WorldWideScience

Sample records for putative sulfate-reducing bacteria

  1. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  2. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  3. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  4. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  5. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  6. Optimizing substrate for sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Chang, L.K.; Updegraff, D.M.; Wildeman, T.R.

    1991-01-01

    Microbial sulfate reduction followed by sulfide precipitation effectively removes heavy metals from wastewaters. The substrate in the anaerobic zone in a constructed wetland can be designed to emphasize this removal process. This group of bacteria requires CH 2 O, P, N, and SO 4 =, reducing conditions, and pH range of 5-9 (pH=7 is optimum). The objective of this study was to find an inexpensive source of nutrients that would give the best initial production of sulfide and make a good wetland substrate. All tested materials contain sufficient P and N; mine drainage provides sulfate. Thus, tests focused on finding organic material that provides the proper nutrients and does not cause the culture to fall below pH of 5. Among chemical nutrients, sodium lactate combined with (NH 4 ) 2 HPO 4 were the only compounds that produced sulfide after 11 days. Among complex nutrients, only cow manure produced sulfide after 26 days. Among complex carbohydrates, cracked corn and raw rice produced sulfide after 10 days. Most substrates failed to produce sulfide because anaerobic fermentation reduced the pH below 5. Presently, cracked corn is the best candidate for a substrate. Five grams of cow manure produced 0.14 millimole of sulfide whereas 0.1 g of cracked corn produced 0.22 millimole

  7. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  8. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  9. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  10. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  11. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Culturable heterotrophic, nitrate reducing and sulfate reducing bacteria (HB, NRB and SRB) were enumerated from 25, 50, 100 and 200 m depths at 15 stations and their potential activities viz. Nitrate reducing (NRA) and Sulfate reducing (SRA) were...

  12. Effect of bactericides on sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, T A; Gareyshina, A Z; Limanov, V Ye; Neizvestnoya, R G; Yalymova, A G

    1980-01-01

    A study was made of the effect on sulfate-reducing bacteria (SRD) of different bactericides under laboratory conditions. The tests were conducted according to the technique developed in the VNIISPTneft'. A total of 36 chemical reagents were checked. The majority of them completely suppressed the growth of the accumulating culture of the SRD with different concentration of bactericide. The reagents which have good bactericidal action were verified for anticorrosion properties and were tested on field water from well 520 and 6334 of the Aznakayevskiy UKPN. The study results indicated that in selecting the dosing of bactericides on the accumulation culture of the SRD, the bactericidal effect is observed with lower concentration than the SRD collected from the near-face well zones.

  13. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    Science.gov (United States)

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The

  14. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  15. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  16. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Harithsa, S.; Kerkar, S.; LokaBharathi, P.A.

    -sporulating, non-motile rods lacking in desulfoviridin and cytochromes. Examination of these isolates for heavy metal tolerance and response studies in terms of growth and sulfate-reducing activity (SRA) were carried out using HgCl sub(2) and Pb(NO sub(3)) sub(2...

  17. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  18. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  19. Heavy metals detoxification in soil performed by sulfate - reducing bacteria

    International Nuclear Information System (INIS)

    Pado, R.; Pawlowska-Cwiek, L.; Szwagrzyk, J.

    1994-01-01

    The process of sulfate reduction carried out by mixed bacteria cultures in the presence of heavy cations (Fe 2+ , Pb 2+ , Cd 2+ , Zn 2+ , Cu 2+ ) was investigated. The range of harmful metals concentrations responded to the acceptable levels in soil and their multiplications (10-100 times) in contaminated soil. The results show the possibility of detoxicating these metals, especially lead. In the highest lead concentrations (3950 and 7500 ppm), only after one month of activities conducted by bacteria dissimilating hydrogen sulfide, between about 73 and 81 per cent of lead was converted into practically insoluble PbS. It was found that detoxication process with the presence of bacteria from this group prolonged with the increase of metal concentration (Zn 2+ and Cd 2+ in particular. (author). 30 refs, 5 figs, 3 tabs

  20. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  1. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  2. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  3. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Boopathy, R.; Kulpa, C.F.

    1994-01-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO 2 . Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  4. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis.

    LENUS (Irish Health Repository)

    Duffy, M

    2012-02-03

    PURPOSE: Ileal pouch-anal anastomosis remains the "gold standard" in surgical treatment of ulcerative colitis and familial adenomatous polyposis. Pouchitis occurs mainly in patients with a background of ulcerative colitis, although the reasons for this are unknown. The aim of this study was to characterize differences in pouch bacterial populations between ulcerative colitis and familial adenomatous pouches. METHODS: After ethical approval was obtained, fresh stool samples were collected from patients with ulcerative colitis pouches (n = 10), familial adenomatous polyposis (n = 7) pouches, and ulcerative colitis ileostomies (n = 8). Quantitative measurements of aerobic and anaerobic bacteria were performed. RESULTS: Sulfate-reducing bacteria were isolated from 80 percent (n = 8) of ulcerative colitis pouches. Sulfate-reducing bacteria were absent from familial adenomatous polyposis pouches and also from ulcerative colitis ileostomy effluent. Pouch Lactobacilli, Bifidobacterium, Bacteroides sp, and Clostridium perfringens counts were increased relative to ileostomy counts in patients with ulcerative colitis. Total pouch enterococci and coliform counts were also increased relative to ileostomy levels. There were no significant quantitative or qualitative differences between pouch types when these bacteria were evaluated. CONCLUSIONS: Sulfate-reducing bacteria are exclusive to patients with a background of ulcerative colitis. Not all ulcerative colitis pouches harbor sulfate-reducing bacteria because two ulcerative colitis pouches in this study were free of the latter. They are not present in familial adenomatous polyposis pouches or in ileostomy effluent collected from patients with ulcerative colitis. Total bacterial counts increase in ulcerative colitis pouches after stoma closure. Levels of Lactobacilli, Bifidobacterium, Bacteroides sp, Clostridium perfringens, enterococci, and coliforms were similar in both pouch groups. Because sulfate-reducing bacteria are

  5. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  6. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen,

  7. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    Science.gov (United States)

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  8. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  9. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  10. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin†

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing. PMID:12732547

  12. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  13. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  14. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  15. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    Science.gov (United States)

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  16. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  17. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Giantommaso Scarascia

    2016-12-01

    Full Text Available Sulfate-reducing bacteria (SRB are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  18. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso; Wang, Tiannyu; Hong, Pei-Ying

    2016-01-01

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  19. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2016-12-15

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  20. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Yoshikawa, H.; Ito, M.

    1997-01-01

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories

  1. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  2. Experimental investigation on the active range of sulfate-reducing bacteria for geological disposal

    International Nuclear Information System (INIS)

    Fukunaga, S.; Fujiki, K.; Asano, H.; Yoshikawa, H.

    1995-01-01

    The active range of Desulfovibrio desulfuricans, a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels. SRB activity was estimated at 35 C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely. A chart was obtained showing the active range of Desulfovibrio desulfuricans in terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified

  3. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  4. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    Science.gov (United States)

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  5. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  6. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth...... of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction, The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments, The results frorn sediment incubations were...... compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain Itk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28 degrees C in short-term incubations, even though it could not grow at temperatures above 24 degrees...

  7. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...

  8. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  9. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    Science.gov (United States)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  10. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  11. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Liu, H.; Hu, Y.; Zhou, L.; Zheng, B. [Department of Chemistry and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2009-03-15

    Sulfate-reducing bacteria (SRB) have been identified as the main corrosive microorganisms causing unpredictable failure of materials. In this present work, a strain of thermophile SRB isolated from Bohai oilfield of China has been characterized and preliminarily identified. Furthermore, its effects on carbon steel at 60 C in SRB culture media were studied by electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), and weight loss measurements. The results show that the bacteria belong to Desulfotomaculum. The optimum growth temperature and pH of the bacteria were 60 C and 7.0, respectively. Weight loss measurements suggested that the corrosion rate of carbon steel in the culture media inoculated with thermophile SRB at 60 C was 2.2 times less than that at 37 C. At 60 C, SRB shifted the freely corroding potential of carbon steel toward a more positive value in the first 10 days, which later change to a negative value. Results obtained from potentiodynamic polarization and EIS were in good agreement. The changes in biofilm structure with increase in bacteria supply offers some kind of protection to the base material in the early culture days at 60 C. Subsequently, it accelerated corrosion. Energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) methods indicate that corrosion products such as iron sulfides (FeS{sub x}) in biofilm play an important role in the biocorrosion process. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Initial cytotoxicity assays of media for sulfate-reducing bacteria: An endodontic biopharmaceutical product under development.

    Science.gov (United States)

    Heggendorn, Fabiano Luiz; Silva, Gabriela Cristina de Carvalho; Cardoso, Elisama Azevedo; Castro, Helena Carla; Gonçalves, Lúcio Souza; Dias, Eliane Pedra; Lione, Viviane de Oliveira Freitas; Lutterbach, Márcia Teresa Soares

    2016-01-01

    This study assessed the cell viability of the inoculation vehicle of BACCOR (a combination of sulfate-reducing bacteria plus a culture media for bacteria), a biopharmaceutical product under development for dental use as aid in fractured endodontic file removal from the root canal. Different culture media for bacteria were evaluated: modified Postgate E (MCP-E mod), Modified Postgate E without Agar-agar (MCP-E w/Ag), Postgate C with Agar-agar (MCP-C Ag) and Postgate C without Agar-agar (MCP-C w/Ag). Cytotoxicity was quantified by the MTT test, exposing L929 and Vero cell lines to the vehicles over 24 h. The exposure of L929 cell line to MCP-E w/Ag resulted in biocompatibility (52% cell viability), while the exposure of the Vero kidney line revealed only MCP-E mod as cytotoxic. When diluted, all the vehicles showed biocompatibility with both cell lines. MCP-E w/Ag was the vehicle chosen for BACCOR, because of its biocompatibility with the cells used.

  13. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  14. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  15. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-01-01

    Migration of neptunium, as NpO 2 + , has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility

  17. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  18. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  19. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    Science.gov (United States)

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  20. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    Science.gov (United States)

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  1. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  2. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    Science.gov (United States)

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.

    Science.gov (United States)

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-02-18

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

  4. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    Science.gov (United States)

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  5. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Science.gov (United States)

    Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

    2011-06-01

    Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

  6. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    Science.gov (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  8. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, R. Garcia [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico); Departamento de lngenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Olivares, G. Zavala; Gayosso, M.J. Hernandez; Trejo, A. Gayosso [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico)

    2011-01-15

    The effect of sulfate reducing bacteria (SRB) upon the cathodic protection of XL 52 steel was determined, in order to identify if the potential value of -0.950 V versus copper/copper sulfate electrode is good enough to protect the metal surface. During the experiments, different operational parameters were monitored: hydrogen sulfide production, iron concentration, electrolyte alkalinity, microorganisms' population, as well as the metal surface damage. At the same time, the corrosion rate was determined using two electrochemical techniques: polarization resistance (PR) and electrochemical impedance spectroscopy (EIS). According to the results, it was observed that the protection potential of -0.950 V versus copper/copper sulfate electrode is not enough to control the microbiologically induced corrosion. This situation is reinforced by the fact that significant iron concentration was found in the electrolyte. The microbiological activity is not affected by the protection potential. On the contrary, the population growth is slightly strengthened. The alkalinity generated by the applied potential did not stop the SRB growth. A type of localized corrosion was developed during the experiments with microorganisms, even when the protection potential was applied to the system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  10. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  11. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  12. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    Science.gov (United States)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  13. Differences in the behavior of 233Pa, 237Np and 239 Pu in bentonite contaminated by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Fujikawa, Y.; Takigami, H.; Zheng, J.; Asano, H.; Arai, K.; Yoshikawa, H.; Ito, M.

    1998-01-01

    The behaviors of 233 Pa, 237 Np and 239 Pu in high level radioactive wastes from nuclear fuel reprocessing were investigated by a laboratory experiment. Radioactive wastes are glassified and disposed of in geological repositories encased in bentonite as an additional artificial barrier to protect the environment. There is, however, the possibility that some anaerobic bacteria, especially sulfate-reducing bacteria, may flourish within the bentonite during the long disposal period (more than a century). The effects of sulfate-reducing bacteria on the behavior of the radionuclides within bentonite were investigated using the distribution coefficient (Kd) of 233 Pa, 237 Np and 239 Pu. The Kd was obtained with a 0.22 m membrane filter separating radionuclide contents in solid and liquid phases. The anaerobic bacteria, including sulfate-reducing bacteria, used for this investigation originated from the anaerobic treatment of pulp and paper waste and operated for more than one year at Eh around -85 mV. The bentonite used for this study was produced in Japan. The active anaerobic bacteria clearly accumulates considerable amounts of 233 Pa and 239 Pu by producing high Kd values of nearly 100,000, while Kds of 233 Pa and 239 Pu for the sterilized anaerobic bacteria were less than 10,000. In other words, live anaerobic bacteria can hold considerably higher amounts of the radionuclides compared to dead bacteria. Furthermore, high Kd values were obtained for anaerobic bacteria at pH 5-9. In contrast, Kd values for the radionuclide 237 Np were not influenced by the anaerobic bacteria but were controlled by chemical environmental conditions such as like pH. Another comparison was conducted for the radionuclides for mixtures of non-sterilized bacteria with bentonite. (author)

  14. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Directory of Open Access Journals (Sweden)

    D. Lovley

    2012-03-01

    Full Text Available Enhancing microbial U(VI reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI-reducing Geobacter predominated and U(VI was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB predominated and U(VI reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  15. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Chang, Yun-Juan; Peacock, A D.; Long, Philip E.; Stephen, John R.; McKinley, James P.; Mcnaughton, Sarah J.; Hussain, A K M A.; Saxton, A M.; White, D C.

    2000-01-01

    Microbially mediated reduction and immobilization of U(VI) to U(TV) plays a role in both natural attenuation and accelerated bioremediation of uranium contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex,, was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from F-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least,52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0, Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within F-Proteobacteria were mainly recovered from low-uranium (less than or equal to 302 ppb) samples. One Desulfotomaculum like sequence cluster overwhelmingly dominated high-U (> 1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P= 0.0001), This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research

  16. CHROMIUM(VI REDUCTION BY A MIXED CULTURE OF SULFATE REDUCING BACTERIA DEVELOPED IN COLUMN REACTOR

    Directory of Open Access Journals (Sweden)

    Cynthia Henny

    2008-03-01

    Full Text Available A lactate enriched mixed sulfate reducing bacteria (SRB culture was examined for the reduction of Cr(VI in a continuous flow system. The influent was mineral salts media added with lactate and sulfate with amounts of 8 and 6 mM respectively as electron donor and electron acceptor. The SRB culture was allowed to stabilize in the column before adding the Cr(VI to the influent. Chromium and sulfate reduction and lactate oxidation were examined by measuring the concentrations of Cr(Vl, sulfate and lactate in the influent and the effluent over time. The experiment was discontinued when Cr(VI concentration in the effiuent was breakthrough. In the absence of Cr(VI, sulfate was not completely reduced in the column, although lactate was completely oxidized and acetate as an intermediate product was not often detected. Almost all of Cr(VI loaded was reduced in the column seeded with the SRB culture at influent Cr(VI concentrations of 192,385 and769 mM. There was no significant Cr(VI loss in the control column, indicating that Cr(VI removal was due to the reduction of Cr(VI to Cr (lll by the SRB culture. The instantaneous Cr(VI removal decreased to a minimum of 32%, 24 days after the influent Cr(VI concentration was increased to 1540 mM, ancl sulfate removal efficiency decreased to a minimum of 17%. The SRB population in the column decreased 100 days after C(VI was added to the column. The total mass of Cr(VI reduced was approximately 878 mmol out of 881 mmol of Cr(Vl loaded in 116 days. The results clearly show that our developed SRB culture could reduced Cr(Vl considerably.

  17. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  18. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Alawi, Mashal; Lerm, Stephanie; Wuerdemann, Hilke [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Internationales Geothermiezentrum, Potsdam (Germany); Vetter, Alexandra [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Organische Geochemie, Potsdam (Germany); Wolfgramm, Markus [Geothermie Neubrandenburg GmbH (GTN), Neubrandenburg (Germany); Seibt, Andrea [BWG Geochemische Beratung GbR, Neubrandenburg (Germany)

    2011-06-15

    Abstract Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61 C to 103 C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems. (orig.) [German] Die Verbesserung des Prozessverstaendnisses ist eine grundlegende Voraussetzung fuer eine Optimierung der Betriebssicherheit und der Oekonomie geothermischer Anlagen in Bezug auf die Partikelbildung und Korrosion. Daher wurden Prozessfluide einer Anlage im Molassebecken unter mikrobiologischen, geochemischen und mineralogischen Gesichtspunkten untersucht. Die Fluidtemperatur der vor und nach dem Waermetauscher entnommenen Fluide betrug zwischen 103 C und 61 C. Die Salinitaet variierte zwischen 600 und 900 mg/l und der geloeste organische Kohlenstoff (DOC) lag zwischen 6,4 und 19,3 mg C/l. Die mikrobielle Lebensgemeinschaft in der Anlage wurde mithilfe einer genetischen Fingerprinting-Methode charakterisiert. Hierzu wurde das 16S rRNA Gen sowie die fuer sulfatreduzierende Bakterien (SRB) spezifische dissimilatorische Sulfitreduktase untersucht. In allen

  19. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  20. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice.

    Science.gov (United States)

    Ritz, N L; Lin, D M; Wilson, M R; Barton, L L; Lin, H C

    2017-01-01

    Hydrogen sulfide (H 2 S) serves as a mammalian cell-derived gaseous neurotransmitter. The intestines are exposed to a second source of this gas by sulfate-reducing bacteria (SRB). Bismuth subsalicylate binds H 2 S rendering it insoluble. The aim of this study was to test the hypothesis that SRB may slow intestinal transit in a bismuth-reversible fashion. Eighty mice were randomized to five groups consisting of Live SRB, Killed SRB, SRB+Bismuth, Bismuth, and Saline. Desulfovibrio vulgaris, a common strain of SRB, was administered by gavage at the dose of 1.0 × 10 9 cells along with rhodamine, a fluorescent dye. Intestinal transit was measured 50 minutes after gavage by euthanizing the animals, removing the small intestine between the pyloric sphincter and the ileocecal valve and visualizing the distribution of rhodamine across the intestine using an imaging system (IVIS, Perkin-Elmer). Intestinal transit (n=50) was compared using geometric center (1=minimal movement, 100=maximal movement). H 2 S concentration (n=30) was also measured when small intestinal luminal content was allowed to generate this gas. The Live SRB group had slower intestinal transit as represented by a geometric center score of 40.2 ± 5.7 when compared to Saline: 73.6 ± 5.7, Killed SRB: 77.9 ± 6.9, SRB+Bismuth: 81.0 ± 2.0, and Bismuth: 73.3 ± 4.2 (Pfashion in mice. Our results demonstrate that intestinal transit is slowed by SRB and this effect could be abolished by H 2 S-binding bismuth. © 2016 John Wiley & Sons Ltd.

  1. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Wang, Peng; Lu, Zhou; Zhang, Dun

    2015-01-01

    Highlights: • Slippery liquid-infused porous surfaces (SLIPS) were fabricated over aluminum. • SLIPS depress the adherence of sulfate reducing bacteria in static seawater. • SLIPS inhibit the microbiological corrosion of aluminum in static seawater. • The possible microbiological corrosion protection mechanism of SLIPS is proposed. - Abstract: Microbiological corrosion induced by sulfate reducing bacteria (SRB) is one of the main threatens to the safety of marine structure. To reduce microbiological corrosion, slippery liquid infused porous surfaces (SLIPS) were designed and fabricated on aluminum substrate by constructing rough aluminum oxide layer, followed by fluorination of the rough layer and infiltration with lubricant. The as-fabricated SLIPS were characterized with wettability measurement, SEM and XPS. Their resistances to microbiological corrosion induced by SRB were evaluated with fluorescence microscopy and electrochemical measurement. It was demonstrated that they present high resistance to bacteria adherence and the resultant microbiological corrosion in static seawater

  2. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  3. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    OpenAIRE

    Abdullah, Arman; Yahaya, Nordin; Md Noor, Norhazilan; Mohd Rasol, Rosilawati

    2014-01-01

    Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were i...

  4. A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Chen, Guocun

    The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0

  5. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  6. Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments.

    Directory of Open Access Journals (Sweden)

    Thomas eAullo

    2013-12-01

    Full Text Available Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2 and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review.

  7. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  8. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  9. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite

    Science.gov (United States)

    Picard, Aude; Gartman, Amy; Clarke, David R.; Girguis, Peter R.

    2018-01-01

    Sedimentary iron sulfide minerals play a key role in maintaining the oxygenation of Earth's atmosphere over geological timescales; they also record critical geochemical information that can be used to reconstruct paleo-environments. On modern Earth, sedimentary iron sulfide mineral formation takes places in low-temperature environments and requires the production of free sulfide by sulfate-reducing microorganisms (SRM) under anoxic conditions. Yet, most of our knowledge on the properties and formation pathways of iron sulfide minerals, including pyrite, derives from experimental studies performed in abiotic conditions, and as such the role of biotic processes in the formation of sedimentary iron sulfide minerals is poorly understood. Here we investigate the role of SRM in the nucleation and growth of iron sulfide minerals in laboratory experiments. We set out to test the hypothesis that SRM can influence Fe-S mineralization in ways other than providing sulfide through the comparison of the physical properties of iron sulfide minerals precipitated in the presence and in the absence of the sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 under well-controlled conditions. X-ray diffraction and microscopy analyses reveal that iron sulfide minerals produced in the presence of SRM exhibit unique morphology and aggregate differently than abiotic minerals formed in media without cells. Specifically, mackinawite growth is favored in the presence of both live and dead SRM, when compared to the abiotic treatments tested. The cell surface of live and dead SRM, and the extracellular polymers produced by live cells, provide templates for the nucleation of mackinawite and favor mineral growth. The morphology of minerals is however different when live and dead cells are provided. The transformation of greigite from mackinawite occurred after several months of incubation only in the presence of live SRM, suggesting that SRM might accelerate the kinetics of greigite

  10. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  11. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A mathematical model for the interactive behavior of sulfate-reducing bacteria and methanogens during anaerobic digestion.

    Science.gov (United States)

    Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R

    2011-09-01

    Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.

  13. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  14. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    International Nuclear Information System (INIS)

    Payne, Rayford B.; Ringbauer, Joseph A. Jr.; Wall, Judy D.

    2006-01-01

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  15. Bio-Reduction of Graphene Oxide Using Sulfate-Reducing Bacteria and Its Implication on Anti-Biocorrosion.

    Science.gov (United States)

    Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing

    2018-08-01

    In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

  16. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...... that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5...... mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface, Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1...

  17. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  18. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    Benbouzid-Rollet, N.

    1993-01-01

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 10 8 cells/ cm 2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  19. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate...... environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth......The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0...

  20. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  1. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  2. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.

    Science.gov (United States)

    Omil, F; Lens, P; Visser, A; Hulshoff Pol, L W; Lettinga, G

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (acetate-utilising SRB to outcompete MB. Copyright 1998 John Wiley & Sons, Inc.

  3. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  4. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arman Abdullah

    2014-01-01

    Full Text Available Various cases of accidents involving microbiology influenced corrosion (MIC were reported by the oil and gas industry. Sulfate reducing bacteria (SRB have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP, and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr for Desulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

  5. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.

    Science.gov (United States)

    Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

    2012-04-15

    Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-μm-diameter spherical aggregates identified by microscopy and synchrotron-μ-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.

    Science.gov (United States)

    Mohd Ali, Muhammad Khairool Fahmy Bin; Abu Bakar, Akrima; Md Noor, Norhazilan; Yahaya, Nordin; Ismail, Mardhiah; Rashid, Ahmad Safuan

    2017-10-01

    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.

  7. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  8. Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.

    Science.gov (United States)

    Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

    2015-12-01

    The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS⋅d)(-1) to 1.45gCOD·(gVSS⋅d)(-1) and 0.90gCOD·(gVSS⋅d)(-1) to 1.15gCOD·(gVSS⋅d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS⋅d)(-1) to 0.46gCOD·(gVSS⋅d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  10. Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.

    Science.gov (United States)

    Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong

    2017-11-15

    Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.

    Science.gov (United States)

    Priha, Outi; Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

    2013-09-01

    Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples.

  12. Role of aqueous sulfide and sulfate-reducing bacteria in the kinetics and mechanisms of the reduction of uranyl ion

    International Nuclear Information System (INIS)

    Mohagheghi, A.

    1985-01-01

    Formation of sedimentary rock-hosted uranium ore deposits is thought to have resulted from the reduction by aqueous sulfide species of relatively soluble uranyl ion (U(VI)) to insoluble uranium(IV) oxides and silicates. The origin of this H 2 S in such deposits can be either biogenic or abiogenic. Therefore, the kinetics and mechanism of uranyl ion reduction by aqueous sulfide, and the effect of several key variables on the reduction process in non-bacterial (sterile) systems was studied. The role of both pure and mixed cultures of sulfate-reducing bacteria on the reduction process was also investigated. In sterile systems the reduction reaction generally occurred by a two step reaction sequence. Uranium(V) (as UO 2 + ) and U(IV) (as UO 2 the mineral uraninite) were the intermediate and final products, respectively. The initial concentration of uranyl ion required for reaction initiation had a minimum value of 0.8 ppm at pH 7, and was higher at pH values less than or greater than 7. An induction period was observed in all experiments. No reduction was observed after 8 hours at pH 8. Although increasing ionic strength increased the length of the induction period, it also increased the rate of the reduction of UO 2 + in the second step. No reaction was observed under any experimental conditions with initial UO 2 2+ concentration less than 0.1 ppm, which is thought to be typical for ore forming solutions. However, by absorbing uranyl ion onto kaolinite, the reduction by H 2 S occurred at lower UO 2 2+ concentrations (∼ 0.1 ppm) in that in the homogeneous system. Thus, adsorption may play a significant role in the reduction and therefore in the formation of ore deposits

  13. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  14. Distribution of Sulfate-Reducing Bacteria, O2, and H2s in Photosynthetic Biofilms Determined by Oligonucleotide Probes and Microelectrodes Rid A-1977-2009

    DEFF Research Database (Denmark)

    RAMSING, NB; KUHL, M.; JØRGENSEN, BB

    1993-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen....... Fluorescent-dye-conjugated oligonucleotides were used as ''phylogenetic'' probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled...... with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed...

  15. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Korenblum Elisa

    2012-11-01

    Full Text Available Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1 that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS. It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml. Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential

  16. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Science.gov (United States)

    2012-01-01

    Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the

  17. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    Science.gov (United States)

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  18. Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Kim F. [Univ. of Michigan, Ann Arbor, MI (United States); Bi, Yuqiang [Univ. of Michigan, Ann Arbor, MI (United States); Carpenter, Julian [Univ. of Michigan, Ann Arbor, MI (United States); Hyng, Sung Pil [Univ. of Michigan, Ann Arbor, MI (United States); Rittmann, Bruce E. [Arizona State Univ., Tempe, AZ (United States); Zhou, Chen [Arizona State Univ., Tempe, AZ (United States); Vannela, Raveender [Arizona State Univ., Tempe, AZ (United States); Davis, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-12-31

    This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide

  19. Corrosion by sulfate-reducing bacteria in a HP gas line under a detached weld cladding; Korrosion durch sulfatreduzierende Bakterien an einer Hochdruckgasleitung unter abgeloester Schweissnahtnachumhuellung

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Ulrich [Technische Akademie Wuppertal (Germany)

    2011-07-01

    Intelligent pig measurements detected several points of corrosion in a HP gas pipeline in northern Germany. Corrosion occurred in a pipe section buried in clay soil, under detached weld claddings. It was not detected in regular measurements and additional intensive measurements. When the pipes were dug up, sulfate-reducing bacteria were found as the cause of corrosion. Due to the location of the corrosion processes, cathodic protection was impossible, and IFO measurements were ineffective in the low-ohmic soil.

  20. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  1. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  2. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue; Hikmawan, Tyas; Antunes, Andre; Ngugi, David; Stingl, Ulrich

    2015-01-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  3. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  4. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-09-01

    If it is widely accepted that the presence of sulfate-reducing bacteria can increase the aqueous corrosion of steels, the induced mechanisms are still not definitively established. The aim of this work is to specify the roles, for corrosion, of the presence of bacteria (D. Vulgaris) in one part and of chemical parameters as the composition of the material and the accumulation of sulfides in another part. The use of experimental techniques coming from microbiology, electrochemistry or chemical analysis has revealed the interdependence which exists between the bacteria and the material, and the importance of the steel composition towards the adhesion of microorganisms and the generalized corrosion. The bacteria and the dissolved sulfides do not seem to influence remarkably the generalized corrosion. Nevertheless, the alterations of the surface state they induce could be the cause of localized corrosion phenomena. (O.M.)

  5. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    Directory of Open Access Journals (Sweden)

    Elizabeth Trembath-Reichert

    2016-04-01

    Full Text Available Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM. This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME and sulfate-reducing bacteria (SRB. These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag. Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to

  6. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments.

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co

  7. Decontamination of acid mine water from Ronneburg/Thueringen which is high in sulfates and metals using sulfate-reducing bacteria. Final report of the preliminary phase

    International Nuclear Information System (INIS)

    Hard, B.; Friedrich, S.

    1995-01-01

    The mining in Eastern Europe, particularly in East-Germany, is a major source of pollution to the surrounding areas of the mines. With the end of the cold war the demand for uranium has drastically declined. Many of the pits have therefore been closed down or are in the process of closure such as the uranium mine in Ronneburg in Thueringen. One major problem is the safe-making of the pits and dumps as they are highly radioactive through naturally occurring uranium and other radioactive elements. Because of the leaching process through bacteria, drainage water is very acidic, with pH-values between 1-2. The water is very rich in magnesium, iron and aluminium sulfate. Here the application of a microbial process to decontaminate acid mine drainage was investigated. Decontamination of the water includes: - Increase in pH - decrease in sulfate concentrations - minimization of the metal and radionuclide load. Sulfate-reducing bacteria seem suitable for this process. In order for such a microbial process to be economically viable a cheap and widely available electron donar has to be used eg. methanol. The work carried out reports on the isolation, characterization and physiology of sulfate-reducing methylotrophic bacteria and their suitability for a decontamination process of sulfuric acid uranium mine water. (orig.) [de

  8. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  9. Effects of ferrous ions on the metabolism of sulfate-reducing bacteria; Ryusan`en kangenkin no taisha ni oyobosu tetsu ion no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan). Technology and Engineering Lab.]: Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School

    1995-11-15

    The grave damages due to microorganisms occur occasionally to the ironic piping and the like when river water is used as industrial water. In the present researches, the effects of Fe{sup 2+} on the amount and activity of sulfate-reducing bacteria in the culture medium with the concentration of Fe{sup 2+} changed by stages from 3.6{times}10{sup -4} M to 0.7M are examined. Further, the relations between the activity of the bacteria and the amount of FeS generated in the medium are investigated as an in-site means to observe the activity of the bacteria in the medium wherein the produced S{sup 2-} is converted into FeS once it is generated. The following conclusions are drawn therefrom. In the initial medium with the Fe{sup 2+} concentration from 3.6{times}10{sup -4} M to 0.7M, the growth of the bacteria is maximum at the concentration of 1.0{times}10{sup -2}. Over this concentration the growth is weakened due to the osmotic pressure, lowering of nutriment and the deposit of waste, and the bacteria are extirpated due to the direct effect of osmotic press when the concentration is 0.7M. The total amount of FeS produced due to the bacteria is in conformity with the tendency of growth of bacteria till 30 hours of culture. 18 refs., 6 figs., 2 tabs.

  10. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    Science.gov (United States)

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  11. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Rao, A. Gangagni; Ravichandra, P.; Joseph, Johny; Jetty, Annapurna; Sarma, P.N.

    2007-01-01

    Mixed cultures of sulfate reducing bacteria (SRB) were isolated from anaerobic cultures and enriched with SRB media. Studies on batch and continuous reactors for the removal of SO 2 with bulk drug industry wastewater as an organic source using isolated mixed cultures of SRB revealed that isolation and enrichment methodology adopted in the present study were apt to suppress the undesirable growth of anaerobic bacteria other than SRB. Studies on anaerobic reactors showed that process was sustainable at COD/S ratio of 2.2 and above with optimum sulfur loading rate (SLR) of 5.46 kg S/(m 3 day), organic loading rate (OLR) of 12.63 kg COD/(m 3 day) and at hydraulic residence time (HRT) of 8 h. Free sulfide (FS) concentration in the range of 300-390 mg FS/l was found to be inhibitory to mixed cultures of SRB used in the present studies

  12. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    Science.gov (United States)

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Influence of Gamma Radiation on the Treatment of Sulfate Reducing Bacteria in the Injection Water Used for the Enhanced Oil Recovery

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.; Ramzi, M.; Farag, R.M.

    2014-01-01

    The counts of sulfate reducing bacteria (SRB) in the water samples collected from the well head (formation water) and outlet of petroleum treatment plant (Produced water) in a petroleum field in middle delta- Egypt were determined. The data showed a low count of (SRB) in the collected formation water sample and there was an obvious increase in the bacterial counts which appeared in the produced water, that may reveal that the presence of appropriate conditions for the growth of (SRB) in the closed system in treatment plant. Two scale inhibitors were tested through jar test, the scale inhibitor I had maximum efficiency at 20 ppm, two SRB biocides were screened for their bactericidal activities. It was found that the biocides A was slightly superior in respect to the antibacterial efficacy compared to B in presence of 20 ppm scale inhibitor. These biocides were test for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria using the minimum effective dose of both radiation and biocides to eliminate the negative impacts of the chemicals used and the radiation applied. The results demonstrated that, the lethal doses of biocides were (300 ppm) of biocides A or (400 ppm) of biocides B at 1 kGy irradiation dose. The treated produced water was evaluated in respect of enhanced oil recovery, the data showed increase of the recovery capacity by the irradiation and chemical treatment. This technology could be used for the water that are injected into reservoirs, and suitable for oil field and pipeline operators, and presented a viable bacteria control method

  14. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community...... composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate...

  15. Biocorrosion of Endodontic Files through the Action of Two Species of Sulfate-reducing Bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis.

    Science.gov (United States)

    Heggendorn, Fabiano Luiz; Gonçalves, Lucio Souza; Dias, Eliane Pedra; de Oliveira Freitas Lione, Viviane; Lutterbach, Márcia Teresa Soares

    2015-08-01

    This study assessed the biocorrosive capacity of two bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis on endodontic files, as a preliminary step in the development of a biopharmaceutical, to facilitate the removal of endodontic file fragments from root canals. In the first stage, the corrosive potential of the artificial saliva medium (ASM), modified Postgate E medium (MPEM), 2.5 % sodium hypochlorite (NaOCl) solution and white medium (WM), without the inoculation of bacteria was assessed by immersion assays. In the second stage, test samples were inoculated with the two species of sulphur-reducing bacteria (SRB) on ASM and modified artificial saliva medium (MASM). In the third stage, test samples were inoculated with the same species on MPEM, ASM and MASM. All test samples were viewed under an infinite focus Alicona microscope. No test sample became corroded when immersed only in media, without bacteria. With the exception of one test sample between those inoculated with bacteria in ASM and MASM, there was no evidence of corrosion. Fifty percent of the test samples demonstrated a greater intensity of biocorrosion when compared with the initial assays. Desulfovibrio desulfuricans and D. fairfieldensis are capable of promoting biocorrosion of the steel constituent of endodontic files. This study describes the initial development of a biopharmaceutical to facilitate the removal of endodontic file fragments from root canals, which can be successfully implicated in endodontic therapy in order to avoiding parendodontic surgery or even tooth loss in such events.

  16. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  17. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  18. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    International Nuclear Information System (INIS)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R.; Fedorak, P.M.; Westlake, D.W.S.

    1991-01-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples

  19. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    Science.gov (United States)

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the

  1. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    OpenAIRE

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-01-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira,...

  2. Effects of bacterially produced precipitates on the metabolism of sulfate reducing bacteria during the bio-treatment process of copper-containing wastewater

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A large volume of bacterially produced precipitates are generated during the bio-treatment of heavy metal wastewater.The composition of the bacterially produced precipitates and its effects on sulfate reducing bacteria (SRB) in copper-containing waste stream were evaluated in this study.The elemental composition of the microbial precipitate was studied using electrodispersive X-ray spectroscopy (EDX),and it was found that the ratio of S:Cu was 1.12.Combining with the results of copper distribution in the SRB metabolism culture,which was analyzed by the sequential extraction procedure,copper in the precipitates was determined as covellite (CuS).The bacterially produced precipitates caused a decrease of the sulfate reduction rate,and the more precipitates were generated,the lower the sulfate reduction rate was.The particle sizes of bacterially generated covellite were ranging from 0.03 to 2 m by particles size distribution (PSD) analysis,which was smaller than that of the SRB cells.Transmission electron microscopy (TEM) analysis showed that the microbial covellite was deposited on the surface of the cell.The effects of the microbial precipitate on SRB metabolism were found to be weakened by increasing the precipitation time and adding microbial polymeric substances in later experiments.These results provided direct evidence that the SRB activity was inhibited by the bacterially produced covellite,which enveloped the bacterium and thus affected the metabolism of SRB on mass transfer.

  3. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  5. Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis

    Science.gov (United States)

    Čanković, Milan; Petrić, Ines; Marguš, Marija; Ciglenečki, Irena

    2017-08-01

    Highly eutrophic and euxinic seawater system of Rogoznica Lake (Croatia) was used as a study site for investigation of distribution, diversity and abundance of sulfate-reducing bacteria (SRB) during stratified conditions in the summer and winter season, by targeting 6 phylogenetic subgroups of SRB. 16S rRNA gene sequences indicated that community cannot be directly related to cultured SRB species but rather that Rogoznica Lake harbors habitat-specific SRB populations associated to bacteria belonging to δ-Proteobacteria with few Firmicutes and Verrucomicrobium-related populations. Clear spatial-temporal shifts in the SRB community structure were observed. Results implied existence of distinct SRB populations between the water column and sediment, as well as higher diversity of the SRB occupying water layer then the ones found in the sediment. Likewise, seasonal variations in populations were observed. While SRB community was more diverse in the winter compared to the summer season in the water layer, situation was opposite in the sediment. Water layer communities seem to be more susceptible to changes of physico-chemical parameters, while those in the sediment have prorogated response to these changes. Results indicate that SRB diversity is still highly underestimated in natural environments, especially in specific habitats such as Rogoznica Lake. Presented data show a complex SRB diversity and distribution supporting the idea that habitat-specific SRB communities are important part of the anaerobic food chain in degradation of organic matter as well as cycling of sulfur and carbon species in the Lake and similar anoxic environment.

  6. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  7. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    Science.gov (United States)

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  8. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  9. Sulfate reducing potential in an estuarine beach

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    Sulfate reducing bacteria (SRB) and their activity (SRA) together with total anaerobic and aerobic bacterial flora were estimated during July 1982-April 1983 and July-August 1984 from 1, 3 and 5 cm depths using core samples. The average number (no...

  10. Metabolism of pure sulfate-reducing bacteria in the presence of ferrous ions and environmental chages of the medium; Tetsu ion sonzaika ni okeru junsuina ryusan`en kangenkin no taisha to baichi no kankyo henka

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Kawasaki (Japan). Technology and Engineering Lab.; Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering

    1996-10-15

    In this study, the pure sulfate-reducing bacteria were cultured in the medium with different Fe{sup 2+} concentration; shape and activity of the bacteria, the evolution amount of hydrogen sulfide directly related to the breath of the sulfuric acid and the change of the pH value in the medium were investigated during every time interval; and influence on the metabolism of the sulfate-reducing bacteria with Fe{sup 2+} was examined. As a result, the conclusions were obtained as follows: in the case of a medium with high Fe{sup 2+} concentration containing Fe{sup 2+} of 1.0{times}10{sup -2} molkg{sup -1}, the colloidal substance in which the main composition was considered as Fe(OH)2 were present, and they provided a comfortable place for the bacteria to grow. Correspondingly, in the case of a medium with low Fe{sup 2+} concentration containing Fe{sup 2+} of 3.6{times}10{sup -4} molkg{sup -1}, the colloidal substance was small and the number of bacteria was also few. The four kinds of shape of bacteria coexisted in the medium with increasing the culturing time. The hydrogen sulfide was mainly evolved by the bacteria with the comma like shape. During a period that this comma like bacteria actively moved, the hydrogen sulfide evolution increased. 13 refs., 6 figs., 1 tab.

  11. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins

    OpenAIRE

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-01-01

    Background The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. Results In this study, a draft genome sequence of D. biacutus ...

  12. Metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium; Renzoku baiyo baichichu ni okeru ryusan`en kangen no taisha to tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Seo, M. [Hokkaido University, Sapporo (Japan)

    1997-08-25

    Investigations were made on metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium. Sulfate-reducing bacteria were cultured for 50 days by supplying the culturing medium prepared to a prescribed chemical composition (containing Fe {sup 2+} at 0.01 mol/kg) at a rate of 10 cm {sup 3}/h, and drawing them out at the same rate. Test carbon steel pieces were immersed into this culturing medium. As a result, the following matters were clarified: the number of bacteria is maintained at more than 10 {sup 10}/cm{sup 3} after several days since inauguration of the immersion, with the bacteria stably producing H2S and FeS until the culturing is finished; comma-shaped bacteria which move actively and rod-shaped bacteria which do not move very actively exist in the culturing medium; a black film has been produced on surface of the test pieces throughout the culturing period, and satin-like corrosion was found underneath the surface; and weight increase of this film and weight decrease of the lower layer progress as the time lapses (the weight decrease of the lower layer has reached 40 mg/cm{sup 2} in 50 days). 28 refs., 8 figs., 1 tab.

  13. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  14. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    OpenAIRE

    Axel eSchippers; Anna eBlazejak

    2011-01-01

    A quantitative, real-time PCR (Q-PCR) assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA) of sulfate-reducing bacteria (SRB) was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA) and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf)) and the Black Sea (0 – 6 mbsf). Clone libraries of aprA show that all isolated sequences originate from SRB...

  15. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  16. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Directory of Open Access Journals (Sweden)

    Lilia Montoya

    2011-01-01

    Full Text Available Our goal was to examine the composition of methanogenic archaea (MA and sulfate-reducing (SRP and sulfur-oxidizing (SOP prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain. Thus, adenosine-5′-phosphosulfate (APS reductase α (aprA and methyl coenzyme M reductase α (mcrA gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

  17. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Science.gov (United States)

    Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma

    2011-01-01

    Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180

  18. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral.

    Science.gov (United States)

    Korenblum, Elisa; Regina de Vasconcelos Goulart, Fátima; de Almeida Rodrigues, Igor; Abreu, Fernanda; Lins, Ulysses; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Valoni, Erika; Sebastián, Gina V; Alviano, Daniela Sales; Alviano, Celuta Sales; Seldin, Lucy

    2013-08-10

    The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries.

  19. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral

    Science.gov (United States)

    2013-01-01

    The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries. PMID:23938023

  20. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell

  1. Draft Genome Sequence of a Novel Desulfobacteraceae Member from a Sulfate-Reducing Bioreactor Metagenome

    OpenAIRE

    Almstrand, Robert; Pinto, Ameet J.; Figueroa, Linda A.; Sharp, Jonathan O.

    2016-01-01

    Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal? and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation.

  2. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  4. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  5. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  6. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    OpenAIRE

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remedi...

  7. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    Science.gov (United States)

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-05-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.

  8. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    Science.gov (United States)

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  9. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    Science.gov (United States)

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  10. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study

    OpenAIRE

    Lu, Haixia; Zhu, Ce; Li, Fei; Xu, Wei; Tao, Danying; Feng, Xiping

    2016-01-01

    Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis ...

  11. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  12. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    Directory of Open Access Journals (Sweden)

    Axel eSchippers

    2011-12-01

    Full Text Available A quantitative, real-time PCR (Q-PCR assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA of sulfate-reducing bacteria (SRB was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf and the Black Sea (0 – 6 mbsf. Clone libraries of aprA show that all isolated sequences originate from SRB showing a close relationship to aprA of characterised species or form a new cluster with only distant relation to aprA of isolated SRB. Below 40 mbsf no aprA genes could be amplified. This finding corresponds with results of the applied new Q-PCR assay for aprA. In contrast to the aprA the dsrA gene could be amplified up to sediment depths of 121 mbsf. Even in such an extreme environment a high diversity of this gene was detected. The 16S rRNA gene copy numbers of total Bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRB to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5 - 1 % of the 16S rRNA gene copy numbers of total Bacteria in the sediments up to a depth of ca. 40 mbsf. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 108 / g sediment close to the sediment surface to less than 105 / g sediment at 5 mbsf. In the zone without detectable sulfate in the pore water from ca. 40 – 121 mbsf (Peru margin ODP site 1227, only dsrA (but not aprA was detected with copy numbers of less than 104 / g sediment, comprising ca. 14 % of the 16S rRNA gene copy numbers of total Bacteria. In this zone sulfate might be provided for SRB by anaerobic sulfide oxidation.

  13. Corrosion behavior of carbon steel exposed for long time to an inoculation medium of sulfate-reducing bacteria; Ryusan`en kangenkin ga seisokusuru baichi ni chokikan shinshinshita tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Kawasaki (Japan). Technology and Engineering Lab.; Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering

    1996-10-15

    In this paper, carbon steel was exposed more than six weeks to an inoculation medium of the sulfate-reducing bacteria in which the Fe{sup 2+} concentration was adjusted to a fixed value, the corrosion behavior of carbon steel was investigated by measuring the weight change and surface analysis using EPMA. As a result, the conclusions were obtained as follows: in the case of the medium with high Fe{sup 2+} concentration, the corrosion rate reached a maximum. In this case, the corrosion rate was suppressed to be low during the exposure for up to three weeks, and was increased above four weeks. The corrosion rate became 0.06 mm year{sup -1} by extrapolating the weight loss during the exposure up to six weeks. This value was higher than the average corrosion rate of carbon steel in a neutral solution with deaeration. It was shown from the analysis results using the EPMA that the FeS scale area covered on the surface of carbon steel would act as a cathode, and the other area would act as an anode. The formation of a scale effectively acting as a cathode depended on the exposure time and the formation of FeS in the medium. 15 refs., 10 figs., 1 tab.

  14. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  15. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  16. Investigation of isotopic and biomolecular approaches as new bio-indicators for long term natural attenuation of monoaromatic compounds in deep terrestrial aquifers by gram-positive sporulated sulfate-reducing bacteria of the genus Desulfotomaculum.

    Directory of Open Access Journals (Sweden)

    Thomas eAüllo

    2016-02-01

    Full Text Available Deep subsurface aquifers despite difficult access, represent important water resources and, at the same time, are key locations for subsurface engineering activities for the oil and gas industries, geothermal energy and CO2 or energy storage. Formation water originating from a 760 meter-deep geological gas storage aquifer was sampled and microcosms were set up to test the biodegradation potential of BTEX by indigenous microorganisms. After a long incubation period, with several subcultures, a sulfate-reducing consortium composed of only two Desulfotomaculum populations was observed able to degrade benzene, toluene and ethylbenzene, extending the number of hydrocarbonoclastic–related species among the Desulfotomaculum genus. Furthermore, we were able to couple specific carbon and hydrogen isotopic fractionation during benzene removal and the results obtained by dual compound specific isotope analysis (εC = -2.4 ‰ ± 0.3 ‰; εH = -57 ‰ ± 0.98 ‰; AKIEC: 1.0146 ± 0.0009 and AKIEH: 1.5184 ± 0.0283 were close to those obtained previously in sulfate-reducing conditions: this finding could confirm the existence of a common enzymatic reaction involving sulfate-reducers to activate benzene anaerobically. Although we cannot assign the role of each population of Desulfotomaculum in the mono-aromatic hydrocarbon degradation, this study suggests an important role of the genus Desulfotomaculum as potential biodegrader among indigenous populations in subsurface habitats. This community represents the simplest model of benzene-degrading anaerobes originating from the deepest subterranean settings ever described. As Desulfotomaculum species are often encountered in subsurface environments, this study provides some interesting results for assessing the natural response of these specific hydrologic systems in response to BTEX contamination during remediation projects.

  17. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    Full Text Available ABSTRACT Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.

  18. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru.

    Science.gov (United States)

    Finster, Kai W; Kjeldsen, Kasper U

    2010-03-01

    Two deltaproteobacterial sulfate reducers, designated strain I.8.1(T) and I.9.1(T), were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20 degrees C at pH 7.0-8.0 and at 2.5-3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C(3-4) fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-omega9c (18%) for strain I.8.1(T) and iso-17:0-omega9c (14%) for strain I.9.1(T). The G+C contents of their genomic DNA were 45-46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141(T) and Desulfovibrio marinisediminis JCM 14577(T) represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98-99%. The level of DNA-DNA hybridization between strains I.8.1(T) and I.9.1(T) was 30-38%. The two strains shared 10-26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1(T) and I.9.1(T) represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1(T) = DSM 21390(T) = JCM 15970(T)) and D. oceani subsp. galateae (type strain, I.9.1(T) = DSM 21391(T) = JCM 15971(T)).

  19. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2014-10-01

    Full Text Available Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13 is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1 is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy.

  20. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study.

    Science.gov (United States)

    Lu, Haixia; Zhu, Ce; Li, Fei; Xu, Wei; Tao, Danying; Feng, Xiping

    2016-06-15

    Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis [Pg], Aggregatibacer actinomycetemcomitans [Aa], Fusobacterium nucleatum [Fn], Prevotella intermedia [Pi], Tannerella forsythia [Tf], and Treponema denticola [Td]) and three herpesviruses (Epstein-Barr virus [EBV], human cytomegalovirus [HCMV], and herpes simplex virus [HSV]) were detected. Socio-demographic data and oral health related behaviors, and salivary estradiol and progesterone levels were also collected. The results showed no significant differences in socio-demographic background, oral health related behaviors, and salivary estradiol and progesterone levels between the two groups (all P > 0.05). The detection rates of included periodontopathic microorganisms were not significantly different between the two groups (all P > 0.05), but the coinfection rate of EBV and Pg was significantly higher in the case group than in the control group (P = 0.028). EBV and Pg coinfection may promote the development of chronic periodontitis among pregnant women.

  1. Localized corrosion of carbon steels due to sulfate-reducing bacteria. Development of a specific sensor; Corrosion localisee des aciers au carbone induite par des bacteries sulfato-reductrices. Developpement d'un capteur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Monfort Moros, N.

    2001-11-01

    This work concerns the microbiologically influenced corrosion of carbon steels in saline anaerobic media (3% of NaCl) containing sulfato-reducing bacteria (Desulfovibrio gabonensis, DSM 10636). In these media, extreme localised corrosion occurs by pitting under the bio-film covering the metallic substrate. A sensor with concentric electrodes was designed to initiate the phenomenon of bio-corrosion, recreating the favourable conditions for growth of a corrosion pit, and then measuring the corrosion current maintained by bacterial activity. The pit initiation was achieved through either of two methods. The electrochemical conditioning involved driving the potential difference between inner and outer electrodes to values corresponding to a galvanic corrosion that can be maintained by the bacterial metabolism. The mechanical process involved removal of a portion of the bio-film by scratching, yielding galvanic potential differences equivalent to that found by the conditioning technique. This protocol was found to be applicable to a bio-corrosion study on industrial site for the monitoring of the metallic structures deterioration (patent EN 00/06114, May 2000). Thereafter, a fundamental application uses the bio-corrosion sensor for Electrochemical Impedance Spectroscopy (EIS), Electrochemical Noise Analysis (ENA) and current density cartography by the means of micro-electrodes. Thus, the EIS technique reveals the importance of the FeS corrosion products for initiation of bio-corrosion start on carbon steel. In addition, depending on the method used to create a pit, the ENA gives rise to supplementary processes (gaseous release) disturbing the bio-corrosion detection. The beginning of a bio-corrosion process on a clean surface surrounded with bio-film was confirmed by the current density cartography. These different results establish the sensor with concentric electrodes as an indispensable tool for bio-corrosion studies, both in the laboratory and on industrial sites

  2. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  3. Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling.

    Science.gov (United States)

    Pereyra, Luciana P; Hiibel, Sage R; Perrault, Elizabeth M; Reardon, Kenneth F; Pruden, Amy

    2012-10-01

    Sulfate-reducing permeable reactive zones (SR-PRZs) depend upon a complex microbial community to utilize a lignocellulosic substrate and produce sulfides, which remediate mine drainage by binding heavy metals. To gain insight into the impact of the microbial community composition on the startup time and pseudo-steady-state performance, functional genes corresponding to cellulose-degrading (CD), fermentative, sulfate-reducing, and methanogenic microorganisms were characterized in columns simulating SR-PRZs using quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE). Duplicate columns were bioaugmented with sulfate-reducing or CD bacteria or biostimulated with ethanol or carboxymethyl cellulose and compared with baseline dairy manure inoculum and uninoculated controls. Sulfate removal began after ~ 15 days for all columns and pseudo-steady state was achieved by Day 30. Despite similar performance, DGGE profiles of 16S rRNA gene and functional genes at pseudo-steady state were distinct among the column treatments, suggesting the potential to control ultimate microbial community composition via bioaugmentation and biostimulation. qPCR revealed enrichment of functional genes in all columns between the initial and pseudo-steady-state time points. This is the first functional gene-based study of CD, fermentative and sulfate-reducing bacteria and methanogenic archaea in a lignocellulose-based environment and provides new qualitative and quantitative insight into startup of a complex microbial system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents are to be ex...

  5. MINE WASTE TECHNOLOGY PROGRAM - SULFATE REDUCING BACTERIA REACTIVE WALL DEMO

    Science.gov (United States)

    Efforts reported in this document focused on the demonstration of a passive technology that could be used for remediation ofthousands of abandoned mines existing in the Western United States that emanate acid mine drainage (AMD). This passive remedial technology takes ad...

  6. Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water

    Science.gov (United States)

    Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

    2012-12-01

    Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21

  7. Metabolic niche of a prominent sulfate-reducing human gut bacterium

    OpenAIRE

    Rey, Federico E.; Gonzalez, Mark D.; Cheng, Jiye; Wu, Meng; Ahern, Philip P.; Gordon, Jeffrey I.

    2013-01-01

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types ...

  8. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor.

    Science.gov (United States)

    Wang, Depeng; Liu, Bo; Ding, Xinchun; Sun, Xinbo; Liang, Zi; Sheng, Shixiong; Du, Lingfeng

    2017-10-01

    Ammonia is widely distributed in sulfate-reducing bioreactor dealing with sulfate wastewater, which shows potential effect on the metabolic pathway of sulfate and ammonia. This study investigates the sulfate-reducing efficiency and microbial community composition in the sulfate-reducing EGSB reactor with the increasing ammonia loading. Results indicated that, compared with low ammonia loading (166-666 mg/L), the sulfate and organic matter removal efficiencies were improved gradually with the appropriate ammonia loading (1000-2000 mg/L), which increased from 63.58 ± 3.81 to 71.08 ± 1.36% and from 66.24 ± 1.32 to 81.88 ± 1.83%, respectively. Meanwhile, with the appropriate ratio of ammonia and sulfate (1.5-3.0) and hydraulic retention time (21 h), the sulfate-reducing anaerobic ammonia oxidation (SRAO) process was occurred efficiently, inducing the accumulation of S 0 (270 mg/L) and the simultaneous ammonia removal (70.83%) in EGSB reactor. Moreover, the key sulfate-reducing bacteria (SRB) (Desulfovibrio) and denitrification bacteria (Pseudomonas and Alcaligenes) were responsible for the sulfate and nitrogen removal in these phases, which accounted for 3.66-5.54 and 3.85-9.13%, respectively. However, as the ammonia loading higher than 3000 mg/L (phases 9 and 10), the sulfate-reducing efficiency was decreased to only 28.3 ± 1.26% with the ammonia removal rate of 18.4 ± 3.37% in the EGSB reactor. Meanwhile, the predominant SRB in phases 9 and 10 were Desulfomicrobium (1.22-1.99%) and Desulfocurvus (4.0-5.46%), and the denitrification bacteria accounted for only 0.88% (phase 10), indicating the low nitrogen removal rate.

  9. Transformation of carbon tetrachloride under sulfate reducing conditions

    NARCIS (Netherlands)

    Best, Jappe H. de; Salminen, E.; Doddema, Hans J.; Janssen, Dick B.; Harder, Wim

    1998-01-01

    The removal of carbon tetrachloride under sulfate reducing conditions was studied in an anaerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 µM, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon

  10. Transformation of carbon tetrachloride under sulfate reducing conditions

    NARCIS (Netherlands)

    de Best, JH; Salminen, E; Doddema, HJ; Janssen, DB; Harder, W

    1997-01-01

    The removal of carbon tetrachloride under sulfate reducing conditions was studied in an anaerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 mu M, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon

  11. Characterization of sulfate-reducing granular sludge in the SANI(®) process.

    Science.gov (United States)

    Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao

    2013-12-01

    Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 μm, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. Copyright © 2013 Elsevier

  12. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  13. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  14. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  15. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru

    DEFF Research Database (Denmark)

    Finster, Kai; Kjeldsen, Kasper Urup

    2010-01-01

    Two deltaproteobacterial sulfate reducers, designated strain I.8.1T and I.9.1T, were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally...... growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-ω9c (18%) for strain I.8.1T and iso-17:0-ω9c (14...

  16. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways.

    Science.gov (United States)

    Sousa, Diana Z; Visser, Michael; van Gelder, Antonie H; Boeren, Sjef; Pieterse, Mervin M; Pinkse, Martijn W H; Verhaert, Peter D E M; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J M

    2018-01-16

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17 T , isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.

  17. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  18. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  19. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  20. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  1. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

    Science.gov (United States)

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M

    2009-07-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.

  2. Linking Microbial Ecology to Geochemistry in Sulfate Reducing Systems

    Science.gov (United States)

    Drennan, D. M.; Lee, I.; Landkamer, L.; Almstrand, R.; Figueroa, L. A.; Sharp, J. H.

    2013-12-01

    Sulfate reducing bioreactors (SRBRs) can serve as passive treatment systems for mining influenced waters (MIW). An enhanced understanding of the biogeochemistry and efficacy of SRBRs can be achieved by combining molecular biological and geochemical techniques in both field and column settings. To this end, a spatial and temporal sequence of eight pilot-scale columns were analyzed employing a multidisciplinary approach using ICP-AES, next-generation sequencing, and SEM-EDX to explore the effects of variable substrate on community structure and performance (measured by Zn removal). All pilot scale reactors contained 30% limestone by mass, 7 of the 8 had variable amounts of woodchips, sawdust, and alfalfa hay, and an 8th column where the only carbon source was walnut shells. High throughput sequencing of DNA extracted from liquid in pilot-scale columns reveals, similarly to an analogous field system in Arizona, a dominance of Proteobacteria. However, after the first pore volume, performance differences between substrate permutations emerged, where columns containing exclusively walnut shells or sawdust exhibited a more effective startup and metal removal than did columns containing exclusively woodchips or alfalfa hay. SEM-EDX analysis revealed the initial formation of gypsum (CaSO4) precipitates regardless of substrate. Zn was observed in the presence of Ca, S, and O in some column samples, suggesting there was co-precipitation of Zn and CaSO4. This is congruent with micro-XAS analysis of field data suggesting iron sulfides were co-precipitating with gypsum. A SEM-EDX analysis from a subsequent sampling event (8 months into operation) indicated that precipitation may be shifting to ZnS and ZnCO3. Biplots employing Canonical Correspondence Analysis (CCA) describe how diversity scales with performance and substrate selection, and how community shifts may result in differential performance and precipitation in response to selective pressure of bioreactor material on

  3. Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?

    Science.gov (United States)

    Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.

    2017-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant

  4. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    International Nuclear Information System (INIS)

    Angelov, Anatoliy; Bratkova, Svetlana; Loukanov, Alexandre

    2013-01-01

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H 2 S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m −2 with current density of 3.2 A m −2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  5. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.

    Science.gov (United States)

    Burns, Andrew S; Pugh, Charles W; Segid, Yosief T; Behum, Paul T; Lefticariu, Liliana; Bender, Kelly S

    2012-06-01

    The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.

  6. Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chang, Yun-Juan [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2012-01-01

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)).

    Science.gov (United States)

    Anderson, Iain; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-05-25

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum.

    Science.gov (United States)

    Kalai-Grami, Leila; Saidi, Sabrine; Bachkouel, Sarra; Ben Slimene, Imen; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rebah; Limam, Ferid

    2014-09-01

    A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed.

  9. Isolation and characterisation of new putative probiotic bacteria from human colonic flora.

    Science.gov (United States)

    Raz, Irit; Gollop, Natan; Polak-Charcon, Sylvie; Schwartz, Betty

    2007-04-01

    The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1beta and TNF-alpha were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii- fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.

  10. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade.

    Science.gov (United States)

    Schreiber, Lars; Holler, Thomas; Knittel, Katrin; Meyerdierks, Anke; Amann, Rudolf

    2010-08-01

    The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Whereas three clades of ANME have been repeatedly studied with respect to phylogeny, key genes and genomic capabilities, little is known about their sulfate-reducing partner. In order to identify the partner of anaerobic methanotrophs of the ANME-2 clade, bacterial 16S rRNA gene libraries were constructed from cultures highly enriched for ANME-2a and ANME-2c in consortia with Deltaproteobacteria of the Desulfosarcina/Desulfococcus group (DSS). Phylogenetic analysis of those and publicly available sequences from AOM sites supported the hypothesis by Knittel and colleagues that the DSS partner belongs to the diverse SEEP-SRB1 cluster. Six subclusters of SEEP-SRB1, SEEP-SRB1a to SEEP-SRB1f, were proposed and specific oligonucleotide probes were designed. Using fluorescence in situ hybridization on samples from six different AOM sites, SEEP-SRB1a was identified as sulfate-reducing partner in up to 95% of total ANME-2 consortia. SEEP-SRB1a cells exhibited a rod-shaped, vibrioid, or coccoid morphology and were found to be associated with subgroups ANME-2a and ANME-2c. Moreover, SEEP-SRB1a was also detected in 8% to 23% of ANME-3 consortia in Haakon Mosby Mud Volcano sediments, previously described to be predominantly associated with SRB of the Desulfobulbus group. SEEP-SRB1a contributed to only 0.3% to 0.7% of all single cells in almost all samples indicating that these bacteria are highly adapted to a symbiotic relationship with ANME-2. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

    2011-05-01

    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  12. Determination of biocorrosion of low alloy steel by sulfate-reducing Desulfotomaculum sp. isolated from crude oil field

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, D.; Doenmez, G. [Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara (Turkey); Bilgic, S. [Faculty of Science, Department of Chemistry, Ankara University, Tandogan, 06100, Ankara (Turkey); Doenmez, S. [Faculty of Engineering, Department of Food Engineering, Ankara University, Diskapi, 06110 Ankara (Turkey)

    2007-11-15

    In this study corrosion behavior of low alloy steel, in the presence of anaerobic sulfate-reducing Desulfotomaculum sp. which was isolated from an oil production well, was investigated. In order to determine corrosion rates and mechanisms, mass loss measurements and electrochemical polarization studies were performed without and with bacteria in the culture medium. Scanning electron microscopic observations and energy dispersive X-ray spectra (EDS) analysis were made on steel coupons. The effect of iron concentration on corrosion behavior was determined by Tafel extrapolation method. In a sterile culture medium, as the FeSO{sub 4} . 7H{sub 2}O concentration increased, corrosion potential (E{sub cor}) values shifted towards more anodic potentials and corrosion current density (I{sub cor}) values increased considerably. After inoculation of sulfate-reducing bacteria (SRB), E{sub cor} shifted towards cathodic values. I{sub cor} values increased with increasing incubation time for 10 and 100 mg/L concentrations of FeSO{sub 4} . 7H{sub 2}O. Results have shown that the corrosion activity changed due to several factors such as bacterial metabolites, ferrous sulfide, hydrogen sulfide, iron phosphide, and cathodic depolarization effect. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. Metabolic interactions in methanogenic and sulfate-reducing bioreactors

    NARCIS (Netherlands)

    Stams, A.J.M.; Plugge, C.M.; Bok, de F.A.M.; Houten, van B.H.G.W.; Lens, P.N.L.; Dijkman, H.; Weijma, J.

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea.

  14. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field.

    Science.gov (United States)

    Lang, Susan Q; Früh-Green, Gretchen L; Bernasconi, Stefano M; Brazelton, William J; Schrenk, Matthew O; McGonigle, Julia M

    2018-01-15

    Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14 C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14 C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO 2 . Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.

  15. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    Science.gov (United States)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  16. Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C. (SUNY, Stony Brook, NY (USA) Univ. of Colorado, Boulder (USA)); Michelson, A.R.; Scranton, M.I. (SUNY, Stony Brook, NY (USA)); Banta, G.T.; Hobbie, J.E. (Marine Biological Laboratory, Woods, Hole, MA (USA)); Howarth, R.W. (Cornell Univ., Ithaca, NY (USA))

    1988-10-01

    Molecular hydrogen and acetate are believed to be key intermediates in the anaerobic remineralization of organic carbon. The authors have made measurements of the cycling of both these compounds in two marine sediments: the bioturbated sediments of Buzzards Bay, Mass., and the much more reducing sediments of Town Cove, Orleans, Mass. Hydrogen concentrations are similar in these environments (from less than 5 to 30 nM), and are within the range previously reported for coastal sediments. However, apparent hydrogen production rates differ by a factor of 60 between these two sediments and at both sites show strong correlation with measured rates of sulfate reduction. Acetate concentrations generally increased with depth in both environments; this increase was greater in Buzzards Bay (22.5 to 71.5 {mu}M) than in Town Cove (26 to 44 {mu}M). Acetate oxidation rates calculated from measured concentrations and {sup 14}C-acetate consumption rate constants suggest that the measured acetate was not all available to sulfate-reducing bacteria. Using the measured sulfate reduction rates, they estimate that between 2% and 100% of the measured acetate pool is biologically available, and that the bioavailable pool decreases with depth. A diagenetic model of the total acetate concentration suggests that consumption may be first order with respect to only a fraction of the total pool.

  17. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gó mez, Denys Kristalia; Enright, Anne Marie; Rini, Eki Listya; Buttice, Audrey L.; Kramer, Herman J M; Lens, Piet Nl L

    2014-01-01

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters

  18. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    Science.gov (United States)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an

  19. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    Energy Technology Data Exchange (ETDEWEB)

    Miletto, M.; Williams, K.H.; N' Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  20. Screening for Genes Coding for Putative Antitumor Compounds, Antimicrobial and Enzymatic Activities from Haloalkalitolerant and Haloalkaliphilic Bacteria Strains of Algerian Sahara Soils

    Directory of Open Access Journals (Sweden)

    Okba Selama

    2014-01-01

    Full Text Available Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications.

  1. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia

    Directory of Open Access Journals (Sweden)

    Hana Zouch

    2017-08-01

    Full Text Available Anaerobic biotechnology using sulfate-reducing bacteria (SRB is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG, an acidic (pH ~3 by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate and sulfate sources (i.e., sodium sulfate or PG as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia. Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

  2. Metabolic niche of a prominent sulfate-reducing human gut bacterium.

    Science.gov (United States)

    Rey, Federico E; Gonzalez, Mark D; Cheng, Jiye; Wu, Meng; Ahern, Philip P; Gordon, Jeffrey I

    2013-08-13

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.

  3. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  4. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.

    Science.gov (United States)

    Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

    2013-04-01

    Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    International Nuclear Information System (INIS)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  6. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor

    OpenAIRE

    Fadhlaoui, K.; Ben Hania, W.; Armougom, Fabrice; Bartoli, M.; Fardeau, Marie-Laure; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; Dolla, A.; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspeci...

  7. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  8. Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough.

    Directory of Open Access Journals (Sweden)

    Swapnil R Chhabra

    Full Text Available Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  9. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mahat, Nur Akma; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sahrani, Fathul Karim [School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  10. Microbially induced separation of quartz from hematite using sulfate reducing bacteria.

    Science.gov (United States)

    Prakasan, M R Sabari; Natarajan, K A

    2010-07-01

    Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.

  11. Synergy in Sulfur Cycle: The Biogeochemical Significance of Sulfate Reducing Bacteria in Syntrophic Associations

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    . Consideration of the oasis analogy for chemosyntheticcommunities at Gulf of Mexico hydrocarbon vents. Geo. Mar. Lett. 14,149-159 Douglas, A.E.,2004. Strategies in antagonistic and cooperative interactions. Microbial Evolution. Gene Establishment, survival... and fuels. Plenum, New York, pp 277?296. MacAvoy, S.A., Macko, S.A., Joye, S.B., 2002. Fatty acid carbon isotope signatures in chemosynthetic mussels and tube worms from Gulf of Mexico hydrocarbon seep communities. Chem.Geol. 185, 1 ? 8. Michaelis, W...

  12. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  13. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    International Nuclear Information System (INIS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-01-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces

  14. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Science.gov (United States)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  15. Sulfate-reducing bacteria from mangrove swamps. 2. Their ecology and physiology

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Oak, S.; Chandramohan, D.

    oxidizing SRB were widespread and occurred in numbers up to 6.62 x 103/g dry sediment. The next highest in number were lactate utilizing SRB. On an average there were more propionate and butyrate utilizers than acetate utilizers. While Agasaim at the mouth...

  16. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  17. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2003-06-01

    Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

  18. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment, Using aprA as Functional Marker Gene▿ †

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-01-01

    The dissimilatory adenosine-5′-phosposulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria. PMID:17921272

  20. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-12-01

    The dissimilatory adenosine-5'-phosphosulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria.

  1. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  2. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenge associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of wh...

  3. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at

  4. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  5. Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events

    Science.gov (United States)

    Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCRs) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be...

  6. Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events (Presentation)

    Science.gov (United States)

    Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCR) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be ...

  7. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Goorissen, H.P.; Ronteltap, M.; Hansen, T.A.; Stams, A.J.M.

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H-2/CO2, no

  8. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water......) and Desulfotomaculum (system with nitrate). In samples from the untreated site, the presence of active SRP was supported by demonstrating their activity (incubations with 35S-sulfate) and growth in batch cultures at pipeline temperature. No SRP activity was detected at reservoir temperature and in samples from...

  9. Effect of nitrate addition on the diversity and activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Sulfate-reducing prokaryotes (SRP) producing hydrogen sulfide cause severe problems like microbial corrosion, souring and plugging in seawater-injected oil production systems. Adding nitrate to the injection water is a possible strategy to control the activity of SRP by favoring the growth of both...... heterotrophic, nitrate-reducing bacteria that outcompete SRP for substrates, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To assess the effects of nitrate addition, microbial diversity (Bacteria, Archaea) and SRP activity were studied in the production waters of a nitrate-treated and a non...... their potential activity under pipeline (60°C), but not under oil reservoir conditions (80°C), indicating that the troublesome SRP were pipeline-derived. Consistent with the low amount of SRP, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were inhibited by nitrate...

  10. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  11. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  12. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor.

    Science.gov (United States)

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-29

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor.

  13. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor

    Science.gov (United States)

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor. PMID:27021522

  14. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor

    Science.gov (United States)

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor.

  15. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. TEM investigation of U6+ and Re7+ reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium

    International Nuclear Information System (INIS)

    XU, HUIFANG; BARTON, LARRY L.; CHOUDHURY, KEKA; ZHANG, PENGCHU; WANG, YIFENG

    2000-01-01

    Uranium and its fission product Tc in aerobic environment will be in the forms of UO 2 2+ and TcO 4 - . Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re 7+ by cells of Desulfovibrio desulfuricans is fast in media containing H 2 an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re 7+ is (a chemical analogue for Tc 7+ ) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO 2 2+ and TcO 4 -

  17. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Muscariello Lidia

    2006-05-01

    Full Text Available Abstract Background Genomes of gram-positive bacteria encode many putative cell-surface proteins, of which the majority has no known function. From the rapidly increasing number of available genome sequences it has become apparent that many cell-surface proteins are conserved, and frequently encoded in gene clusters or operons, suggesting common functions, and interactions of multiple components. Results A novel gene cluster encoding exclusively cell-surface proteins was identified, which is conserved in a subgroup of gram-positive bacteria. Each gene cluster generally has one copy of four new gene families called cscA, cscB, cscC and cscD. Clusters encoding these cell-surface proteins were found only in complete genomes of Lactobacillus plantarum, Lactobacillus sakei, Enterococcus faecalis, Listeria innocua, Listeria monocytogenes, Lactococcus lactis ssp lactis and Bacillus cereus and in incomplete genomes of L. lactis ssp cremoris, Lactobacillus casei, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillius brevis, Oenococcus oeni, Leuconostoc mesenteroides, and Bacillus thuringiensis. These genes are neither present in the genomes of streptococci, staphylococci and clostridia, nor in the Lactobacillus acidophilus group, suggesting a niche-specific distribution, possibly relating to association with plants. All encoded proteins have a signal peptide for secretion by the Sec-dependent pathway, while some have cell-surface anchors, novel WxL domains, and putative domains for sugar binding and degradation. Transcriptome analysis in L. plantarum shows that the cscA-D genes are co-expressed, supporting their operon organization. Many gene clusters are significantly up-regulated in a glucose-grown, ccpA-mutant derivative of L. plantarum, suggesting catabolite control. This is supported by the presence of predicted CRE-sites upstream or inside the up-regulated cscA-D gene clusters. Conclusion We propose that the CscA, CscB, CscC and Csc

  18. Sulfate-reducing bacteria from the Arabian Sea - their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    able to oxidize sulfate but also denitrify (Loka Bharathi et aI., 1988). Positive correlations were found between SRB and TLOan and SRB and AnB when the whole set ofsamples were examined together and for the region in the case ofmud bank samples (Table... at Delaware Inlet, New Zealand. The infor mation available about these forms in Indian waters has been restricted to es tuarine ecosystems (Loka Bharathi and Chandramohan, 1985; Saxena et aI., 1988). We describe here their distribution in marine sediments...

  19. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations

    NARCIS (Netherlands)

    Saad, S.; Bhatnagar, S.; Tegetmeyer, H.E.; Geelhoed, J.S.; Strous, M.; Ruff, S.E.

    2017-01-01

    SummaryFor the anaerobic remineralization of organic matter inmarine sediments, sulfate reduction coupled to fer-mentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidalsediments under defined conditions in continuousculture. We transiently exposed

  20. Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium.

    Science.gov (United States)

    Nakagawa, Tatsunori; Sato, Shinya; Yamamoto, Yoko; Fukui, Manabu

    2002-06-01

    The microbial community structure and successive changes in a mesophilic ethylbenzene-degrading sulfate-reducing consortium were for the first time clarified by the denaturing gradient gel electrophoresis (DGGE) analysis of the PCR amplified 16S rRNA gene fragments. At least ten bands on the DGGE gel were detected in the stationary phase. Phylogenetic analysis of the DGGE bands revealed that the consortium consisted of different eubacterial phyla including the delta subgroup of Proteobacteria, the order Sphingobacteriales, the order Spirochaetales, and the unknown bacterium. The most abundant band C was closely related to strain mXyS1, an m-xylene-degrading sulfate-reducing bacterium (SRB), and occurred as a sole band on DGGE gels in the logarithmic growth phase that 40% ethylbenzene was consumed accompanied by sulfide production. During further prolonged incubation, the dominancy of band C did not change. These results suggest that SRB corresponds to the most abundant band C and contributes mainly to the degradation of ethylbenzene coupled with sulfate reduction.

  1. The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus.

    Directory of Open Access Journals (Sweden)

    Nathalie Pradel

    Full Text Available Desulfovibrio piezophilus strain C1TLV30(T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle.

  2. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L.

    2004-01-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  3. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)

    Science.gov (United States)

    Dittmar, Thorsten; Lara, Rubén José

    2001-05-01

    - Molecular lignin analyses have become a powerful quantitative approach for estimating flux and fate of vascular plant organic matter in coastal and marine environments. The use of a specific molecular biomarker requires detailed knowledge of its decomposition rates relative to the associated organic matter and its structural diagenetic changes. To gain insight into the poorly known processes of anaerobic lignin diagenesis, molecular analyses were performed in the sulfate-reducing sediment of a north Brazilian mangrove. Organic matter in samples representing different diagenetic stages (i.e., fresh litter, a sediment core, and percolating water) was characterized by alkaline CuO oxidation for lignin composition, element (C, N), and stable carbon isotope analyses. On the basis of these results and on a balance model, long-term in situ decomposition rates of lignin in sulfate-reducing sediments were estimated for the first time. The half-life ( T1/2) of lignin derived from mangrove leaf litter (mainly Rhizophora mangle) was ˜150 yr in the upper 1.5 m of the sediment. Associated organic carbon from leaf tissue was depleted to ˜75% within weeks, followed by a slow mineralization in the sediment ( T1/2 ≈ 300 yr). Unlike the known pathways of lignin diagenesis, even highly degraded lignin did not show any alterations of the propyl or methoxyl side chains, as evident from stable acid to aldehyde ratios and the proportion of methoxylated phenols (vanillyl and syringyl phenols). Aromatic ring cleavage is probably the principal mechanism for lignin decay in the studied environment. Cinnamyl phenols were highly abundant in mangrove leaves and were rapidly depleted during early diagenesis. Thus, the cinnamyl to vanillyl ratio could be used as a tracer for early diagenesis even under the sulfate-reducing conditions. Syringyl phenols were removed from dissolved organic matter in interstitial water, probably by sorption onto the sediment. Suspended organic matter in a

  4. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.

    Science.gov (United States)

    Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D

    2012-03-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. © 2011 Blackwell Publishing Ltd.

  5. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  6. Growth of sulfate reducers in deep-subseafloor sediments stimulated by crustal fluids

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2012-02-01

    Full Text Available On a global scale, crustal fluids fuel a substantial part of the deep subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from a sediment column of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301 which is divided into three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone and a second (~140 m thick sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. Sulfate reducers were isolated from near-surface and near-basement sediments. All initial enrichments harboured specific communities of heterotrophic microorganisms. Among those, the number of isolated spore-forming Firmicutes decreased from 60% to 21% with sediment depth. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp. and Desulfovibrio aespoeensis were recovered from the upper sediment layers (1.3-9.1 meters below seafloor, mbsf. Several strains of Desulfovibrio indonesiensis and one relative of Desulfotignum balticum were isolated from near-basement sediments (240-262 mbsf. The physiological investigation of strains affiliated to D. aespoeensis, D. indonesiensis and D. balticum indicated that they were all able to use sulfate, thiosulfate and sulfite as electron acceptors. In the presence of sulfate, they grew strain-specifically on a few short-chain n-alcohols and fatty acids, only. The strains fermented either ethanol, pyruvate or betaine. Interestingly, all strains utilized hydrogen and the isolate affiliated to D. indonesiensis even exhibited an autotrophic life-mode. Thus, in the deep subseafloor where organic substrates are limited or hardly degradable, hydrogen might become an essential electron donor. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from

  7. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs......, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields...... were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed...

  9. Effect of nitrate addition on prokaryotic diversity and the activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Adding nitrate to injection water is a possible strategy to control the activity of sulfate-reducing prokaryotes (SRP) in oil production system. To assess the effects of nitrate addition, prokaryotic diversity (Bacteria, Archaea, SRP) and SRP activity were studied in the production waters......-treated site was additionally supported by demonstrating their potential activity at 58°C, indicating that the troublesome SRP were pipeline-derived. Consistent with the low frequency of SRP in the clone libraries, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were...... inhibited by nitrate addition. Visualization and quantification of the identified troublesome prokaryotes and potential competitors using the CARD-FISH technique will be performed on production water from both sites....

  10. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria

    Directory of Open Access Journals (Sweden)

    Bamford Dennis H

    2007-07-01

    Full Text Available Abstract Background The origin and evolution of viruses is currently a heavily discussed issue. One element in this discussion is the innate viral "self" concept, which suggests that viral structures and functions can be divided into two categories. The first category consists of genetic determinants that are inherited from a viral ancestor and encode the viral "self". The second group consists of another set of structures and functions, the "nonself", which is interchangeable between different viruses and can be obtained via lateral gene transfer. Comparing the structures and sequences of the "self" elements, we have proposed that viruses can be grouped into lineages regardless of which domain of life (bacteria, archaea, eukarya they infect. It has also been suggested that viruses are ancient and possibly predate modern cells. Results Here we identified thirteen putative prophages (viral genomes integrated into bacterial chromosome closely related to the virulent icosahedral tailless lipid-containing bacteriophage PM2. Using the comparative genomics approach, we present evidence to support the viral "self" hypothesis and divide genes of the bacteriophage PM2 and related prophages into "self" and "nonself" categories. Conclusion We show here that the previously proposed most conserved viral "self" determinants, the major coat protein and the packaging ATPase, were the only proteins that could be recognized in all detected corticoviral elements. We also argue here that the genes needed for viral genome replication, as well as for host cell lysis, belong to the "nonself" category of genes. Furthermore, we suggest that abundance of PM2-like viruses in the aquatic environment as well as their importance in the ecology of aquatic microorganisms might have been underestimated.

  11. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  12. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  13. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate.

    Science.gov (United States)

    Schink, Bernhard; Thiemann, Volker; Laue, Heike; Friedrich, Michael W

    2002-05-01

    A new sulfate-reducing bacterium was isolated from marine sediment with phosphite as sole electron donor and CO(2) as the only carbon source. Strain FiPS-3 grew slowly, with doubling times of 3-4 days, and oxidized phosphite, hydrogen, formate, acetate, fumarate, pyruvate, glycine, glutamate, and other substrates nearly completely, with concomitant reduction of sulfate to sulfide. Acetate was formed as a side product to a small extent. Glucose, arabinose, and proline were partly oxidized and partly fermented to acetate plus propionate. Growth with phosphite, hydrogen, or formate was autotrophic. Also, in the presence of sulfate, CO dehydrogenase was present, and added acetate did not increase growth rates or growth yields. In the absence of sulfate, phosphite oxidation was coupled to homoacetogenic acetate formation, with growth yields similar to those in the presence of sulfate. Cells were small rods, 0.6 - 0.8 x 2-4 microm in size, and gram-negative, with a G+C content of 53.9 mol%. They contained desulforubidin, but no desulfoviridin. Based on sequence analysis of the 16S rRNA gene and the sulfite reductase genes dsrAB, strain FiPS-3 was found to be closely related to Desulfotignum balticum. However, physiological properties differed in many points from those of D. balticum. These findings justify the establishment of a new species, Desulfotignum phosphitoxidans.

  14. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.

    Science.gov (United States)

    Siegert, Michael; Cichocka, Danuta; Herrmann, Steffi; Gründger, Friederike; Feisthauer, Stefan; Richnow, Hans-Hermann; Springael, Dirk; Krüger, Martin

    2011-02-01

    The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, Ulises [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico); Celis, Lourdes B. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Poggi, Hector [Department of Biotechnology and Bioengineering, CINVESTAV, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 D.F. (Mexico); Meraz, Monica, E-mail: meraz@xanum.uam.mx [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico)

    2010-07-15

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC{sub 50} values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC{sub 50} values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  16. Comparison between sodium hypochlorite and copper sulfate reducer in lightening of overexposed working length radiographs

    Directory of Open Access Journals (Sweden)

    Fatemeh Ezoddini Ardakani

    2015-12-01

    Full Text Available Objectives: The aims of this study were to test whether lightening of the overexposed radiographs improve determination of endodontic files length and whether lightened radiographs are comparable with ideally exposed radiographs. Material and Methods: Four dried human skull coated with soft tissue-equivalent wax used for exposing radiographs of the upper molars. First, the endodontic file was placed in full length of the root and four series of radiographs obtained. The time to expose the first series was unchanged (standard group but increased for the other three series.  Two series of overexposed radiographs set as test groups (one lightened with copper sulfate reducer and the other lightened with sodium hypochlorite and one series set as control group. Then the endodontic file placed 2mm short in the root and four series of radiographs obtained like the former. A viewer evaluated radiographs. ROC curves were obtained and areas under the curves were calculated. Sensitivity, specificity and Cohen’s kappa was calculated. Results: The average area under ROC curves was 1, 0.995,1 and 0.643 for the standard, Copper sulfate, sodium hypochlorite and the control group, respectively. Sodium hypochlorite show a better performance in terms of sensitivity and specificity compared to Copper sulfate. Differences between the test radiographs and standard and control radiographs were significant (p

  17. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    NARCIS (Netherlands)

    Gonzalez-Gil, G.; Lopes, S.I.C.; Saikaly, P.E.; Lens, P.N.L.

    2012-01-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4 g COD l(reactor)(-1) d(-1)) and sulfate at different COD/SO42- ratios. During the

  18. Homology modeling of dissimilatory APS reductases (AprBA of sulfur-oxidizing and sulfate-reducing prokaryotes.

    Directory of Open Access Journals (Sweden)

    Birte Meyer

    Full Text Available BACKGROUND: The dissimilatory adenosine-5'-phosphosulfate (APS reductase (cofactors flavin adenine dinucleotide, FAD, and two [4Fe-4S] centers catalyzes the transformation of APS to sulfite and AMP in sulfate-reducing prokaryotes (SRP; in sulfur-oxidizing bacteria (SOB it has been suggested to operate in the reverse direction. Recently, the three-dimensional structure of the Archaeoglobus fulgidus enzyme has been determined in different catalytically relevant states providing insights into its reaction cycle. METHODOLOGY/PRINCIPAL FINDINGS: Full-length AprBA sequences from 20 phylogenetically distinct SRP and SOB species were used for homology modeling. In general, the average accuracy of the calculated models was sufficiently good to allow a structural and functional comparison between the beta- and alpha-subunit structures (78.8-99.3% and 89.5-96.8% of the AprB and AprA main chain atoms, respectively, had root mean square deviations below 1 A with respect to the template structures. Besides their overall conformity, the SRP- and SOB-derived models revealed the existence of individual adaptations at the electron-transferring AprB protein surface presumably resulting from docking to different electron donor/acceptor proteins. These structural alterations correlated with the protein phylogeny (three major phylogenetic lineages: (1 SRP including LGT-affected Archaeoglobi and SOB of Apr lineage II, (2 crenarchaeal SRP Caldivirga and Pyrobaculum, and (3 SOB of the distinct Apr lineage I and the presence of potential APS reductase-interacting redox complexes. The almost identical protein matrices surrounding both [4Fe-4S] clusters, the FAD cofactor, the active site channel and center within the AprB/A models of SRP and SOB point to a highly similar catalytic process of APS reduction/sulfite oxidation independent of the metabolism type the APS reductase is involved in and the species it has been originated from. CONCLUSIONS: Based on the comparative

  19. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Hoang-Yen T. [Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Chen, Yu-Wei [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Belzile, Nelson, E-mail: nbelzile@laurentian.ca [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada); Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 (Canada)

    2013-04-01

    Cultures of the sulfate reducing bacteria Desulfovibrio desulfuricans were grown under anoxic conditions to study the effect of added sulfide, selenite and mercuric ions. A chemical trap consisting in a CuSO{sub 4} solution was used to control the poisoning effect induced by the bacterial production of hydrogen sulfide via the precipitation of CuS. Following the addition of Hg{sup 2+}, the formation of methylmercury (MeHg) was correlated to bacterial proliferation with most of MeHg found in the culture medium. A large fraction (50–80%) of added Hg{sup 2+} to a culture ended up in a solid phase (Hg{sup 0} and likely HgS) limiting its bioavailability to cells with elemental Hg representing ∼ 40% of the solid. Following the addition of selenite, a small fraction was converted into Se(0) inside the cells and, even though the conversion to this selenium species increased with the increase of added selenite, it never reached more than 49% of the added amount. The formation of volatile dimethylselenide is suggested as another detoxification mechanism. In cultures containing both added selenite and mercuric ions, elemental forms of the two compounds were still produced and the increase of selenium in the residual fraction of the culture suggests the formation of mercuric selenite limiting the bioavailability of both elements to cells. - Highlights: ► Detoxification mechanisms of D. desulfuricans were studied in presence of added sulfide, selenite and mercuric ions. ► The poisoning effect of H{sub 2}S added to or generated by cultures of D. desulfuricans can be controlled with a chemical trap. ► The addition of selenite to cultures triggered the formation of elemental Se and other forms of volatile and non-volatile Se. ► The addition of mercuric ions to cultures led to the production of methylmercury, volatile Hg and solid mercuric sulfide. ► With both Se and Hg added to cultures, fractionation of species in solid and liquid phases suggests the formation of HgSe.

  20. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation

    International Nuclear Information System (INIS)

    Oremland, R.S.; Culbertson, C.W.; Winfrey, M.R.

    1991-01-01

    The biogeochemical cycling of mercury has received considerable attention because of the toxicity of methylmercury, its bioaccumulation in biota, and its biomagnification in aquatic food chains. The formation of methylmercury is mediated primarily by microorganisms. Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14 CH 3 HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominated estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demthylation were mainly 14 CO 2 as well as lesser amounts of 14 CH 4 . Acetogenic activity resulted in fixation of some 14 CO 2 produced from 14 CH 3 HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14 CH 4 , while aerobic demethylation in freshwater sediments produced small amounts of both 14 CH 4 and 14 CO 2 . Two species of Desulfovibrio produced only traces of 14 CH 4 from 14 CH 3 HgI, while a culture of a methylotrophic methanogen formed traces of 14 CO 2 and 14 CH 4 when grown on trimethylamine in the presence of the 14 CH 3 HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates

  1. Sulfur isotopic and proteomic profiles of sulfate reducers grown under differential steady-states

    Science.gov (United States)

    Leavitt, W.; Venceslau, S.; Waldbauer, J.; Smith, D. A.; Boidi, F. J.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The product sulfide is depleted in the heavier isotopes of sulfur, relative to the reactant sulfate, consistent with a normal kinetic isotope effect. However, the magnitude of the net fractionation during MSR can range over a range of 70 permil, consistent with a multi-step set of reactions. This range in MSR fractionation has been shown to mainly depend on: i) the cell-specific sulfate reduction rate (csSRR), and ii) the ambient sulfate concentration. However, the fractionation under identical conditions differs among strains (Bradley et al. 2016. Geobio), and so must also be mediated by strain-specific processes, such as the nature and quantity of individual proteins involved in sulfate reduction, electron transport, and growth. In recent work we have examined the influence of electron donor, electron acceptor, and co-limitation under controlled steady-state culture conditions in order better inform models of MSR isotope fractionation, and the physiological and isotopic response to differential environmental forcings (e.g. Leavitt et al. (2013) PNAS). Recent models of the fractionation response to MSR rate (c.f. Bradley 2016; Wing & Halevy, 2016) make specific predictions for the responses of the cellular metabolome and proteome. Here we compare the steady-state S-isotopic fractionation and proteome of `fast' versus `slow' grown D. vulgaris, using replicate chemostats under electron donor limitation. We observe clear and statistically robust changes in some key central MSR and C-metabolism enzymes, though a host of the critical energy-transfer enzymes show no statistically discernable change. We discuss these results in light of recent theoretical advances and their relevance to modern and ancient

  2. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated wetland

    Directory of Open Access Journals (Sweden)

    John W Moreau

    2013-03-01

    Full Text Available Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  3. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach

    DEFF Research Database (Denmark)

    Llobet-Brossa, E.; Rabus, R.; Böttcher, M.

    2002-01-01

    by the presence of acid-volatile sulfides (AVS, essentially iron monosulfide). Stable sulfur isotope discrimination between dissolved sulfate and AVS was dominated by sulfate reduction. The diversity of SRB was studied using denaturant gradient gel electrophoresis of 16S rDNA, phospholipid fatty acid analysis...

  4. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    Science.gov (United States)

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  5. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiemin [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Xuemei; Li, Yuguang [101 Institute, Ministry of Civil Affairs, Beijing 100070 (China); Xing, Jianmin, E-mail: jmxing@ipe.ac.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China)

    2015-09-15

    Highlights: • Bacterial communities of haloalkaliphilic bioreactors were investigated. • MiSeq was first used in analysis of communities of haloalkaliphilic bioreactors. • Electron donors had significant effect on bacterial communities. - Abstract: Biological technology used to treat flue gas is useful to replace conventional treatment, but there is sulfide inhibition. However, no sulfide toxicity effect was observed in haloalkaliphilic bioreactors. The performance of the ethanol-fed bioreactor was better than that of lactate-, glucose-, and formate-fed bioreactor, respectively. To support this result strongly, Illumina MiSeq paired-end sequencing of 16S rRNA gene was applied to investigate the bacterial communities. A total of 389,971 effective sequences were obtained and all of them were assigned to 10,220 operational taxonomic units (OTUs) at a 97% similarity. Bacterial communities in the glucose-fed bioreactor showed the greatest richness and evenness. The highest relative abundance of sulfate-reducing bacteria (SRB) was found in the ethanol-fed bioreactor, which can explain why the performance of the ethanol-fed bioreactor was the best. Different types of SRB, sulfur-oxidizing bacteria, and sulfur-reducing bacteria were detected, indicating that sulfur may be cycled among these microorganisms. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, many rare microorganisms were detected, such as Halanaerobium, Halothiobacillus, Desulfonatronum, Syntrophobacter, and Fusibacter. 16S rRNA gene sequencing of these bacteria would provide more functional and phylogenetic information about the bacterial communities.

  6. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang, E-mail: xiesg@pku.edu.cn

    2015-04-09

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg{sup −1}) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor.

  7. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.

    Science.gov (United States)

    Webster, Gordon; Watt, Lynsey C; Rinna, Joachim; Fry, John C; Evershed, Richard P; Parkes, R John; Weightman, Andrew J

    2006-09-01

    Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In

  8. Methods and Techniques of Sampling, Culturing and Identifying of Subsurface Bacteria

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon

    2010-11-01

    This report described sampling, culturing and identifying of KURT underground bacteria, which existed as iron-, manganese-, and sulfate-reducing bacteria. The methods of culturing and media preparation were different by bacteria species affecting bacteria growth-rates. It will be possible for the cultured bacteria to be used for various applied experiments and researches in the future

  9. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    Energy Technology Data Exchange (ETDEWEB)

    Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the

  10. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France); Bethencourt, M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain)]. E-mail: manuel.bethencourt@uca.es; Botana, F.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Cano, M.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Sanchez-Amaya, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Corzo, A. [Departamento de Biologia, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Garcia de Lomas, J. [Departamento de Biologia, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Fardeau, M.L. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France); Ollivier, B. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France)

    2006-09-15

    The hydrogenotrophic sulfate-reducing bacterium (SRB) Desulfovibrio capillatus (DSM14982{sup T}) was isolated from an oil field separator with serious corrosion problems; this is the study of its role in the corrosion of carbon steels under anaerobic conditions. Immersion tests with two steel alloys, St-35.8 (typical carbon steel employed in European naval industry), and API-5XL52 (weathering alloy steel employed in Mexican oil industries) were performed. Total exposure was 45 days and different concentrations of thiosulfate as electron acceptor for bacterial growth were employed. The samples immersed in media with SRB undergo fast activation and numerous active sites form on the surface. Microscopic observations were made by environmental scanning electron microscopy (ESEM). Weight loss and electrochemical testing included open circuit potential (E {sub corr}), polarization resistance (R {sub p}), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were measured with and without bacteria in the culture medium in order to determine corrosion rates and mechanisms. All electrochemical techniques have shown that after the end of the exponential phase the corrosion activity notably increased due to the high concentration of bacterial metabolites. Finally, the corrosion behavior of API-5XL52 was worse than St-35.8.

  11. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator

    International Nuclear Information System (INIS)

    Miranda, E.; Bethencourt, M.; Botana, F.J.; Cano, M.J.; Sanchez-Amaya, J.M.; Corzo, A.; Garcia de Lomas, J.; Fardeau, M.L.; Ollivier, B.

    2006-01-01

    The hydrogenotrophic sulfate-reducing bacterium (SRB) Desulfovibrio capillatus (DSM14982 T ) was isolated from an oil field separator with serious corrosion problems; this is the study of its role in the corrosion of carbon steels under anaerobic conditions. Immersion tests with two steel alloys, St-35.8 (typical carbon steel employed in European naval industry), and API-5XL52 (weathering alloy steel employed in Mexican oil industries) were performed. Total exposure was 45 days and different concentrations of thiosulfate as electron acceptor for bacterial growth were employed. The samples immersed in media with SRB undergo fast activation and numerous active sites form on the surface. Microscopic observations were made by environmental scanning electron microscopy (ESEM). Weight loss and electrochemical testing included open circuit potential (E corr ), polarization resistance (R p ), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were measured with and without bacteria in the culture medium in order to determine corrosion rates and mechanisms. All electrochemical techniques have shown that after the end of the exponential phase the corrosion activity notably increased due to the high concentration of bacterial metabolites. Finally, the corrosion behavior of API-5XL52 was worse than St-35.8

  12. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-Cyanobacteria consortia in the low-nitrogen Indian Ocean

    DEFF Research Database (Denmark)

    Farnelid, H.; Tarangkoon, Woraporn; Hansen, Gert

    2010-01-01

    that the symbionts fix gaseous nitrogen (N2). Individual heterotrophic dinoflagellates containing cyanobacterial symbionts were isolated from the open Indian Ocean and off Western Australia, and characterized using light microscopy, transmission electron microscopy (TEM), and nitrogenase (nifH) gene amplification......, cloning, and sequencing. Cyanobacteria, heterotrophic bacteria and eukaryotic algae were recognized as symbionts of the heterotrophic dinoflagellates. nifH gene sequences were obtained from 23 of 37 (62%) specimens of dinoflagellates (Ornithocercus spp. and Amphisolenia spp.). Interestingly, only 2...... specimens contained cyanobacterial nifH sequences, while 21 specimens contained nifH genes related to heterotrophic bacteria. Of the 137 nifH sequences obtained 68% were most similar to Alpha-, Beta-, and Gammaproteobacteria, 8% clustered with anaerobic bacteria, and 5% were related to second alternative...

  13. Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel

    Czech Academy of Sciences Publication Activity Database

    Sørensen, K.; Řeháková, Klára; Zapomělová, Eliška; Oren, A.

    2009-01-01

    Roč. 56, 2-3 (2009), s. 275-284 ISSN 0948-3055. [GAP workshop /8./. Eilat, 30.03.2008-08.04.2008] R&D Projects: GA ČR(CZ) GA206/06/0462; GA AV ČR(CZ) KJB600960703; GA AV ČR(CZ) 1QS600170504 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60050516 Keywords : salterns * microbial community * molecular ecology * phototrohs * sulfate reducers * methanogens Subject RIV: EH - Ecology, Behaviour Impact factor: 1.743, year: 2009

  14. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea

    Science.gov (United States)

    Maltby, Johanna; Steinle, Lea; Löscher, Carolin R.; Bange, Hermann W.; Fischer, Martin A.; Schmidt, Mark; Treude, Tina

    2018-01-01

    Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0-30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area Boknis Eck quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular

  15. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Maltby

    2018-01-01

    Full Text Available Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis was investigated in sediments (0–30 cm below seafloor, cm b.s.f. of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area Boknis Eck quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1 unaltered sediment batch incubations (net methanogenesis, (2 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis, (3 manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor, 2-bromoethanesulfonate (methanogen inhibitor, or methanol (noncompetitive substrate, potential methanogenesis, and (4 the addition of 13C-labeled methanol (potential methylotrophic methanogenesis. After incubation with

  16. The optimal ecological factors and the denitrification populationof a denitrifying process for sulfate reducing bacteriainhibition

    Science.gov (United States)

    Li, Chunying

    2018-02-01

    SRB have great negative impacts on the oil production in Daqing Oil field. A continuous-flow anaerobic baffled reactors (ABR) are applied to investigate the feasibility and optimal ecological factors for the inhibition of SRB by denitrifying bacteria (DNB). The results showed that the SO42- to NO3- concentration ratio (SO42-/NO3-) are the most important ecological factor. The input of NO3- and lower COD can enhance the inhibition of S2-production effectively. The effective time of sulfate reduction is 6 h. Complete inhibition of SRB is obtained when the influent COD concentration is 600 mg/L, the SO42-/NO3- is 1/1 (600 mg/L for each), N is added simultaneously in the 2# and the 5# ABR chambers. By extracting the total DNA of wastewater from the effective chamber, 16SrDNA clones of a bacterium had been constructed. It is showed that the Proteobacteria accounted for eighty- four percent of the total clones. The dominant species was the Neisseria. Sixteen percent of the total clones were the Bacilli of Frimicutes. It indicated that DNB was effective and feasible for SRB inhibition.

  17. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    Science.gov (United States)

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  18. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    OpenAIRE

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetit...

  19. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G

    2013-03-01

    A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.

  20. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  1. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring.

    Science.gov (United States)

    Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue'e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang

    2017-01-01

    Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO 4-x S x 2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  2. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    KAUST Repository

    Gonzalez-Gil, Graciela; Lopes, Sí lvia I C; Saikaly, Pascal; Lens, Piet Nl L

    2012-01-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4gCODl reactor -1d -1) and sulfate at different COD/SO 4 2- ratios. During the start-up of such acidogenic systems, an initial leaching of trace elements from the inoculum sludge occurred regardless of trace elements supplementation in the reactor influent. The granular sludge maintained the physical structure despite high Fe leaching. After start-up and nonetheless the acidic conditions, Co, Ni, Cu, Zn, Mo and Se were retained or accumulated by the sludge when added. Particularly, Ni and Co accumulated in the carbonates and exchangeable fractions ensuring potential bioavailability. Otherwise, the initial stock in the inoculum sludge sufficed to operate the process for nearly 1year without supplementation of trace elements and no significant sludge wash-out occurred. © 2012 Elsevier Ltd.

  3. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    KAUST Repository

    Gonzalez-Gil, Graciela

    2012-12-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4gCODl reactor -1d -1) and sulfate at different COD/SO 4 2- ratios. During the start-up of such acidogenic systems, an initial leaching of trace elements from the inoculum sludge occurred regardless of trace elements supplementation in the reactor influent. The granular sludge maintained the physical structure despite high Fe leaching. After start-up and nonetheless the acidic conditions, Co, Ni, Cu, Zn, Mo and Se were retained or accumulated by the sludge when added. Particularly, Ni and Co accumulated in the carbonates and exchangeable fractions ensuring potential bioavailability. Otherwise, the initial stock in the inoculum sludge sufficed to operate the process for nearly 1year without supplementation of trace elements and no significant sludge wash-out occurred. © 2012 Elsevier Ltd.

  4. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Winderl, C.; Penning, H.; von Netzer, F.; Meckenstock, R.U.; Lueders, T. [Helmholtz Zentrum Munchen, Neuherberg (Germany)

    2010-10-15

    Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. On incubation of fresh sediments with {sup 13}C{sub 7}-toluene, the production of both sulfide and (CS{sub 2}){sup 13}CO{sub 2} was clearly coupled to the {sup 13}Clabeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only similar to 50%, pointing toward high ratios of heterotrophic CS{sub 2}-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. These findings demonstrate that the importance of non-proteobacterial populations in anaerobic aromatics degradation, as well as their specific ecophysiology in the subsurface may still be largely ungrasped.

  5. Desulfothermobacter acidiphilus gen. nov., sp. nov., a thermoacidophilic sulfate-reducing bacterium isolated from a terrestrial hot spring.

    Science.gov (United States)

    Frolov, E N; Zayulina, K S; Kopitsyn, D S; Kublanov, I V; Bonch-Osmolovskaya, E A; Chernyh, N A

    2018-03-01

    An anaerobic sulfate-reducing micro-organism, strain 3408-1 T , was isolated from a terrestrial hot spring in Kamchatka peninsula (Russia). The cells were spore-forming rods with a Gram-positive type of cell wall. The new isolate was a moderately thermoacidophilic anaerobe able to grow either by sulfate or thiosulfate respiration with H2 or formate as substrates, or by fermenting yeast extract, maltose, sucrose, glucose and pyruvate. The fermentation products were acetate, CO2 and H2. The pH range for growth was 2.9-6.5, with an optimum at 4.5. The temperature range for growth was 42-70 °C, with an optimum at 55 °C. The G+C content of DNA was 58 mol%. Phylogenetic analysis of the 16S rRNA gene showed that strain 3408-1 T belongs to the family Thermoanaerobacteraceae, order Thermoanaerobacterales and was distantly related to the species of the genus Ammonifex(93-94 % sequence similarity). On the basis of physiological properties and results of phylogenetic analysis, strain 3408-1 T is considered to represent a novel species of a new genus, for which the name Desulfothermobacter acidiphilus gen. nov., sp. nov. is proposed. The type strain is 3408-1 T (=DSM 105356 T =VKM B-3183 T ).

  6. Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina.

    Science.gov (United States)

    Nielsen, J T; Liesack, W; Finster, K

    1999-04-01

    A sulfate-reducing bacterium, designated strain lacT, was isolated from surface-sterilized roots of the benthic macrophyte Zostera marina. Cells were motile by means of a single polar flagellum. Strain lacT utilized lactate, pyruvate, malate, ethanol, L-alanine, fumarate, choline and fructose with sulfate as electron acceptor. In addition, fumarate, pyruvate and fructose were also degraded without an external electron acceptor. Sulfate could be substituted with thiosulfate, sulfite and elemental sulfur. Optimal growth was observed between 32.5 and 34.5 degrees C, at an NaCl concentration of 0.2 M and in a pH range between 6.8 and 7.3. The G + C content of the DNA was 42.7 +/- 0.2 mol%. Desulfoviridin and catalase were present. Strain lacT contained c-type cytochromes. Comparative 16S rRNA gene sequence analysis and the fatty acid pattern grouped this isolate into the genus Desulfovibrio. However, strain lacT differs from all other described Desulfovibrio species on the bases of its 16S rRNA gene sequence, the G + C content, its cellular lipid pattern and the utilization pattern of substrates. These characteristics establish strain lacT (= DSM 11974T) as a novel species of the genus Desulfovibrio, for which the name Desulfovibrio zosterae sp. nov. is proposed.

  7. Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus Strain 7324▿

    Science.gov (United States)

    Labes, Antje; Schönheit, Peter

    2007-01-01

    The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway. PMID:17921308

  8. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuqu?n, Argentina

    OpenAIRE

    Willis Poratti, Graciana; Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M. Sof?a; Chan, Kok-Gan; Ee, Robson; Tan-Guan-Sheng, Adrian; Goh, Kian Mau; Donati, Edgardo R.

    2016-01-01

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment.

  9. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina.

    Science.gov (United States)

    Willis Poratti, Graciana; Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M Sofía; Chan, Kok-Gan; Ee, Robson; Tan-Guan-Sheng, Adrian; Goh, Kian Mau; Donati, Edgardo R

    2016-08-18

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment. Copyright © 2016 Willis Poratti et al.

  10. Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate...

  11. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes.

    Science.gov (United States)

    Tarpgaard, Irene H; Boetius, Antje; Finster, Kai

    2006-01-01

    A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvb(T)) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 degrees C. Of the various substrates tested, strain akvb(T) grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvb(T) grew at temperatures ranging from -3.6 to 26.3 degrees C. Optimal growth was observed at 20 degrees C. The highest cell specific sulfate reduction rate of 6.2 fmol cell(-1) d(-1) determined by the (35)SO(2-)(40) method was measured at 26 degrees C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 degrees C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 degrees C. The highest growth yield (4.3-4.5 g dry weight mol(-1) acetate) was determined at temperatures between 5 and 15 degrees C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 degrees C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1omega7c) was higher in cells grown at 4 degrees C than in cells grown at 20 degrees C. The physiological responses to temperature changes showed that strain akvb(T) was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvb(T) is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA-DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvb(T). Based on phenotypic and DNA-based characteristics we propose that strain akvb(T) is a member of a new species, Desulfobacter psychrotolerans sp. nov.

  12. Degradation of Phenol via Phenylphosphate and Carboxylation to 4-Hydroxybenzoate by a Newly Isolated Strain of the Sulfate-Reducing Bacterium Desulfobacterium anilini▿ †

    OpenAIRE

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J.; Häggblom, Max M.

    2009-01-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660T). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminob...

  13. Techniques for Reduction and Biomineralization of Radioactive Uranium by Bacteria

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon

    2010-12-01

    A new thing revealed by this study was a formation of 'ningyoite', which was made as a new mineral when phosphorus component added into the uranium bioreduction process. In addition, a main sulfide mineral formed by sulfate-reducing bacteria was mackinawite which can incorporate much of uranium as coexisting with metal impurities such as manganese or nickel elements

  14. Isolation of a nitrate-reducing bacteria strain from oil field brine and ...

    African Journals Online (AJOL)

    A nitrate-reducing bacteria (NRB) strain with vigorous growth, strong nitrate reduction ability, strain B9 2-1, was isolated from Suizhong36-1 oilfield, its routine identification and analysis of 16S rRNA and also the competitive inhibition experiments with the enrichment of sulfate-reducing bacteria (SRB) were carried out.

  15. Desulfotomaculum arcticum sp nov., a novel spore-formin, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Knoblauch, C.; Jørgensen, BB

    2006-01-01

    Strain 15 T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, s...... related to Desulfotomaculum thermosapovorans MLF(T) (93-5% 16S rRNA gene sequence similarity). Strain 15 T represents a novel species, for which the name Desulfotomaculurn arcticum sp. nov. is proposed. The type strain is strain 15 T (=DSM 17038(T)=jCM 12923(T))....

  16. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65; Estudio comparativo de la corrosion inducida por microorganismos sulfatorreductores, en un acero inoxidable 304L sensibilizado y un acero al carbono API X65

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: ads@nuclear.inin.mx

    2004-07-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  17. Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea.

    Science.gov (United States)

    Blazejak, Anna; Schippers, Axel

    2011-01-01

    Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 10(8)/g sediment close to the sediment surface to less than 10(5)/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5-1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40-121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 10(4)/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.

  18. Effect of radiation on activity of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Agaev, N.M.; Smorodin, A.E.; Gusejnov, M.M.

    1985-01-01

    The effect of γ-radiation on activity of sulphate reducing bacteria has been studied. Concentration of biogenic hydrogen, generated in the medium, is the main criterion, characterizing corrosion activity of the bacteria studied. The developed method of suppression of active development of sulfate reducing bacteria considerably reduces, and at lethal doses of γ-radiation eliminates altogether the bacteria activity and formation of the main corrosion agent-hydrogen sulphide-in the medium and that, in its turn, liquidates hydrogen sulphide corrosion

  19. Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots.

    Science.gov (United States)

    Finster, K; Thomsen, T R; Ramsing, N B

    2001-11-01

    The physiology and phylogeny of a novel sulfate-reducing bacterium, isolated from surface-sterilized roots of the marine macrophyte Zostera marina, are presented. The strain, designated P1T, was enriched and isolated in defined oxygen-free, bicarbonate-buffered, iron-reduced seawater medium with propionate as sole carbon source and electron donor and sulfate as electron acceptor. Strain P1T had a rod-shaped, slightly curved cell morphology and was motile by means of a single polar flagellum. Cells generally aggregated in clumps throughout the growth phase. High CaCl2 (10 mM) and MgCl2 (50 mM) concentrations were required for optimum growth. In addition to propionate, strain P1T utilized fumarate, succinate, pyruvate, ethanol, butanol and alanine. Oxidation of propionate was incomplete and acetate was formed in stoichiometric amounts. Strain P1T thus resembles members of the sulfate-reducing genera Desulfobulbus and Desulforhopalus, which both oxidize propionate incompletely and form acetate in addition to CO2. However, sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P1T was unrelated to the incomplete oxidizers Desulfobulbus and Desulforhopalus and that it constitutes a novel lineage affiliated with the genera Desulfococcus, Desulfosarcina, Desulfonema and 'Desulfobotulus'. Members of this branch, with the exception of 'Desulfobotulus sapovorans', oxidize a variety of substrates completely to CO2. Strain P1T (= DSM 12642T = ATCC 700811T) is therefore proposed as Desulfomusa hansenii gen. nov., sp. nov. Strain p1T thus illustrates the difficulty of extrapolating rRNA similarities to physiology and/or ecological function.

  20. Bioremediation of toxic substances by mercury resistant marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Sarkar, A.; Ramaiah, N.

    : ramaiah@nio.org Introduction: The principal goal of bioremediation is to enhance the natural biological-chemical transformations that render pollutants harmless as minerals and thus to provide a relief and, if feasible, a permanent solution...). The combination of soil bioleaching and bioprecipitation of the leached metals, by sulfate reducing bacteria, proved to be effective in removing and concentrating a range of metals, including Zn, Cu and Cd from metal-contaminated soils (White et al., 1998...

  1. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    International Nuclear Information System (INIS)

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K.C.; Sayadi, Sami

    2007-01-01

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC 50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn

  2. Impacts of human activities on distribution of sulfate-reducing prokaryotes and antibiotic resistance genes in marine coastal sediments of Hong Kong.

    Science.gov (United States)

    Guo, Feng; Li, Bing; Yang, Ying; Deng, Yu; Qiu, Jian-Wen; Li, Xiangdong; Leung, Kenneth My; Zhang, Tong

    2016-09-01

    Sulfate-reducing prokaryotes (SRPs) and antibiotic resistance genes (ARGs) in sediments could be biomarkers for evaluating the environmental impacts of human activities, although factors governing their distribution are not clear yet. By using metagenomic approach, this study investigated the distributions of SRPs and ARGs in marine sediments collected from 12 different coastal locations of Hong Kong, which exhibited different pollution levels and were classified into two groups based on sediment parameters. Our results showed that relative abundances of major SRP genera to total prokaryotes were consistently lower in the more seriously polluted sediments (P-value human impacts. Moreover, a unimodel distribution pattern for SRPs along with the pollution gradient was observed. Although total ARGs were enriched in sediments from the polluted sites, distribution of single major ARG types could be explained neither by individual sediment parameters nor by corresponding concentration of antibiotics. It supports the hypothesis that the persistence of ARGs in sediments may not need the selection of antibiotics. In summary, our study provided important hints of the niche differentiation of SRPs and behavior of ARGs in marine coastal sediment. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  4. Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov.

    Science.gov (United States)

    Abildgaard, Lone; Ramsing, Niels Birger; Finster, Kai

    2004-03-01

    A rod-shaped, slightly curved sulfate reducer, designated strain P2(T), was isolated from the sulfate-methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2(T) also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO(2). The DNA G+C content was 48.8 mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2(T) was related to the genera Desulfonema, Desulfococcus, Desulfosarcina, 'Desulfobotulus', Desulfofaba, Desulfomusa and Desulfofrigus. These genera include incomplete as well as complete oxidizers of substrates. Strain P2(T) shared important morphological and physiological traits with Desulfofaba gelida and Desulfomusa hansenii, including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2(T) to Desulfofaba gelida and Desulfomusa hansenii were respectively 92.9 and 91.5 %. Combining phenotypic and genotypic traits, we propose strain P2(T) to be a member of the genus Desulfofaba. The name Desulfofaba fastidiosa sp. nov. (type strain P2(T)=DSM 15249(T)=ATCC BAA-815(T)) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of Desulfomusa hansenii as a member of the genus Desulfofaba, Desulfofaba hansenii comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification.

  5. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be

  6. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  7. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence......, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster...

  8. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  9. Ecophysiology of terminal carbon metabolizing bacteria in anoxic sedimentary environments

    International Nuclear Information System (INIS)

    Phelps, T.J.

    1985-01-01

    Chemical, radiotracer, and microbiological experiments were used to understand the transformation of simple carbon compounds by anaerobic bacteria in diverse aquatic sediments and laboratory cultures. The mildly acidic sediments of Knack Lake (pH 6.2), displayed low rates of organic decomposition, and methane formation occurred almost exclusively from acetate. Low pH inhibited methanogenesis and organic decomposition. Fall turnover in Lake Mendota sediments was associated with dramatic changes in environmental parameters including: elevated concentrations of sulfate and carbon metabolites, increased rates of sulfate reduction, decreased levels of methanogenesis, increased ratio (by viable counts) of sulfate reducing to methanogenic bacteria, and higher 14 CO 2 / 14 C 4 + 14 CO 2 gas ratios produced during the biodegradation of 14 C-carbon substrates (e.g., acetate and methanol). Hydrogen consumption by sulfate reducers in Lake Mendota sediments and in co-cultures of Desulfovibrio vulgaris and Methanosarcina barkeri led to an alteration in the carbon and electron flow pathway resulting in increased CO 2 , sulfide production, and decreased methanogenesis. These data agreed with the environmental observations in Lake Mendota that high sulfate concentrations resulted in higher ratios of CO 2 /CH 4 produced from the degradation of organic matter. A new glycine-metabolizing acetogenic species was isolated and characterized from Knaack Lake which further extended the known diversity of anaerobic bacteria in nature

  10. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Kladova, A. V.; Gavel, O. Yu.; Mukhopaadhyay, A.; Boer, D. R.; Teixeira, S.; Shnyrov, V. L.; Moura, I.; Moura, J. J. G.; Romão, M. J.; Trincão, J.; Bursakov, S. A.

    2009-01-01

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn 2+ –AK, Co 2+ –AK and Fe 2+ –AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn 2+ –AK and Fe 2+ –AK crystallized in space group I222 with similar unit-cell parameters, whereas Co 2+ –AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn 2+ –AK and Fe 2+ –AK forms and a dimer was present for the Co 2+ –AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  11. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Rene, Eldon R; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2018-07-01

    This study was performed to enrich anaerobic methane-oxidizing archaea (ANME) present in sediment from the Ginsburg Mud Volcano (Gulf of Cadiz) in a polyurethane foam packed biotrickling filter (BTF). The BTF was operated at 20 (±2) °C, ambient pressure with continuous supply of methane for 248 days. Sulfate reduction with simultaneous sulfide production (accumulating ∼7 mM) after 200 days of BTF operation evidenced anaerobic oxidation of methane (AOM) coupled to sulfate reduction. High-throughput sequence analysis of 16S rRNA genes showed that after 248 days of BTF operation, the ANME clades enriched to more than 50% of the archaeal sequences, including ANME-1b (40.3%) and ANME-2 (10.0%). Enrichment of the AOM community was beneficial to Desulfobacteraceae, which increased from 0.2% to 1.8%. Both the inoculum and the BTF enrichment contained large populations of anaerobic sulfur oxidizing bacteria, suggesting extensive sulfur cycling in the BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  13. Identification of Dominant Immunogenic Bacteria and Bacterial Proteins in Periodontitis

    DEFF Research Database (Denmark)

    Agerbæk, Mette Rylev; Haubek, Dorte; Birkelund, Svend

    Marginal periodontitis is considered an infectious disease that triggers host inflammatory responses resulting in destruction of the periodontium. A complex biofilm of bacteria is associated with periodontitis. Some species have been identified as putative pathogens such as Porphyromonas gingivalis...

  14. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    Science.gov (United States)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  15. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline Lake Grevelingen

    Directory of Open Access Journals (Sweden)

    Yvonne A. Lipsewers

    2016-10-01

    Full Text Available Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution at three different locations before (March and during summer hypoxia (August. The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen- and sulfur cycling in Lake Grevelingen sediments.

  16. Putative radioresistant bacterial isolate from sewage water

    International Nuclear Information System (INIS)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Rivor Kristel; San Pablo, Czarina; Santos, Ernestine

    2001-01-01

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the 60 Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10 3 CFU/ml, and 1.30 x 10 3 CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10 3 CFU/ml was observed which is even higher compared to the control (1.02 x 10 3 CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  17. Putative radioresistant bacterial isolate from sewage water

    Energy Technology Data Exchange (ETDEWEB)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Kristel, Rivor; San Pablo, Czarina; Santos, Ernestine

    2001-01-29

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the {sup 60}Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10{sup 3} CFU/ml, and 1.30 x 10{sup 3} CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10{sup 3} CFU/ml was observed which is even higher compared to the control (1.02 x 10{sup 3} CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  18. Sequence analysis of putative swrW gene required for surfactant ...

    African Journals Online (AJOL)

    owner

    2012-07-17

    Jul 17, 2012 ... These nucleotide and protein sequence analysis of the putative swrW gene provides vital information on the versatility .... chain reaction (PCR) products were stored at 4°C. Presence of ... identical to the same gene with an E-value of 0.0. .... The Prokaryotes-A Handbook on the Biol. of Bacteria:Ecophysiol.

  19. Detection of sulphate reducer bacteria in effluents and sediment from uranium mine; Deteccao de bacterias redutoras de sulfato em efluente e sedimento em mina de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Sheila Kenia de

    2005-07-01

    One of the most serious environmental problems created by the mining industry is acid mine drainage. In one plant of Nuclear Industries of Brazil - INB, this problem is a matter of concern. The presence of iron sulfites, such as pyrite, generates water with acidity above the levels allowed by the legislation and therefore, inappropriate for releasing straight into the environment. The industry maintain a high cost treatment in acid water from mines and waste disposal which consists in neutralizing and precipitating heavy metals. The treatment of acid water sing SR B (sulfate-reducing bacteria) has been used in other countries with quite good technical results as well as economical advantages and thus, the object of this research. The use Sulfate Reducing Bacteria takes to a decreasing of the acidity by reducing sulfate to sulfite and precipitating the stable metals as sulfides. A seasonal study was carried out on the sulfate-reducing bacteria present in the liquid effluent discharged from two wastes disposal of the uranium mine, in phase of decommission, in Caldas/MG, Brazil. This study shows the presence of SRB in the analyzed environmental, as well as some factors that are related with the amount of SRB presents, such as: dissolved oxygen, pH and organic matter. SRB was presented in water samples with high concentrations of heavy metals and low pH values, as well as in samples with high oxygen levels. The sediment samples were the preferential place for SRB occurrence and site BF8 presented the highest values of SRB. (author)

  20. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Bryant, Donald A.; Frigaard, Niels-Ulrik

    2011-01-01

    Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains...... product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two...... in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic...

  1. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  2. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  3. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  4. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    Science.gov (United States)

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  5. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  6. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    Science.gov (United States)

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  7. Identification and characterization of putative conserved IAM ...

    African Journals Online (AJOL)

    Available putative AMI sequences from a wide array of monocot and dicot plants were identified and the phylogenetic tree was constructed and analyzed. We identified in this tree, a clade that contained sequences from species across the plant kingdom suggesting that AMI is conserved and may have a primary role in plant ...

  8. Toddlers' Duration of Attention toward Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  9. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.

    Science.gov (United States)

    Bryant, M P; Campbell, L L; Reddy, C A; Crabill, M R

    1977-05-01

    In the analysis of an ethanol-CO(2) enrichment of bacteria from an anaerobic sewage digestor, a strain tentatively identified as Desulfovibrio vulgaris and an H(2)-utilizing methanogen resembling Methanobacterium formicicum were isolated, and they were shown to represent a synergistic association of two bacterial species similar to that previously found between S organism and Methanobacterium strain MOH isolated from Methanobacillus omelianskii. In lowsulfate media, the desulfovibrio produced acetate and H(2) from ethanol and acetate, H(2), and, presumably, CO(2) from lactate; but growth was slight and little of the energy source was catabolized unless the organism was combined with an H(2)-utilizing methanogenic bacterium. The type strains of D. vulgaris and Desulfovibrio desulfuricans carried out the same type of synergistic growth with methanogens. In mixtures of desulfovibrio and strain MOH growing on ethanol, lactate, or pyruvate, diminution of methane produced was stoichiometric with the moles of sulfate added, and the desulfovibrios grew better with sulfate addition. The energetics of the synergistic associations and of the competition between the methanogenic system and sulfate-reducing system as sinks for electrons generated in the oxidation of organic materials such as ethanol, lactate, and acetate are discussed. It is suggested that lack of availability of H(2) for growth of methanogens is a major factor in suppression of methanogenesis by sulfate in natural ecosystems. The results with these known mixtures of bacteria suggest that hydrogenase-forming, sulfate-reducing bacteria could be active in some methanogenic ecosystems that are low in sulfate.

  10. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  11. Rumen bacteria

    International Nuclear Information System (INIS)

    McSweeney, C.S.; Denman, S.E.; Mackie, R.I.

    2005-01-01

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 10 11 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (10 4 -10 6 /g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 10 2 -10 4 /g distributed over 5 genera). The occurrence of bacteriophage is well documented (10 7 -10 9 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  12. Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.

    2006-01-01

    The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2(SO 4 -2 ) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2(SO 4 -2 ) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2(SO 4 -2 ) and this mineral serve as an electron acceptor for SRB. GR2(SO 4 -2 ) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Moessbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

  13. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion.

    Science.gov (United States)

    Resende, J A; Diniz, C G; Silva, V L; Otenio, M H; Bonnafous, A; Arcuri, P B; Godon, J-J

    2014-12-01

    This study was focused on evaluating the persistency of antimicrobial resistance (AR) genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter. Abundance and dynamic of AR genes encoding resistance to macrolides (ermB), aminoglycosides (aphA2) and beta-lactams (blaTEM -1 ) and persistency of potentially pathogenic bacteria in pilot-scale anaerobic digesters were investigated. AR genes were determined in the influent and effluent in both conditions. Overall, after 60 days, reduction was observed for all evaluated genes. However, during the summer, anaerobic digestion was more related to the gene reduction as compared to winter. Persistency of potentially pathogenic bacteria was also evaluated by metagenomic analyses compared to an in-house created database. Clostridium, Acinetobacter and Stenotrophomonas were the most identified. Overall, considering the mesophilic ambient temperature during anaerobic digestion (summer and winter), a decrease in pathogenic bacteria detection through metagenomic analysis and AR genes is reported. Although the mesophilic anaerobic digestion has been efficient, the results may suggest medically important bacteria and AR genes persistency during the process. This is the first report to show AR gene dynamics and persistency of potentially pathogenic bacteria through metagenomic approach in cattle manure ambient temperature anaerobic digestion. © 2014 The Society for Applied Microbiology.

  14. The inducible CAM plants in putative lunar lander experiments

    Science.gov (United States)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  15. The solution structure of ChaB, a putative membrane ion antiporter regulator from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Iannuzzi Pietro

    2004-08-01

    Full Text Available Abstract Background ChaB is a putative regulator of ChaA, a Na+/H+ antiporter that also has Ca+/H+ activity in E. coli. ChaB contains a conserved 60-residue region of unknown function found in other bacteria, archaeabacteria and a series of baculoviral proteins. As part of a structural genomics project, the structure of ChaB was elucidated by NMR spectroscopy. Results The structure of ChaB is composed of 3 α-helices and a small sheet that pack tightly to form a fold that is found in the cyclin-box family of proteins. Conclusion ChaB is distinguished from its putative DNA binding sequence homologues by a highly charged flexible loop region that has weak affinity to Mg2+ and Ca2+ divalent metal ions.

  16. Ten Putative Contributors to the Obesity Epidemic

    Science.gov (United States)

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  17. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen

    NARCIS (Netherlands)

    Do, Huyen Thi; Dao, Khoa Trong; Nguyen, Viet Khanh Hoang; Le Ngoc, Giang; Nguyen, Phuong Thi Mai; Le, Lam Tung; Phung, Nguyet Thu; M. van Straalen, Nico; Roelofs, Dick; Truong, Hai Nam

    2017-01-01

    Objective: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen

  18. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Magdalena Rose Osburn

    2016-08-01

    Full Text Available Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.

  19. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    Science.gov (United States)

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  20. Biocorrosion of dental alloys due to Desulfotomaculum nigrificans bacteria.

    Science.gov (United States)

    Mystkowska, Joanna

    2016-01-01

    Degradation processes of metallic biomaterials in the oral cavity limit the stability and reliability of dental materials. The influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of Co-Cr-Mo and Ti-6Al-4V alloys was assessed. After 28 and 56 days of contact of the materials with the bacterial environment, the surfaces of the biomaterials tested were observed by means of confocal scanning laser microscopy (CSLM), and their chemical composition was studied using X-Ray Photoelectron Spectrometry (XPS). Corrosive changes and the presence of sulfur (with medium atomic concentration of 0.5% for Co-Cr-Mo and 0.3% for Ti-6AL-4V) were observed on the surface of the biomaterials. Image analysis conducted using Aphelion software indicated that corrosion pits took up approx. 2.3% and 1.8% (after 28 days) and 4.2% and 3.1% (after 56 days) of the total test surfaces of cobalt and titanium alloys respectively. The greatest number of corrosion pits had a surface area within the range of 1-50 m2. They constituted from 37% up to 83% of all changes, depending on the type of material. An evident influence of the SRB on the surfaces of cobalt and titanium alloys was observed. Significant corrosive losses caused by the activity of microorganisms were observed on the metallic surfaces under study. The results of this study have much cognitive and utilitarian significance.

  1. Prevalence of Clinical Periodontitis and Putative Periodontal Pathogens among South Indian Pregnant Women

    Directory of Open Access Journals (Sweden)

    Chaitanya Tellapragada

    2014-01-01

    Full Text Available In view of recent understanding of the association of periodontal infections and adverse pregnancy outcomes, the present investigation was undertaken to study the periodontal infections among 390 asymptomatic pregnant women and to find an association of bacterial etiologies with the disease. Prevalence of gingivitis was 38% and clinical periodontitis was 10% among the study population. Subgingival plaque specimens were subjected to multiplex PCR targeting ten putative periodontopathogenic bacteria. Among the periodontitis group, high detection rates of Porphyromonas gingivalis (56%, Prevotella nigrescens (44%, Treponema denticola (32%, and Prevotella intermedius (24% were noted along with significant association with the disease (P<0.05.

  2. NC10 bacteria in marine oxygen minimum zones

    DEFF Research Database (Denmark)

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic....... rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized...

  3. Putative neuroprotective agents in neuropsychiatric disorders.

    Science.gov (United States)

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans

    OpenAIRE

    Junyan Liu; Yang Deng; Brian M. Peters; Lin Li; Bing Li; Lequn Chen; Zhenbo Xu; Mark E. Shirtliff

    2016-01-01

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA1...

  5. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    OpenAIRE

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H4MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and...

  6. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  7. Partial Purification Characterization and Application of Bacteriocin from Bacteria Isolated Parkia biglobosa Seeds

    OpenAIRE

    Olorunjuwon, O. Bello; Olubukola, O. Babalola; Mobolaji, Adegboye; Muibat, O. Fashola; Temitope, K. Bello

    2018-01-01

    Bacteriocins are proteinaceous toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strains. Fermented Parkia biglobosa seeds (African locust bean) were screened for bacteriocin-producing lactic acid bacteria (LAB) with the characterization of putative bacteriocins. Bacteriocin-producing lactic acid bacteria (LAB) were identified by 16s rDNA sequencing. Molecular sizes of the bacteriocins were determined using the tricine-sodium dodecyl sulphate-polyacryla...

  8. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    Weathers, Lenly J.; Katz, Lynn E.

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  9. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria; FINAL

    International Nuclear Information System (INIS)

    Lenly J. Weathers; Lynn E. Katz

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  10. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  11. Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    The corrosion behaviour of austenitic and ferritic stainless steels (316 L and 430Ti) in the presence of sulfate reducing bacteria, was investigated by several electrochemical techniques which were coupled with corrosion measurements on coupons and chemical analyses. Experiments were performed with 'Desulfovibrio vulgaris' and 'Desulfovibrio gigas' in three growth media containing lactate and sulfate. The decreases in corrosion potentials were correlated to the increase in sulphide content. The polarization curves showed also the major influence of sulphides on the passivity of stainless steels. Electrochemical impedance measurements were used to provide information in understanding the interactions between growth media or bacteria and stainless steels surfaces. The behaviour of the tested stainless steels in these conditions was mainly dependent on sulphide concentrations. (Author). 7 refs., 8 figs., 4 tabs

  12. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing

    Science.gov (United States)

    Rajput, Akanksha; Kumar, Manoj

    2017-01-01

    LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS). Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site) evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS. PMID:28515720

  13. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Akanksha Rajput

    2017-05-01

    Full Text Available LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS. Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS.

  14. Analysis of Hydraulic Flood Control Structure at Putat Boro River

    OpenAIRE

    Ruzziyatno, Ruhban

    2015-01-01

    Putat Boro River is one of the main drainage systems of Surakarta city which drains into Bengawan Solo river. The primary problem when flood occur is the higher water level of Bengawan Solo than Boro River and then backwater occur and inundates Putat Boro River. The objective of the study is to obtain operational method of Putat Boro River floodgate to control both inflows and outflows not only during flood but also normal condition. It also aims to know the Putat Boro rivers floodgate op...

  15. [Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II].

    Science.gov (United States)

    Petrova, L P; Prilipov, A G; Katsy, E I

    2017-01-01

    It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.

  16. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  17. Toddlers’ Duration of Attention towards Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2010-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk for developing anxious behavior, toddlers’ attention towards a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined how attention towards an angry-looking gorilla mask in a room with alternative opportunities for play in 24-month-old toddlers predicted social inhibition when children entered kindergarten. Analyses examined attention to threat above and beyond and in interaction with both proximity to the mask and fear of novelty observed in other situations. Attention to threat interacted with proximity to the mask to predict social inhibition, such that attention to threat most strongly predicted social inhibition when toddlers stayed furthest from the mask. This relation occurred above and beyond the predictive relation between fear of novelty and social inhibition. Results are discussed within the broader literature of anxiety development and attentional processes in young children. PMID:21373365

  18. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  19. Twenty putative palmitoyl-acyl transferase genes with distinct ...

    African Journals Online (AJOL)

    There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their ...

  20. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  1. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  2. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  3. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena.

    Science.gov (United States)

    Boudaud, N; Coton, M; Coton, E; Pineau, S; Travert, J; Amiel, C

    2010-07-01

    A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate-reducing bacteria (SRB) and thiosulfate-reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT-IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13-PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra- and inter-species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. Overall, the combination of the FT-IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology-induced corrosion (MIC) processes. Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  4. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica.

    Science.gov (United States)

    Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo

    2017-11-01

    Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.

  5. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.

  6. Chondroitin sulfate reduces the friction coefficient of articular cartilage.

    Science.gov (United States)

    Basalo, Ines M; Chahine, Nadeen O; Kaplun, Michael; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2007-01-01

    The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.

  7. Biogeochemistry of molecular hydrogen in sulfate-reducing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.

    1987-01-01

    Concentrations of molecular hydrogen (H{sub 2}) have been measured using an equilibration-vacuum transfer method coupled to mercuric oxide reduction. In hemipelagic sediments (Eastern Tropical North Pacific (ETNP)) and bioturbated sediments (Princess Louisa Inlet, BC (PLI), and Buzzards Bay, MA (BB)) hydrogen levels were lowest in surface sediments and increased with depth. Sharp increases in H{sub 2} concentrations were observed just below the zone of bioturbation (PLI and BB), or below the depth of nitrate depletion (ETNP). Apparent hydrogen production rates were determined in laboratory incubations of sediments amended with inhibitors of sulfate reduction and methanogenesis. Hydrogen production ranged from 30 nmol 1{sup {minus}1} h{sup {minus}1} to 20 {times} 10{sup 3} nmol 1{sup {minus}1} h{sup {minus}1}. Apparent hydrogen production rates generally decreased in parallel with measured sulfate reduction rates. Experiments examined the response of apparent H{sub 2} production rates to additions of both specific organic chemicals and to additions of naturally occurring, complex organic materials. Organic sources typically considered labile (sucrose, and algae) stimulated apparent production up to a factor of 70. More refractory compounds (humic acids, chitin), stimulated rates of hydrogen production only slightly or not at all. These results show that hydrogen production is, in part, a function of the type of organic matter being degraded.

  8. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  9. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    Science.gov (United States)

    Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    Science.gov (United States)

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are

  11. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    Science.gov (United States)

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  12. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  13. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria.

    Science.gov (United States)

    Bhupathiraju, V K; Hernandez, M; Landfear, D; Alvarez-Cohen, L

    1999-09-01

    The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol

  14. Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles.

    Science.gov (United States)

    Krumholz, L R; Harris, S H; Tay, S T; Suflita, J M

    1999-06-01

    We examined the relative roles of acetogenic and sulfate-reducing bacteria in H2 consumption in a previously characterized subsurface sandstone ecosystem. Enrichment cultures originally inoculated with ground sandstone material obtained from a Cretaceous formation in central New Mexico were grown with hydrogen in a mineral medium supplemented with 0.02% yeast extract. Sulfate reduction and acetogenesis occurred in these cultures, and the two most abundant organisms carrying out the reactions were isolated. Based on 16S rRNA analysis data and on substrate utilization patterns, these organisms were named Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. The steady-state H2 concentrations measured in sandstone-sediment slurries (threshold concentration, 5 nM), in pure cultures of sulfate reducers (threshold concentration, 2 nM), and in pure cultures of acetogens (threshold concentrations 195 to 414 nM) suggest that sulfate reduction is the dominant terminal electron-accepting process in the ecosystem examined. In an experiment in which direct competition for H2 between D. hypogeium and A. psammolithicum was examined, sulfate reduction was the dominant process.

  15. Antagonistic activity expressed by Shigella sonnei: identification of a putative new bacteriocin

    Directory of Open Access Journals (Sweden)

    Mireille Angela Bernardes Sousa

    2013-09-01

    Full Text Available Bacteriocins are antibacterial, proteinaceous substances that mediate microbial dynamics. Bacteriocin production is a highly disseminated property among all major lineages of bacteria, including Shigella. In this paper, we addressed the purification and characterisation of a bacteriocin produced by a Shigella sonnei strain (SS9 isolated from a child with acute diarrhoea. The substance was purified through ammonium-sulphate precipitation and sequential steps of chromatography. The intracellular fraction obtained at 75% ammonium sulphate maintained activity following exposure to pH values from 1-11 and storage at -80ºC for more than two years and was inactivated by high temperatures and proteases. The molecular mass of the purified bacteriocin was determined by mass spectrometry to be 18.56 kDa. The N-terminal sequence of the bacteriocin did not match any other antibacterial proteins described. A putative new bacteriocin produced by S. sonnei has been detected. This bacteriocin may represent a newly described protein or a previously described protein with a newly detected function. Considering that SS9 expresses antagonism against other diarrhoeagenic bacteria, the bacteriocin may contribute to S. sonnei virulence and is potentially applicable to either preventing or controlling diarrhoeal disease.

  16. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  17. Putative golden proportions as predictors of facial esthetics in adolescents.

    NARCIS (Netherlands)

    Kiekens, R.M.A.; Kuijpers-Jagtman, A.M.; Hof, M.A. van 't; Hof, B.E. van 't; Maltha, J.C.

    2008-01-01

    INTRODUCTION: In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. METHODS: Seventy-six adult laypeople

  18. Exploring universal partnerships and putative marriages as tools for ...

    African Journals Online (AJOL)

    Following upon the Supreme Court of Appeal's judgment in Butters v Mncora 2012 4 SA 1 (SCA), which broadened the criteria and consequences of universal partnerships in cohabitation relationships, this article investigates the potential of universal partnerships and putative marriages to allocate rights to share in ...

  19. Putative Lineage of Novel African Usutu Virus, Central Europe

    Centers for Disease Control (CDC) Podcasts

    2015-10-15

    Sarah Gregory reads an abridged version of "Putative Lineage of Novel African Usutu Virus, Central Europe.".  Created: 10/15/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/15/2015.

  20. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  1. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  2. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  3. Alkenenitrile Transmissive Olefination: Synthesis of the Putative Lignan "Morinol I"

    Science.gov (United States)

    Fleming, Fraser F.; Liu, Wang; Yao, Lihua; Pitta, Bhaskar; Purzycki, Matthew; Ravikumar, P. C.

    2012-01-01

    Grignard reagents trigger an addition-elimination with α'-hydroxy acrylonitriles to selectively generate Z-alkenenitriles. The modular assembly of Z-alkenenitriles from a Grignard reagent, acrylonitrile, and an aldehyde is ideal for stereoselectively synthesizing alkenes as illustrated in the synthesis of the putative lignan "morinol I." PMID:22545004

  4. Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria

    Science.gov (United States)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay K.

    2013-02-01

    One observes several species of sulfate-reducing bacteria in nature. Presence of these species in a media may cause microbial influenced corrosion (MIC) of materials differently. To investigate this aspect of MIC, corrosion tests were performed on three types of stainless steels. The tests were done in modified Baar's media inoculated separately by the two species of SRB namely Desulfovibrio desulfuricans (DD) and Desulfotomaculum nigrificans (DN). Electrochemical and immersion tests were performed to assess the extent of uniform and localized corrosion of these steels. Biofilms formed on the corroded samples were analyzed for estimating various components of its extracellular polymeric substances. Hydrogenase enzyme of these bacteria was tested to determine its nature and activity. Higher degree of corrosivity was observed in case of media inoculated with DD as compared to DN. More active nature of hydrogenase enzyme, its location in the periplasmic phase in DD and higher fraction of carbohydrate in biofilm formed due to DD have been suggested to be responsible for higher degree of corrosivity caused by them.

  5. Biocorrosion of 316LV steel used in oral cavity due to Desulfotomaculum nigrificans bacteria.

    Science.gov (United States)

    Mystkowska, Joanna; Ferreira, Jose A; Leszczyńska, Katarzyna; Chmielewska, Sylwia; Dąbrowski, Jan Ryszard; Wieciński, Piotr; Kurzydłowski, Krzysztof Jan

    2017-01-01

    Corrosion processes of metallic biomaterials in the oral cavity pose a significant limitation to the life and reliable functioning of dental materials. In this article, the influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of 316LV steel was assessed. After 14 and 28 days of contact of the material with the bacterial environment, the surfaces of the tested biomaterial were observed by means of confocal scanning laser microscopy, and their chemical composition was studied using X-Ray Photoelectron Spectrometry and a scanning transmission electron microscopy. Corrosive changes, the presence of sulfur (with atomic concentration of 0.5%) on the surface of the biomaterial and the presence of a thin oxide layer (thickness of ∼20 nm) under the surface of the steel were observed. This corrosion layer with significant size reduction of grains was characterized by an increased amount of oxygen (18% mas., p < 0.001) in comparison to untreated 316LV steel (where oxygen concentration - 10% mas.). Image analysis conducted using APHELION software indicated that corrosion pits took up ∼2.8% of the total tested surface. The greatest number of corrosion pits had a surface area within the range of 100-200 μm 2 . © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 222-229, 2017. © 2015 Wiley Periodicals, Inc.

  6. Study of the cathodic depolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Romero, M. F. de; Duque, Z.; Rinco, O. T. de; Perez, O.; Araujo, I.

    2003-01-01

    A Desulfovibrio desulfuricans ssp. desulfuricans (SRB) was used to study the permeation of hydrogen, using a Devanatan and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanisms in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10% SRB concentrated at 10''8 cell/ml. the results indicate bacterial growth in the order of 10''9-10''10 cel/ml after 18 h both in the polarized and non-polarized, tests, indicating that SRB developed regardless of the surface polarized as a source of H''0, generating H 2 S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H* generated by the H 2 S dissociation (pd is not susceptible to corrosion at this condition). On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria. (Author) 8 refs

  7. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  8. Do Bacteria Age?

    Indian Academy of Sciences (India)

    Bacteria are thought to be examples of organisms that do not age. They divide by .... carry genetic material to the next generation through the process of reproduction; they are also .... molecules, and modified proteins. This report revealed that ...

  9. Social Behaviour in Bacteria

    Indian Academy of Sciences (India)

    Administrator

    the recipient. • Social behaviours can be categorized according to the fitness ... is actually the flagella of symbiotic spirochete bacteria that helps it to swim around .... Normal population. Responsive switching. (Environmental stress). Stochastic.

  10. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  11. Lipopolysaccharides in diazotrophic bacteria

    OpenAIRE

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are...

  12. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  13. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    Science.gov (United States)

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  15. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin.

    Science.gov (United States)

    Russ, Lina; Kartal, Boran; Op den Camp, Huub J M; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S; Jetten, Mike S M

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the "Candidatus Scalindua" genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.

  16. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals.Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR. Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria during winnowing processes as symbioses are fine-tuned.Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are

  17. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Science.gov (United States)

    Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L

    2012-01-01

    Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further

  18. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  19. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  20. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  1. Diet and caries-associated bacteria in severe early childhood caries.

    Science.gov (United States)

    Palmer, C A; Kent, R; Loo, C Y; Hughes, C V; Stutius, E; Pradhan, N; Dahlan, M; Kanasi, E; Arevalo Vasquez, S S; Tanner, A C R

    2010-11-01

    Frequent consumption of cariogenic foods and bacterial infection are risk factors for early childhood caries (ECC). This study hypothesized that a short diet survey focused on frequency of foods, categorized by putative cariogenicity, would differentiate severe ECC (S-ECC) from caries-free children. Children's diets were obtained by survey and plaque bacteria detected by PCR from 72 S-ECC and 38 caries-free children. S-ECC children had higher scores for between-meal juice (p cariogenicity (p cariogenicity scores. Food frequency, putative cariogenicity, and S. mutans were associated with S-ECC individually and in combination.

  2. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  3. PATHOGENICITY OF BIOFILM BACTERIA

    Science.gov (United States)

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  4. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  5. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  6. Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons

    Science.gov (United States)

    Baldi, Franco; Gallo, Michele; Marchetto, Davide; Fani, Renato; Maida, Isabel; Horvat, Milena; Fajon, Vesna; Zizek, Suzana; Hines, Mark

    2012-11-01

    Marano and Grado lagoons are polluted by mercury from the Isonzo River and a chlor-alkali plant, yet despite this contamination, clam cultivation is one of the main activities in the region. Four stations (MA, MB, MC and GD) were chosen for clam seeding and surficial sediments were monitored in autumn, winter and summer to determine the Hg detoxifying role of bacteria. Biotransformation of Hg species in surficial sediments of Marano and Grado lagoons was investigated while taking into consideration the speciation of organic matter in the biochemical classes of PRT (proteins), CHO (carbohydrates) and LIP (lipids), water-washed cations and anions, bacterial biomass, Hg-resistant bacteria, some specific microbial activities such as sulfate reduction rates, Hg methylation rates, Hg-demethylation rates, and enzymatic ionic Hg reduction. MeHg in sediments was well correlated with PRT content, whereas total Hg in sediments correlated with numbers of Hg-resistant bacteria. Correlations of the latter with Hg-demethylation rates in autumn and winter suggested a direct role Hg-resistant bacteria in Hg detoxification by producing elemental Hg (Hg0) from ionic Hg and probably also from MeHg. MeHg-demethylation rates were ˜10 times higher than Hg methylation rates, were highest in summer and correlated with high sulfate reduction rates indicating that MeHg was probably degraded in summer by sulfate-reducing bacteria via an oxidative pathway. During the summer period, aerobic heterotrophic Hg-resistant bacteria decreased to <2% compared to 53% in winter. Four Hg-resistant bacterial strains were isolated, two Gram-positive (Staphylococcus and Bacillus) and two Gram-negative (Stenotrophomonas and Pseudomonas). Two were able to produce Hg0, but just one contained a merA gene; while other two strains did not produce Hg0 even though they were able to grow at 5 μg ml of HgCl2. Lagoon sediments support a strong sulfur cycle in summer that controls Hg methylation and demethylation

  7. Characterization of BcaA, a putative classical autotransporter protein in Burkholderia pseudomallei.

    Science.gov (United States)

    Campos, Cristine G; Borst, Luke; Cotter, Peggy A

    2013-04-01

    Burkholderia pseudomallei is a tier 1 select agent, and the causative agent of melioidosis, a disease with effects ranging from chronic abscesses to fulminant pneumonia and septic shock, which can be rapidly fatal. Autotransporters (ATs) are outer membrane proteins belonging to the type V secretion system family, and many have been shown to play crucial roles in pathogenesis. The open reading frame Bp1026b_II1054 (bcaA) in B. pseudomallei strain 1026b is predicted to encode a classical autotransporter protein with an approximately 80-kDa passenger domain that contains a subtilisin-related domain. Immediately 3' to bcaA is Bp11026_II1055 (bcaB), which encodes a putative prolyl 4-hydroxylase. To investigate the role of these genes in pathogenesis, large in-frame deletion mutations of bcaA and bcaB were constructed in strain Bp340, an efflux pump mutant derivative of the melioidosis clinical isolate 1026b. Comparison of Bp340ΔbcaA and Bp340ΔbcaB mutants to wild-type B. pseudomallei in vitro demonstrated similar levels of adherence to A549 lung epithelial cells, but the mutant strains were defective in their ability to invade these cells and to form plaques. In a BALB/c mouse model of intranasal infection, similar bacterial burdens were observed after 48 h in the lungs and liver of mice infected with Bp340ΔbcaA, Bp340ΔbcaB, and wild-type bacteria. However, significantly fewer bacteria were recovered from the spleen of Bp340ΔbcaA-infected mice, supporting the idea of a role for this AT in dissemination or in survival in the passage from the site of infection to the spleen.

  8. First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat.

    Science.gov (United States)

    Muller, Félix; Brissac, Terry; Le Bris, Nadine; Felbeck, Horst; Gros, Olivier

    2010-08-01

    Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Quantitative Molecular Detection of Putative Periodontal Pathogens in Clinically Healthy and Periodontally Diseased Subjects

    Science.gov (United States)

    Göhler, André; Hetzer, Adrian; Holtfreter, Birte; Geisel, Marie Henrike; Schmidt, Carsten Oliver; Steinmetz, Ivo; Kocher, Thomas

    2014-01-01

    Periodontitis is a multi-microbial oral infection with high prevalence among adults. Putative oral pathogens are commonly found in periodontally diseased individuals. However, these organisms can be also detected in the oral cavity of healthy subjects. This leads to the hypothesis, that alterations in the proportion of these organisms relative to the total amount of oral microorganisms, namely their abundance, rather than their simple presence might be important in the transition from health to disease. Therefore, we developed a quantitative molecular method to determine the abundance of various oral microorganisms and the portion of bacterial and archaeal nucleic acid relative to the total nucleic acid extracted from individual samples. We applied quantitative real-time PCRs targeting single-copy genes of periodontal bacteria and 16S-rRNA genes of Bacteria and Archaea. Testing tongue scrapings of 88 matched pairs of periodontally diseased and healthy subjects revealed a significantly higher abundance of P. gingivalis and a higher total bacterial abundance in diseased subjects. In fully adjusted models the risk of being periodontally diseased was significantly higher in subjects with high P. gingivalis and total bacterial abundance. Interestingly, we found that moderate abundances of A. actinomycetemcomitans were associated with reduced risk for periodontal disease compared to subjects with low abundances, whereas for high abundances, this protective effect leveled off. Moderate archaeal abundances were health associated compared to subjects with low abundances. In conclusion, our methodological approach unraveled associations of the oral flora with periodontal disease, which would have gone undetected if only qualitative data had been determined. PMID:25029268

  10. H2S: a universal defense against antibiotics in bacteria.

    Science.gov (United States)

    Shatalin, Konstantin; Shatalina, Elena; Mironov, Alexander; Nudler, Evgeny

    2011-11-18

    Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.

  11. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  12. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    Science.gov (United States)

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar

  13. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  14. Putative golden proportions as predictors of facial esthetics in adolescents.

    Science.gov (United States)

    Kiekens, Rosemie M A; Kuijpers-Jagtman, Anne Marie; van 't Hof, Martin A; van 't Hof, Bep E; Maltha, Jaap C

    2008-10-01

    In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. Seventy-six adult laypeople evaluated sets of photographs of 64 adolescents on a visual analog scale (VAS) from 0 to 100. The facial esthetic value of each subject was calculated as a mean VAS score. Three observers recorded the position of 13 facial landmarks included in 19 putative golden proportions, based on the golden proportions as defined by Ricketts. The proportions and each proportion's deviation from the golden target (1.618) were calculated. This deviation was then related to the VAS scores. Only 4 of the 19 proportions had a significant negative correlation with the VAS scores, indicating that beautiful faces showed less deviation from the golden standard than less beautiful faces. Together, these variables explained only 16% of the variance. Few golden proportions have a significant relationship with facial esthetics in adolescents. The explained variance of these variables is too small to be of clinical importance.

  15. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  16. A new putative deltapartitivirus recovered from Dianthus amurensis.

    Science.gov (United States)

    An, Hongliu; Tan, Guanlin; Xiong, Guihong; Li, Meirong; Fang, Shouguo; Islam, Saif Ul; Zhang, Songbai; Li, Fan

    2017-09-01

    Two double stranded RNAs (dsRNA), likely representing the genome of a novel deltapartitivirus, provisionally named carnation cryptic virus 3 (CCV3), were recovered from Dianthus amurensis. The two dsRNAs were 1,573 (dsRNA1) and 1,561 (dsRNA2) bp in size, each containing a single open reading frame (ORF) encoding a 475- and 411-aa protein, respectively. The 475-aa protein contains a conserved RNA dependent RNA polymerase (RdRp) domain which shows significant homology to RdRps of established or putative partitiviruses, particularly those belonging to the genus Deltapartitivirus. However, it shares an amino acid identity of 75% with its closest relative, the RdRp of the deltapartitivirus beet cryptic virus 2 (BCV2), and is <62% identical to the RdRps of other partitiviruses. In a phylogenetic tree constructed with RdRps of selected partitiviruses, CCV3 clustered with BCV2 and formed a well-supported monophyletic clade with known or putative deltapartitiviruses.

  17. The Putative Chemosignal Androstadienone Makes Women More Generous.

    Science.gov (United States)

    Perrotta, Valentina; Graffeo, Michele; Bonini, Nicolao; Gottfried, Jay A

    2016-06-01

    Putative human chemosignals have been shown to influence mood states and emotional processing, but the connection between these effects and higher-order cognitive processing is not well established. This study utilized an economic game (Dictator Game) to test whether androstadienone (AND), an odorous compound derived from testosterone, impacts on altruistic behavior. We predicted that the female participants would act more generously in the AND condition, exhibiting a significant interaction effect between gender and AND on Dictator Game contributions. We also expected that the presence of AND should increase the positive mood of the female participants, compared to a control odor condition and also compared to the mood of the male participants. The results confirm our hypotheses: for women the subliminal perception of AND led to larger monetary donations, compared to a control odor, and also increased positive mood. These effects were absent or significantly weaker in men. Our findings highlight the capacity of human putative chemosignals to influence emotions and higher cognitive processes - in particular the processes used in the context of economic decisions - in a gender-specific way.

  18. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. E.; Patino-Carachure, C.; Alfonso, I.; Rodriguez, J. A.; Rosas, G.

    2012-11-01

    The corrosion behavior originated by sulfate-reducing bacteria (SRB) was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM) and heat affected zone (HAZ), from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 degree centigrade for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM) and optical microscopy (OM). H{sub 2}S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H{sub 2}S (pH minimum). It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity. (Author) 15 refs.

  19. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do, E-mail: sdp.mari@gmail.com, E-mail: marciamg@uerj.br, E-mail: monickcruz@yahoo.com.br, E-mail: dijmaciel@gmail.com, E-mail: lsenna@uerj.br, E-mail: dalva@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Quimica

    2016-10-15

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E{sub ocp}), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  20. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    Science.gov (United States)

    Schaefer, Jeffra K.; Rocks, Sara S.; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, François M. M.

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. PMID:21555571

  1. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    International Nuclear Information System (INIS)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do

    2016-01-01

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E_o_c_p), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  2. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  3. TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens

    Science.gov (United States)

    Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.

    2015-01-01

    SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  4. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria.

    Science.gov (United States)

    de Matos, Letícia Paiva; Costa, Patrícia Freitas; Moreira, Mariana; Gomes, Paula Cristine Silva; de Queiroz Silva, Silvana; Gurgel, Leandro Vinícius Alves; Teixeira, Mônica Cristina

    2018-04-01

    Data presented here are related to the original paper "Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB) mixed culture and alternative low-cost carbon sources" published by same authors (Matos et al., 2018) [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L - 1 . Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format. Refers to https://doi.org/10.1016/j.cej.2017.11.035.

  5. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria

    Directory of Open Access Journals (Sweden)

    Letícia Paiva de Matos

    2018-04-01

    Full Text Available Data presented here are related to the original paper “Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB mixed culture and alternative low-cost carbon sources” published by same authors (Matos et al., 2018 [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L−1. Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format.Refers to https://doi.org/10.1016/j.cej.2017.11.035 Keywords: Arsenite, Sulfate reduction, Bioremediation, Immobilized cells, Acid pH

  6. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  7. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli.

    Science.gov (United States)

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  8. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  9. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania

    Directory of Open Access Journals (Sweden)

    Krevs A.

    2011-08-01

    Full Text Available Physical-chemical parameters and the vertical distribution of bacteria and organic matter production-destruction processes were studied during midsummer stratification in two karst lakes (Kirkilai and Ramunelis located in northern Lithuania. The lakes were characterized by high sulfate concentrations (369–1248 mg·L-1. The O2/H2S intersection zone formed at 2–3 m depth. In Lake Kirkilai, the highest bacterial densities (up to 8.7 × 106 cell·mL-1 occurred at the O2/H2S intersection zone, whereas in Lake Ramunelis the highest densities were observed in the anoxic hypolimnion (up to 11 × 106 cell·mL-1. Pigment analysis revealed that green sulfur bacteria dominated in the microaerobic–anaerobic water layers in both lakes. The most intensive development of sulfate-reducing bacteria was observed in the anaerobic layer. Photosynthetic production of organic matter was highest in the upper layer. Rates of sulfate reduction reached 0.23 mg S2−·dm3·d-1 in the microaerobic-anaerobic water layer and 1.97 mg S2−·dm3·d-1 in sediments. Karst lakes are very sensitive to organic pollution, because under such impact in the presence of high sulfate amounts, sulfate reduction may become very intensive and, consequently, the increase in hydrogen sulfide and development of sulfur cycle bacteria may reduce the variety of other hydrobionts.

  10. Disparate subcellular location of putative sortase substrates in Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Shaw, Helen A; Wren, Brendan W; Fairweather, Neil F

    2017-08-23

    Clostridium difficile is a gastrointestinal pathogen but how the bacterium colonises this niche is still little understood. Sortase enzymes covalently attach specific bacterial proteins to the peptidoglycan cell wall and are often involved in colonisation by pathogens. Here we show C. difficile proteins CD2537 and CD3392 are functional substrates of sortase SrtB. Through manipulation of the C-terminal regions of these proteins we show the SPKTG motif is essential for covalent attachment to the cell wall. Two additional putative substrates, CD0183 which contains an SPSTG motif, and CD2768 which contains an SPQTG motif, are not cleaved or anchored to the cell wall by sortase. Finally, using an in vivo asymmetric cleavage assay, we show that despite containing a conserved SPKTG motif, in the absence of SrtB these proteins are localised to disparate cellular compartments.

  11. Putative benefits of microalgal astaxanthin on exercise and human health

    Directory of Open Access Journals (Sweden)

    Marcelo P. Barros

    2011-04-01

    Full Text Available Astaxanthin (ASTA is a pinkish-orange carotenoid produced by microalgae, but also commonly found in shrimp, lobster and salmon, which accumulate ASTA from the aquatic food chain. Numerous studies have addressed the benefits of ASTA for human health, including the inhibition of LDL oxidation, UV-photoprotection and prophylaxis of bacterial stomach ulcers. ASTA is recognized as a powerful scavenger of reactive oxygen species (ROS, especially those involved in lipid peroxidation. Both aerobic and anaerobic exercise are closely related to overproduction of ROS in muscle tissue. Post-exercise inflammatory processes can even exacerbate the oxidative stress imposed by exercise. Thus, ASTA is suggested here as a putative nutritional alternative/coadjutant for antioxidant therapy to afford additional protection to muscle tissues against oxidative damage induced by exercise, as well as for an (overall integrative redox re-balance and general human health.

  12. Hepatology may have problems with putative surrogate outcome measures

    DEFF Research Database (Denmark)

    Gluud, Christian; Brok, Jesper; Gong, Yan

    2007-01-01

    A surrogate outcome measure is a laboratory measurement, a physical sign, or another intermediate substitute that is able to predict an intervention's effect on a clinically meaningful outcome. A clinical outcome detects how a patient feels, functions, or survives. Surrogate outcome measures occur...... faster or more often, are cheaper, and/or are less invasively achieved than the clinical outcome. In practice, validation is surprisingly often overlooked, especially if a biologic plausible rationale is proposed. Surrogate outcomes must be validated before use. The first step in validation...... predicts the intervention's effect on the clinical outcome. In hepatology a number of putative surrogate outcomes are used both in clinical research and in clinical practice without having been properly validated. Sustained virological response to interferons and ribavirin in patients with chronic...

  13. Basal ganglia calcification as a putative cause for cognitive decline

    Directory of Open Access Journals (Sweden)

    João Ricardo Mendes de Oliveira

    Full Text Available ABSTRACT Basal ganglia calcifications (BGC may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients

  14. Basal ganglia calcification as a putative cause for cognitive decline.

    Science.gov (United States)

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients.

  15. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Abundance and activity of oil-degrading and indigenous bacteria in sediment microcosms

    International Nuclear Information System (INIS)

    Araujo, R.; Molina, M.; Bachoon, D.

    1995-01-01

    The responses of bacterial community composition and degradation crude oil to applications of bioremediation products and plant detrital material were investigated in wetlands microcosms. The microcosms were constructed of sieved sediments and operated as tidal marshes. Products included nutrients, organisms, surfactants and combinations thereof; dried ground Spartina was the source of detrital material. Plate count and most probable-number techniques were used to enumerate microbial populations and GC/MS analysis of indicator petroleum hydrocarbons was used to assess oil degradation. Microbial communities were characterized by whole-genome hybridization and specific probes for bacterial groups, including Pseudomonas, Streptomycetes, Vibrio, and sulfate-reducing bacteria. Although the total microbial numbers were similar in all bioremediation treatments, the numbers of oil degraders increased two to three log units in the fertilizer and microbial-degrader-enriched treatments. Oil-degraders comprised the largest fraction of the total population in the treatment amended with microbial degraders, apparently at the expense of indigenous bacteria, as indicated by specific probes. Oil-degraders were also detected in the subsurface in all treatments except the controls. The extent of oil degradation was not consistent with bacterial numbers; only nutrient additions resulted in significantly enhanced degradation of oil. After 1 month of microcosm operation, oil-degraders had increased at least two orders of magnitude in sediment surface layers when oil was added alone or with Spartina detritus, although total bacterial numbers and the number of oil-degraders decreased to near initial levels by 2 months. The peak coincides with bacterial utilization of the alkane fraction of petroleum hydrocarbons

  17. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  18. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-05-01

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days -1 while the half-velocity constant (K s ) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k d ) was calculated as 0.072 days -1 . After reduction, U(IV) Precipitated from solution in the uraninite (UO 2 ) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat

  19. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  20. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  1. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  2. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  3. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    Science.gov (United States)

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  4. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  5. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  6. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  7. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  8. Microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Zupančič, Jerneja; Brejnrod, Asker Daniel

    2018-01-01

    impact the abundance of microbial groups, and investigated on the inter- and intra-kingdom interactions that shape these biofilms. The age, the usage frequency and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal composition. Representatives ofCandidaspp. were...... and interactions were vital in the process of biofilm formation, where mixed complexes of the two, bacteria and fungi, could provide a preliminary biogenic structure for the establishment of these biofilms.IMPORTANCEWorldwide demand for household appliances, such as dishwashers and washing machines, is increasing...

  9. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Giuseppe Forlani

    2017-08-01

    Full Text Available In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C catalyzed by P5C reductase (EC 1.5.1.2. In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  10. ANTIBIOTICS RESISTANCE AND PUTATIVE VIRULENCE FACTORS OF AEROMONAS HYDROPHILA ISOLATED FROM ESTUARY

    Directory of Open Access Journals (Sweden)

    Olumide Adedokun Odeyemi

    2012-06-01

    Full Text Available This study aim to investigate antibiotics resistance profile and putative virulence factors of Aeromonas hydrophila isolated from estuary. Bacteria used for this study were isolated from water and sediment samples obtained from Sungai Melayu, Johor, Malaysia. Serially diluted 100 µL water and 1g sediment were inoculated on modified Rimler - Shott (mRS agar. Colonies with distinct cultural characteristics were picked for further studies. Isolates were tested for biofilm productions, protease enzyme and antibiotics resistance profile using agar well diffusion method against 10 commercial antibiotics. Congo Red Agar (CRA, Microplate and Standard Tube (ST methods were used for assessment of biofilm formation among the isolates while Skim Milk Agar was used for protease production. Sw.KMJ 3 and Sw.KMJ 9 produced black crystalline colonies on CRA. Six of the isolates were biofilm producers in ST method. Result of Microplate method, helped in grouping the isolates into weak (n = 8, moderate (n = 3 and strong producers (n = 4 at 540 nm wavelength. All the isolates were classified as weak ODc  ODi 0.1, moderate ODi = 0.1  0.12 and strong producers ODi  0.12 respectively at 540 nm wavelength. Antibiotics susceptibility test also revealed that all the isolates were resistant to between 6 and 10 antibiotics. Two isolates each were resistant to 6 (60 %, 7 (70 % and 9 (90 % antibiotics respectively. Eight of the isolates showed resistance to 8 (80 % antibiotics while only isolate Sw.KMJ-7 showed resistance to all the tested antibiotics. Sw.KMJ-3, Sw.KMJ-8 and Sw.KMJ-9 produced protease enzyme on SMA. The isolates were also found to be resistant to both antibiotics and heavy metals.

  11. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  12. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of delta(1)-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  13. Discovery of a new family of relaxases in Firmicutes bacteria.

    Science.gov (United States)

    Ramachandran, Gayetri; Miguel-Arribas, Andrés; Abia, David; Singh, Praveen K; Crespo, Isidro; Gago-Córdoba, César; Hao, Jian An; Luque-Ortega, Juan Roman; Alfonso, Carlos; Wu, Ling J; Boer, D Roeland; Meijer, Wilfried J J

    2017-02-01

    Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research.

  14. A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)

    Science.gov (United States)

    Direito, Susana O. L.; Ehrenfreund, Pascale; Marees, Andries; Staats, Martijn; Foing, Bernard; Röling, Wilfred F. M.

    2011-07-01

    Humankind's innate curiosity makes us wonder whether life is or was present on other planetary bodies such as Mars. The EuroGeoMars 2009 campaign was organized at the Mars Desert Research Station (MDRS) to perform multidisciplinary astrobiology research. MDRS in southeast Utah is situated in a cold arid desert with mineralogy and erosion processes comparable to those on Mars. Insight into the microbial community composition of this terrestrial Mars analogue provides essential information for the search for life on Mars: including sampling and life detection methodology optimization and what kind of organisms to expect. Soil samples were collected from different locations. Culture-independent molecular analyses directed at ribosomal RNA genes revealed the presence of all three domains of life (Archaea, Bacteria and Eukarya), but these were not detected in all samples. Spiking experiments revealed that this appears to relate to low DNA recovery, due to adsorption or degradation. Bacteria were most frequently detected and showed high alpha- and beta-diversity. Members of the Actinobacteria, Proteobacteria, Bacteroidetes and Gemmatimonadetes phyla were found in the majority of samples. Archaea alpha- and beta-diversity was very low. For Eukarya, a diverse range of organisms was identified, such as fungi, green algae and several phyla of Protozoa. Phylogenetic analysis revealed an extraordinary variety of putative extremophiles, mainly Bacteria but also Archaea and Eukarya. These comprised radioresistant, endolithic, chasmolithic, xerophilic, hypolithic, thermophilic, thermoacidophilic, psychrophilic, halophilic, haloalkaliphilic and alkaliphilic micro-organisms. Overall, our data revealed large difference in occurrence and diversity over short distances, indicating the need for high-sampling frequency at similar sites. DNA extraction methods need to be optimized to improve extraction efficiencies.

  15. Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2016-08-31

    An overarching goal in molecular biology is to gain an understanding of the mechanistic basis underlying biochemical systems. Success is critical if we are to predict effectively the outcome of drug treatments and the development of abnormal phenotypes. However, data from most experimental studies is typically noisy and sparse. This allows multiple potential mechanisms to account for experimental observations, and often devising experiments to test each is not feasible. Here, we introduce a novel strategy that discriminates among putative models based on their repertoire of qualitatively distinct phenotypes, without relying on knowledge of specific values for rate constants and binding constants. As an illustration, we apply this strategy to two synthetic gene circuits exhibiting anomalous behaviors. Our results show that the conventional models, based on their well-characterized components, cannot account for the experimental observations. We examine a total of 40 alternative hypotheses and show that only 5 have the potential to reproduce the experimental data, and one can do so with biologically relevant parameter values.

  16. Formation of putative chloroplast cytochromes in isolated developing pea chloroplasts

    International Nuclear Information System (INIS)

    Thaver, S.S.; Bhava, D.; Castelfranco, P.A.

    1986-01-01

    In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea chloroplasts were incubated with [ 14 C]-5-aminolevulinic acid [ 14 C]-ALA. The major labeled band (M/sub r/ = 43 kDa by LDS-PAGE) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H 2 O 2 stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with [ 14 C]-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome. The effect of exogenous iron, iron chelators, gabaculine (an inhibitor of ALA synthesis) and other incubation conditions upon the in vitro formation of putative chloroplast cytochromes will be discussed

  17. Interaction mediated by the putative tip regions of MdsA and MdsC in the formation of a Salmonella-specific tripartite efflux pump.

    Directory of Open Access Journals (Sweden)

    Saemee Song

    Full Text Available To survive in the presence of a wide range of toxic compounds, gram-negative bacteria expel such compounds via tripartite efflux pumps that span both the inner and outer membranes. The Salmonella-specific MdsAB pump consists of MdsB, a resistance-nodulation-division (RND-type inner membrane transporter (IMT that requires the membrane fusion protein (MFP MdsA, and an outer membrane protein (OMP; MdsC or TolC to form a tripartite efflux complex. In this study, we investigated the role of the putative tip regions of MdsA and its OMPs, MdsC and TolC, in the formation of a functional MdsAB-mediated efflux pump. Comparative analysis indicated that although sequence homologies of MdsA and MdsC with other MFPs and OMPs, respectively, are extremely low, key residues in the putative tip regions of these proteins are well conserved. Mutagenesis studies on these conserved sites demonstrated their importance for the physical and functional interactions required to form an MdsAB-mediated pump. Our studies suggest that, despite differences in the primary amino acid sequences and functions of various OMPs and MFPs, interactions mediated by the conserved tip regions of OMP and MFP are required for the formation of functional tripartite efflux pumps in gram-negative bacteria.

  18. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  19. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  20. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  1. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  2. Putative Risk Factors in Developmental Dyslexia: A Case-Control Study of Italian Children

    Science.gov (United States)

    Mascheretti, Sara; Marino, Cecilia; Simone, Daniela; Quadrelli, Ermanno; Riva, Valentina; Cellino, Maria Rosaria; Maziade, Michel; Brombin, Chiara; Battaglia, Marco

    2015-01-01

    Although dyslexia runs in families, several putative risk factors that cannot be immediately identified as genetic predict reading disability. Published studies analyzed one or a few risk factors at a time, with relatively inconsistent results. To assess the contribution of several putative risk factors to the development of dyslexia, we conducted…

  3. Isolation of putative probionts from cod rearing environment

    DEFF Research Database (Denmark)

    Lauzon, H.L.; Gudmundsdottir, S.; Pedersen, M.H.

    2008-01-01

    , metabolite production and adhesion to fish cell lines. Our study demonstrated that 14% of screened bacteria (n = 188) had antagonistic properties towards fish pathogens. The majority of these isolates were Gram-positive (81%), belonging to Firmicutes (69.2%) and Actinobacteria (11.5%) phyla based on 16S r...... was designed to search for new probiotics to target this critical period in cod rearing. Potential probionts were selected from the naturalmicrobiota of cod aquacultural environment. The selection was based on several criteria: pathogen inhibition potential, growth characteristics, strain identification......RNA gene sequencing. Only 6 (3.2%) of 188 isolates could inhibit all three pathogens tested: Vibrio anguillarum, Aeromonas salmonicida subsp. achromogenes and Vibrio salmonicida. Differences observed in activity intensity and spectrum among inhibitory isolates emphasise the need to develop probiotic...

  4. A Functional Assay for Putative Mouse and Human Definitive Endoderm using Chick Whole-Embryo Cultures

    DEFF Research Database (Denmark)

    Johannesson, Martina; Semb, Tor Henrik; Serup, Palle

    2012-01-01

    . Thus, the purpose of this study is to describe a method whereby the in vivo functionality of DE derived from ESCs can be assessed. Methods: By directed differentiation, putative DE was derived from human and mouse ESCs. This putative DE was subsequently transplanted into the endoderm of chick embryos...... to determine any occurrence of integration. Putative DE was analyzed by gene and protein expression prior to transplantation and 48 h post transplantation. Results: Putative DE, derived from mouse and human ESCs, was successfully integrated within the chick endoderm. Endoderm-specific genes were expressed...... result show that putative DE integrates with the chick endoderm and participate in the development of the chicken gut, indicating the generation of functional DE from ESCs. This functional assay can be used to assess the generation of functional DE derived from both human and mouse ESCs and provides...

  5. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    Science.gov (United States)

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  6. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  7. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  8. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bact