching aids such as crossword puzzles have been successfully used in the classroom to enhance student learning. Government and nonprofit accounting is a confusing course for students since it has strange terminologies and contradicts the accounting concepts learned in other courses. As such, it is an ideal course for a…

  13. Precedents, Patterns and Puzzles: Feminist Reflections on the First Women Lawyers

    Directory of Open Access Journals (Sweden)

    Mary Jane Mossman

    2016-10-01

    Full Text Available This paper initially examines the historical precedents established by some of the first women who entered the “gentleman’s profession” of law in different jurisdictions, as well as the biographical patterns that shaped some women’s ambitions to enter the legal professions. The paper then uses feminist methods and theories to interpret “puzzles that remain unsolved” about early women lawyers, focusing especially on two issues. One puzzle is the repeated claims on the part of many of these early women lawyers that they were “lawyers”, and not “women lawyers”, even as they experienced exclusionary practices and discrimination on the part of male lawyers and judges—a puzzle that suggests how professional culture required women lawyers to conform to existing patterns in order to succeed. A second puzzle relates to the public voices of early women lawyers, which tended to suppress disappointments, difficulties and discriminatory practices. In this context, feminist theories suggest a need to be attentive to the “silences” in women’s stories, including the stories of the lives of early women lawyers. Moreover, these insights may have continuing relevance for contemporary women lawyers because it is at least arguable that, while there have been changes in women’s experiences, there has been very little transformation in their work status in relation to men.

  14. Chinese American and Caucasian American Family Interaction Patterns in Spatial Rotation Puzzle Solutions.

    Science.gov (United States)

    Hutsinger, Carol S.; Jose, Paul E.

    1995-01-01

    Examined sociocultural influences on mathematics achievement. First generation Chinese American and Caucasian American mother-father-daughter triads were audiotaped as the fifth- and sixth-grade girls solved a spatial puzzle. Chinese American triads were quieter, more respectful, more serious, and more orderly, whereas Caucasian American triads…

  15. Box-Cox transformation for resolving the Peelle's Pertinent Puzzle in a curve fitting

    International Nuclear Information System (INIS)

    Oh, S. Y.; Seo, C. G.

    2004-01-01

    Incorporating the Box-Cox transformation into a curve fitting is presented as one of methods for resolving an anomaly known as the Peelle's Pertinent Puzzle in the nuclear data community. The Box-Cox transformation is a strategy to make non-normal distribution data resemble normal distribution data. The proposed method consists of the following steps: transform the raw data to be fitted with the optimized Box-Cox transformation parameter, fit the transformed data using a conventional curve fitting tool, the least-squares method in this study, then inverse-transform the fitted results to the final estimates. Covariance matrices are correspondingly transformed and inverse-transformed with the aid of the law of error propagation. In addition to a sensible answer to the Puzzle, the proposed method resulted in reasonable estimates for a test evaluation with pseudo-experimental 6 Li(n, t) cross sections in several to 800 keV energy region, while the GMA code resulted in systematic underestimates that characterize the Puzzle. Meanwhile, it is observed that the present method and the Chiba-Smith method yield almost the same estimates for the test evaluation on 6 Li(n, t). Conceptually, however, two methods are very different from each other and further discussions are needed for a consensus on the issue of how to resolve the Puzzle. (authors)

  16. The Quark Puzzle: A Novel Approach to Visualizing the Color Symmetries of Quarks

    Science.gov (United States)

    Gettrust, Eric

    2010-01-01

    This paper describes a simple hands-on and visual-method designed to introduce physics students of many age groups to the topic of quarks and their role in forming composite particles (baryons and mesons). A set of puzzle pieces representing individual quarks that fit together in ways consistent with known restrictions of flavor, color, and charge…

  17. (Mis)perception of Sleep in Insomnia: A Puzzle and a Resolution

    Science.gov (United States)

    Harvey, Allison G.; Tang, Nicole K. Y.

    2012-01-01

    Insomnia is prevalent, causing severe distress and impairment. This review focuses on illuminating the puzzling finding that many insomnia patients misperceive their sleep. They overestimate their sleep onset latency (SOL) and underestimate their total sleep time (TST), relative to objective measures. This tendency is ubiquitous (although not…

  18. A high-performance Riccati based solver for tree-structured quadratic programs

    DEFF Research Database (Denmark)

    Frison, Gianluca; Kouzoupis, Dimitris; Diehl, Moritz

    2017-01-01

    the online solution of such problems challenging and the development of tailored solvers crucial. In this paper, an interior point method is presented that can solve Quadratic Programs (QPs) arising in multi-stage MPC efficiently by means of a tree-structured Riccati recursion and a high-performance linear...... algebra library. A performance comparison with code-generated and general purpose sparse QP solvers shows that the computation times can be significantly reduced for all problem sizes that are practically relevant in embedded MPC applications. The presented implementation is freely available as part...

  19. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  20. A Comparison Between Mıcrosoft Excel Solver and Ncss, Spss Routines for Nonlinear Regression Models

    Directory of Open Access Journals (Sweden)

    Didem Tetik Küçükelçi

    2018-02-01

    Full Text Available In this study we have tried to compare the results obtained by Microsoft Excel Solver program with those of NCSS and SPSS in some nonlinear regression models. We fit some nonlinear models to data present in http//itl.nist.gov/div898/strd/nls/nls_main.shtml by the three packages. Although EXCEL did not succeed as well as the other packages, we conclude that Microsoft Excel Solver provides us a cheaper and a more interactive way of studying nonlinear models.