WorldWideScience

Sample records for purinergic receptor pharmacology

  1. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  2. P2-purinerge receptorer

    DEFF Research Database (Denmark)

    Solgaard, Marie; Jørgensen, Niklas Rye

    2005-01-01

    and by osteoclasts, and agonist binding affects cell proliferation, differentiation, activity and apoptosis. With increasing knowledge of the function and role of these receptors in bone biology, they will undoubtedly be a future target for the design of new drugs which can be used for treatment of metabolic bone...

  3. Purinergic Receptors in Thrombosis and Inflammation.

    Science.gov (United States)

    Hechler, Béatrice; Gachet, Christian

    2015-11-01

    Under various pathological conditions, including thrombosis and inflammation, extracellular nucleotide levels may increase because of both active release and passive leakage from damaged or dying cells. Once in the extracellular compartment, nucleotides interact with plasma membrane receptors belonging to the P2 purinergic family, which are expressed by virtually all circulating blood cells and in most blood vessels. In this review, we focus on the specific role of the 3 platelet P2 receptors P2Y1, P2Y12, and P2X1 in hemostasis and arterial thrombosis. Beyond platelets, these 3 receptors, along with the P2Y2, P2Y6, and P2X7 receptors, constitute the main P2 receptors mediating the proinflammatory effects of nucleotides, which play important roles in various functions of circulating blood cells and cells of the vessel wall. Each of these P2 receptor subtypes specifically contributes to chronic or acute vascular inflammation and related diseases, such as atherosclerosis, restenosis, endotoxemia, and sepsis. The potential for therapeutic targeting of these P2 receptor subtypes is also discussed.

  4. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...... in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles...

  5. Introduction to the Special Issue on Purinergic Receptors.

    Science.gov (United States)

    Burnstock, Geoffrey

    2017-02-22

    In this Introduction to the series of papers that follow about purinergic receptors, there is a brief history of the discovery of purinergic signalling, the identity of purinoceptors and the current recognition of P1, P2X and P2Y subtypes. An account of key functions mediated by purinoceptors follows, including examples of both short-term and long-term (trophic) signalling and a table showing the selective agonists and antagonists for the purinoceptor subtypes. References to evolution and roles of purinoceptors in pathological conditions are also presented.

  6. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    in the mechanotransductory process, where mechanical stimulation on bone leads to anabolic responses in the skeleton. A number of single nucleotide polymorphisms have been identified in the P2 receptor genes, where especially the P2X7 subtype has been the focus of extensive investigation where several polymorphisms have......Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...... receptor subtypes have been identified on bone cells. Several cellular functions in bone tissue are coupled to P2-receptor activation, including bone resorption, cytokine release, apoptosis, bone formation, and mineral deposition. Furthermore, ATP release and P2 purinergic signalling is a key pathway...

  7. Purinergic receptors in the endocrine and exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  8. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  9. The role of P2 purinergic receptores in bone metabolisme and their therapeutic potential

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Solgaard, M; Schwarz, P

    2006-01-01

    Abstract. The role of purinergic P2 receptors in bone biology has been evaluated over the last decade. These receptors have proven to be an interesting target for new pharmacological agents with the ability to regulate bone metabolism. As the prevalence of osteoporosis increases new efficient age...... drugs, which can be used for treatment of metabolic bone diseases, including osteoporosis. This article is reviewing the studies documenting the effects of nucleotides and P2 receptors in bone and bone cells.......Abstract. The role of purinergic P2 receptors in bone biology has been evaluated over the last decade. These receptors have proven to be an interesting target for new pharmacological agents with the ability to regulate bone metabolism. As the prevalence of osteoporosis increases new efficient...... agents to treat the disease are sought for. The P2 receptors are activated by nucleotides and recently, studies have shown a possible role for these in bone turnover and metabolism. P2 receptors can be divided further into P2X and P2Y subtypes with strikingly different mechanisms of action...

  10. Purinergic Receptors in Thrombosis and Inflammation

    National Research Council Canada - National Science Library

    Hechler, Béatrice; Gachet, Christian

    2015-01-01

    .... Beyond platelets, these 3 receptors, along with the P2Y2, P2Y6, and P2X7 receptors, constitute the main P2 receptors mediating the proinflammatory effects of nucleotides, which play important roles...

  11. Attenuated purinergic receptor function in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Thaning, Pia; Bune, Laurids T.; Hellsten, Ylva

    2010-01-01

    Objective: Extra cellular nucleotides and nucleosides are involved in regulation of skeletal muscle blood flow. Diabetes induces cardiovascular dysregulation but the extent to which the vasodilatatory capacity of nucleotides and nucleosides are affected in type 2 diabetes is unknown. The present......) was measured during intrafemoral artery infusion of ATP, UTP, and ADO eliciting a blood flow equal to knee-extensor exercise at 12 watts ( approximately 2.6 L/min). Results: The vasodilatatory effect of the purinergic system was 50 % lower in the diabetic group as exemplified by a LBF increase by 274+/-37 vs......-DM (1.5). The distribution and mRNA-expression of receptors were similar in the two groups. Conclusions: The vasodilatatory effect of the purinergic system is severely reduced in type 2 diabetic patients. The potency of nucleotides varies with the following rank order: UTP>ATP>>>ADO. This is not due...

  12. Purinergic signaling in the cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors.

    Science.gov (United States)

    Habbas, Samia; Ango, Fabrice; Daniel, Hervé; Galante, Micaela

    2011-12-01

    Astrocytes constitute active networks of intercommunicating cells that support the metabolism and the development of neurons and affect synaptic functions via multiple pathways. ATP is one of the major neurotransmitters mediating signaling between neurons and astrocytes. Potentially acting through both purinergic metabotropic P2Y receptors (P2YRs) and ionotropic P2X receptors (P2XRs), up until now ATP has only been shown to activate P2YRs in Bergmann cells, the radial glia of the cerebellar cortex that envelopes Purkinje cell afferent synapses. In this study, using multiple experimental approaches in acute cerebellar slices we demonstrate the existence of functional P2XRs on Bergmann cells. In particular, we show here that Bergmann cells express uniquely P2X7R subtypes: (i) immunohistochemical analysis revealed the presence of P2X7Rs on Bergmann cell processes, (ii) in whole cell recordings P2XR pharmacological agonists induced depolarizing currents that were blocked by specific antagonists of P2X7Rs, and could not be elicited in slices from P2X₇R-deficient mice and finally, (iii) calcium imaging experiments revealed two distinct calcium signals triggered by application of exogenous ATP: a transient signal deriving from release of calcium from intracellular stores, and a persistent one following activation of P2X7Rs. Our data thus reveal a new pathway by which extracellular ATP may affect glial cell function, thus broadening our knowledge on purinergic signaling in the cerebellum.

  13. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis.

    Science.gov (United States)

    Chaves, Mariana M; Canetti, Cláudio; Coutinho-Silva, Robson

    2016-09-05

    Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.

  14. mGluR1 receptors contribute to non-purinergic slow excitatory transmission to submucosal VIP neurons of guinea-pig ileum

    Directory of Open Access Journals (Sweden)

    Jaime Pei Pei Foong

    2009-05-01

    Full Text Available Vasoactive intestinal peptide (VIP immunoreactive secretomotor neurons in the submucous plexus are involved in mediating bacterial toxin-induced hypersecretion leading to diarrhoea. VIP neurons become hyperexcitable after the mucosa is exposed to cholera toxin, which suggests that the manipulation of the excitability of these neurons may be therapeutic. This study used standard intracellular recording methods to systematically characterize slow excitatory postsynaptic potentials (EPSPs evoked in submucosal VIP neurons by different stimulus regimes (1, 3 and 15 pulse 30 Hz stimulation, together with their associated input resistances and pharmacology. All slow EPSPs were associated with a significant increase in input resistance compared to baseline values. Slow EPSPs evoked by a single stimulus were confirmed to be purinergic, however, slow EPSPs evoked by 15 pulse trains were non-purinergic and those evoked by 3 pulse trains were mixed. NK1 or NK3 receptor antagonists did not affect slow EPSPs. The group I mGluR receptor antagonist, PHCCC reduced the amplitude of purinergic and non-purinergic slow EPSPs. Blocking mGluR1 receptors depressed the overall response to 3 and 15 pulse trains, but this effect was inconsistent, while blockade of mGluR5 receptors had no effect on the non-purinergic slow EPSPs. Thus, although other receptors are almost certainly involved, our data indicate that there are at least two pharmacologically distinct types of slow EPSPs in the VIP secretomotor neurons: one mediated by P2Y receptors and the other in part by mGluR1 receptors.

  15. Purinergic (P2) receptor control of lower genitourinary tract function and new avenues for drug action: an overview.

    Science.gov (United States)

    Gur, Serap; Kadowitz, Philip J; Hellstrom, Wayne J G

    2007-01-01

    Micturition, penile erection, contraction of prostatic smooth muscle, peristalsis of the male excurrent duct system and lumbosacral spinal cord neurotransmission all require adenosine 5'-triphosphate (ATP) activity and this likely involves purinergic (P2) receptors. P2 receptors are categorized as either ligand-gated ionotropic P2X or metabotropic G-protein-coupled P2Y subtypes. In the urinary bladder, purinergic receptor mechanisms are involved in both motor and sensory function. In the prostate, P2X1-receptors, which mediate contraction, are present in the fibromuscular stroma while G protein-coupled P2Y purinoceptors have a wide range of actions in prostate cancer. In the excretory ducts of the testis (ductus epididymidis, vas deferens and its associated seminal vesicles), heavy immunostaining for P2X1 and P2X2 subtypes is detected in the membranes of smooth muscle, suggesting their role in sperm transport and ejaculation. In the penis, intense P2X1 and weak P2X2 immunoreactivity are observed in smooth muscle of blood vessels and the corpus cavernosum, implying their participation in detumescence. Human corporal cavernosum stimulation induces relaxation of P2Y purinoceptors. Targeting of extracellular or intracellular P2X and/or P2Y receptor signaling pathways holds promise in affecting the lower genitourinary tract system. Our advancing knowledge about purine agonists and their pharmacologic benefits in erectile, ejaculatory, urinary bladder and prostatic hyperplasia may service clinical problems in the near future.

  16. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors.

    Science.gov (United States)

    Schenk, Ursula; Frascoli, Michela; Proietti, Michele; Geffers, Robert; Traggiai, Elisabetta; Buer, Jan; Ricordi, Camillo; Westendorf, Astrid M; Grassi, Fabio

    2011-03-01

    Extracellular nucleotides are pleiotropic regulators of mammalian cell function. Adenosine triphosphate (ATP) released from CD4(+) helper T cells upon stimulation of the T cell receptor (TCR) contributes in an autocrine manner to the activation of mitogen-activated protein kinase (MAPK) signaling through purinergic P2X receptors. Increased expression of p2rx7, which encodes the purinergic receptor P2X7, is part of the transcriptional signature of immunosuppressive CD4(+)CD25(+) regulatory T cells (T(regs)). Here, we show that the activation of P2X7 by ATP inhibits the suppressive potential and stability of T(regs). The inflammatory cytokine interleukin-6 (IL-6) increased ATP synthesis and P2X7-mediated signaling in T(regs), which induced their conversion to IL-17-secreting T helper 17 (T(H)17) effector cells in vivo. Moreover, pharmacological antagonism of P2X receptors promoted the cell-autonomous conversion of naïve CD4(+) T cells into T(regs) after TCR stimulation. Thus, ATP acts as an autocrine factor that integrates stimuli from the microenvironment and cellular energetics to tune the developmental and immunosuppressive program of the T cell in adaptive immune responses.

  17. Purinergic receptors in skeletal muscles in health and in muscular dystrophy.

    Science.gov (United States)

    Krasowska, Elżbieta; Róg, Justyna; Sinadinos, Anthony; Young, Christopher N J; Górecki, Dariusz C; Zabłocki, Krzysztof

    2014-01-01

    The P2 purinergic (nucleotide) receptor super-family comprises of two families of protein. The P2X, which are channel-forming ionotropic receptors and the P2Y metabotropic receptors activating G protein-mediated signalling pathways. Members of both groups have been identified in skeletal muscle cells at different stages of differentiation. It is well documented that sequential expression and down-regulation of particular P2 receptors on the surface of sarcolemma is closely associated with muscle maturation during embryogenesis and postnatal growth. P2 receptors are also involved in muscle regeneration following injury. Moreover, enhanced expression of specific purinergic receptors together with increased availability of extracellular ATP in dystrophic muscles are important elements of the dys- trophic pathophysiology considerably increasing severity.

  18. Variation in the purinergic P2RX(7) receptor gene and schizophrenia

    DEFF Research Database (Denmark)

    Hansen, Thomas; Jakobsen, Klaus D; Fenger, Mogens;

    2008-01-01

    The purinergic receptor gene P2RX(7) is located in a major linkage hotspot for schizophrenia and bipolar disorders, 12q21-33. It has previously been associated with bipolar disorder but has never been analysed in relation to schizophrenia, although it is involved in several neuronal processes...

  19. Expression and characterization of purinergic receptors in rat middle meningeal artery-potential role in migraine.

    Directory of Open Access Journals (Sweden)

    Kristian Agmund Haanes

    Full Text Available The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysiology of migraine. The aim of the present study was to isolate the middle meningeal artery (MMA from rodents and characterize their purinergic receptors using a sensitive wire myograph method and RT-PCR. The data presented herein suggest that blood flow through the MMA is, at least in part, regulated by purinergic receptors. P2X1 and P2Y6 receptors are the strongest contractile receptors and, surprisingly, ADPβS caused contraction most likely via P2Y1 or P2Y13 receptors, which is not observed in other arteries. Adenosine addition, however, caused relaxation of the MMA. The adenosine relaxation could be inhibited by SCH58261 (A2A receptor antagonist and caffeine (adenosine receptor antagonist. This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well with the functional findings. Together these observations could be used as targets for future understanding of the in vivo role of purinergic receptors in the MMA.

  20. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    Science.gov (United States)

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. © 2011 Séror et al.

  1. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  2. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP, an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1R. At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3-dependent Ca(2+ release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.

  3. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    Purinergic receptors regulate various processes including epithelial transport. There are several studies on P2 receptors in pancreatic ducts of various species, but relatively little is known about these receptors in human tissue. The aim of this study was to identify purinergic receptors in human......ATP, commonly used to stimulate P2X7 receptors, elicited non-oscillatory and transient Ca(2+) responses. Ivermectin, a potentiator of P2X4 receptors, increased Ca(2+) signals evoked by ATP. The single cell Ca(2+) measurements indicated functional expression of P2Y2 and other P2Y receptors, and notably...... expression of P2X4 and P2X7 receptors. Expression of P2Y2, P2X4 and P2X7 receptors was confirmed by immunocytochemistry. This fingerprint of P2 receptors in human pancreatic duct models forms the basis for studying effect of nucleotides on ion and fluid secretion, as well as on Ca(2+) and tissue homeostasis...

  4. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  5. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  6. [Research Progress on Expression and Function of P2 Purinergic Receptor in Blood Cells].

    Science.gov (United States)

    Feng, Wen-Li; Wang, Li-Na; Zheng, Guo-Guang

    2015-10-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind a class of plasma membrane receptors, P2 purinergic receptors, to trigger intercellular signaling. P2 receptors can be further divided into two structurally and functionally different sub-famlies, the P2X and P2Y receptors. Different blood cells express diverse spectrum of P2 receptors at different levels. Extracellular adenosine triphosphate (ATP) exerts different effects on blood cells, regulating cell proliferation, differentiation, migration, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptors and human diseases attracts more and more attention. This review briefly discusses the expression and function of P2 receptors in hematopoietic system.

  7. Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy

    DEFF Research Database (Denmark)

    Novak, Ivana; Nitschke, Roland; Amstrup, Jan

    2002-01-01

    Pancreatic ducts have several types of purinergic P2 receptors, however, nothing is known about P2 receptors in acini. The aim was to establish whether acini express functional P2 receptors coupled to intracellular Ca2+ signals and to measure the signals ratiometrically in a confocal laser scanni...

  8. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier

    DEFF Research Database (Denmark)

    Lou, Nanhong; Takano, Takahiro; Pei, Yong

    2016-01-01

    Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G......-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed...

  9. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    Science.gov (United States)

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  10. Role of purinergic receptors in the activation of human airway smooth muscle cells by the antimicrobial peptide LL-37

    Directory of Open Access Journals (Sweden)

    Suzanne Zuyderduyn

    2006-12-01

    Full Text Available Inflammatory cells that infiltrate and surround the airway smooth muscle (ASM layer express antimicrobial peptides including the cathelicidin LL-37. LL-37 has been shown to activate epithelial cells by transactivation of the epidermal growth factor receptor (EGFR. Previously, we have shown that LL-37-induced IL-8 release by ASM cells was not dependent on either formyl peptide receptors or the EGFR (ATS 2005. In monocytes LL-37 induces processing of IL-1ß through activation of the purinergic P2X7 receptor. Therefore, the aim of our study was to evaluate the role of purinergic receptors in LL-37-induced activation of ASM cells, and to explore the involvement of several intracellular signalling pathways. ASM cells were cultured and serum-deprived 24 hours before stimulation with LL-37 (10 µg·ml–1. The purinergic receptor antagonist suramin and inhibitors of ERK1/2, p38, Src and PI3K were preincubated for one hour. ERK1/2 phosphorylation was assessed by Western Blot, and IL-8 release was determined in supernatants using a sandwich ELISA. RT-PCR was performed for P2X7 on untreated ASM cells. LL-37 induced ERK1/2 phosphorylation and IL-8 release; both were inhibited by suramin (IL-8: 86%. Inhibitors of ERK1/2, p38 and Src signalling also reduced LL-37-induced IL-8 release (by 67%, 63% and 76%, respectively, suggesting a role for these pathways. P2X7 mRNA was expressed in ASM cells. These data show that LL-37-induced IL-8 release is mediated via purinergic receptors, ERK1/2 activation, p38 and Src signalling. Our PCR data are in line with the hypothesis that also in ASM P2X7 is the purinergic receptor involved in LL-37 signalling, although this needs further investigation.

  11. The roles of P2 purinergic receptors in nociception and antinociception

    Institute of Scientific and Technical Information of China (English)

    SatohM; MinamM

    2002-01-01

    Extracellular adenosine 5'-triphosphate (ATP) has been established as a neurotransmitter or neuromodulator in both the periphe- ral and central nervous systems,in addition to diverse intracellular roles of it.P2 purinergic receptors,the receptors of ATP,are classified into two subfamilites,ionotropic P2X and metabotropic P2Y receptors.Recent studies suggest that ATP play a significant role in facilitating perpheral and spinal nociceptive transmission via P2X receptors.However,we demonstrated that at the supraspinal level P2X receptor agonists produce an antinociception.On the other hand,the activation of some subtypes of P2Y receptors in the spinal cord caused inhibitory effects on nociceptive transmission.Thus,P2X and P2Y receptors are suggested to be related to diverse roles in nociceptive functions at peripheral,spinal and supraspinal levels.We would like to take an overview about the significance of P2X and P2Y receptors in nociception and antinociception.

  12. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.

    Science.gov (United States)

    Gohar, Eman Y; Speed, Joshua S; Kasztan, Malgorzata; Jin, Chunhua; Pollock, David M

    2016-08-01

    Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect of increased medullary NaCl loading on Na(+) excretion and inner medullary ET-1 mRNA expression in anesthetized adult male Sprague-Dawley rats in the presence and absence of purinergic receptor antagonism. Isosmotic saline (NaCl; 284 mosmol/kgH2O) was infused into the medullary interstitium (500 μl/h) during a 30-min baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) for two further 30-min urine collection periods. Na(+) excretion was significantly increased during intramedullary infusion of hyperosmotic saline. Compared with isosmotic saline, hyperosmotic saline infused into the renal medulla caused significant increases in inner medullary ET-1 mRNA expression. Renal intramedullary infusion of the P2 receptor antagonist suramin inhibited the increase in Na(+) excretion and inner medullary ET-1 mRNA expression induced by NaCl loading in the renal medulla. Activation of medullary P2Y2/4 receptors by infusion of UTP increased urinary Na(+) excretion. Combined ETA and ETB receptor blockade abolished the natriuretic response to intramedullary infusion of UTP. These data demonstrate that activation of medullary P2 receptors promotes ET-dependent natriuresis in male rats, suggesting that the renal ET-1 and purinergic signaling systems interact to efficiently facilitate excretion of a NaCl load.

  13. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  14. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    Plasma adenosine-5'-triphosphate (ATP) is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study...... investigated: 1) the role of nitric oxide (NO), prostaglandins and adenosine as mediators of ATP induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra......-arterial infusion of ATP (0.45-2.45 micromol/min; mean+/-SEM) in 19 healthy, male subjects with and without co-infusion of NG-mono-methyl-L-arginine (L-NMMA; NO formation inhibitor; 12.3+/-0.3 mg/min), indomethacin (INDO; prostaglandin formation blocker; 613+/-12 microg/min) and/or theophylline (adenosine receptor...

  15. Purinergic receptor signaling at the basolateral membrane of macula densa cells.

    Science.gov (United States)

    Liu, Ruisheng; Bell, P Darwin; Peti-Peterdi, Janos; Kovacs, Gergly; Johansson, Alf; Persson, A Erik G

    2002-05-01

    Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).

  16. Functional expression of purinergic P2X7 receptors in pregnant rat myometrium.

    Science.gov (United States)

    Miyoshi, Hiroshi; Yamaoka, Kaoru; Urabe, Satoshi; Kodama, Miho; Kudo, Yoshiki

    2010-04-01

    ATP has been reported to enhance the membrane conductance of myometrial cells and uterine contractility. Purinergic P2 receptor expression has been reported in the myometrium, using molecular biology, but the functional identity of the receptor subtype has not been determined. In this study, ATP-induced currents were recorded and characterized in single myometrial cells from pregnant rats using whole cell patch clamping. Extracellular ATP was applied in the range of 10 muM-1 mM and induced currents with an EC(50) of 74 muM, with no desensitization, time dependency, or voltage dependency. The currents induced carried multiple monovalent cations, with conductances ranked as K(+) > Cs(+) > Li(+) > Na(+). They were activated by P2X receptor agonists, with their effectiveness ranked as 2',3'-O-(4-benzoylbenzoyl)-ATP > ATP > alphabeta-methylene-ATP > 2-methylthio ATP > or = UTP > or = GTP > ADP. These currents were blocked by the selective P2X7 receptor antagonist 3-[5-(2,3-dichlorophenyl)-1 H-tetrazol-1-yl]methyl pyridine (A-438079). We therefore concluded that ATP-induced currents in rat myometrial cells crossed cell membranes via P2X7 receptors. We further showed that the ATP-induced currents were blocked by extracellular Mg(2+) (IC(50) = 0.26 mM). Clinically, administering extracellular Mg(2+) is known to inhibit uterine contraction. It therefore seems likely that uterine contraction may be induced by raised extracellular ATP and suppressed via Mg(2+) inhibiting P2X7 receptors. Further research is needed into the P2X7 receptor as a therapeutic target in abnormal uterine contraction, as a possible treatment for premature labor.

  17. Purinergic receptor-mediated intracellular Ca2+ oscillations in chicken granulosa cells.

    Science.gov (United States)

    Morley, P; Vanderhyden, B C; Tremblay, R; Mealing, G A; Durkin, J P; Whitfield, J F

    1994-03-01

    production. These studies demonstrate that chicken granulosa cells display P2 purinergic receptors on their surfaces. Activation of these receptors triggers [Ca2+]i oscillations that follow the release of Ca2+ from internal stores and depend on Ca2+ influx through dihydropyridine-insensitive Ca2+ channels. The physiological function(s) of P2 purinergic receptors on granulosa cells is not known.

  18. Purinergic receptor functionality is necessary for infection of human hepatocytes by hepatitis delta virus and hepatitis B virus.

    Directory of Open Access Journals (Sweden)

    John M Taylor

    Full Text Available Hepatitis B virus (HBV and hepatitis delta virus (HDV are major sources of acute and chronic hepatitis. HDV requires the envelope proteins of HBV for the processes of assembly and infection of new cells. Both viruses are able to infect hepatocytes though previous studies have failed to determine the mechanism of entry into such cells. This study began with evidence that suramin, a symmetrical hexasulfated napthylurea, could block HDV entry into primary human hepatocytes (PHH and was then extrapolated to incorporate findings of others that suramin is one of many compounds that can block activation of purinergic receptors. Thus other inhibitors, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS and brilliant blue G (BBG, both structurally unrelated to suramin, were tested and found to inhibit HDV and HBV infections of PHH. BBG, unlike suramin and PPADS, is known to be more specific for just one purinergic receptor, P2X7. These studies provide the first evidence that purinergic receptor functionality is necessary for virus entry. Furthermore, since P2X7 activation is known to be a major component of inflammatory responses, it is proposed that HDV and HBV attachment to susceptible cells, might also contribute to inflammation in the liver, that is, hepatitis.

  19. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    Science.gov (United States)

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  20. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein.

    Science.gov (United States)

    Delarasse, Cécile; Auger, Rodolphe; Gonnord, Pauline; Fontaine, Bertrand; Kanellopoulos, Jean M

    2011-01-28

    The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.

  1. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium.

    Science.gov (United States)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen; Willumsen, Niels Johannes; Frederiksen, Ole

    2005-07-01

    We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions to 8 and 17% below control level, respectively. Serosal application of nucleotides had no effect. The ATP-induced response appeared to involve additional activation of apical adenosine (P1) and P2X receptors. The inhibitory effect of ATP and UTP on Isc was eliminated by pretreatment with amiloride (100 microM), while the stimulatory effect was potentiated, indicating that ATP and UTP inhibit Na+ and stimulate Cl- current. Ionomycin (1 microM) induced responses similar to UTP and ATP and desensitized the epithelium to the nucleotides, indicating involvement of intracellular Ca2+ (Ca2+ i. Furthermore, ATP, UTP and ionomycin induced 21, 24, and 21% decreases, respectively, in transepithelial conductance. Measurements of unidirectional isotope fluxes showed a 39% decrease in the dominant net Na+ absorption in response to ATP, while the smaller net Cl- secretion increased only insignificantly and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y receptor-dependent increase in Ca2+ i, while stimulation of Cl- secretion is of minor importance.

  2. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves.

    Science.gov (United States)

    Faroni, A; Smith, R J P; Procacci, P; Castelnovo, L F; Puccianti, E; Reid, A J; Magnaghi, V; Verkhratsky, A

    2014-10-01

    Adenosine-5'-triphosphate, the physiological ligand of P2X receptors, is an important factor in peripheral nerve development. P2X7 receptor is expressed in Schwann cells (SCs), but the specific effects of P2X7 purinergic signaling on peripheral nerve development, myelination, and function are largely unknown. In this study, sciatic nerves from P2X7 knockout mice were analyzed for altered expression of myelin-associated proteins and for alterations in nerve morphology. Immunohistochemical analyses revealed that, in the wild-type peripheral nerves, the P2X7 receptor was localized mainly in myelinating SCs, with only a few immunopositive nonmyelinating SCs. Complete absence of P2X7 receptor protein was confirmed in the sciatic nerves of the knockout mice by Western blot and immunohistochemistry. Western blot analysis revealed that expression levels of the myelin proteins protein zero and myelin-associated glycoprotein are reduced in P2X7 knockout nerves. In accordance with the molecular results, transmission electron microscopy analyses revealed that P2X7 knockout nerves possess significantly more unmyelinated axons, contained in a higher number of Remak bundles. The myelinating/nonmyelinating SC ratio was also decreased in knockout mice, and we found a significantly increased number of irregular fibers compared with control nerves. Nevertheless, the myelin thickness in the knockout was unaltered, suggesting a stronger role for P2X7 in determining SC maturation than in myelin formation. In conclusion, we present morphological and molecular evidence of the importance of P2X7 signaling in peripheral nerve maturation and in determining SC commitment to a myelinating phenotype.

  3. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia

    Directory of Open Access Journals (Sweden)

    Smith SMC

    2013-08-01

    Full Text Available Stephanie MC Smith,1,2 Gordon S Mitchell,1,2 Scott A Friedle,3 Christine M Sibigtroth,1 Stéphane Vinit,1 Jyoti J Watters1–31Department of Comparative Biosciences, 2Comparative Biomedical Sciences Training Program, 3Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USAAbstract: Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours in the presence and absence of the nonselective P2X receptor agonist 2′(3′-O-(4-benzoylbenzoyladenosine-5′-triphosphate (BzATP to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS, tumor necrosis factor alpha (TNFα, and interleukin (IL-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X

  4. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...... for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  5. Complex pharmacology of free fatty acid receptors

    OpenAIRE

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond; Hudson, Brian D.

    2017-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond simple competitive agonism or antagonism by ligands interacting with the orthosteric binding site of the receptor to incorporate concepts of allosteric agonism, allosteric modulation, signaling bias, c...

  6. Purinergic signaling in schistosomal infection

    Directory of Open Access Journals (Sweden)

    Claudia Lucia Martins Silva

    2016-10-01

    Full Text Available Human schistosomiasis is a chronic inflammatory disease caused by blood fluke worms belonging to the genus Schistosoma. Health metrics indicate that the disease is related to an elevated number of years lost-to-disability and years lost-to-life. Schistosomiasis is an intravascular disease that is related to a Th1 and Th2 immune response polarization, and the degree of polarization affects the outcome of the disease. The purinergic system is composed of adenosine and nucleotides acting as key messenger molecules. Moreover, nucleotide-transforming enzymes and cell-surface purinergic receptors are obligatory partners of this purinergic signaling. In mammalian cells, purinergic signaling modulates innate immune responses and inflammation among other functions; conversely purinergic signaling may also be modulated by inflammatory mediators. Moreover, schistosomes also express some enzymes of the purinergic system, and it is possible that worms modulate host purinergic signaling. Current data obtained in murine models of schistosomiasis support the notion that the host purinergic system is altered by the disease. The dysfunction of adenosine receptors, metabotropic P2Y and ionotropic P2X7 receptors, and NTPDases likely contributes to disease morbidity.

  7. Purinergic receptors stimulate Na+/Ca2+ exchange in pancreatic duct cells: possible role of proteins handling and transporting Ca2+

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Ankorina-Stark, Ieva

    2009-01-01

    Most purinergic receptors activate intracellular Ca(2+) signalling, and in epithelia they stimulate transport of major ions. Aim of the present study on pancreatic ducts was to find whether P2 receptors also regulate cellular Ca(2+) transport, such as that via the Na(+)/Ca(2+) exchanger (NCX). Si...

  8. Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors.

    Science.gov (United States)

    Khoja, Sheraz; Shah, Vivek; Garcia, Damaris; Asatryan, Liana; Jakowec, Michael W; Davies, Daryl L

    2016-10-01

    Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential

  9. Molecular pharmacology of human NMDA receptors

    DEFF Research Database (Denmark)

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard

    2012-01-01

    current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side......-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest...... that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human...

  10. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis

    Science.gov (United States)

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2015-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression. PMID:26474534

  11. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis.

    Science.gov (United States)

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2016-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.

  12. Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7.

    Science.gov (United States)

    Kaiser, M; Sobottka, H; Fischer, W; Schaefer, M; Nörenberg, W

    2014-09-01

    Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was included in some assays. Fluorometric and electrophysiologic assays were used to characterize effects of TIIAS and TIIA on recombinantly expressed human, rat, and mouse P2X7. Results were confirmed in human monocyte-derived macrophages expressing native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists. TIIAS, but not TIIA, reduces Ca(2+) influx via human P2X7 (hP2X7) with an IC50 of 4.3 µM. TIIAS was less potent at mouse P2X7 and poorly inhibited rat P2X7. Monitoring of YO-PRO-1 uptake confirmed these findings, indicating that formation of the hP2X7 pore is also suppressed by TIIAS. Electrophysiologic experiments revealed a noncompetitive mode of action. TIIAS time-dependently inhibits hP2X7 gating, possibly by binding to the intracellular domain of the receptor. Inhibition of native P2X7 in macrophages by TIIAS was confirmed by monitoring Ca(2+) influx, YO-PRO-1 uptake, and release of the proinflammatory cytokine interleukin-1β. Fluorometric experiments involving recombinantly expressed rat P2X2 and human P2X4 were conducted and verified the compound's selectivity. Our data suggest that hP2X7 is a molecular target of TIIAS, but not of TIIA, a compound with different pharmacologic properties.

  13. Pharmacology and function of melatonin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dubocovich, M.L.

    1988-09-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-(125I)iodomelatonin are identical. It is proposed that 2-(125I)iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-(125I)iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references.

  14. Purinergic signaling in infection and autoimmune disease

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Baggio Savio

    2016-10-01

    Full Text Available Purinergic signaling plays a key role in inflammatory processes and modulates immune responses against a variety of bacterial and eukaryotic parasites. Here we highlight the role of purinergic receptor activation in infection and autoimmune diseases. Purinergic signaling and inflammasomes modulate the host immune response against chlamydial infections. In addition, increasing evidence suggests that purinergic signaling contributes to Schistosomiasis morbidity, a neglected tropical disease caused by parasitic worms called schistosomes. Finally, the P2X7 receptor and NLRP3 inflammasome have been described to be involved in the pathogenesis of systemic lupus erythematosus, suggesting that these signaling pathways as suitable therapeutic targets for management and treatment of different immune diseases.

  15. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Victor H. Leyva-Grado

    2017-03-01

    Full Text Available An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10, gamma interferon (IFN-γ, and CC chemokine ligand 2 (CCL2 was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection.

  16. Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2X7 in Adult Patients with Moderately to Severely Active Crohn's Disease: A Randomized Placebo-controlled, Double-blind, Phase IIa Study

    National Research Council Canada - National Science Library

    Eser, Alexander; Colombel, Jean-Frederic; Rutgeerts, Paul; Vermeire, Severine; Vogelsang, Harald; Braddock, Martin; Persson, Tore; Reinisch, Walter

    2015-01-01

    AZD9056 is a selective orally active inhibitor of the purinergic receptor P2X7, which is a key player in the generation and secretion of several proinflammatory cytokines involved in the pathogenesis of Crohn's disease (CD...

  17. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.

    Science.gov (United States)

    Itoh, K; Chiang, C-Y; Li, Z; Lee, J-C; Dostrovsky, J O; Sessle, B J

    2011-09-29

    Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model.

  18. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner......OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular......, purinergic receptors, and determine their effects on ion transport. METHODS: Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured...... in response to agonists. RESULTS: Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion...

  19. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli.

    Science.gov (United States)

    Ilatovskaya, Daria V; Palygin, Oleg; Levchenko, Vladislav; Staruschenko, Alexander

    2013-11-15

    Calcium flux in the podocytes is critical for normal and pathophysiological regulation of these types of cells, and excessive calcium signaling results in podocytes damage and improper glomeruli function. Purinergic activation of P2 receptors is a powerful and rapid signaling process; however, the exact physiological identity of P2 receptors subtypes in podocytes remains essentially unknown. The goal of this study was to determine the P2 receptor profile in podocytes of the intact Sprague-Dawley rat glomeruli using available pharmacological tools. Glomeruli were isolated by differential sieving and loaded with Fluo-4/Fura Red cell permeable calcium indicators, and the purinergic response in the podocytes was analyzed with ratiometric confocal fluorescence measurements. Various P2 receptors activators were tested and compared with the effect of ATP, specifically, UDP, MRS 2365, bzATP, αβ-methylene, 2-meSADP, MRS 4062, and MRS 2768, were analyzed. Antagonists (MRS 2500, 5-BDBD, A438079, and NF 449) were tested when 10 μM ATP was applied as the EC50 for ATP activation of the calcium influx in the podocytes was determined to be 10.7 ± 1.5 μM. Several agonists including MRS 2365 and 2-meSADP caused calcium flux. Importantly, only the P2Y1-specific antagonist MRS 2500 (1 nM) precluded the effects of ATP concentrations of the physiological range. Immunohistochemical analysis confirmed that P2Y1 receptors are highly expressed in the podocytes. We conclude that P2Y1 receptor signaling is the predominant P2Y purinergic pathway in the glomeruli podocytes and P2Y1 might be involved in the pathogenesis of glomerular injury and could be a target for treatment of kidney diseases.

  20. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.

    Science.gov (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe

    2017-01-01

    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  1. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  2. Analysis of a polymorphic microRNA target site in the purinergic receptor P2RX7 gene.

    Science.gov (United States)

    Rahman, Omar Abdul; Sasvari-Szekely, Maria; Szekely, Anna; Faludi, Gabor; Guttman, Andras; Nemoda, Zsofia

    2010-06-01

    The recent discovery of post-transcriptional regulation by microRNAs (miRNAs) drew our attention to SNPs of putative miRNA target sites in candidate genes of depression-related psychiatric disorders. The P2RX7 (purinergic receptor P2X, ligand-gated ion channel, 7) gene has been suggested as a candidate for major depressive and bipolar disorder, because of repeated associations with the rs2230912 (Gln460Arg) polymorphism. As this polymorphism is located at the end of the coding region, we considered a possible linkage with SNP(s) in putative miRNA target sites of the 3' untranslated region. Based on our in silico search, the rs1653625 fulfilled this criterion. This SNP, however, is surrounded with polycytosine and polyadenine tracts, which hindered its analysis until now. In this study, we describe a readily applicable genotyping method for rs1653625 by applying a primer that introduces mismatched nucleotides to create a restriction enzyme cleavage site. The resulting allele-specific products with 19 base pair difference were separated by both traditional horizontal agarose gel electrophoresis and multicapillary gel electrophoresis. The developed genotyping method was applied in our depression-related association study.

  3. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice.

    Science.gov (United States)

    Darville, Toni; Welter-Stahl, Lynn; Cruz, Cristiane; Sater, Ali Abdul; Andrews, Charles W; Ojcius, David M

    2007-09-15

    Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.

  4. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice.

    Science.gov (United States)

    Hoque, Rafaz; Sohail, Muhammed Adnan; Salhanick, Steven; Malik, Ahsan F; Ghani, Ayaz; Robson, Simon C; Mehal, Wajahat Z

    2012-05-15

    Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like receptor family, pryin domain containing-3 (NLRP3) inflammasome in immune cells and is activated by ATP and NAD that serve as damage-associated molecular patterns. APAP hepatotoxicity was assessed in mice genetically deficient in P2X7, the key inflammatory receptor for nucleotides (P2X7-/-), and in wild-type mice. P2X7-/- mice had significantly decreased APAP-induced liver necrosis. In addition, APAP-poisoned mice were treated with the specific P2X7 antagonist A438079 or etheno-NAD, a competitive antagonist of NAD. Pre- or posttreatment with A438079 significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury in wild-type but not P2X7-/- mice. Pretreatment with etheno-NAD also significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury. In addition, APAP toxicity in mice lacking the plasma membrane ecto-NTPDase CD39 (CD39-/-) that metabolizes ATP was examined in parallel with the use of soluble apyrase to deplete extracellular ATP in wild-type mice. CD39-/- mice had increased APAP-induced hemorrhage and mortality, whereas apyrase also decreased APAP-induced mortality. Kupffer cells were treated with extracellular ATP to assess P2X7-dependent inflammasome activation. P2X7 was required for ATP-stimulated IL-1β release. In conclusion, P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.

  5. Characterization and pharmacology of the GHB receptor.

    Science.gov (United States)

    Ticku, Maharaj K; Mehta, Ashok K

    2008-10-01

    Radioligand binding using [(3)H]NCS-382, an antagonist of the GHB receptor, revealed specific binding sites in the rat cerebrocortical and hippocampal membranes. Scatchard analysis of saturation isotherms revealed two different populations of binding sites. NCS-382 was about 10 times more potent than GHB in inhibiting [(3)H]NCS-382 binding. A variety of ligands for other receptors did not affect [(3)H]NCS-382 binding. Quantitative autoradiographic analysis of [(3)H]NCS-382 binding revealed similar characteristics. Thus [(3)H]NCS-382, being more potent and selective, offers advantage over [(3)H]GHB as a radioligand. Unlike GHB, several analogues of GHB such as UMB68 (a tertiary alcohol analogue of GHB), UMB86 (4-hydroxy-4-napthylbutanoic acid, sodium salt), UMB72 [4-(3-phenylpropyloxy)butyric acid, sodium salt], UMB73 (4-benzyloxybutyric acid, sodium salt), UMB66 (3-chloropropanoic acid), gamma-hydroxyvaleric acid (that is, GHV, a 4-methyl-substituted analogue of GHB), 3-HPA (3-hydroxyphenylacetic acid), and ethers of 3-hydroxyphenylacetic acid (UMB108, UMB109, and UMB119) displaced [(3)H]NCS-382 without affecting [(3)H]GABA binding to GABA(B) receptor. Thus these compounds offer an advantage over GHB as an experimental tool. Our study, aimed at exploring the potential involvement of the GHB receptor in the pharmacology of ethanol, indicated that ethanol does not affect [(3)H]NCS-382 binding in the rat brain, thereby suggesting that ethanol does not interact directly with the GHB receptor. Our study, aimed at exploring the involvement of the GHB receptor in the pathology of succinate semialdehyde dehydrogenase deficiency, which is known to cause elevation of GHB levels, revealed no change in the affinity, receptor density or displacement potency as determined by using [(3)H]NCS-382 as a radioligand in Aldh5a1(-/-) vs. Aldh5a1(+/+) mouse brain.

  6. Purinergic signalling: an experimental perspective.

    Science.gov (United States)

    Housley, G D; Thorne, P R

    2000-07-01

    Investigation of the multiple roles of extracellular nucleotides in the cochlea has developed from analysis of ATP-activated conductances in single sensory hair cells. Molecular probes such as radiolabelled ATP analogues and radiolabelled mRNA for ATP-gated ion channel subunits (P2X receptors) rapidly revealed the extensive nature of ATP signalling in this sensory organ. This has provided a foundation for physiological investigations which put extracellular nucleotides at the centre of homeostatic regulation of the driving force for sound transduction, modulation of mechanical tuning, control of cochlear blood flow and auditory neurotransmission. The purinergic signal transduction pathways associated with these processes have several novel features of significance to the broader field of purinergic neuroscience. In turn, these studies have benefited from the recent experimental advances in the field of purinergic signalling, a significant component of which is associated with the work of Professor Geoffrey Burnstock.

  7. Purinergic signalling: past, present and future

    Directory of Open Access Journals (Sweden)

    G. Burnstock

    2009-01-01

    Full Text Available The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP. Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.

  8. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia.

    Science.gov (United States)

    Lu, Wen-Hsin; Wang, Chih-Yen; Chen, Po-See; Wang, Jing-Wen; Chuang, De-Maw; Yang, Chung-Shi; Tzeng, Shun-Fen

    2013-05-01

    Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.

  9. Functional expression of ionotropic purinergic receptors on mouse taste bud cells

    OpenAIRE

    2007-01-01

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 [mu m ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca2+ imaging showed that si...

  10. Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model.

    Science.gov (United States)

    Talley Watts, Lora; Sprague, Shane; Zheng, Wei; Garling, R Justin; Jimenez, David; Digicaylioglu, Murat; Lechleiter, James

    2013-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children and young adults. Neuroprotective agents that may promote repair or counteract damage after injury do not currently exist. We recently reported that stimulation of the purinergic receptor subtype P2Y(1)R using 2-methylthioladenosine 5' diphosphate (2MeSADP) significantly reduced cytotoxic edema induced by photothrombosis. Here, we tested whether P2Y(1)R stimulation was neuroprotective after TBI. A controlled closed head injury model was established for mice using a pneumatic impact device. Brains were harvested at 1, 3, or 7 days post-injury and assayed for morphological changes by immunocytochemistry, Western blot analysis, and wet/dry weight. Cerebral edema and expression of both aquaporin type 4 and glial fibrillary acidic protein were increased at all time points examined. Immunocytochemical measurements in both cortical and hippocampal slices also revealed significant neuronal swelling and reactive gliosis. Treatment of mice with 2MeSADP (100 μM) or MRS2365 (100 μM) 30 min after trauma significantly reduced all post-injury symptoms of TBI including edema, neuronal swelling, reactive gliosis, and AQ4 expression. The neuroprotective effect was lost in IP(3)R2-/- mice treated with 2MeSADP. Immunocytochemical labeling of brain slices confirmed that P2Y(1)R expression was defined to cortical and hippocampal astrocytes, but not neurons. Taken together, the data show that stimulation of astrocytic P2Y(1)Rs significantly reduces brain injury after acute trauma and is mediated by the IP(3)-signaling pathway. We suggest that enhancing astrocyte mitochondrial metabolism offers a promising neuroprotective strategy for a broad range of brain injuries.

  11. The role of purinergic signaling in depressive disorders.

    Science.gov (United States)

    Sperlagh, Beata; Csolle, Cecilia; Ando, Romeo D; Goloncser, Flora; Kittel, Agnes; Baranyi, Maria

    2012-12-01

    The purinergic signaling system consists of transporters, enzymes and receptors responsible for the synthesis, release, action and extracellular inactivation of adenosine 5'-triphosphate (ATP) and its extracellular breakdown product adenosine. The actions of ATP are mediated ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 adenosine receptors. Purinergic signaling pathways are widely expressed in the central nervous system (CNS) and participate in its normal and pathological functions. Among P2X receptors, the P2X7 receptor (P2rx7) has received considerable interest in both basic and clinical neuropsychiatric research because of its profound effects in animal CNS pathology and its potential involvement as a susceptibility gene in mood disorders. Although genetic findings were not always consistently replicated, several studies demonstrated that single nucleotide polymorphisms (SNPs) in the human P2X7 gene (P2RX7) show significant association with major depressive disorder and bipolar disorder. Animal studies revealed that the genetic knock-down or pharmacological antagonism leads to reduced depressive-like behavior, attenuated response in mania-model and alterations in stress reactivity. A potential mechanism of P2rx7 activation on mood related behavior is increased glutamate release, activation of extrasynaptic NMDA receptors and subsequent enduring changes in neuroplasticity. In addition, dysregulation of monoaminergic transmission and HPA axis reactivity could also contribute to the observed changes in behavior. Besides P2rx7, the inhibition of adenosine A1 and A2A receptors also mediate antidepressant-like effects in animal experiments. In conclusion, despite contradictions between existing data, these findings point to the therapeutic potential of the purinergic signaling system in mood disorders.

  12. Expression and Characterization of Purinergic Receptors in Rat Middle Meningeal Artery–Potential Role in Migraine

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Edvinsson, Lars

    2014-01-01

    The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysio......The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex...... be inhibited by SCH58261 (A2A receptor antagonist) and caffeine (adenosine receptor antagonist). This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well...

  13. The purinergic P2Y1 receptor supports leptin secretion in adipose tissue.

    Science.gov (United States)

    Laplante, Marc-André; Monassier, Laurent; Freund, Monique; Bousquet, Pascal; Gachet, Christian

    2010-05-01

    Extracellular nucleotides have been shown to trigger intracellular calcium release and influence leptin secretion in differentiated white and brown adipocytes through activation of various but not clearly identified P2 receptors. In the present study, we wished to assess whether or not the P2Y1 ADP receptor is functional in white adipocytes and whether it could affect the secretion of adipocyte-derived hormones. Stromal cells and mature adipocytes were isolated from epididymal adipose tissue from wild-type and P2Y1 knockout (KO) C57-black/six male mice. The expression of the P2Y1 receptor in adipocytes was confirmed by RT-PCR and intracellular calcium measurements with fura 2-AM. KO of P2Y1 receptors did not affect the cell size and lipid content of mature adipocytes or the differentiation of the stromal cell fraction, but the leptin production of mature adipocytes was decreased under basal and insulin-stimulated conditions. A selective P2Y1 antagonist, MRS2500, reduced leptin release in isolated adipocytes. The plasma and adipose tissue mRNA levels of leptin were also lower in P2Y1 KO mice as compared with wild-type animals. However, in mice fed a high-fat diet, the plasma leptin levels were greatly enhanced and the inhibitory effect of P2Y1 KO was not observed. These results show that the P2Y1 receptor supports leptin production in isolated white adipocytes through a transcriptional mechanism. This function of the receptor may regulate plasma leptin in lean mice but is overcome in obese animals.

  14. The effect of purinergic P2 receptor blockade on skeletal muscle exercise hyperemia in miniature swine

    DEFF Research Database (Denmark)

    Mortensen, Stefan; McAllister, R M; Yang, H T;

    2014-01-01

    -microsphere technique and systemic hemodynamics before and after arterial infusion of the P2 receptor antagonist reactive blue 2 during treadmill exercise (5.2 km/h, ~60 % VO2max) and arterial ATP infusion in female Yucatan miniature swine (~29 kg). RESULTS: Mean blood flow during exercise from the 16 sampled skeletal...

  15. Toll-Like Receptor 4 Modulates Small Intestine Neuromuscular Function through Nitrergic and Purinergic Pathways

    Directory of Open Access Journals (Sweden)

    Valentina Caputi

    2017-06-01

    Full Text Available Objective: Toll-like receptors (TLRs play a pivotal role in the homeostatic microflora-host crosstalk. TLR4-mediated modulation of both motility and enteric neuronal survival has been reported mainly for colon with limited information on the role of TLR4 in tuning structural and functional integrity of enteric nervous system (ENS and in controlling small bowel motility.Methods: Male TLR4 knockout (TLR4-/-, 9 ± 1 weeks old and sex- and age-matched wild-type (WT C57BL/6J mice were used for the experiments. Alterations in ENS morphology and neurochemical code were assessed by immunohistochemistry whereas neuromuscular function was evaluated by isometric mechanical activity of ileal preparations following receptor and non-receptor-mediated stimuli and by gastrointestinal transit.Results: The absence of TLR4 induced gliosis and reduced the total number of neurons, mainly nNOS+ neurons, in ileal myenteric plexus. Furthermore, a lower cholinergic excitatory response with an increased inhibitory neurotransmission was found together with a delayed gastrointestinal transit. These changes were dependent on increased ileal non-adrenergic non-cholinergic (NANC relaxations mediated by a complex neuronal-glia signaling constituted by P2X7 and P2Y1 receptors, and NO produced by nNOS and iNOS.Conclusion: We provide novel evidence that TLR4 signaling is involved in the fine-tuning of P2 receptors controlling ileal contractility, ENS cell distribution, and inhibitory NANC neurotransmission via the combined action of NO and adenosine-5′-triphosphate (ATP. For the first time, this study implicates TLR4 at regulating the crosstalk between glia and neurons in small intestine and helps to define its role in gastrointestinal motor abnormalities during dysbiosis.

  16. Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture.

    Science.gov (United States)

    Salas, Elvira; Carrasquero, Luz María G; Olivos-Oré, Luis A; Bustillo, Diego; Artalejo, Antonio R; Miras-Portugal, Maria Teresa; Delicado, Esmerilda G

    2013-12-01

    The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.

  17. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    Science.gov (United States)

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  18. Antagonists and the purinergic nerve hypothesis: 2, 2'-pyridylisatogen tosylate (PIT), an allosteric modulator of P2Y receptors. A retrospective on a quarter century of progress.

    Science.gov (United States)

    Spedding, M; Menton, K; Markham, A; Weetman, D F

    2000-07-01

    2,2'-Pyridylisatogen tosylate (PIT) is a selective antagonist of P2Y responses in smooth muscle and does not antagonise the effects of adenosine. Responses to purinergic nerve stimulation are resistant to PIT. PIT is an allosteric modulator of responses to ATP in recombinant P2Y(1) receptors expressed in Xenopus oocytes with potentiation of ATP at low concentrations (0.1-10 microM) and antagonism at higher ones (>10 microM). A radioligand binding profile showed that PIT did not interact with any other receptors, with the exception of low affinity for the adenosine A(1) receptor (pK(i), 5.3). The compound recognises purine sites and then may cause irreversible binding to sulfhydryl groups following prolonged incubation or high concentrations. PIT is a potent spin trapper.

  19. Expression and function of the purinergic receptor P2X7 in patients with pulmonary tuberculosis.

    Science.gov (United States)

    Franco-Martínez, S; Niño-Moreno, P; Bernal-Silva, S; Baranda, L; Rocha-Meza, M; Portales-Cervantes, L; Layseca-Espinosa, E; González-Amaro, R; Portales-Pérez, D

    2006-11-01

    P2X(7) is a channel receptor gated by adenosine triphosphate (ATP) that is involved in the killing of intracellular mycobacteria. To explore further the role of P2X(7) in immunity against Mycobacterium tuberculosis, we studied its expression and function in 19 patients with pulmonary tuberculosis (TB) and 19 healthy contacts. Flow cytometry analysis showed a similar and variable expression of P2X(7) in TB patients and healthy subjects. In contrast, P2X(7) mARN levels were significantly higher in TB patients. When the function of the P2X(7) receptor in peripheral blood mononuclear cells (PBMC) was assessed by the effect of exogenous ATP on apoptosis, the uptake of the fluorescent marker Lucifer yellow or extracellular signal regulated kinase (ERK) phosphorylation, no significant differences were detected in patients and controls. However, mRNA macroarray analysis showed that upon stimulation with ATP, the PBMC from TB patients showed a significant induction of a higher number of cytokine genes (27 of 96), and a lower number of apoptosis genes (20 of 96) compared to healthy controls (17 and 76 genes, respectively). These results suggest that although the PBMC from TB patients do not show apparent abnormalities in the expression of P2X(7), and the intracellular signals generated through it, the pattern of gene expression induced by ATP in these cells is different from that found in healthy contacts. This phenomenon suggests a defective function of P2X(7) in the immune cells from TB patients, a condition that may contribute to the inability of these patients to eliminate the mycobacteria.

  20. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  1. Diadenosine homodinucleotide products of ADP-ribosyl cyclases behave as modulators of the purinergic receptor P2X7.

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-07-02

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5',5'"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509-14514). P24, but not P18, proved to increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca(2+) through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca(2+) influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC(50) of approximately 1 mum. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca(2+)](i) has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146-23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca(2+)](i) to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A.

  2. Involvement of the P2X7 purinergic receptor in inflammation: an update of antagonists series since 2009 and their promising therapeutic potential.

    Science.gov (United States)

    Baudelet, Davy; Lipka, Emmanuelle; Millet, Régis; Ghinet, Alina

    2015-01-01

    The purinergic receptor P2X7 is highly expressed in immune peripheral and central cells suggesting its important role in numerous diseases characterized by inflammatory processes like cancer, or neurodegenerative pathologies in relation with modulation of the immune system. Thereby, antagonization of this receptor may be a hopeful therapeutic strategy to treat a large range of diseases. Indeed, selective P2X7 antagonists display beneficial anti-inflammatory, analgesic, and in some cases, anticancer properties. This article will review the involvement of P2X7 in the immune system, the update of P2X7 antagonists series since 2009 and their promising therapeutic potential for the treatment of several immune- related diseases.

  3. NCI-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca²⁺-mobilization/influx and cortisol secretion.

    Directory of Open Access Journals (Sweden)

    Haruhisa Nishi

    Full Text Available Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R, a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A(2A and A(2B, P2X (P2X₅ and P2X₇, and P2Y (P2Y₁, P2Y₂, P2Y₆, P2Y₁₂, P2Y₁₃, and P2Y₁₄ purinergic receptors were detected in H295R. 2MeS-ATP (10-1000 µM, a P2Y₁ agonist, induced glucocorticoid (GC secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1-1000 µM had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca²⁺-mobilization in the cells, independently of the extracellular Ca²⁺ concentration. Increases in intracellular Ca²⁺ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM and dibutyryl-cyclic AMP (db-cAMP: 500 µM induced both GC secretion and Ca²⁺-mobilization in the presence of extracellular Ca²⁺ (1.2 mM. GC secretion by AngII was reduced by nifedipine (10-100 µM; whereas the Ca²⁺ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca²⁺ exposure induced Ca²⁺-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE: transient receptor C (TRPC channels, calcium release-activated calcium channel protein 1 (Orai-1, and the stromal interaction molecule 1 (STIM1. In P2Y₁-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y₁ purinergic receptor for intracellular Ca²⁺-mobilization, and that P2Y₁ is linked to SOCE-activation, leading to Ca²⁺-influx which might be necessary for glucocorticoid secretion.

  4. The purinergic receptor P2X7 role in control of Dengue virus-2 infection and cytokine/chemokine production in infected human monocytes.

    Science.gov (United States)

    Corrêa, Gladys; de A Lindenberg, Carolina; Fernandes-Santos, Caroline; Gandini, Mariana; Petitinga Paiva, Fabienne; Coutinho-Silva, Robson; F Kubelka, Claire

    2016-07-01

    Purinergic signaling has a crucial role in intracellular pathogen elimination. The P2X7 purinergic receptor (P2X7R), once activated by ATP, leads to pro-inflammatory responses including reactive oxygen species production. ATP can be released by injured cells, as endogenous danger signals. Dengue fever may evolve to a severe disease, leading to hypovolemic shock and coagulation dysfunctions as a result of a cytokine storm. Our aim was to evaluate the role of P2X7R activation during Dengue virus (DENV) infection. Extracellular ATP inhibited viral load in pretreated monocytes, as measured by NS1 secretion and by decrease in DENV(+) P2X7(+) cell frequencies, suggesting that P2X7R is involved in the antiviral response. Nitric oxide (NO) has anti-DENV properties and is decreased after DENV infection. NO production after ATP stimulation is abrogated by KN62 treatment, a specific P2X7R inhibitor, indicating that P2X7R likely is acting in the virus containment process. Additionally, TNF, CXCL8, CCL2 and CXCL10 factors that are associated with dengue severity were modulated by the P2X7R activation. We conclude that P2X7R is directly involved in the modulation of the antiviral and inflammatory process that occurs during DENV infection in vitro, and may have an important role in patient recovery in a first moment.

  5. Molecular pharmacology of G protein-coupled receptors.

    Science.gov (United States)

    Summers, R J

    2016-10-01

    This themed issue of the British Journal of Pharmacology stems from the eighth in the series of meetings on the Molecular Pharmacology of G protein coupled receptors (MPGPCR) held as part of a joint meeting with the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT) in Melbourne Australia from 7 to 11 December 2014. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.

  6. Adventures in the pharmacological analysis of P2 receptors.

    Science.gov (United States)

    Fagura, M S; Jarvis, G E; Dougall, I G; Leff, P

    2000-07-01

    The pharmacological classification of P2 receptors owes its origin to the pioneering efforts of Geoff Burnstock and those who followed him, research that was conducted primarily in physiological experimental systems. Over recent years, the techniques of molecular biology have been increasingly applied in the study of P2 receptors while, at the same time, advances in their pharmacological analysis have been limited by a lack of potent and selective agonist or antagonist ligands. This has resulted in a classification scheme which is largely structural in nature, with relatively little contribution from pharmacology. Our endeavours in this area have been directed towards the discovery of ligands with which the pharmacological analysis and definition of P2 receptors could be advanced, the ultimate goal being the design of therapeutic agents. This article will describe some of our experiences in this challenging but rewarding area.

  7. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors.

    Science.gov (United States)

    Ngo, Tony; Ilatovskiy, Andrey V; Stewart, Alastair G; Coleman, James L J; McRobb, Fiona M; Riek, R Peter; Graham, Robert M; Abagyan, Ruben; Kufareva, Irina; Smith, Nicola J

    2017-02-01

    Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.

  8. Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology.

    Science.gov (United States)

    Gilca, Marilena; Dragos, Dorin

    2017-01-01

    More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.

  9. Purinergic signalling in the pancreas in health and disease.

    Science.gov (United States)

    Burnstock, G; Novak, I

    2012-05-01

    Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.

  10. Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation

    Science.gov (United States)

    Gilbert, Daniel F.; Stebbing, Martin J.; Kuenzel, Katharina; Murphy, Robyn M.; Zacharewicz, Evelyn; Buttgereit, Andreas; Stokes, Leanne; Adams, David J.; Friedrich, Oliver

    2016-01-01

    Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca2+-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuroinflammatory (so-called M1/M2 polarization). ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induces receptor-operated Ca2+ entry (ROCE). Although store-operated Ca2+ entry (SOCE) was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca2+ imaging. After depleting internal Ca2+ stores, SOCE was clearly detectable. High ATP concentrations (1 mM) elicited sustained increases in intracellular [Ca2+]i whereas lower concentrations (≤100 μM) also induced Ca2+ oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca2+ oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca2+ signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120) were tested on their profile to act on Ca2+ oscillations (P2X4) and sustained [Ca2+]i increases. We demonstrate specific drug effects on purinergic Ca2+ pathways and provide new pharmacological insights into

  11. STORE-OPERATED CA2+ ENTRY (SOCE AND PURINERGIC RECEPTOR-MEDIATED CA2+ HOMEOSTASIS IN MURINE BV2 MICROGLIA CELLS: EARLY CELLULAR RESPONSES TO ATP-MEDIATED MICROGLIA ACTIVATION

    Directory of Open Access Journals (Sweden)

    Daniel F. Gilbert

    2016-10-01

    Full Text Available Microglia activation is a neuro-inflammatory response to parenchymal damage with release of intracellular metabolites, e.g. purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca2+-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y and ionotropic (P2X cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuro-inflammation (so-called M1/M2 polarization. ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induce receptor-operated Ca2+ entry (ROCE. Although store-operated Ca2+ entry (SOCE was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca2+ imaging. After depleting internal Ca2+ stores, SOCE was clearly detectable. High ATP concentrations (1 mM elicited sustained increases in intracellular [Ca2+]i whereas lower concentrations (≤100 µM also induced Ca2+ oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca2+ oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca2+ signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120 were tested on their profile to act on Ca2+ oscillations (P2X4 and sustained [Ca2+]i increases. We demonstrate specific drug effects on purinergic Ca2+ pathways and provide new pharmacological

  12. Evidence for pharmacologically distinct subsets of GABAB receptors.

    Science.gov (United States)

    Scherer, R W; Ferkany, J W; Enna, S J

    1988-09-01

    Activation of GABAB receptors augments neurotransmitter-stimulated cyclic AMP accumulation while inhibiting forskolin-mediated second messenger production. Previous studies have revealed that GABAB receptors are associated with a pertussis toxin sensitive G protein, such as Gi. While such a linkage is consistent with the finding that GABAB receptor activation inhibits forskolin-mediated second messenger accumulation, it fails to explain how GABAB agonists are capable of augmenting receptor-mediated cyclic AMP production. The present experiments were undertaken to explore the possible existence of pharmacologically distinct GABAB receptors in an attempt to explain this apparent discrepancy. For the study, a variety of agents were examined for their ability to inhibit GABAB binding to brain membranes and to modify isoproterenol- or forskolin-stimulated second messenger production in rat brain slices. Of the compounds studied, only 3-aminopropylphosphonic acid and 4-aminobutylphosphonic acid were found to inhibit GABAB binding. However, 4-aminobutylphosphonic acid failed to influence either isoproterenol- or forskolin-stimulated cyclic AMP production. On the other hand, while 3-aminopropylphosphonic acid also failed to affect isoproterenol-stimulated second messenger accumulation, it inhibited the forskolin-mediated response. Given this finding, and the fact that some of the agents tested are known to influence GABAB receptor function in other systems, the results indicate a multiplicity of pharmacologically distinct GABAB receptor recognition sites. This discovery paves the way for the development of more selective GABAB receptor agonists and antagonists possessing different therapeutic potentials.

  13. Alternative Radioligands for Investigating the Molecular Pharmacology of Melatonin Receptors.

    Science.gov (United States)

    Legros, Céline; Brasseur, Chantal; Delagrange, Philippe; Ducrot, Pierre; Nosjean, Olivier; Boutin, Jean A

    2016-03-01

    Melatonin exerts a variety of physiologic activities that are mainly relayed through the melatonin receptors MT1 and MT2 Low expressions of these receptors in tissues have led to widespread experimental use of the agonist 2-[(125)I]-iodomelatonin as a substitute for melatonin. We describe three iodinated ligands: 2-(2-[(2-iodo-4,5-dimethoxyphenyl)methyl]-4,5-dimethoxy phenyl) (DIV880) and (2-iodo-N-2-[5-methoxy-2-(naphthalen-1-yl)-1H-pyrrolo[3,2-b]pyridine-3-yl])acetamide (S70254), which are specific ligands at MT2 receptors, and N-[2-(5-methoxy-1H-indol-3-yl)ethyl]iodoacetamide (SD6), an analog of 2-[(125)I]-iodomelatonin with slightly different characteristics. Here, we further characterized these new ligands with regards to their molecular pharmacology. We performed binding experiments, saturation assays, association/dissociation rate measurements, and autoradiography using sheep and rat tissues and recombinant cell lines. Our results showed that [(125)I]-S70254 is receptor, and can be used with both cells and tissue. This radioligand can be used in autoradiography. Similarly, DIV880, a partial agonist [43% of melatonin on guanosine 5'-3-O-(thio)triphosphate binding assay], selective for MT2, can be used as a tool to selectively describe the pharmacology of this receptor in tissue samples. The molecular pharmacology of both human melatonin receptors MT1 and MT2, using a series of 24 ligands at these receptors and the new radioligands, did not lead to noticeable variations in the profiles. For the first time, we described radiolabeled tools that are specific for one of the melatonin receptors (MT2). These tools are amenable to binding experiments and to autoradiography using sheep or rat tissues. These specific tools will permit better understanding of the role and implication in physiopathologic processes of the melatonin receptors.

  14. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    Directory of Open Access Journals (Sweden)

    Giulia Magni

    2014-01-01

    Full Text Available It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.

  15. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    Science.gov (United States)

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  16. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  17. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors.

    Science.gov (United States)

    Tanaka, Makoto; Hosoya, Akihiro; Mori, Hiroshi; Kayasuga, Ryoji; Nakamura, Hiroaki; Ozawa, Hidehiro

    2017-02-27

    Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.

  18. Pharmacological characterisation of murine α4β1δ GABAA receptors expressed in Xenopus oocytes

    DEFF Research Database (Denmark)

    Villumsen, Inge S; Wellendorph, Petrine; Smart, Trevor G

    2015-01-01

    BACKGROUND: GABAA receptor subunit composition has a profound effect on the receptor's physiological and pharmacological properties. The receptor β subunit is widely recognised for its importance in receptor assembly, trafficking and post-translational modifications, but its influence on extrasyn...

  19. Glycogenolysis and purinergic signaling.

    Science.gov (United States)

    Hertz, Leif; Xu, Junnan; Peng, Liang

    2014-01-01

    Both ATP and glutamate are on one hand essential metabolites in brain and on the other serve a signaling function as transmitters. However, there is the major difference that the flux in the pathway producing transmitter glutamate is comparable to the rate of glucose metabolism in brain, whereas that producing transmitter ATP is orders of magnitude smaller than the metabolic turnover between ATP and ADP. Moreover, de novo glutamate production occurs exclusively in astrocytes, whereas transmitter ATP is produced both in neurons and astrocytes. This chapter deals only with ATP and exclusively with its formation and release in astrocytes, and it focuses on potential associations with glycogenolysis, which is known to be indispensable for the synthesis of glutamate. Glycogenolysis is dependent upon an increase in free intracellular Ca(2+) concentration (Ca(2+)]i). It can be further stimulated by cAMP, but in contrast to widespread beliefs, cAMP can on its own not induce glycogenolysis. Astrocytes generate ATP from accumulated adenosine, and this process does not seem to require glycogenolysis. A minor amount of the generated ATP is utilized as a transmitter, and its synthesis requires the presence of the mainly intracellular nucleoside transporter ENT3. Many transmitters as well as extracellular K(+) concentrations high enough to open the voltage-sensitive L-channels for Ca(2+) cause a release of transmitter ATP from astrocytes. Adenosine and ATP induce release of ATP by action at several different purinergic receptors. The release evoked by transmitters or elevated K(+) concentrations is abolished by DAB, an inhibitor of glycogenolysis.

  20. A structural biology perspective on NMDA receptor pharmacology and function.

    Science.gov (United States)

    Regan, Michael C; Romero-Hernandez, Annabel; Furukawa, Hiro

    2015-08-01

    N-methyld-aspartate receptors (NMDARs) belong to the large family of ionotropic glutamate receptors (iGluRs), which are critically involved in basic brain functions as well as multiple neurological diseases and disorders. The NMDARs are large heterotetrameric membrane protein complexes. The extensive extracellular domains recognize neurotransmitter ligands and allosteric compounds and translate the binding information to regulate activity of the transmembrane ion channel. Here, we review recent advances in the structural biology of NMDARs with a focus on pharmacology and function. Structural analysis of the isolated extracellular domains in combination with the intact heterotetrameric NMDAR structure provides important insights into how this sophisticated ligand-gated ion channel may function.

  1. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure.

    Science.gov (United States)

    Steward, Andrew J; Kelly, Daniel J; Wagner, Diane R

    2016-06-01

    Although hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP. Therefore, the objective of this study was to investigate the interplay between purinergic signaling, matrix stiffness, and the chondrogenic response of MSCs to HP. Porcine bone marrow-derived MSCs were seeded into soft or stiff agarose hydrogels and subjected to HP (10 MPa at 1 Hz for 4 h/d for 21 days) or kept in free swelling conditions. Stiff constructs were incubated with pharmacological inhibitors of extracellular ATP, P2 receptors, or hemichannels, or without any inhibitors as a control. As with other loading modalities, HP significantly increased ATP release in the control group; however, inhibition of hemichannels completely abrogated this response. The increase in sulfated glycosaminoglycan (sGAG) synthesis and vimentin reorganization observed in the control group in response to HP was suppressed in the presence of all three inhibitors, suggesting that purinergic signaling is involved in the mechanoresponse of MSCs to HP. Interestingly, ATP was released from both soft and stiff hydrogels in response to HP, but HP only enhanced chondrogenesis in the stiff hydrogels, indicating that matrix stiffness may act downstream of purinergic signaling to regulate the mechanoresponse of MSCs to HP. Addition of exogenous ATP did not replicate the effects of HP on

  2. Leukocyte Expression of Type 1 and Type 2 Purinergic Receptors and Pro-Inflammatory Cytokines during Total Sleep Deprivation and/or Sleep Extension in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Mounir Chennaoui

    2017-05-01

    Full Text Available The purinergic type P1 (adenosine A1 and A2A receptors and the type P2 (X7 receptor have been suggested to mediate physiological effects of adenosine and adenosine triphosphate on sleep. We aimed to determine gene expression of A1R (receptor, A2AR, and P2RX7 in leukocytes of healthy subjects during total sleep deprivation followed by sleep recovery. Expression of the pro-inflammatory cytokines IL-1β and TNF-α were also determined as they have been characterized as sleep regulatory substances, via P2RX7 activation. Blood sampling was performed on 14 young men (aged 31.9 ± 3.9 at baseline (B, after 24 h of sleep deprivation (24 h-SD, and after one night of sleep recovery (R. We compared gene expression levels after six nights of habitual (22.30–07.00 or extended (21.00–07.00 bedtimes. Using quantitative real-time PCR, the amount of mRNA for A1R, A2AR, P2RX7, TNF-α, and IL-1β was analyzed. After 24 h-SD compared to B, whatever prior sleep condition, a significant increase of A2AR expression was observed that returned to basal level after sleep recovery [day main effect, F(2, 26 = 10.8, p < 0.001]. In both sleep condition, a day main effect on P2RX7 mRNA was observed [F(2, 26 = 6.7, p = 0.005] with significant increases after R compared with 24 h-SD. TNF-α and IL-1β expressions were not significantly altered. Before 24 h-SD (baseline, the A2AR expression was negatively correlated with the latency of stage 3 sleep during the previous night, while that of the A1R positively. This was not observed after sleep recovery following 24 h-SD. This is the first study showing increased A2AR and not A1 gene expression after 24 h-SD in leukocytes of healthy subjects, and this even if bedtime was initially increased by 1.5 h per night for six nights. In conclusion, prolonged wakefulness induced an up-regulation of the A2A receptor gene expression in leukocytes from healthy subjects. Significant correlations between baseline expression of A1 and A2A

  3. The high-affinity immunoglobulin E receptor as pharmacological target.

    Science.gov (United States)

    Blank, Ulrich; Charles, Nicolas; Benhamou, Marc

    2016-05-05

    The high-affinity receptor for immunoglobulin E is expressed mainly on mast cells and basophils, but also on neutrophils, eosinophils, platelets, monocytes, Langerhans and dendritic cells, airway smooth muscle cells and some nerve cells. Its main function is, upon its engagement by IgE and specific antigen, to trigger a powerful defense against invading pathogens and a rapid neutralization of dangerous toxic substances introduced in the body. This powerful response could be wielded against tumors. But, when control over this receptor is lost, its unchecked activation can induce an array of diseases, some of which can lead to death. In this review we will summarize the pharmacological approaches and strategies that are currently used, or under study, to harness or wield activation of this receptor for therapeutic purposes.

  4. The Purinergic P2X7 Receptor Is Not Required for Control of Pulmonary Mycobacterium tuberculosis Infection

    OpenAIRE

    Myers, Amy J.; Eilertson, Brandon; Fulton, Scott A; JoAnne L Flynn; Canaday, David H.

    2005-01-01

    The importance in vivo of P2X7 receptors in control of virulent Mycobacterium tuberculosis was examined in a low-dose aerosol infection mouse model. P2X7−/− mice controlled infection in lungs as well as wild-type mice, suggesting that the P2X7 receptor is not required for control of pulmonary M. tuberculosis infection.

  5. Purinergic signalling in the pancreas in health and disease

    DEFF Research Database (Denmark)

    Burnstock, G; Novak, I

    2012-01-01

    systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming......Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After...... the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory...

  6. Residual Chemosensory Capabilities in Double P2X2/P2X3 Purinergic Receptor Null Mice: Intraoral or Postingestive Detection?

    Science.gov (United States)

    Hallock, Robert M.; Tatangelo, Marco; Barrows, Jennell

    2009-01-01

    Mice lacking the purinergic receptors, P2X2 and P2X3 (P2X2/P2X3Dbl−/−), exhibit essentially no tastant-evoked activity in the chorda tympani and glossopharyngeal nerves and substantial loss of tastant-evoked behavior as measured in long-term intake experiments. To assess whether the residual chemically driven behaviors in these P2X2/P2X3Dbl−/− mice were attributable to postingestive detection or oropharyngeal detection of the compounds, we used brief access lickometer tests to assess the behavioral capabilities of the P2X2/P2X3Dbl−/− animals. The P2X2/P2X3Dbl−/− mice showed avoidance to high levels (10 mM quinine and 10–30 mM denatonium benzoate) of classical “bitter”-tasting stimuli in 24-h, 2-bottle preference tests but minimal avoidance of these substances in the lickometer tests, suggesting that the strong avoidance in the intake tests was largely mediated by post-oral chemosensors. Similarly, increases in consumption of 1 M sucrose by P2X2/P2X3Dbl−/− mice in long-term intake tests were not mirrored by increases in consumption of sucrose in lickometer tests, suggesting that sucrose detection in these mice is mediated by postingestive consequences. In contrast, in brief access tests, P2X2/P2X3Dbl−/− mice avoided citric acid and hydrochloric acid at the same concentrations as their wild-type counterparts, indicating that these weak acids activate oropharyngeal chemoreceptors. PMID:19833662

  7. Graft-Infiltrating Macrophages Adopt an M2 Phenotype and Are Inhibited by Purinergic Receptor P2X7 Antagonist in Chronic Rejection.

    Science.gov (United States)

    Wu, C; Zhao, Y; Xiao, X; Fan, Y; Kloc, M; Liu, W; Ghobrial, R M; Lan, P; He, X; Li, X C

    2016-09-01

    Macrophages exhibit diverse phenotypes and functions; they are also a major cell type infiltrating chronically rejected allografts. The exact phenotypes and roles of macrophages in chronic graft loss remain poorly defined. In the present study, we used a mouse heart transplant model to examine macrophages in chronic allograft rejection. We found that treatment of C57BL/6 mice with CTLA4 immunoglobulin fusion protein (CTLA4-Ig) prevented acute rejection of a Balb/c heart allograft but allowed chronic rejection to develop over time, characterized by prominent neointima formation in the graft. There was extensive macrophage infiltration in the chronically rejected allografts, and the graft-infiltrating macrophages expressed markers associated with M2 cells but not M1 cells. In an in vitro system in which macrophages were polarized into either M1 or M2 cells, we screened phenotypic differences between M1 and M2 cells and identified purinergic receptor P2X7 (P2x7r), an adenosine triphosphate (ATP)-gated ion channel protein that was preferentially expressed by M2 cells. We further showed that blocking the P2x7r using oxidized ATP (oATP) inhibited M2 induction in a dose-dependent fashion in vitro. Moreover, treatment of C57BL/6 recipients with the P2x7r antagonist oATP, in addition to CTLA4-Ig treatment, inhibited graft-infiltrating M2 cells, prevented transplant vasculopathy, and induced long-term heart allografts survival. These findings highlight the importance of the P2x7r-M2 axis in chronic rejection and establish P2x7r as a potential therapeutic target in suppression of chronic rejection.

  8. Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors.

    Science.gov (United States)

    Cosentino, Simona; Banfi, Cristina; Burbiel, Joachim C; Luo, Haijian; Tremoli, Elena; Abbracchio, Maria P

    2012-05-01

    Blood levels of extracellular nucleotides (e.g. ATP) are greatly increased during heart ischaemia, but, despite the presence of their specific receptors on cardiomyocytes (both P2X and P2Y subtypes), their effects on the subsequent myocardial damage are still unknown. In this study, we aimed at investigating the role of ATP and specific P2 receptors in the appearance of cell injury in a cardiac model of ischaemic/hypoxic stress. Cells were maintained in a modular incubator chamber in a controlled humidified atmosphere of 95% N(2) for 16 hrs in a glucose-free medium. In this condition, we detected an early increase in the release of ATP in the culture medium, which was followed by a massive increase in the release of cytoplasmic histone-associated-DNA-fragments, a marker of apoptosis. Addition of either apyrase, which degrades extracellular ATP, or various inhibitors of ATP release via connexin hemichannels fully abolished ischaemic/hypoxic stress-associated apoptosis. To dissect the role of specific P2 receptor subtypes, we used a combined approach: (i) non-selective and, when available, subtype-selective P2 antagonists, were added to cardiomyocytes before ischaemic/hypoxic stress; (ii) selected P2 receptors genes were silenced via specific small interfering RNAs. Both approaches indicated that the P2Y(2) and P2χ(7) receptor subtypes are directly involved in the induction of cell death during ischaemic/hypoxic stress, whereas the P2Y(4) receptor has a protective effect. Overall, these findings indicate a role for ATP and its receptors in modulating cardiomyocyte damage during ischaemic/hypoxic stress.

  9. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors.

    Science.gov (United States)

    Panula, Pertti; Chazot, Paul L; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L S; Stark, Holger; Thurmond, Robin L; Haas, Helmut L

    2015-07-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.

  10. Purinergic signalling and diabetes

    DEFF Research Database (Denmark)

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...... molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic...

  11. Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7.

    Science.gov (United States)

    Hattori, Fumie; Ohshima, Yasuhiro; Seki, Shizuka; Tsukimoto, Mitsutoshi; Sato, Mitsuru; Takenouchi, Takato; Suzuki, Akina; Takai, Erina; Kitani, Hiroshi; Harada, Hitoshi; Kojima, Shuji

    2012-11-15

    The P2X7 receptor is not only involved in cell proliferation, but also acts as an adenosine 5'-triphosphate (ATP)-gated non-selective channel, and its expression is increased in human melanoma. An irreversible antagonist of P2X7, such as oxidized ATP (oxATP), might block P2X7 receptor-mediated ATP release and proliferative signaling. Therefore, we carried out basic studies to test this idea and to examine the feasibility of using oxATP to treat B16 melanoma. We first found that low-pH conditions (mimicking the hypoxia and acidosis commonly seen in solid tumors) induced P2X7 receptor-mediated ATP release from B16 melanoma cells. Then, we compared the proliferation rates of B16 melanoma wild-type cells and B16 P2X7 receptor-knockdown clone (P2X7-KDC) cells in the presence of P2X7 agonists. The proliferation rate, as well as the ATP release, of agonist-treated P2X7-KDC cells was lower than that of agonist-treated wild-type cells. Next, the effect of P2X7 antagonist oxATP on B16 melanoma cell growth was examined in vitro and in vivo. oxATP significantly decreased B16 melanoma cell proliferation in vitro, and also significantly inhibited tumor growth in B16 melanoma-bearing mice. These data indicate that extracellularly released ATP may serve as an intercellular signaling molecule. We propose that the P2X7 receptor is a promising target for treatment of solid tumors.

  12. New concepts in calcium-sensing receptor pharmacology and signalling.

    Science.gov (United States)

    Ward, Donald T; Riccardi, Daniela

    2012-01-01

    The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca(2+)(o)) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca(2+) reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretion and are being investigated as possible bone anabolic treatments against age-related osteoporosis. Here we address the current state of development and clinical use of a series of positive and negative CaR modulators. In addition, clinical CaR mutations and transgenic mice carrying tissue-specific CaR deletions have provided a novel understanding of the relative functional importance of CaR in both calciotropic tissues and those elsewhere in the body. The development of CaR-selective modulators and signalling reagents have provided us with a more detailed appreciation of how the CaR signals in vivo. Thus, both of these areas of CaR research will be reviewed. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Inflammasome activation in bovine monocytes by extracellular ATP does not require the purinergic receptor P2X7.

    Science.gov (United States)

    Hussen, Jamal; Düvel, Anna; Koy, Mirja; Schuberth, Hans-Joachim

    2012-10-01

    Extracellular adenosine triphosphate (ATP) is a second signal for the assembly of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome, which form a framework to activate caspase 1, leading to the processing and secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β). The aim of the present study was to investigate the role of the ATP-gated ion channel subtype P2X7 receptor in the inflammasome activation of bovine monocytes. ATP-induced inflammasome assembly in bovine monocytes was shown by caspase-1 activation and the release of IL-1β by LPS/ATP-stimulated bovine cells. The IL-1β release depended on potassium efflux but was independent of reactive oxygen generation of bovine monocytes. Unlike in the human system, a P2X7 receptor antagonist did not block the ATP-induced release of IL-1β of LPS-primed bovine cells. P2X7 mediated pore formation was observed in subsets of bovine T lymphocytes (CD4+>CD8+) but not in monocytes. In addition, ATP and 2-MeSATP but not the high affinity P2X7 agonist BzATP induced calcium influx in bovine monocytes. The data indicate that ROS generation plays no role in the ATP-induced activation of inflammasome in bovine monocytes and that P2X7-mediated pore formation is not necessary for the release of Interleukin-1β.

  14. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors.

    Science.gov (United States)

    Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V

    2016-03-01

    Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.

  15. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics.

    Science.gov (United States)

    Kolkhof, Peter; Borden, Steffen A

    2012-03-24

    The blockade of mineralocorticoid receptors (MR) has been shown to be an invaluable therapy in heart failure and hypertension. To date, only two steroidal antimineralocorticoids, spironolactone (and its active metabolite canrenone) and eplerenone, have been approved, whereas novel non-steroidal compounds are in preclinical and early development. The careful investigation of the efficacy and tolerance of spironolactone in essential hypertension initially supported the idea that a more selective second generation of MR antagonists is desired for chronic treatment of cardiovascular diseases. More than 40 years went by between the approval of the first MR antagonist spironolactone and the market introduction of its sole successor, eplerenone. The molecular pharmacology of MR antagonists may be addressed at different levels. Available preclinical and clinical data of the two approved steroidal antimineralocorticoids allow a good comparison of potency and selectivity of MR antagonists and their pharmacokinetic properties. The search for novel generations of MR antagonists with the ultimate goal of a more tissue selective mode of action may require novel compounds that are differentiated with respect to the binding mode to the MR. Other factors that may contribute to tissue selectivity as e.g. the physicochemical properties of a drug and how they influence the resulting pharmacology in the context of tissue selective co-factor expression are even less well understood. In the following we will review these aspects and demonstrate that the molecular pharmacology of current MR antagonists is on the one hand far from well understood and, on the other hand, still offers room for improvements.

  16. Ryanodine receptors as pharmacological targets for heart disease

    Institute of Scientific and Technical Information of China (English)

    Marco SANTONASTASI; Xander H T WEHRENS

    2007-01-01

    Calcium release from intracellular stores plays an important role in the regulationof muscle contraction and electrical signals that determine the heart rhythm. Theryanodine receptor (RyR) is the major calcium (Ca2+) release channel required forexcitation-contraction coupling in the heart. Recent studies have demonstratedthat RyR are macromolecular complexes comprising of 4 pore-forming channelsubunits, each of which is associated with regulatory subunits. Clinical andexperimental studies over the past 5 years have provided compelling evidencethat intracellular Ca2+release channels play a pivotal role in the development ofcardiac arrhythmias and heart failure. Changes in the channel regulation andsubunit composition are believed to cause diastolic calcium leakage from thesarcoplasmic reticulum, which could trigger arrhythmias and weaken cardiaccontractility. Therefore, cardiac RyR have emerged as potential therapeutic tar-gets for the treatment of heart disease. Consequently, there is a strong desire toidentify and/or develop novel pharmacological agents that may target these Ca2+signaling pathways. Pharmacological agents known to modulate RyR in the heart,and their potential application towards the treatment of heart disease are dis-cussed in this review.

  17. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands.

    Science.gov (United States)

    Christopoulos, Arthur; Changeux, Jean-Pierre; Catterall, William A; Fabbro, Doriano; Burris, Thomas P; Cidlowski, John A; Olsen, Richard W; Peters, John A; Neubig, Richard R; Pin, Jean-Philippe; Sexton, Patrick M; Kenakin, Terry P; Ehlert, Frederick J; Spedding, Michael; Langmead, Christopher J

    2014-10-01

    Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.

  18. Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology

    DEFF Research Database (Denmark)

    Frølund, Bente; Greenwood, Jeremy R; Holm, Mai Marie

    2005-01-01

    and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors...

  19. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  20. Pharmacology of triheteromeric N-Methyl-D-Aspartate Receptors.

    Science.gov (United States)

    Cheriyan, John; Balsara, Rashna D; Hansen, Kasper B; Castellino, Francis J

    2016-03-23

    The N-Methyl-D-Aspartate Receptors (NMDARs) are heteromeric cation channels involved in learning, memory, and synaptic plasticity, and their dysregulation leads to various neurodegenerative disorders. Recent evidence has shown that apart from the GluN1/GluN2A and GluN1/GluN2B diheteromeric ion channels, the NMDAR also exists as a GluN1/GluN2A/GluN2B triheteromeric channel that occupies the majority of the synaptic space. These GluN1/GluN2A/GluN2B triheteromers exhibit pharmacological and electrophysiological properties that are distinct from the GluN1/GluN2A and GluN1/GluN2B diheteromeric subtypes. However, these receptors have not been characterized with regards to their inhibition by conantokins, as well as their allosteric modulation by polyamines and extracellular protons. Here, we show that the GluN1/GluN2A/GluN2B triheteromeric channels showed less sensitivity to GluN2B-specific conantokin (con)-G and con-RlB, and subunit non-specific con-T, compared to the GluN2A-specific inhibitor TCN-201. Also, spermine modulation of GluN1/GluN2A/GluN2B triheteromers switched its nature from potentiation to inhibition in a pH dependent manner, and was 2.5-fold slower compared to the GluN1/GluN2B diheteromeric channels. Unraveling the distinctive functional attributes of the GluN1/GluN2A/GluN2B triheteromers is physiologically relevant since they form an integral part of the synapse, which will aid in understanding spermine/pH-dependent potentiation of these receptors in pathological settings.

  1. DMPD: Toll-like receptors: novel pharmacological targets for the treatment ofneurological diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17974478 Toll-like receptors: novel pharmacological targets for the treatment ofneu...png) (.svg) (.html) (.csml) Show Toll-like receptors: novel pharmacological targets for the treatment ofneur...ological diseases. PubmedID 17974478 Title Toll-like receptors: novel pharmacological targets for the trea...tment ofneurological diseases. Authors Marsh BJ, Stenzel-Poore MP. Publication Curr

  2. Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chun Huang

    2015-11-01

    Full Text Available Background/Aims: Adenosine diphosphate ribose (ADPR, a product of β-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs; however the physiological function of extracellular ADPR is unclear. Methods: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y subtypes were examined in pulmonary arteries. Results: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. Conclusion: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.

  3. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  4. Señales purinérgicas Purinergic signals

    Directory of Open Access Journals (Sweden)

    Eduardo R Lazarowski

    2009-04-01

    is evidenced by various mechanisms of nucleotide release, as well as by the ibiquitous distribution of various types of ectonucleotidases which catalyze and convert extracellular nucleotides. Up to now about twenty receptors have been cloned and found to modulate the nerve impulse, inflammatory response, insuline secretion, the regulation of the vascular tone and nociception, among other processes. In the present review we describe the main structural and pharmacological features of purinergic receptors, and analyze how the dynamic interaction between these receptors, nucleotides and nucleosides, and ectonucleotidases modulate several biological responses. Particular focus is given to platelet aggregation and thrombus formation, the immune response and the hydration of the mucosal linings of the respiratory tract.

  5. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinc...

  6. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery

    DEFF Research Database (Denmark)

    Chan, Kayi Y; Baun, Michael; de Vries, René;

    2011-01-01

    We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries....

  7. Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron

    DEFF Research Database (Denmark)

    Juul Jensen, Mikkel E.; Odgaard, Elvin V. P.; Christensen, Mette Høgh

    2007-01-01

    in mTAL, and (3) whether this flow response is affected in mice that are deplete of the main purinergic receptor. [Ca2+]i was imaged in perfused mTAL with fura-2 or fluo-4. It is shown that luminal and basolateral P2Y2 receptors are the main purinergic receptor in this segment. Moreover, the data...

  8. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

    OpenAIRE

    Ushkaryov, Yuri

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a lett...

  9. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery

    DEFF Research Database (Denmark)

    Chan, Kayi Y; Baun, Michael; de Vries, René;

    2011-01-01

    We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries.......We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries....

  10. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    Science.gov (United States)

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  11. Pharmacologic perspectives of functional selectivity by the angiotensin II type 1 receptor

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Hansen, Jakob Lerche

    2008-01-01

    The angiotensin II type 1 (AT(1)) receptor plays a key role in cardiovascular pathophysiology, and it is a major pharmacologic target in the treatment of many cardiovascular disorders. However, AT(1) receptor activation is also involved in adaptive responses to altered hemodynamic demands...... and to sudden injury occurring in the circulatory system. Hence, current drugs that block all AT(1) receptor actions most likely leave room for improvement. Recent developments show that two major signaling pathways used by the AT(1) receptor may be dissected by pharmacologic means. Key pathologic responses...

  12. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...... antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non....../or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor...

  13. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  14. Pharmacological Profiles of Oligomerized μ-Opioid Receptors

    OpenAIRE

    Ing-Kang Ho; Cynthia Wei-Sheng Lee

    2013-01-01

    Opioids are widely prescribed pain relievers with multiple side effects and potential complications. They produce analgesia via G-protein-protein coupled receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to the oligomerized opioid receptors might be the key to developing analgesics without undesired side effects and obtaining effective treatment for opioid addicts. In this review we will update the biological effects of μ-opioids on homo- or hetero-ol...

  15. Pharmacology and crystal structure of novel 2,3-quinoxalinediones at kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Pallesen, Jakob Staun; Pasini, Diletta

    2017-01-01

    , within the KA receptor family (GluK1-5) only compounds with selectivity towards GluK1 exist [1]. Thus, there is an unmet need for Tool compounds with selectivity towards the remaining KA receptor subunits. Here we report the pharmacology of a series of novel N1-substituted 2,3-quinoxalinediones, as well....... Functional electrophysiological (TEVC) experiments indeed showed these compounds to be antagonists at cloned, homomeric KA receptors. The structure and pharmacology will be valuable for design of new and more GluK3-selective quinoxalinedione analogues....

  16. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    -sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing......A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed...... in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue...

  17. Cross-membrane signal transduction of receptor tyrosine kinases (RTKs): from systems biology to systems pharmacology.

    Science.gov (United States)

    Benson, Neil; van der Graaf, Piet H; Peletier, Lambertus A

    2013-03-01

    Receptor tyrosine kinases are high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. They straddle the cell wall and play an important role in cross-membrane signalling. We present a two-component systems pharmacology model based on the local physiology and identify characteristic features of its dynamics. We thus present a transparent tool for studying the effects of drug intervention and ways of administration on cross-membrane signalling through these receptors.

  18. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  19. Cloning and pharmacological characterization of the dog cannabinoid CB₂receptor.

    Science.gov (United States)

    Ndong, Christian; O'Donnell, Dajan; Ahmad, Sultan; Groblewski, Thierry

    2011-11-01

    Comparison of human, rat and mouse cannabinoid CB(2) receptor primary sequences has shown significant divergence at the mRNA and protein sequence level, raising the possibility of species specific pharmacological properties. Additionally, given the importance of the dog as a non-rodent species for predicting human safety during the drug development process, we cloned the dog CB(2) receptor gene and characterized its in-vitro pharmacological properties in a recombinant expression system. A 1.1 kb dog peripheral cannabinoid receptor (dCB(2)) fragment encoding a 360 amino acid protein was cloned from dog spleen cDNA. Analysis of the cloned dCB(2) polypeptide sequence revealed that it shares between 76 and 82% homology with rat, mouse, human and predicted chimpanzee cannabinoid CB(2) receptors. The dog CB(2) receptor expressed in CHO cells displayed similar binding affinities for various synthetic and endogenous cannabinoids as compared to those measured for the human and rat cannabinoid CB(2) receptors. However, these ligands exhibited altered functional potencies and efficacies for the dog cannabinoid CB(2) receptor, which was also found to be negatively coupled to adenylate cyclase activity. These complex pharmacological differences observed across species for the cannabinoid CB(2) receptor suggest that caution should be exerted when analyzing the outcome of animal efficacy and safety studies, notably those involving cannabinoid CB(2) receptor targeting molecules tested in the dog.

  20. Pharmacological and molecular characterization of functional P2 receptors in rat embryonic cardiomyocytes.

    Science.gov (United States)

    Cheung, Kwok-Kuen; Marques-da-Silva, Camila; Vairo, Leandro; dos Santos, Danúbia Silva; Goldenberg, Regina; Coutinho-Silva, Robson; Burnstock, Geoffrey

    2015-03-01

    Purinergic receptors activated by extracellular nucleotides (adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP)) are well known to exert physiological effects on the cardiovascular system, whether nucleotides participate functionally in embryonic heart development is not clear. The responsiveness of embryonic cardiomyocytes (E) 12 to P2 receptor agonists by measuring Ca(2+) influx did not present response to ATP, but responses to P2 agonists were detected in cardiomyocytes taken from E14 and E18 rats. Photometry revealed that the responses to ATP were concentration-dependent with an EC50 of 1.32 μM and 0.18 μM for E14 and E18 cardiomyocytes, respectively. In addition, other P2 agonists were also able to induce Ca(2+) mobilization. RT-PCR showed the presence of P2X2 and P2X4 receptor transcripts on E14 cardiomyocytes with a lower expression of P2X3 and P2X7 receptors. P2X1 and a low level of P2X5 receptor messenger RNA (mRNA) were also expressed at E18. Immunofluorescence data indicated that only P2X2 and P2X4 receptor proteins were expressed in E14 cardiomyocytes while protein for all the P2X receptor subtypes was expressed in E18, except for P2X3 and P2X6. Responses mediated by agonists specific for P2Y receptors subtypes showed that P2Y receptors (P2Y1, P2Y2, P2Y4 and P2Y6) were also present in both E14 and E18 cardiomyocytes. Dye transfer experiments showed that ATP induces coupling of cells at E12, but this response is decreased at E14 and lost at E18. Conversely, UTP induced coupling with five or more cells in most cells from E12 to E18. Our results show that specific P2 receptor subtypes are present in embryonic rat cardiomyocytes, including P2X7 and P2Y4 receptors that have not been identified in adult rat cardiomyocytes. The responsiveness to ATP stimulation even before birth, suggests that ATP may be an important messenger in embryonic as well as in adult hearts.

  1. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    Science.gov (United States)

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    -affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.

  2. Pharmacology of the GABAB receptor in amphibian retina.

    Science.gov (United States)

    Tian, N; Slaughter, M M

    1994-10-17

    Amacrine and ganglion cells in the amphibian retina contain GABAB, as well as GABAA, receptors. Baclofen, a GABAB agonist, hyperpolarizes the dark membrane potential of these third order neurons and makes their light responses more transient. GABAB receptors in the retina have a similar agonist profile to GABAB receptors described at other sites in the brain. Namely, preferential activation by the R-enantiomer of baclofen, and agonist sensitivity in the order 3-aminopropylphosphinic acid > baclofen > 3-aminopropylphosphonic acid. The GABAB receptor was not activated by 4-aminobutylphosphonic acid. Several antagonists, such as phaclofen, saclofen, and 2-hydroxysaclofen, were ineffective in the amphibian retina. However, CGP35348 blocked the action of applied baclofen and produced effects on the light response that were opposite to those of baclofen. Applied agonists and antagonists support the hypothesis that GABAB receptors serve to regulate the balance of sustained and transient signals to the inner retina.

  3. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    Science.gov (United States)

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  4. The role of purinergic signalling in exocrine pancreas

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund

    ATP is a fundamentally important molecule in intracellular processes, especially recognised as the molecular source of energy. ATP is however also released as a signal from most cell types, and extracellular signalling by ATP goes under the common name purinergic signalling and it includes releas....... At low concentrations it simulates proliferation, whereas it at higher concentrations is lethal to the cells, both caused by the purinergic P2X7 receptor....... mechanisms, receptors and br akdown enzymes. The work presented herein illustrates that ATP is present and is taken up into the zymogen granules of pancreatic acinar cells by the vesicular nucleotide transporter. Zymogen granules also contain the digestive enzymes in the acinar cells. Various stimuli release...

  5. Ginseng ginsenoside pharmacology in nervous systems: involvement of the regulations of ion channels and receptors

    Directory of Open Access Journals (Sweden)

    Seung-Yeol eNah

    2014-03-01

    Full Text Available Ginseng, the root of Panax ginseng C.A. Meyer, is one of the oldest traditional medicines and is thought to be a tonic. It has been claimed that ginseng may improve vitality and health. Recent studies have advanced ginseng pharmacology and shown that ginseng has various pharmacological effects in the nervous system. Ginsenosides, steroid glycosides extracted from ginseng, were one of the first class of biologically active plant glycosides identified. The diverse pharmacological effects of ginsenosides have been investigated through the regulation of various types of ion channels and receptors in neuronal cells and heterologous expression systems. Ginsenoside Rg3 regulates voltage-gated ion channels such as Ca2+, K+, and Na+ channels, and ligand-gated ion channels such as GABAA, 5-HT3, nicotinic acetylcholine, and N-methyl-D-aspartate (NMDA receptors through interactions with various sites including channel blocker binding sites, toxin-binding sites, channel gating regions, and allosteric channel regulator binding sites when the respective ion channels or receptors are stimulated with depolarization or ligand treatment. Treatment with ginsenoside Rg3 has been found to stabilize excitable cells by blocking influxes of cations such as Ca2+ and Na+, or by enhancing Cl- influx. The aim of this review is to present recent findings on the pharmacological functions of the ginsenosides through the interactions with ion channels and receptors. This review will detail the pharmacological applications of ginsenosides as neuroprotective drugs that target ion channels and ligand-gated ion channels.

  6. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions

    Directory of Open Access Journals (Sweden)

    Seung-Yeol eNah

    2015-10-01

    Full Text Available Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs, which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology.

  7. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-01-01

    taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we...

  8. Inside job: ligand-receptor pharmacology beneath the plasma membrane.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2013-07-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon.

  9. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    Institute of Scientific and Technical Information of China (English)

    Joseph J BABCOCK; Min LI

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments.However,these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone.Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell.These additional modes of interaction have been reported for functionally diverse ligands of GPCRs,ion channels,and transporters.Such intracellular drug-target engagements affect cell surface expression.Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation.Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites,and the potential therapeutic opportunities presented by this phenomenon.

  10. New concepts in calcium-sensing receptor pharmacology and signalling

    OpenAIRE

    Ward, Donald T.; Riccardi, Daniela

    2012-01-01

    The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca2+o) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca2+ reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretio...

  11. Discovery of antagonists of tick dopamine receptors via chemical library screening and comparative pharmacological analyses.

    Science.gov (United States)

    Ejendal, Karin F K; Meyer, Jason M; Brust, Tarsis F; Avramova, Larisa V; Hill, Catherine A; Watts, Val J

    2012-11-01

    Ticks transmit a wide variety of disease causing pathogens to humans and animals. Considering the global health impact of tick-borne diseases, there is a pressing need to develop new methods for vector control. We are exploring arthropod dopamine receptors as novel targets for insecticide/acaricide development because of their integral roles in neurobiology. Herein, we developed a screening assay for dopamine receptor antagonists to further characterize the pharmacological properties of the two D₁-like dopamine receptors (Isdop1 and Isdop2) identified in the Lyme disease vector, Ixodes scapularis, and develop a screening assay for receptor antagonists. A cell-based, cyclic AMP luciferase reporter assay platform was implemented to screen the LOPAC(1280) small molecule library for Isdop2 receptor antagonists, representing the first reported chemical library screen for any tick G protein-coupled receptor. Screening resulted in the identification of 85 "hit" compounds with antagonist activity at the Isdop2 receptor. Eight of these chemistries were selected for confirmation assays using a direct measurement of cAMP, and the effects on both Isdop1 and Isdop2 were studied for comparison. Each of these eight compounds showed antagonistic activity at both Isdop1 and Isdop2, although differences were observed regarding their relative potencies. Furthermore, comparison of the pharmacological properties of the tick dopamine receptors with that of the AaDOP2 receptor from the yellow fever mosquito and the human dopamine D₁ receptor (hD₁) revealed species-specific pharmacological profiles of these receptors. Compounds influencing dopaminergic functioning, such as the dopamine receptor antagonists discovered here, may provide lead chemistries for discovery of novel acaricides useful for vector control

  12. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Jensen, Anders A; Gharagozloo, Parviz; Birdsall, Nigel J M; Zlotos, Darius P

    2006-06-06

    Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.

  13. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin Receptor Nomenclature, Distribution, and Function

    OpenAIRE

    Kirby, Helen R.; Maguire, Janet J.; Colledge, William H.; Davenport, Anthony P

    2010-01-01

    Kisspeptins are members of the Arg-Phe amide family of peptides, which have been identified as endogenous ligands for a G-protein-coupled receptor encoded by a gene originally called GPR54 (also known as AXOR12 or hOT7T175). After this pairing, the gene has been renamed KISS1R. The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name for the receptor is the kisspeptin receptor to follow the conventi...

  14. Purinergic signaling and blood vessels in health and disease.

    Science.gov (United States)

    Burnstock, Geoffrey; Ralevic, Vera

    2014-01-01

    Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.

  15. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne

    2015-01-01

    of purinergic receptors. The TGR5 receptor, expressed on the luminal side of pancreatic ducts, was not involved in ATP release and Ca(2+) signals, but could stimulate Na(+)/Ca(2+) exchange in some conditions. CONCLUSIONS: CDCA evokes significant ATP release that can stimulate purinergic receptors, which in turn...... signalling are other important regulators of similar secretory mechanisms in pancreas. The aim of our study was to elucidate whether there is interplay between ATP and BA signalling. RESULTS: Here we show that CDCA (chenodeoxycholic acid) caused fast and concentration-dependent ATP release from acini (AR42J...... increase [Ca(2+)]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca(2+) conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects...

  16. Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus?

    Directory of Open Access Journals (Sweden)

    Francesco Di Virgilio

    2016-10-01

    Full Text Available Purinergic signalling plays a crucial role in immunity and autoimmunity. Among purinergic receptors, the P2X7 receptor (P2X7R has an undisputed role as it is expressed to high level by immune cells, triggers cytokine release and modulates immune cell differentiation. In this review, we focus on evidence supporting a possible role of the P2X7R in the pathogenesis of systemic lupus erythematosus (SLE.

  17. Pharmacological and signalling properties of a D2-like dopamine receptor (Dop3) in Tribolium castaneum.

    Science.gov (United States)

    Verlinden, Heleen; Vleugels, Rut; Verdonck, Rik; Urlacher, Elodie; Vanden Broeck, Jozef; Mercer, Alison

    2015-01-01

    Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species. The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca(2+) signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 - amino- 6,7 - dihydroxy - 1,2,3,4 - tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.

  18. Neto2 influences on kainate receptor pharmacology and function

    DEFF Research Database (Denmark)

    Han, Liwei; Howe, James; Pickering, Darryl S

    2016-01-01

    Neuropilin tolloid-like protein 2 (Neto2) is an auxiliary subunit of kainate receptors (KARs). It specifically regulates KARs, e.g., slows desensitization and deactivation, increases the rate of recovery from desensitization, promotes modal gating and increases agonist sensitivity. Although...

  19. Functional pharmacology of cloned heterodimeric GABA-B receptors expressed in mammalian cells

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1999-01-01

    reported in different tissues, and this study thus provides a functional assay of cloned GABAB receptors which should be a valuable tool for further characterization of GABAB ligands. Finally, we can conclude that the functional pharmacological profiles of the two GABABR1 splice variants are very similar....

  20. Biostructural and pharmacological studies of bicyclic analogues of the 3-isoxazolol glutamate receptor agonist ibotenic acid

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Pickering, Darryl S; Greenwood, Jeremy R;

    2010-01-01

    We describe an improved synthesis and detailed pharmacological characterization of the conformationally restricted analogue of the naturally occurring nonselective glutamate receptor agonist ibotenic acid (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-7-carboxylic acid (7-HPCA, 5) at A...

  1. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge

    1985-01-01

    By the use of primary cultures of neurons consisting of cerebral cortex interneurons or cerebellar granule cells it is possible to study biochemical and pharmacological aspects of receptors for GABA and glutamate. Cerebellar granule cells have been shown to express both high- and low-affinity GAB...

  2. P2 purinergic receptor activation of neuronal nitric oxide synthase and guanylyl cyclase in the dorsal facial area of the medulla increases blood flow in the common carotid arteries of cats.

    Science.gov (United States)

    Hung, Y-W; Leung, Y-M; Lin, N-N; Lee, T J-F; Kuo, J-S; Tung, K-C; Gong, C-L

    2015-02-12

    In the dorsal facial area (DFA) of the medulla, an activation of either P2 purinergic receptor or nitric oxide synthase (NOS) results in the release of glutamate, leading to an increase in blood flow of the common carotid artery (CCA). It is not known whether activation of the P2 receptor by ATP may mediate activation of NOS/guanylyl cyclase to cause glutamate release and/or whether L-Arg (nitric oxide (NO) precursor) may also cause ATP release from any other neuron, to cause an increase in CCA flow. We demonstrated that microinjections of P2 receptor agonists (ATP, α,β-methylene ATP) or NO precursor (L-arginine) into the DFA increased CCA blood flow. The P2-induced CCA blood flow increase was dose-dependently reduced by pretreatment with NG-nitro-arginine methyl ester (L-NAME, a non-specific NOS inhibitor), 7-nitroindazole (7-NI, a relatively selective neuronal NOS inhibitor) or methylene blue (MB, a guanylyl cyclase inhibitor) but not by that with D-NAME (an isomer of L-NAME) or N5-(1-iminoethyl)-L-ornithine (L-NIO, a potent endothelial NOS inhibitor). Involvement of glutamate release in these responses were substantiated by microdialysis studies, in which perfusions of ATP into the DFA increased the glutamate concentration in dialysates, but co-perfusion of ATP with L-NAME or 7-NI did not. Nevertheless, the arginine-induced CCA blood flow increase was abolished by combined pretreatment of L-NAME and MB, but not affected by pretreatment with a selective P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). In conclusion, ATP activation of the P2 receptor in the DFA induced activation of neuronal NOS/guanylyl cyclase, which causes glutamate release leading to an increase in CCA blood flow. However, arginine activation of neuronal NOS/guanylyl cyclase, which also caused glutamate release and CCA blood flow increase, did not induce activation of P2 receptors. These findings provide important information for drug design and

  3. The Histamine H3 Receptor: Structure, Pharmacology, and Function.

    Science.gov (United States)

    Nieto-Alamilla, Gustavo; Márquez-Gómez, Ricardo; García-Gálvez, Ana-Maricela; Morales-Figueroa, Guadalupe-Elide; Arias-Montaño, José-Antonio

    2016-11-01

    Among the four G protein-coupled receptors (H1-H4) identified as mediators of the biologic effects of histamine, the H3 receptor (H3R) is distinguished for its almost exclusive expression in the nervous system and the large variety of isoforms generated by alternative splicing of the corresponding mRNA. Additionally, it exhibits dual functionality as autoreceptor and heteroreceptor, and this enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The cloning of the H3R cDNA in 1999 by Lovenberg et al. allowed for detailed studies of its molecular aspects. In this work, we review the characteristics of the H3R, namely, its structure, constitutive activity, isoforms, signal transduction pathways, regional differences in expression and localization, selective agonists, antagonists and inverse agonists, dimerization with other neurotransmitter receptors, and the main presynaptic and postsynaptic effects resulting from its activation. The H3R has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome, and addiction.

  4. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Wolfgang Blenau

    2017-05-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects and deuterostomes (e.g., mammals. In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.

  5. Purinergic inhibition of ENaC produces aldosterone escape.

    Science.gov (United States)

    Stockand, James D; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-11-01

    The mechanisms underlying "aldosterone escape," which refers to the excretion of sodium (Na(+)) during high Na(+) intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na(+) channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na(+) intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y(2)(-/-) mice, which lack the purinergic receptor, had significantly less increased Na(+) excretion than wild-type mice in response to high-Na(+) intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y(2) receptor each modestly increased the resistance of ENaC to changes in Na(+) intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na(+) intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na(+) excretion in response to high-Na(+) intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape.

  6. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  7. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  8. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    Science.gov (United States)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  9. The Melanocortin-4 Receptor: Physiology, Pharmacology, and Pathophysiology

    OpenAIRE

    Tao, Ya-Xiong

    2010-01-01

    The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct...

  10. Pharmacology and therapeutic applications of A3 receptor subtype.

    Science.gov (United States)

    Fishman, Pnina; Bar-Yehuda, Sara

    2003-01-01

    The present study summarizes the biological effects elicit upon A(3) adenosine receptor (A(3)AR) activation in normal and tumor cells. Anti-inflamatory response is mediated upon A(3)AR activation in neutrophils, eosinophils and macrophages via direct effect on cell degranulation or the production of anti-inflamatory cytokines. In basophils, which highly express A(3)AR, degranulation and mediator release upon receptor activation lead to pro-inflammatory effects resulting in bronchospasm and asthma. In other normal cells such as cardiomyocytes, neuronal cells and bone marrow cells A(1)AR activation induces cytoprotective effects in vitro. In vivo, A(3)AR agonists act as cardio- and neuroprotective agents and attenuate ischemic damage. Furthermore, agonists to A(3)AR induce granulocyte colony stimulating factor (G-CSF) production and myeloprotective effect in chemotherapy treated mice. Interestingly, A(3)AR agonists inhibit tumor cell growth both in vitro and in vivo through a cytostatic effect mediated via the de-regulation of the Wnt signaling pathway. The variety of activities elicit by A(3)AR agonists suggest their potential use as therapeutic agents in inflammation, brain/cardiac ischemia and cancer. Antagonists to A(3)AR may be implemented to the therapy of asthma and additional allergic conditions.

  11. Amphipols in G protein-coupled receptor pharmacology: what are they good for?

    Science.gov (United States)

    Mary, Sophie; Damian, Marjorie; Rahmeh, Rita; Mouillac, Bernard; Marie, Jacky; Granier, Sébastien; Banères, Jean-Louis

    2014-10-01

    G protein-coupled receptors are at a central node of all cell communications. Investigating their molecular functioning is therefore crucial for both academic purposes and drug design. However, getting the receptors as isolated, stable and purified proteins for such studies still stumbles over their instability out of the membrane environment. Different membrane-mimicking environments have been developed so far to increase the stability of purified receptors. Among them are amphipols. These polymers not only preserve the native fold of receptors purified from membrane fractions but they also allow specific applications such as folding receptors purified from inclusion bodies back to their native state. Of importance, amphipol-trapped G protein-coupled receptors essentially maintain their pharmacological properties so that they are perfectly adapted to further investigate the molecular mechanisms underlying signaling processes. We review here how amphipols have been used to refold and stabilize detergent-solubilized purified receptors and what are the main subsequent molecular pharmacology analyses that were performed using this strategy.

  12. Electroacupuncture diminishes P2X2 and P2X3 purinergic receptor expression in dorsal root ganglia of rats with visceral hypersensitivity

    Institute of Scientific and Technical Information of China (English)

    Zhijun Weng; Luyi Wu; Yuan Lu; Lidong Wang; Linying Tan; Ming Dong; Yuhu Xin

    2013-01-01

    Electroacupuncture at Shangjuxu (ST37) and Tianshu (ST25) can improve visceral hypersensitivity in rats. Colorectal distension was used to establish a rat model of chronic visceral hypersensitivity. Immunohistochemistry was used to detect P2X2 and P2X3 receptor expression in dorsal root ganglia from rats with chronic visceral hypersensitivity. Results demonstrated that abdominal withdrawal reflex scores obviously increased following establishment of the model, indicating visceral hypersensitivity. Simultaneously, P2X2 and P2X3 receptor expression increased in dorsal root ganglia. After bilateral electroacupuncture at Shangjuxu and Tianshu, abdominal withdrawal reflex scores and P2X2 and P2X3 receptor expression decreased in rats with visceral hypersensitivity. These results indicated that electroacupuncture treatment improved visceral hypersensitivity in rats with irritable bowel syndrome by reducing P2X2 and P2X3 receptor expression in dorsal root ganglia.

  13. Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Stensbøl, T B;

    1997-01-01

    using rat brain ionotropic glutamate receptors, and in functional assays using cloned metabotropic glutamate (mGlu) receptors. As a notable result of these studies, (2S,4R)-4-methylglutamic acid and (2S,4S)-4-methylglutamic acid were shown to be selective for kainic acid receptors and mGlu receptors......The pharmacology of (2S,4R)-4-methylglutamic acid, (2S,4S)-4-methylglutamic acid and (S)- and (R)-4-methyleneglutamic acids (obtained in high chemical and enantiomeric purity from racemic 4-methyleneglutamic acid by chiral HPLC using a Crownpak CR(+) column), was examined in binding experiments...... (subtypes 1alpha and 2), respectively, whereas (S)-4-methyleneglutamic acid showed high but rather non-selective affinity for the (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), kainic acid, NMDA and mGlu receptors (subtypes 1alpha and 2). Although none of the compounds were specific...

  14. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization

    Science.gov (United States)

    Franco, Rafael; Martínez-Pinilla, Eva; Lanciego, José L.; Navarro, Gemma

    2016-01-01

    Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor–receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery. PMID:27065866

  15. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    Science.gov (United States)

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Layla AZAM; J Michael MCINTOSH

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the a-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain a-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiol-ogy of Parkinson's disease and nociception. Structure/function characterization of a-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipo-philic moieties has led to improved stability and bioavailability of a-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of a-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs.

  17. Altered GABAA Receptor Subunit Expression and Pharmacology in Human Angelman Syndrome Cortex

    Science.gov (United States)

    Roden, William H.; Peugh, Lindsey D.; Jansen, Laura A.

    2011-01-01

    The neurodevelopmental disorder Angelman syndrome is most frequently caused by deletion of the maternally-derived chromosome 15q11-q13 region, which includes not only the causative UBE3A gene, but also the β3-α5-γ3 GABAA receptor subunit gene cluster. GABAergic dysfunction has been hypothesized to contribute to the occurrence of epilepsy and cognitive and behavioral impairments in this condition. In the present study, analysis of GABAA receptor subunit expression and pharmacology was performed in cerebral cortex from four subjects with Angelman syndrome and compared to that from control tissue. The membrane fraction of frozen postmortem neocortical tissue was isolated and subjected to quantitative Western blot analysis. The ratios of β3/β2 and α5/α1 subunit protein expression in Angelman syndrome cortex were significantly decreased when compared with controls. An additional membrane fraction was injected into Xenopus oocytes, resulting in incorporation of the brain membrane vesicles with their associated receptors into the oocyte cellular membrane. Two-electrode voltage clamp analysis of GABAA receptor currents was then performed. Studies of GABAA receptor pharmacology in Angelman syndrome cortex revealed increased current enhancement by the α1-selective benzodiazepine site agonist zolpidem and by the barbiturate phenobarbital, while sensitivity to current inhibition by zinc was decreased. GABAA receptor affinity and modulation by neurosteroids were unchanged. This shift in GABAA receptor subunit expression and pharmacology in Angelman syndrome is consistent with impaired extrasynaptic but intact to augmented synaptic cortical GABAergic inhibition, which could contribute to the epileptic, behavioral, and cognitive phenotypes of the disorder. PMID:20692323

  18. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

    Science.gov (United States)

    YE, RICHARD D.; BOULAY, FRANÇOIS; WANG, JI MING; DAHLGREN, CLAES; GERARD, CRAIG; PARMENTIER, MARC; SERHAN, CHARLES N.; MURPHY, PHILIP M.

    2009-01-01

    Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation. The three human FPRs (FPR1, FPR2/ALX, and FPR3) share significant sequence homology and are encoded by clustered genes. Collectively, these receptors bind an extraordinarily numerous and structurally diverse group of agonistic ligands, including N-formyl and nonformyl peptides of different composition, that chemoattract and activate phagocytes. N-formyl peptides, which are encoded in nature only by bacterial and mitochondrial genes and result from obligatory initiation of bacterial and mitochondrial protein synthesis with N-formylmethionine, is the only ligand class common to all three human receptors. Surprisingly, the endogenous anti-inflammatory peptide annexin 1 and its N-terminal fragments also bind human FPR1 and FPR2/ALX, and the anti-inflammatory eicosanoid lipoxin A4 is an agonist at FPR2/ALX. In comparison, fewer agonists have been identified for FPR3, the third member in this receptor family. Structural and functional studies of the FPRs have produced important information for understanding the general pharmacological principles governing all leukocyte chemoattractant receptors. This article aims to provide an overview of the discovery and pharmacological characterization of FPRs, to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature, and to discuss unmet challenges, including the mechanisms used by these receptors to bind diverse ligands and mediate different biological functions. PMID:19498085

  19. Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders.

    Science.gov (United States)

    McQuillin, A; Bass, N J; Choudhury, K; Puri, V; Kosmin, M; Lawrence, J; Curtis, D; Gurling, H M D

    2009-06-01

    Three linkage studies of bipolar disorder have implicated chromosome 12q24.3 with lod scores of over 3.0 and several other linkage studies have found lods between 2 and 3. Fine mapping within the original chromosomal linkage regions has identified several loci that show association with bipolar disorder. One of these is the P2RX7 gene encoding a central nervous system-expressed purinergic receptor. A non-synonymous single nucleotide polymorphism, rs2230912 (P2RX7-E13A, G allele) and a microsatellite marker NBG6 were both previously found to be associated with bipolar disorder (P=0.00071 and 0.008, respectively). rs2230912 has also been found to show association with unipolar depression. The effect of the polymorphism is non-conservative and results in a glutamine to arginine change (Gln460Arg), which is likely to affect P2RX7 dimerization and protein-protein interactions. We have confirmed the allelic associations between bipolar disorder and the markers rs2230912 (P2RX7-E13A, G allele, P=0.043) and NBG6 (P=0.010) in a London-based sample of 604 bipolar cases and 560 controls. When we combined these data with the published case-control studies of P2RX7 and mood disorder (3586 individuals) the association between rs2230912 (Gln460Arg) and affective disorders became more robust (P=0.002). The increase in Gln460Arg was confined to heterozygotes rather than homozygotes suggesting a dominant effect (odds ratio 1.302, CI=1.129-1.503). Although further research is needed to prove that the Gln460Arg change has an aetiological role, it is so far the most convincing mutation to have been found with a role for increasing susceptibility to bipolar and genetically related unipolar disorders.

  20. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    Science.gov (United States)

    Campa, Víctor M; Capilla, Almudena; Varela, María J; de la Rocha, Arlet M Acanda; Fernandez-Troyano, Juan C; Barreiro, R Belén; Lopez-Gimenez, Juan F

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  1. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Víctor M Campa

    Full Text Available The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  2. Minodronic acid, a third-generation bisphosphonate, antagonizes purinergic P2X(2/3) receptor function and exerts an analgesic effect in pain models.

    Science.gov (United States)

    Kakimoto, Shuichiro; Nagakura, Yukinori; Tamura, Seiji; Watabiki, Tomonari; Shibasaki, Kumiko; Tanaka, Shohei; Mori, Masamichi; Sasamata, Masao; Okada, Masamichi

    2008-07-28

    The P2X(2/3) receptor has an important role in the nociceptive transmission. Minodronic acid is a third third-generation bisphosphonate and a potent inhibitor of bone resorption. We found that minodronic acid inhibited alpha,beta-methylene ATP-induced cation uptake with the potency higher than that of suramin in the P2X(2/3) receptor receptor-expressing cells. Other bisphosphonates did not show such activity. Subcutaneously administered (10-50 mg/kg) minodronic acid significantly inhibited the alpha,beta-methylene ATP-, acetic acid- and formalin-induced nociceptive behaviors in mice. These unique effects of minodronic acid would be beneficial for the treatment of accelerated bone turnover diseases accompanied by bone pain, including bone metastases.

  3. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  4. Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension

    Science.gov (United States)

    Ho, Ming-Fen; Low, Leanne M.; Rose’Meyer, Roselyn B.

    2016-01-01

    Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists. PMID:26907173

  5. Recent advances in the molecular pharmacology of the alpha 1-adrenergic receptors.

    Science.gov (United States)

    Guarino, R D; Perez, D M; Piascik, M T

    1996-08-01

    This review is intended to discuss recent developments in the molecular pharmacology of the alpha 1-adrenergic receptor (alpha 1-AR) subtypes. After a brief historical development, we will focus on the more contemporary issues having to do with this receptor family. Emphasis will be put on recent data regarding the cloning, nomenclature, signalling mechanisms, and genomic organization of the alpha 1-AR subtypes. We will also highlight recent mutational studies that identify key amino acid residues involved in ligand binding, as well as the role of the alpha 1-AR subtypes in regulating physiologic processes.

  6. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges.

    Science.gov (United States)

    White, Gemma E; Iqbal, Asif J; Greaves, David R

    2013-01-01

    Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.

  7. Fibrous and protoplasmic astrocytes express GABAA receptors that differ in benzodiazepine pharmacology.

    Science.gov (United States)

    Rosewater, K; Sontheimer, H

    1994-02-04

    Astrocytes cultured from spinal cord contain two morphologically distinguishable types of astrocytes: fibrous and protoplasmic cells. Both astrocyte subtypes, in culture, are able to express GABAA receptors, and their activation results in inward currents at the resting potential. Using patch-clamp electrophysiology we characterized their basic receptor pharmacology and compared it to spinal cord neurons that were also present in small numbers in these cultures. As in neuronal GABAA receptors, the local anesthetic pentobarbital effectively potentiated GABA-induced currents in both astrocyte subtypes. Similarly, the benzodiazepine diazepam, on average doubled GABA-induced currents in both astrocytes subtypes. In contrast to these effects that were similar in both astrocytes types and similar to spinal cord neurons, the response to the convulsant methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate (DMCM), which is an inverse benzodiazepine agonist differs between astrocyte subtypes. DMCM reduced GABA-induced currents by about 50% in fibrous astrocytes as we also observed with spinal cord neurons. In contrast, DMCM increased GABA currents in protoplasmic astrocytes by up to 150%, an effect never observed in neurons. DMCM potentiations of GABA currents have recently been attributed to differences in receptor subunit composition. Our results thus indicate that subtypes of astrocytes express GABAA receptors that differ pharmacologically and likely differ also in subunit composition.

  8. Binding-gating coupling in a nondesensitizing alpha7 nicotinic receptor A single channel pharmacological study.

    Science.gov (United States)

    Bernal, José Antonio; Mulet, José; Castillo, Mar; Criado, Manuel; Sala, Salvador; Sala, Francisco

    2009-02-01

    The highly conserved alphaLys145 has been suggested to play an important role in the early steps of activation of the nicotinic acetylcholine receptor (nAChR) by acetylcholine. Both macroscopic and single channel currents were recorded in the slowly desensitizing mutants L248T- and K145A-L248T-alpha7 receptors expressed in Xenopus oocytes. On ACh-evoked currents, substitution of Lys145 by alanine showed the same effects that in wild type receptors: moderately decreased gating function and a more-than-expected loss of ACh potency, thus validating the experimental model. Single channel analysis quantitatively agreed with macroscopic data and revealed that impaired gating function in the double mutant alpha7K145A/L248T is the consequence of a slower opening rate, beta. Several nicotinic agonists were also studied, showing important features. Particularly, dimethylphenylpiperazinium (DMPP), acting as an antagonist in alpha7K145A, became a full agonist in alpha7K145A/L248T. Single channel analysis of DMPP-evoked currents showed effects of Lys145 removal similar to those observed with ACh. Data suggest that alpha7Lys145 facilitates the early steps of channel activation. Moreover, the slowly desensitizing mutant alpha7L248T could be an interesting tool for the study of channel activation in alpha7 receptors. Nevertheless, its extensively altered pharmacology precludes the simple extrapolation of pharmacological data obtained in singly mutated alpha7 receptors.

  9. Pharmacological characterisation of the histamine H3 receptor in the rat hippocampus.

    Science.gov (United States)

    Alves-Rodrigues, A; Timmerman, H; Willems, E; Lemstra, S; Zuiderveld, O P; Leurs, R

    1998-03-30

    The purpose of this report was to pharmacologically characterise the histamine H3 in the rat hippocampus using radioligand binding studies with the H3 receptor antagonist [125I]iodophenpropit and the H3 receptor mediated inhibition of [3H]noradrenaline release. A dissociation constant of 0.33 nM and a maximal number of binding sites of 125 fmol/mg protein were found for [125I]iodophenpropit. Competition studies showed stereoselectivity for the (R) and (S) enantiomers of alpha-methylhistamine and 10 microM of GTPgammaS shifted the curve of (R)-alpha-methylhistamine rightwards. Up to 1 microM, (R)-alpha-methylhistamine displaced only 30% whereas the tested H3-antagonists displaced 50-60% of the total [125I]iodophenpropit bound. This indicates the presence of an additional non-H3 receptor binding site(s) for [125I]iodophenpropit in the rat hippocampus. This secondary site shows low affinity for H3 agonists, but high affinity for the tested H3 antagonists. Electrically evoked [3H]acetylcholine release was shown in slices of rat hippocampus. No H3 receptor modulation of [3H]acetylcholine release from hippocampal slices was detectable. However, H3 receptor activation inhibited 42% of the electrically-evoked [3H]noradrenaline release in rat hippocampal slices. The inhibition of [3H]noradrenaline release was effectively antagonized by the H3 antagonists thioperamide and burimamide. We describe the pharmacological identification of the histamine H3 receptor in the rat hippocampus and its similarities and differences from the cortical H3 receptor. These studies enable us to investigate changes in density and functionality of the hippocampal H3 receptor under (patho)physiological conditions.

  10. miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor.

    Directory of Open Access Journals (Sweden)

    Songyin Huang

    Full Text Available The P2X7 receptor regulates cell growth through mediation of apoptosis. Low level expression of P2X7 has been linked to cancer development because tumor cells harboring a defective P2X7 mechanism can escape P2X7 pro-apoptotic control. microRNAs (miRNAs function as negative regulators of post-transcriptional gene expression, playing major roles in cellular differentiation, proliferation, and metastasis. In this study, we found that miR-150 was over-expressed in breast cancer cell lines and tissues. In these breast cancer cell lines, blocking the action of miR-150 with inhibitors leads to cell death, while ectopic expression of the miR-150 results in increased cell proliferation. We deploy a microRNA sponge strategy to inhibit miR-150 in vitro, and the result demonstrates that the 3'-untranslated region (3'UTR of P2X7 receptor contains a highly conserved miR-150-binding motif and its direct interaction with miR-150 down-regulates endogenous P2X7 protein levels. Furthermore, our findings demonstrate that miR-150 over-expression promotes growth, clonogenicity and reduces apoptosis in breast cancer cells. Meanwhile, these findings can be decapitated in nude mice with breast cancer xenografts. Finally, these observations strengthen our working hypothesis that up-regulation of miR-150 in breast cancer is inversely associated with P2X7 receptor expression level. Together, these findings establish miR-150 as a novel regulator of P2X7 and a potential therapeutic target for breast cancer.

  11. Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology.

    Science.gov (United States)

    Frølund, Bente; Greenwood, Jeremy R; Holm, Mai M; Egebjerg, Jan; Madsen, Ulf; Nielsen, Birgitte; Bräuner-Osborne, Hans; Stensbøl, Tine B; Krogsgaard-Larsen, Povl

    2005-09-15

    Two 3-(5-tetrazolylmethoxy) analogues, 1a and 1b, of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), a selective AMPA receptor agonist, and (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), a GluR5-preferring agonist, were synthesized. Compounds 1a and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors. Both analogues proved to be antagonists at all AMPA receptor subtypes, showing potencies (Kb=38-161 microM) similar to that of the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA) (Kb=43-76 microM). Furthermore, the AMOA analogue, 1a, blocked two kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor effects. On the basis of docking to a crystal structure of the isolated extracellular ligand-binding core of the AMPA receptor subunit GluR2 and a homology model of the kainic acid receptor subunit GluR5, we were able to rationalize the observed structure-activity relationships.

  12. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis.

    Science.gov (United States)

    Xu, Gang; Wu, Shun-Fan; Gu, Gui-Xiang; Teng, Zi-Wen; Ye, Gong-Yin; Huang, Jia

    2017-04-01

    Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca(2+) and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.

  13. Synthesis and pharmacology of glutamate receptor ligands: new isothiazole analogues of ibotenic acid.

    Science.gov (United States)

    Jørgensen, Charlotte G; Clausen, Rasmus P; Hansen, Kasper B; Bräuner-Osborne, Hans; Nielsen, Birgitte; Metzler, Bjørn; Metzler, Birgitte Bjørn; Kehler, Jan; Krogsgaard-Larsen, Povl; Madsen, Ulf

    2007-02-07

    The naturally occurring heterocyclic amino acid ibotenic acid (Ibo) and the synthetic analogue thioibotenic acid (Thio-Ibo) possess interesting but dissimilar pharmacological activity at ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Therefore, a series of Thio-Ibo analogues was synthesized. The synthesis included introduction of substituents by Suzuki and Grignard reactions on 4-halogenated 3-benzyloxyisothiazolols, reduction of the obtained alcohols, followed by introduction of the amino acid moiety by use of 2-(N-tert-butoxycarbonylimino)malonic acid diethyl ester. The obtained Thio-Ibo analogues (1, 2a-g) were characterized in functional assays on recombinant mGluRs and in receptor binding assays on native iGluRs. At mGluRs, the activity at Group II was retained for compounds with small substituents (2a-2d), whereas the Group I and Group III receptor activities for all new compounds were lost. Detection of NMDA receptor affinity prompted further characterization, and two-electrode voltage-clamp recordings at recombinant NMDA receptor subtypes NR1/NR2A-D expressed in Xenopus oocytes were carried out for compounds with small substituents (chloro, bromo, methyl or ethyl, compounds 2a-d). This series of Thio-Ibo analogues defines a structural threshold for NMDA receptor activation and reveals that the individual subtypes have different steric requirements for receptor activation. The compounds 2a and 2c are the first examples of agonists discriminating individual NMDA subtypes.

  14. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD.

    Science.gov (United States)

    Moulton, Bart C; Fryer, Allison D

    2011-05-01

    In the lungs, parasympathetic nerves provide the dominant control of airway smooth muscle with release of acetylcholine onto M3 muscarinic receptors. Treatment of airway disease with anticholinergic drugs that block muscarinic receptors began over 2000 years ago. Pharmacologic data all indicated that antimuscarinic drugs should be highly effective in asthma but clinical results were mixed. Thus, with the discovery of effective β-adrenergic receptor agonists the use of muscarinic antagonists declined. Lack of effectiveness of muscarinic antagonists is due to a variety of factors including unwanted side effects (ranging from dry mouth to coma) and the discovery of additional muscarinic receptor subtypes in the lungs with sometimes competing effects. Perhaps the most important problem is ineffective dosing due to poorly understood differences between routes of administration and no effective way of testing whether antagonists block receptors stimulated physiologically by acetylcholine. Newer muscarinic receptor antagonists are being developed that address the problems of side effects and receptor selectivity that appear to be quite promising in the treatment of asthma and chronic obstructive pulmonary disease.

  15. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    Science.gov (United States)

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  16. Cannabinoid receptor 1 ligands revisited: Pharmacological assessment in the ACTOne system.

    Science.gov (United States)

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-04-01

    In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [(35)S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system-ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)-and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ(9) THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands.

  17. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  18. Pharmacology and molecular identification of secretin receptors in rat gastric glands

    Energy Technology Data Exchange (ETDEWEB)

    Bawab, W.; Gespach, C.; Marie, J.C.; Chastre, E.; Rosselin, G.

    1988-01-01

    The structure of the secretin receptor in purified plasma membranes isolated from the antral and fundic parts of the rat gastric mucosa was probed, using the cross linking reagent dithiobis succinimidyl propionate (DSP) and HPLC-purified (/sup 125/I) secretin. (/sup 125/I) secretin binding sites were preferentially located in rat antrum and displayed the pharmacological properties expected for specific secretin receptors: secretin >helodermin >rhGRF >rPHI. SDS gel electrophoresis of the solubilized receptor allowed identification of two radiolabeled peptides of 62 and 33 KDa connected by disulfide bonds. According to the sensitivity of the 62 KDa component to low doses of secretin and to GTP, it constitutes the membrane domain involved in the physiological regulation of adenylate cyclase by secretin in rat gastric glands. 33 references, 4 figures.

  19. Annulated heterocyclic bioisosteres of norarecoline. Synthesis and molecular pharmacology at five recombinant human muscarinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R

    1995-01-01

    = 0.011 microM), and 4d (IC50 = 0.0008 microM). Pharmacological effects (EC50 or Ki values) and intrinsic activities (per cent of maximal carbachol responses) were determined using five recombinant human mAChRs (m1-m5) and the functional assay, receptor selection and amplification technology (R......]QNB (brain) and [3H]Oxo-M (brain) binding data, were shown to be predictive of pharmacologically determined intrinsic activities at m1-m5, the same rank order of intrinsic activity being observed at all five mAChRs (4a > 4d > 4b > 4c). It is concluded that within this class of high-affinity mAChR (m1-m5...

  20. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat

    Directory of Open Access Journals (Sweden)

    Jean Z. Lin

    2015-11-01

    Full Text Available The functional conversion of white adipose tissue (WAT into a tissue with brown adipose tissue (BAT-like activity, often referred to as “browning,” represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  1. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Juknaite, Lina; Venskutonyte, Raminta; Assaf, Zeinab

    2012-01-01

    A2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed......Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor Glu...... at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which...

  2. Molecular cloning and pharmacological characterization of rat melatonin MT1 and MT2 receptors.

    Science.gov (United States)

    Audinot, Valérie; Bonnaud, Anne; Grandcolas, Line; Rodriguez, Marianne; Nagel, Nadine; Galizzi, Jean-Pierre; Balik, Ales; Messager, Sophie; Hazlerigg, David G; Barrett, Perry; Delagrange, Philippe; Boutin, Jean A

    2008-05-15

    In order to interpret the effects of melatonin ligands in rats, we need to determine their activity at the receptor subtype level in the corresponding species. Thus, the rat melatonin rMT(1) receptor was cloned using DNA fragments for exon 1 and 2 amplified from rat genomic DNA followed by screening of a rat genomic library for the full length exon sequences. The rat rMT(2) receptor subtype was cloned in a similar manner with the exception of exon 1 which was identified by screening a rat genomic library with exon 1 of the human hMT(2) receptor. The coding region of these receptors translates proteins of 353 and 364 amino acids, respectively, for rMT(1) and rMT(2). A 55% homology was observed between both rat isoforms. The entire contiguous rat MT(1) and MT(2) receptor coding sequences were cloned, stably expressed in CHO cells and characterized in binding assay using 2-[(125)I]-Iodomelatonin. The dissociation constants (K(d)) for rMT(1) and rMT(2) were 42 and 130 pM, respectively. Chemically diverse compounds previously characterized at human MT(1) and MT(2) receptors were evaluated at rMT(1) and rMT(2) receptors, for their binding affinity and functionality in [(35)S]-GTPgammaS binding assay. Some, but not all, compounds shared a similar binding affinity and functionality at both rat and human corresponding subtypes. A different pharmacological profile of the MT(1) subtype has also been observed previously between human and ovine species. These in vitro results obtained with the rat melatonin receptors are thus of importance to understand the physiological roles of each subtype in animal models.

  3. Progress in the study of purinergic ligand-gated ion channel 7 receptors in chronic pain%嘌呤能离子通道型受体7在病理性疼痛中的作用研究进展

    Institute of Scientific and Technical Information of China (English)

    李娜娜; 杨玲; 姚永兴

    2014-01-01

    背景 三磷酸腺苷(adenosine triphosphate,ATP)是一种普遍存在于周围和中枢神经系统的神经递质,以此类神经递质作为配体的受体称为嘌呤能受体.嘌呤能受体可分为离子通道型受体和代谢型受体.嘌呤能离子通道型受体7(purinergic ligand-gated ion channel 7,P2X7)属于配体门控型非选择性离子通道.因其独特的结构、功能和分布特点,在炎症和疼痛中发挥着重要作用. 目的 综述P2X7受体在神经病理性疼痛方面的研究进展. 内容 P2X7受体的结构与分布;P2X7受体的生理功能;P2X7受体在病理性疼痛中的作用以及P2X7受体介导病理性疼痛的可能机制. 趋向 对P2X7受体与病理性疼痛的深入研究将为开发新一代镇痛药物提供理论依据.%Background Adenosine triphosphate (ATP),is a neurotransmitter commonly found in and around the central nervous system,and such neurotransmitter by combining body called purinergic receptors.These receptors can be divided into ion channel type receptors and metabotropic receptors.Purinergic ligand-gated ion channel 7 (P2X7) receptor is one of purinergic receptors,and belongs to ligand gating non selective ion channel.Because of its unique structure,function and distribution characteristics,it plays an important role in inflammation and chronic pain.Objective Progress in the study of P2X7 receptor in chronic pain was reviewed.Content Acting as an ion channel receptor,P2X7 receptor plays a critical role in chronic pain.Progress in the structure and expressing profile,the alteration of expressing following chronic inflammation and nerve injury,and the effect of inhibitors on chronic pain were reviewed.Trend Progress in the study of P2X7 receptor may provide theoretical foundation for the discovery of new analgesic agents.

  4. [Nociceptin and the ORL1 receptor: pharmacology of a new opioid receptor].

    Science.gov (United States)

    Grond, S; Meuser, T; Pietruck, C; Sablotzki, A

    2002-12-01

    Molecular biological investigations led to the discovery of the ORL1 receptor ( opioid receptor like-1 receptor) and its endogenous ligand nociceptin. Although its sequence and structure are closely related to traditional opioid receptors, the ORL1 receptor shows low binding affinities for selective opioid agonists and antagonists. On the other hand, the ORL1 ligand nociceptin does not bind to the three traditional opioid receptors. The activation of the G protein-coupled ORL1 receptor inhibits adenlylate cyclase activity, reduces the intracellular concentration of the second messenger cAMP and regulates ion channels. The supraspinal administration of nociceptin produces hyperalgesia. unlike opioids. Spinal intrathecal and peripheral administration of nociceptin causes hyperalgesia in low doses and analgesia in high doses. The physiological role and detailed mechanisms of these dose-dependent nociceptin effects in opposite directions are not yet known. In addition, nociceptin modulates other biological phenomena such as feeding, locomotion, gastrointestinal function,memory, cardiovascular function,immunity, renal function, anxiety,dependence and tolerance.Future research on the physiological and pathophysiological importance of the nociceptin/ORL1 receptor systems may provide a target for novel therapeutics.

  5. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    Science.gov (United States)

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  6. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist.

    Science.gov (United States)

    Zhang, Minli; Zhou, Diansong; Wang, Yi; Maier, Donna L; Widzowski, Daniel V; Sobotka-Briner, Cynthia D; Brockel, Becky J; Potts, William M; Shenvi, Ashok B; Bernstein, Peter R; Pierson, M Edward

    2011-11-01

    The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia. The anxiolytic-like potency was assessed using the suppression of separation-induced vocalization in guinea pig pups. The affinity of AZD3783 for human and guinea pig 5-HT(1B) receptor (K(i), 12.5 and 11.1 nM, respectively) was similar to unbound plasma EC(50) values for guinea pig receptor occupancy (11 nM) and reduction of agonist-induced hypothermia (18 nM) in guinea pig. Active doses of AZD3783 in the hypothermia assay were similar to doses that reduced separation-induced vocalization in guinea pig pups. AZD3783 demonstrated favorable pharmacokinetic properties. The predicted pharmacokinetic parameters (total plasma clearance, 6.5 ml/min/kg; steady-state volume of distribution, 6.4 l/kg) were within 2-fold of the values observed in healthy male volunteers after a single 20-mg oral dose. This investigation presents a direct link between AZD3783 in vitro affinity and in vivo receptor occupancy to preclinical disease model efficacy. Together with predicted human pharmacokinetic properties, we have provided a model for the quantitative translational pharmacology of AZD3783 that increases confidence in the optimal human receptor occupancy required for antidepressant and anxiolytic effects in patients.

  7. Impaired Purinergic Regulation of the Glial (Müller) Cell Volume in the Retina of Transgenic Rats Expressing Defective Polycystin-2.

    Science.gov (United States)

    Vogler, Stefanie; Pannicke, Thomas; Hollborn, Margrit; Kolibabka, Matthias; Wiedemann, Peter; Reichenbach, Andreas; Hammes, Hans-Peter; Bringmann, Andreas

    2016-07-01

    Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague-Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative-nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative-nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic

  8. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease.

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillaume, Jean-Luc; Jockers, Ralf

    2014-08-01

    Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications toward type 2 diabetes development, visual functions, sleep disturbances, and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2 , which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1 /MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models.

  9. Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury.

    Directory of Open Access Journals (Sweden)

    Josef Anrather

    Full Text Available Cyclooxygenases (COX are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2 synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2 synthesis (10 minutes after NMDA, while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA. Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2 synthesis is dependent on P2X7 receptors, extracellular Ca(2+ and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2 synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2 receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2 receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2 production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain

  10. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    Science.gov (United States)

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J.; Meinild, A.-K.

    2013-01-01

    to ion channel stimulation and cell volume back-regulation. Our aim was to investigate whether volume sensitivity of the voltage-gated K(+) channel, KCNQ1, is dependent on ATP release and regulation by purinergic signalling. METHODS: We used Xenopus oocytes heterologously expressing human KCNQ1, KCNE1......, water channels (AQP1) and P2Y2 receptors. ATP release was monitored by a luciferin-luciferase assay and ion channel conductance was recorded by two-electrode voltage clamp. RESULTS: The luminescence assay showed that oocytes released ATP in response to mechanical, hypoosmotic stimuli and hyperosmotic...... to mechanical stimuli and cell volume changes. Purinergic P2 and P1 receptors confer some of the KCNQ1 channel volume sensitivity, although endogenous adenosine receptors and expressed P2Y2 receptors do so in the negative direction....

  12. Structural and pharmacological characterization of phenylalanine-based AMPA receptor antagonists at kainate receptors

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Frydenvang, Karla; Valadés, Elena Antón

    2012-01-01

    . A new series of phenylalanine derivatives that target iGluRs was reported to bind AMPA receptors. Herein we report our studies of these compounds at the kainate receptors GluK1-3. Several compounds bind with micromolar affinity at GluK1 and GluK3, but do not bind GluK2. The crystal structure of the most...... potent compound in the ligand binding domain of GluK1 revealed different modes of binding to GluK1 and GluA2, due primarily to residues Ser741 (GluK1) and Met729 (GluA2). The compound was shown to be slightly more potent at GluK1 than at AMPA receptors and to induce a domain closure similar...

  13. Auto-modulation of neuroactive steroids on GABA A receptors: a novel pharmacological effect.

    Science.gov (United States)

    Wegner, Florian; Rassler, Cornelia; Allgaier, Clemens; Strecker, Karl; Wohlfarth, Kai

    2007-02-01

    GABA(A) receptor function is modulated by various important drugs including neuroactive steroids that act on allosteric modulatory sites and can directly activate GABA(A) receptor channels at high concentrations. We used whole cell patch-clamp recordings and rapid applications of the neuroactive steroid alphaxalone to investigate repetitive steroid effects. Alphaxalone potentiation of submaximal GABA-evoked currents was enhanced significantly by repetitive coapplications at all investigated recombinant isoforms (alpha1beta3delta, alpha1beta3gamma2L, alpha6beta3delta, alpha6beta3gamma2L) and at GABA(A) receptors of differentiated human NT2 neurons. A similar increase of current amplitudes was induced by repetitive applications of a high steroid concentration without GABA. We refer to these reversible effects as auto-modulation because repeated interactions of steroids enhanced their own pharmacological impact at the receptor sites in a time and concentration dependent manner without affecting GABA controls. Pronounced auto-modulatory actions were also measured using the neurosteroid 5alpha-THDOC in contrast to indiplon, THIP, and pentobarbital indicating a steroid specificity. Protein kinase A inhibition significantly reduced alphaxalone auto-modulation at alpha1beta3gamma2L, alpha6beta3gamma2L, and alpha6beta3delta subtypes while it enhanced potentiation at alpha1beta3delta isoforms suggesting a crucial influence of receptor subunit composition and phosphorylation for steroid actions. Especially at extrasynaptic GABA(A) receptor sites containing the delta subunit steroid auto-modulation may have a critical role in enhancing potentiation of GABA-induced currents.

  14. Biochemical and pharmacological studies of the hepatic alpha sub 1 -adrenergic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tchakarov, L.E.

    1988-01-01

    The structure and the regulation of the hepatic {alpha}{sub 1}-adrenergic receptors have been studied in the rat. The in vitro incubation of isolated liver cells in a serum-free buffer for 4 hr leads to the conversion of the adrenergic activation of glycogen phosphorylase from an {alpha}{sub 1}- to a {beta}-adrenoceptor-mediated event. This change is associated with no change in the glycogenolytic response to vasopressin and a reduction of the glycogenolytic response to glucagon. The time-dependent shift in the adrenergic control of glycogenolysis does not influence the density or the affinity of ({sup 3}H)prazosin-labeled {alpha}{sub 1}-receptors and ({sup 3}H)CGP-12177-labeled {beta}-receptors. The change in the adrenergic control of glycogenolysis is reversed by a 30-min incubation with 50 nM lipomodulin, whereas in freshly isolated cells lipomodulin doesn't affect the predominant {alpha}-receptor response. Conversely, exposure of freshly isolated cells to a monoclonal antibody to lipomodulin in the presence of 10 {mu}M phenylephrine, or to 2 {mu}g/ml mellitin, results in a shift in the adrenergic control of glycogenolysis from {alpha}{sub 1}- to {beta}-type within 30 min. The mechanism of activation of the Ca{sup 2+}-linked receptors for vasopressin and adrenaline was studied in isolated liver cells. A novel irreversible antagonist for the {alpha}{sub 1}-adrenergic receptors, I-phenyoxybenzamine (I-POB) has been synthesized and pharmacologically characterized.

  15. A pharmacological profile of the high-affinity GluK5 kainate receptor.

    Science.gov (United States)

    Møllerud, Stine; Kastrup, Jette Sandholm; Pickering, Darryl S

    2016-10-05

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.

  16. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications.

    Science.gov (United States)

    Pei, Yue; Asif-Malik, Aman; Canales, Juan J

    2016-01-01

    Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the "classical" biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA), norepinephrine, epinephrine, serotonin (5-HT), and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS), and hence referred to as "trace" amines (TAs), are now recognized to play significant neurophysiological and behavioral functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1), a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine, and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1. Although, its molecular interactions and downstream targets have not been fully elucidated, TAAR1 activation triggers accumulation of intracellular cAMP, modulates PKA and PKC signaling and interferes with the β-arrestin2-dependent pathway via G protein-independent mechanisms. TAAR1 is uniquely positioned to exert direct control over DA and 5-HT neuronal firing and release, which has profound implications for understanding the pathophysiology of, and therefore designing more efficacious therapeutic interventions for, a range of neuropsychiatric disorders that involve aminergic dysregulation, including Parkinson's disease, schizophrenia, mood disorders, and addiction. Indeed, the recent development of novel pharmacological tools targeting TAAR1 has uncovered the remarkable potential of TAAR1-based medications as new generation pharmacotherapies in neuropsychiatry. This review summarizes recent developments in the study of TAs and TAAR1, their intricate neurochemistry and

  17. Lack of run-down of smooth muscle P2X receptor currents recorded with the amphotericin permeabilized patch technique, physiological and pharmacological characterization of the properties of mesenteric artery P2X receptor ion channels.

    Science.gov (United States)

    Lewis, C J; Evans, R J

    2000-12-01

    Immunoreactivity for P2X(1), P2X(4) and P2X(5) receptor subtypes was detected in the smooth muscle cell layer of second and third order rat mesenteric arteries immunoreactivity, for P2X(2), P2X(3), P2X(6) and P2X(7) receptors was below the level of detection in the smooth muscle layer. P2X receptor-mediated currents were recorded in patch clamp studies on acutely dissociated mesenteric artery smooth muscle cells. Purinergic agonists evoked transient inward currents that decayed rapidly in the continued presence of agonist (tau approximately 200 ms). Standard whole cell responses to repeated applications of agonist at 5 min intervals ran down. Run-down was unaffected by changes in extracellular calcium concentration, intracellular calcium buffering or the inclusion of ATP and GTP in the pipette solution. Run-down was overcome and reproducible responses to purinergic agonists were recorded using the amphotericin permeabilized patch recording configuration. The rank order of potency at the P2X receptor was ATP=2 methylthio ATP>alpha, beta-methylene ATP>CTP=l-beta,gamma-methylene ATP. Only ATP and 2meSATP were full agonists. The P2 receptor antagonists suramin and PPADS inhibited P2X receptor-mediated currents with IC(50)s of 4 microM and 70 nM respectively. These results provide further characterization of artery P2X receptors and demonstrate that the properties are dominated by a P2X(1)-like receptor phenotype. No evidence could be found for a phenotype corresponding to homomeric P2X(4) or P2X(5) receptors or to heteromeric P2X(1/5) receptors and the functional role of these receptors in arteries remains unclear.

  18. Pharmacological insights into the role of P2X4 receptors in behavioral regulation: lessons from ivermectin

    Science.gov (United States)

    Bortolato, Marco; Yardley, Megan; Khoja, Sheraz; Godar, Sean C; Asatryan, Liana; Finn, Deborah A.; Alkana, Ronald L.; Louie, Stan G.; Davies, Daryl L.

    2012-01-01

    Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5′-triphosphate (ATP). In particular, convergent lines of evidence have recently highlighted P2X4 receptors as a potentially critical target in the regulation of multiple nervous and behavioral functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X4 receptor in behavioral organization remains poorly investigated. To study the effects of P2X4 activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5–10 mg/kg, i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviors in the tail-suspension and forced swim tests. The agent induced no significant behavioral changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by prepulse inhibition (PPI) of the acoustic startle reflex. In P2X4 knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X4 receptors may play a role in the regulation of sensorimotor gating. PMID:23174033

  19. Systems Pharmacology Approach for Prediction of Pulmonary and Systemic Pharmacokinetics and Receptor Occupancy of Inhaled Drugs

    Science.gov (United States)

    Evans, N; Chappell, M; Lundqvist, A; Ewing, P; Wigenborg, A; Fridén, M

    2016-01-01

    Pulmonary drug disposition after inhalation is complex involving mechanisms, such as regional drug deposition, dissolution, and mucociliary clearance. This study aimed to develop a systems pharmacology approach to mechanistically describe lung disposition in rats and thereby provide an integrated understanding of the system. When drug‐ and formulation‐specific properties for the poorly soluble drug fluticasone propionate were fed into the model, it proved predictive of the pharmacokinetics and receptor occupancy after intravenous administration and nose‐only inhalation. As the model clearly distinguishes among drug‐specific, formulation‐specific, and system‐specific properties, it was possible to identify key determinants of pulmonary selectivity of receptor occupancy of inhaled drugs: slow particle dissolution and slow drug‐receptor dissociation. Hence, it enables assessment of factors for lung targeting, including molecular properties, formulation, as well as the physiology of the animal species, thereby providing a general framework for rational drug design and facilitated translation of lung targeting from animal to man. PMID:27104089

  20. Dopaminergic 3H-agonist receptors in rat brain: new evidence on localization and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Bacopoulos, N.G.

    1984-01-23

    Recent methodological advances have allowed the reliable assay of specific dopaminergic 3H-agonist binding sites in rat striatum. Lesions of dopamine(DA) terminals or drugs which deplete DA levels prevent the preincubation-induced increase in binding, and this effect is completely reversible by preincubation with added DA. It is concluded that the evidence supporting the existence of presynaptic D-3 sites is artefactual and that 3H-DA binding sites are more likely related to post-synaptic receptors. 3H-DA binding involves two sites, one of which has pharmacologic properties similar to D-1 receptors, whereas the other resembles D-2 receptors. The affinity of 15 antipsychotic drugs for 3H-haloperidol binding sites was highly correlated (R = 0.94) with their inhibitory potency at a subset of 3H-DA binding sites. However, the inhibition of 3H-DA binding by antipsychotic drugs was noncompetitive. These findings can be explained by an allosteric model, whereby antagonists bind to a site different from but allosterically linked to a high-affinity 3H-DA binding site.

  1. Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis.

    Science.gov (United States)

    Fairbanks, Carolyn A; Stone, Laura S; Wilcox, George L

    2009-08-01

    Endogenous, descending noradrenergic fibers impose analgesic control over spinal afferent circuitry mediating the rostrad transmission of pain signals. These fibers target alpha 2 adrenergic receptors (alpha(2)ARs) on both primary afferent terminals and secondary neurons, and their activation mediates substantial inhibitory control over this transmission, rivaling that of opioid receptors which share a similar pattern of distribution. The terminals of primary afferent nociceptive neurons and secondary spinal dorsal horn neurons express alpha(2A)AR and alpha(2C)AR subtypes, respectively. Spinal delivery of these agents serves to reduce their side effects, which are mediated largely at supraspinal sites, by concentrating the drugs at the spinal level. Targeting these spinal alpha(2)ARs with one of five selective therapeutic agonists, clonidine, dexmedetomidine, brimonidine, ST91 and moxonidine, produces significant antinociception that can work in concert with opioid agonists to yield synergistic antinociception. Application of several genetically altered mouse lines had facilitated identification of the primary receptor subtypes that likely mediate the antinociceptive effects of these agents. This review provides first an anatomical description of the localization of the three subtypes in the central nervous system, second a detailed account of the pharmacological history of each of the six primary agonists, and finally a comprehensive report of the specific interactions of other GPCR agonists with each of the six principal alpha(2)AR agonists featured.

  2. Studies on the pharmacology of the novel histamine H3 receptor agonist Sch 50971.

    Science.gov (United States)

    Hey, J A; Aslanian, R; Bolser, D C; Chapman, R W; Egan, R W; Rizzo, C A; Shih, N Y; Fernandez, X; McLeod, R L; West, R; Kreutner, W

    1998-09-01

    Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in

  3. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Li, L; Yang, Z; Zhang, Y-P; He, S; Liang, X-F; Tao, Y-X

    2017-04-01

    Melanocortin-4 receptor (MC4R) plays a pivotal role in the mediation of leptin action on food intake and energy expenditure in mammals. The MC4R has also been identified in several teleosts, and its importance in the regulation of fish energy homeostasis is emerging. We herein reported on the molecular cloning, tissue distribution, and pharmacological characterization of MC4R in grass carp (Ctenopharyngodon idella), an economically and ecologically important fish. We showed that grass carp MC4R (ciMC4R) consisted of a 981 bp open reading frame encoding a protein of 326 amino acids, highly homologous (>95%) to several teleost MC4Rs. Phylogenetic and synteny analysis further indicated ciMC4R was closely related to piscine MC4Rs. Using reverse transcription PCR, we found that mc4r messenger RNA was expressed in the brain as well as various peripheral tissues in grass carp. The pharmacological properties of ciMC4R were investigated using 4 agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle(4), D-Phe(7)]-MSH (NDP-MSH), and adrenocorticotropic hormone (ACTH). We showed that all 4 ligands could bind to ciMC4R and initiate dose-dependent intracellular cyclic adenosine monophosphate (cAMP) accumulation. Grass carp MC4R had the highest affinity for NDP-MSH. Both NDP-MSH and ACTH (1-24) exhibited higher potencies compared to the other 2 endogenous agonists. The ciMC4R was constitutively active, with significantly increased basal cAMP level compared with that of human MC4R (P < 0.01). The availability of ciMC4R and its pharmacologic characteristics provide a basis for future investigation of its functional roles in regulating diverse physiological processes and novel insights into understanding the mechanism of food habit transition in grass carp.

  4. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL...... on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering...

  5. Pharmacological characterization and binding modes of novel racemic and optically active phenylalanine-based antagonists of AMPA receptors

    DEFF Research Database (Denmark)

    Szymańska, Ewa; Nielsen, Birgitte; Johansen, Tommy Nørskov

    2017-01-01

    In order to map out molecular determinants for the competitive blockade of AMPA receptor subtypes, a series of racemic aryl-substituted phenylalanines was synthesized and pharmacologically characterized in vitro at native rat ionotropic glutamate receptors. Most of the compounds showed micromolar...... affinity and preference for AMPA receptors. Individual stereoisomers of selected compounds were further evaluated at recombinant homomeric rat GluA2 and GluA3 receptors. The most potent compound, (–)-2-amino-3-(6-chloro-2',5'-dihydroxy-5-nitro-[1,1'-biphenyl]-3-yl)propanoic acid, the expected R...

  6. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  7. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems.

    Science.gov (United States)

    Köles, László; Kató, Erzsébet; Hanuska, Adrienn; Zádori, Zoltán S; Al-Khrasani, Mahmoud; Zelles, Tibor; Rubini, Patrizia; Illes, Peter

    2016-03-01

    Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.

  8. Pharmacologic inhibition of ghrelin receptor signaling is insulin sparing and promotes insulin sensitivity.

    Science.gov (United States)

    Longo, Kenneth A; Govek, Elizabeth K; Nolan, Anna; McDonagh, Thomas; Charoenthongtrakul, Soratree; Giuliana, Derek J; Morgan, Kristen; Hixon, Jeffrey; Zhou, Chaoseng; Kelder, Bruce; Kopchick, John J; Saunders, Jeffrey O; Navia, Manuel A; Curtis, Rory; DiStefano, Peter S; Geddes, Brad J

    2011-10-01

    Ghrelin influences a variety of metabolic functions through a direct action at its receptor, the GhrR (GhrR-1a). Ghrelin knockout (KO) and GhrR KO mice are resistant to the negative effects of high-fat diet (HFD) feeding. We have generated several classes of small-molecule GhrR antagonists and evaluated whether pharmacologic blockade of ghrelin signaling can recapitulate the phenotype of ghrelin/GhrR KO mice. Antagonist treatment blocked ghrelin-induced and spontaneous food intake; however, the effects on spontaneous feeding were absent in GhrR KO mice, suggesting target-specific effects of the antagonists. Oral administration of antagonists to HFD-fed mice improved insulin sensitivity in both glucose tolerance and glycemic clamp tests. The insulin sensitivity observed was characterized by improved glucose disposal with dramatically decreased insulin secretion. It is noteworthy that these results mimic those obtained in similar tests of HFD-fed GhrR KO mice. HFD-fed mice treated for 56 days with antagonist experienced a transient decrease in food intake but a sustained body weight decrease resulting from decreased white adipose, but not lean tissue. They also had improved glucose disposal and a striking reduction in the amount of insulin needed to achieve this. These mice had reduced hepatic steatosis, improved liver function, and no evidence of systemic toxicity relative to controls. Furthermore, GhrR KO mice placed on low- or high-fat diets had lifespans similar to the wild type, emphasizing the long-term safety of ghrelin receptor blockade. We have therefore demonstrated that chronic pharmacologic blockade of the GhrR is an effective and safe strategy for treating metabolic syndrome.

  9. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

    Science.gov (United States)

    Aust, Gabriela; Araç, Demet; Engel, Felix B.; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A.; Harty, Breanne L.; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C.; Monk, Kelly R.; Peeters, Miriam C.; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W.; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A.; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W.; Xu, Lei; Langenhan, Tobias

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. PMID:25713288

  10. Pharmacology, Distribution and Development of Muscarinic Acetylcholine Receptor Subtypes in the Optic Tectum of Rana Pipiens

    Science.gov (United States)

    Butt, C. M.; Pauly, J. R.; Wilkins, L. H.; Dwoskin, L. P.; Debski, E. A.

    2008-01-01

    Visually evoked behaviors mediated by the frog optic tectum require cholinergic activity, but the receptor subtypes through which acetylcholine acts are not yet identified. Using quantitative autoradiography and scintillation spectrometry, we examined the binding of [3H]pirenzepine and [3H]AF-DX 384 in the laminated optic tectum of the frog. In mammalian systems, these substances bind excitatory (m1 and m3 subtypes) and inhibitory (m2 and m4 subtypes) muscarinic acetylcholine receptors, respectively. Pharmacological analyses, including the use of specific muscarinic toxins, confirmed the subtype selectivity of the radioligands in the frog brain. Binding sites for [3H]pirenzepine were distinct from those for [3H]AF-DX 384. In the adult tectum, [3H]pirenzepine demonstrated specific binding in tectal layers 5–9. [3H]Pirenzepine binding was also present in tadpoles as young as stage V, but all sampled stages of tadpole tectum had significantly less binding when compared to adults. Lesioning of the optic nerve had no effect on [3H]pirenzepine binding. Specific [3H]AF-DX 384 binding was found in all layers of the adult tectum. All sampled tadpole stages exhibited binding sites for [3H]AF-DX 384, but the densities of these sites were also significantly higher in adults than they were in developing stages. Short-term lesions of the optic nerve reduced [3H]AF-DX 384 binding in all tectal layers of the deafferented lobe when compared to the afferented one. Long-term lesions decreased [3H]AF-DX 384 sites in both lobes. These results indicate that multiple muscarinic acetylcholine receptor binding sites reside in the frog optic tectum at all stages of development, and their pharmacology resembles that of mammalian m1/m3, m2 and m4 subtypes. Our data indicate that few, if any, of these receptors are likely to be located on retinal ganglion cell terminals. Furthermore, the expression of inhibitory muscarinic subtypes seems to be regulated by different mechanisms than that for

  11. Pharmacological characterization of muscarinic receptor subtypes mediating vasoconstriction of human umbilical vein

    Science.gov (United States)

    Pujol Lereis, Virginia Andrea; Hita, Francisco Javier; Gobbi, Mauro Darío; Verdi, Marcela Gomez; Rodriguez, María Cecilia; Rothlin, Rodolfo Pedro

    2006-01-01

    The present study attempted to pharmacologically characterize the muscarinic receptor subtypes mediating contraction of human umbilical vein (HUV). HUV rings were mounted in organ baths and concentration–response curves were constructed for acetylcholine (ACh) (pEC50: 6.16±0.04; maximum response 80.00±1.98% of the responses induced by serotonin 10 μM). The absence of endothelium did not modify the contractile responses of ACh in this tissue. The role of cholinesterases was evaluated: neither neostigmine (acetylcholinesterase inhibitor) nor iso-OMPA (butyrylcholinesterase inhibitor) modified ACh responses. When both enzymes were simultaneously inhibited, a significantly but little potentiation was observed (control: pEC50 6.33±0.03; double inhibition: pEC50 6.57±0.05). Atropine, nonselective muscarinic receptors antagonist, inhibited ACh-induced contraction (pKB 9.67). The muscarinic receptors antagonists pirenzepine (M1), methoctramine (M2) and pFHHSiD (M3) also antagonized responses to ACh. The affinity values estimated for these antagonists against responses evoked by ACh were 7.58, 6.78 and 7.94, respectively. On the other hand, PD 102807 (M4 selective muscarinic receptors antagonist) was ineffective against ACh-induced contraction. In presence of a blocking concentration of pirenzepine, pFHHSiFD produced an additional antagonism activity on ACh-induced responses. The M1 muscarinic receptors agonist McN-A-343 produced similar maximum but less potent responses than ACh in HUV. The calculated pA2 for pirenzepine against McN-A-343 induced responses was 8.54. In conclusion, the data obtained in this study demonstrate the role of M1 muscarinic receptor subtypes and suggest the involvement of M3 muscarinic receptor subtypes in ACh-induced vasoconstriction in HUV rings. In addition, the vasomotor activity evoked by ACh does not seem to be modulated by endothelial factors, and their enzymatic degradation appears to have little functional relevance in this

  12. Pharmacological Characterization of Inositol 1,4,5-tris Phosphate Receptors in Human Platelet Membranes

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-01-01

    Full Text Available The phosphatidylinositol (PI hydrolysis signaling system has been shown to be altered in platelets of depressed and schizophrenic subjects. Inositol (1,4,5 trisphosphate (Ins(1,4,5P3, an integral component of the PI signaling system, mobilizes Ca2+ by activating Ins(1,4,5P3 receptors. To eventually investigate the role of Ins(1,4,5P3 receptors in depression and other mental disorders, we characterized [H3]Ins(1,4,5P3 binding sites in crude platelet membranes prepared from small amounts of blood obtained from healthy human control subjects. We found a single, saturable binding site for [H3]Ins(1,4,5P3 to crude platelet membranes, which is time dependent and modulated by pH, inositol phosphates, and heparin. Since cyclic adenosine monophosphate (cAMP and Ca2+ have been shown to be important modulators in Ins(1,4,5P3 receptors, in the present study we also determined the effects of various concentrations of CaCI2 and forskolin on Ins(1,4,5P3 binding to platelet membranes. CaCI2 modulated [3H]Ins(1,4,5P3 binding sites in a biphasic manner: at lower concentrations it inhibited [3H]Ins(1,4,5P3 binding, whereas at higher concentrations, it stimulated [3H]Ins(1,4,5P3 binding. On the other hand, forskolin inhibited [3H]Ins(1,4,5P3 binding. Our results thus suggest that the pharmacological characteristics of [3H]Ins(1,4,5P3 binding to crude platelet membranes are similar to that of Ins(1,4,5P3 receptors; and that both Ca2+ and cAMP modulate [3H]Ins(1,4,5P3 binding in crude platelet membranes.

  13. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    Science.gov (United States)

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  14. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Hansen, Kasper B; Naur, Peter

    2016-01-01

    -term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify...

  15. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes

    DEFF Research Database (Denmark)

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte;

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies...

  16. Comparison of the pharmacological properties of classical and novel BZ-omega receptor ligands.

    Science.gov (United States)

    Griebel, G; Perrault, G; Tan, S; Schoemaker, H; Sanger, D J

    1999-09-01

    The experiments in this study compared the pharmacological properties of several BZ-omega receptor ligands, including the imidazobenzodiazepine imidazenil, the beta-carboline abecarnil, the pyridazinone Y-23684, the pyrido [1,2-a]benzimidazole RWJ 46771 and the 1,6-naphthyridin-2(1H)-one derivative SX-3228, with the prototypical BZs diazepam, clobazam and bretazenil. In in vitro experiments diazepam, bretazenil, imidazenil and Y-23684 displaced [3H]flumazenil binding non-selectively in membranes from rat cerebellum and spinal cord, two brain areas enriched in the BZ-omega 1 and BZ-omega 2 receptor subtypes, respectively. In contrast, abecarnil, RWJ 46771 and SX-3228 were more potent in displacing [3H]flumazenil binding to membranes from rat cerebellum than from spinal cord or hippocampus, indicating selectivity for the BZ-omega 1 receptor subtype. The in vivo experiments showed that all compounds increased the latency to clonic seizures produced by isoniazid. However, the maximal increase in latency induced by diazepam, clobazam, abecarnil, RWJ 46771 and SX-3228 was greater than that of bretazenil, imidazenil and Y-23684, thereby indicating that these latter compounds have low intrinsic efficacy. In the punished drinking, the punished lever pressing and the elevated plus-maze tests in rats, three models of anxiety, diazepam, clobazam and imidazenil elicited clear anxiolytic-like effects but at doses which were close to those producing hypolocomotion, ataxia and myorelaxation as measured in activity cages, the rotarod and the loaded grid tests, respectively. In contrast, bretazenil and Y-23684 induced anxiolytic-like activity at much lower doses than those which impaired motor performances. The magnitude of the positive effects of Y-23684 was similar to that of the reference BZs, suggesting that it may become a valuable alternative to currently used agents for the treatment of anxiety disorders. Abecarnil, RWJ 46771 and SX-3228 produced weaker or non

  17. Choosing between GLP-1 Receptor Agonists and DPP-4 Inhibitors: A Pharmacological Perspective

    Directory of Open Access Journals (Sweden)

    Dominique Xavier Brown

    2012-01-01

    Full Text Available In recent years the incretin therapies have provided a new treatment option for patients with type 2 diabetes mellitus (T2DM. The incretin therapies focus on the increasing levels of the two incretin hormones, glucagon-like peptide 1 (GLP-1 and glucose-dependent insulinotropic polypeptide (GIP. This results in increased glucose dependent insulin synthesis and release. GLP-1 receptor agonists such as liraglutide and exenatide exert an intrinsic biological effect on GLP-1 receptors directly stimulating the release of insulin from pancreatic beta cells. DPP-4 inhibitors such as sitagliptin and linagliptin prevent the inactivation of endogenous GLP-1 and GIP through competitive inhibition of the DPP-4 enzyme. Both incretin therapies have good safety and tolerability profiles and interact minimally with a number of medications commonly prescribed in T2DM. This paper focuses on the pharmacological basis by which the incretin therapies function and how this knowledge can inform and benefit clinical decisions. Each individual incretin agent has benefits and pitfalls relating to aspects such as glycaemic and nonglycaemic efficacy, safety and tolerability, ease of administration, and cost. Overall, a personalized medicine approach has been found to be favourable, tailoring the incretin agent to benefit and suit patient's needs such as renal impairment (RI or hepatic impairment (HI.

  18. New pharmacological perspectives for the leptin receptor in the treatment of obesity

    Directory of Open Access Journals (Sweden)

    Clara eRoujeau

    2014-10-01

    Full Text Available After its discovery in 1994, leptin became the great hope as an anti-obesity treatment based on its ability to reduce food intake and increase energy expenditure. However, treating obese people with exogenous leptin was unsuccessful in most cases since most of them present already high circulating leptin levels to which they do not respond anymore defining the so-called state of leptin resistance. Indeed, leptin therapy is unsuccessful to lower body weight in commonly obese people but effective in people with rare single gene mutations of the leptin gene. Consequently, treatment of obese people with leptin was given less attention and the focus of obesity research shifted towards the prevention and reversal of the state of leptin resistance. Many of these new promising approaches aim to restore or sensitize the impaired function of the leptin receptor by pharmacological means. The current review will focus on the different emerging therapeutic strategies in obesity research that are related to leptin and its receptor.

  19. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies.

    Science.gov (United States)

    Guerrieri, Elena; Bermudez, Marcel; Wolber, Gerhard; Berzetei-Gurske, Ilona P; Schmidhammer, Helmut; Spetea, Mariana

    2016-10-01

    The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation.

  20. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation.

    Science.gov (United States)

    Riteau, N; Baron, L; Villeret, B; Guillou, N; Savigny, F; Ryffel, B; Rassendren, F; Le Bert, M; Gombault, A; Couillin, I

    2012-10-11

    Deposition of uric acid crystals in joints causes the acute and chronic inflammatory disease known as gout and prolonged airway exposure to silica crystals leads to the development of silicosis, an irreversible fibrotic pulmonary disease. Aluminum salt (Alum) crystals are frequently used as vaccine adjuvant. The mechanisms by which crystals activate innate immunity through the Nlrp3 inflammasome are not well understood. Here, we show that uric acid, silica and Alum crystals trigger the extracellular delivery of endogenous ATP, which just precedes the secretion of mature interleukin-1β (IL-1β) by macrophages, both events depending on purinergic receptors and connexin/pannexin channels. Interestingly, not only ATP but also ADP and UTP are involved in IL-1β production upon these Nlrp3 inflammasome activators through multiple purinergic receptor signaling. These findings support a pivotal role for nucleotides as danger signals and provide a new molecular mechanism to explain how chemically and structurally diverse stimuli can activate the Nlrp3 inflammasome.

  1. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue.

    Science.gov (United States)

    Ponnusamy, Suriyan; Tran, Quynh T; Harvey, Innocence; Smallwood, Heather S; Thiyagarajan, Thirumagal; Banerjee, Souvik; Johnson, Daniel L; Dalton, James T; Sullivan, Ryan D; Miller, Duane D; Bridges, Dave; Narayanan, Ramesh

    2017-01-01

    Most satiety-inducing obesity therapeutics, despite modest efficacy, have safety concerns that underscore the need for effective peripherally acting drugs. An attractive therapeutic approach for obesity is to optimize/maximize energy expenditure by increasing energy-utilizing thermogenic brown adipose tissue. We used in vivo and in vitro models to determine the role of estrogen receptor β (ER-β) and its ligands on adipose biology. RNA sequencing and metabolomics were used to determine the mechanism of action of ER-β and its ligands. Estrogen receptor β (ER-β) and its selective ligand reprogrammed preadipocytes and precursor stem cells into brown adipose tissue and increased mitochondrial respiration. An ER-β-selective ligand increased markers of tricarboxylic acid-dependent and -independent energy biogenesis and oxygen consumption in mice without a concomitant increase in physical activity or food consumption, all culminating in significantly reduced weight gain and adiposity. The antiobesity effects of ER-β ligand were not observed in ER-β-knockout mice. Serum metabolite profiles of adult lean and juvenile mice were comparable, while that of adult obese mice was distinct, indicating a possible impact of obesity on age-dependent metabolism. This phenotype was partially reversed by ER-β-selective ligand. These data highlight a new role for ER-β in adipose biology and its potential to be a safer alternative peripheral therapeutic target for obesity.-Ponnusamy, S., Tran, Q. T., Harvey, I., Smallwood, H. S., Thiyagarajan, T., Banerjee, S., Johnson, D. L., Dalton, J. T., Sullivan, R. D., Miller, D. D., Bridges, D., Narayanan, R. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. © FASEB.

  2. Pharmacological characterization of an imidazolopyrazole as novel selective androgen receptor modulator.

    Science.gov (United States)

    Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua

    2013-03-01

    Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders.

  3. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  4. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all...... the elements necessary for agonist-mediated intercellular communication. ATP is released from epithelial cells, which activates P2 receptors in the apical and basolateral membrane and thereby modulates tubular transport. Termination of the signal is conducted via the breakdown of ATP to adenosine. Recent far......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  5. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Buck, M.A.; Fraser, C.M. (National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (USA))

    1990-12-14

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of (3H)-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of (3H)-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. (3H)-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties.

  6. Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor.

    Science.gov (United States)

    Wang, Zhi-Qiang; Wang, Wei; Shi, Lin; Chai, Ji-Tian; Zhang, Xin-Jun; Tao, Ya-Xiong

    2016-04-01

    The melanocortin-4 receptor (MC4R) is critical in regulating mammalian food intake and energy expenditure. Giant panda (Ailuropoda melanoleuca), famous as the living fossil, is an endangered species endemic to China. We are interested in exploring the functions of the giant panda MC4R (amMC4R) in regulating energy homeostasis and report herein the molecular cloning and pharmacology of the amMC4R. Sequence analysis revealed that amMC4R was highly homologous (>88%) at nucleotide and amino acid sequences to several mammalian MC4Rs. Western blot revealed that the expression construct myc-amMC4R in pcDNA3.1 was successfully constructed and expressed in HEK293T cells. With human MC4R (hMC4R) as a control, pharmacological characteristics of amMC4R were analyzed with binding and signaling assays. Four agonists, including [Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH), α- and β-MSH, and a small molecule agonist, THIQ, were used in binding and signaling assays. We showed that amMC4R bound NDP-MSH with the highest affinity followed by THIQ, α-MSH, and β-MSH, with the same ranking order as hMC4R. Treatment of HEK293T cells expressing amMC4R with different concentrations of agonists resulted in dose-dependent increase of intracellular cAMP levels, with similar EC50s for the four agonists. The results suggested that the cloned amMC4R encoded a functional MC4R. The availability of amMC4R and its binding and signaling properties will facilitate the investigation of amMC4R in regulating food intake and energy homeostasis.

  7. The Concise Guide to PHARMACOLOGY 2013/14: G Protein‐Coupled Receptors

    National Research Council Canada - National Science Library

    Alexander, Stephen P.H; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug...

  8. Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression.

    Science.gov (United States)

    Guscott, M; Bristow, L J; Hadingham, K; Rosahl, T W; Beer, M S; Stanton, J A; Bromidge, F; Owens, A P; Huscroft, I; Myers, J; Rupniak, N M; Patel, S; Whiting, P J; Hutson, P H; Fone, K C; Biello, S M; Kulagowski, J J; McAllister, G

    2005-03-01

    The affinity of several antidepressant and antipsychotic drugs for the 5-HT7 receptor and its CNS distribution suggest potential in the treatment of psychiatric diseases. However, there is little direct evidence of receptor function in vivo to support this. We therefore evaluated 5-HT7 receptors as a potential drug target by generating and assessing a 5-HT7 receptor knockout mouse. No difference in assays sensitive to potential psychotic or anxiety states was observed between the 5-HT7 receptor knockout mice and wild type controls. However, in the Porsolt swim test, 5-HT7 receptor knockout mice showed a significant decrease in immobility compared to controls, a phenotype similar to antidepressant treated mice. Intriguingly, treatment of wild types with SB-258719, a selective 5-HT7 receptor antagonist, did not produce a significant decrease in immobility unless animals were tested in the dark (or active) cycle, rather than the light, adding to the body of evidence suggesting a circadian influence on receptor function. Extracellular recordings from hypothalamic slices showed that circadian rhythm phase shifts to 8-OH-DPAT are attenuated in the 5-HT7 receptor KO mice also indicating a role for the receptor in the regulation of circadian rhythms. These pharmacological and genetic knockout studies provide the first direct evidence that 5-HT7 receptor antagonists should be investigated for efficacy in the treatment of depression.

  9. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    Science.gov (United States)

    Hudson, Brian D.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Kostenis, Evi; Adams, David R.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. PMID:22919070

  10. Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.

    Science.gov (United States)

    Schwiebert, Erik M; Wallace, Darren P; Braunstein, Gavin M; King, Sandi R; Peti-Peterdi, Janos; Hanaoka, Kazushige; Guggino, William B; Guay-Woodford, Lisa M; Bell, P Darwin; Sullivan, Lawrence P; Grantham, Jared J; Taylor, Amanda L

    2002-04-01

    ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca(2+) concentration and secretory Cl(-) transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl(-) secretion via cytosolic Ca(2+)-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.

  11. Purinergic signaling during Porphyromonas gingivalis infection

    Directory of Open Access Journals (Sweden)

    Cássio Luiz Coutinho Almeida-da-Silva

    2016-08-01

    Full Text Available Despite recent advances unraveling mechanisms of host–pathogen interactions in innate immunity, the participation of purinergic signaling in infection-driven inflammation remains an emerging research field with many unanswered questions. As one of the most-studied oral pathogens, Porphyromonas gingivalis is considered as a keystone pathogen with a central role in development of periodontal disease. This pathogen needs to evade immune-mediated defense mechanisms and tolerate inflammation in order to survive in the host. In this review, we summarize evidence showing that purinergic signaling modulates P. gingivalis survival and cellular immune responses, and discuss the role played by inflammasome activation and cell death during P. gingivalis infection.

  12. Translational Pharmacology of the Metabotropic Glutamate 2 Receptor-Preferring Agonist LY2812223 in the Animal and Human Brain.

    Science.gov (United States)

    Felder, Christian C; Schober, Douglas A; Tu, Yuan; Quets, Anne; Xiao, Hongling; Watt, Marla; Siuda, Ed; Nisenbaum, Eric; Xiang, Chuanxi; Heinz, Beverly; Prieto, Lourdes; McKinzie, David L; Monn, James A

    2017-04-01

    LY2812223 [(1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid] was identified via structure-activity studies arising from the potent metabotropic glutamate mGlu2/3 receptor agonist LY354740 [(+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid] as an mGlu2-preferring agonist. This pharmacology was determined using stably transfected cells containing either the human mGlu2 or mGlu3 receptor. We extended the pharmacological evaluation of LY2812223 to native brain tissues derived from relevant species used for preclinical drug development as well as human postmortem brain tissue. This analysis was conducted to ensure pharmacological translation from animals to human subjects in subsequent clinical studies. A guanosine 5'-O-(3-[(35)S]thio)triphosphate (GTPγS) functional binding assay, a method for measuring Gi-coupled signaling that is inherent to the group 2 mGlu receptors, was used to evaluate LY2812223 pharmacology of native mGlu receptors in mouse, rat, nonhuman primate, and human cortical brain tissue samples. In native tissue membranes, LY2812223 unexpectedly acted as a partial agonist across all species tested. Activity of LY2812223 was lost in cortical membranes collected from mGlu2 knockout mice, but not those from mGlu3 knockout mice, providing additional support for mGlu2-preferring activity. Other signal transduction assays were used for comparison with the GTP binding assay (cAMP, calcium mobilization, and dynamic mass redistribution). In ectopic cell line-based assays, LY2812223 displayed near maximal agonist responses at the mGlu2 receptor across all assay formats, while it showed no functional agonist activity at the mGlu3 receptor except in the cAMP assay. In native brain slices or membranes that express both mGlu2 and mGlu3 receptors, LY2812223 displayed unexpected partial agonist activity, which may suggest a functional interplay between these receptor subtypes in the brain. Copyright © 2017 by

  13. Synthesis and in vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Christensen, Jeppe K; Kristensen, Anders S;

    2003-01-01

    2-Amino-3-[3-hydroxy-5-(2-thiazolyl)-4-isoxazolyl]propionic acid (1) is a potent AMPA receptor agonist with moderate affinity for native kainic acid (KA) receptors, whereas (S)-E-4-(2,2-dimethylpropylidene)glutamic acid (3) show high affinity for the GluR5 subtype of KA receptors and much lower...... affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand...

  14. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    Science.gov (United States)

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  15. Pharmacological inhibition of CXCR2 chemokine receptors modulates paraquat-induced intoxication in rats.

    Science.gov (United States)

    Costa, Kesiane M; Maciel, Izaque S; Kist, Luiza W; Campos, Maria M; Bogo, Maurício R

    2014-01-01

    Paraquat (PQ) is an agrochemical agent commonly used worldwide, which is allied to potential risks of intoxication. This herbicide induces the formation of reactive oxygen species (ROS) that ends up compromising various organs, particularly the lungs and the brain. This study evaluated the deleterious effects of paraquat on the central nervous system (CNS) and peripherally, with special attempts to assess the putative protective effects of the selective CXCR2 receptor antagonist SB225002 on these parameters. PQ-toxicity was induced in male Wistar rats, in a total dose of 50 mg/kg, and control animals received saline solution at the same schedule of administration. Separate groups of animals were treated with the selective CXCR2 antagonist SB225002 (1 or 3 mg/kg), administered 30 min before each paraquat injection. The major changes found in paraquat-treated animals were: decreased body weight and hypothermia, nociception behavior, impairment of locomotor and gait capabilities, enhanced TNF-α and IL-1β expression in the striatum, and cell migration to the lungs and blood. Some of these parameters were reversed when the antagonist SB225002 was administered, including recovery of physiological parameters, decreased nociception, improvement of gait abnormalities, modulation of striatal TNF-α and IL-1β expression, and decrease of neutrophil migration to the lungs and blood. Taken together, our results demonstrate that damage to the central and peripheral systems elicited by paraquat can be prevented by the pharmacological inhibition of CXCR2 chemokine receptors. The experimental evidence presented herein extends the comprehension on the toxicodynamic aspects of paraquat, and opens new avenues to treat intoxication induced by this herbicide.

  16. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. (Ohio State University, Columbus (USA))

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  17. Pharmacological properties of AC-3933, a novel benzodiazepine receptor partial inverse agonist.

    Science.gov (United States)

    Hashimoto, T; Kiyoshi, T; Kohayakawa, H; Iwamura, Y; Yoshida, N

    2014-01-01

    We investigated in this study the pharmacological properties of AC-3933 (5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one), a novel benzodiazepine receptor (BzR) partial inverse agonist. AC-3933 potently inhibited [3H]-flumazenil binding to rat whole brain membrane with a Ki value of 5.15 ± 0.39 nM and a GABA ratio of 0.84 ± 0.03. AC-3933 exhibited almost no affinity for the other receptors, transporters and ion channels used in this study. In addition, AC-3933, in the presence of GABA (1 μM), gradually but significantly increased [³⁵S] tert-butylbicyclophosphorothionate binding to rat cortical membrane to 117.1% of the control (maximum increase ratio) at 3000 nM. However, this increase reached a plateau at 30 nM with hardly any change at a concentration range of 100-3000 nM (from 115.2% to 117.1%). AC-3933 (0.1-10 μM) significantly enhanced KCl-evoked acetylcholine (ACh) release from rat hippocampal slices in a concentration-dependent manner. Moreover, in vivo brain microdialysis showed that intragastric administration of AC-3933 at the dose of 10 mg/kg significantly increased extracellular ACh levels in the hippocampus of freely moving rats (area under the curve (AUC₀₋₂ h) of ACh level; 288.3% of baseline). These results indicate that AC-3933, a potent and selective BzR inverse agonist with low intrinsic activity, might be useful in the treatment of cognitive disorders associated with degeneration of the cholinergic system.

  18. Pharmacologic Targets and Prototype Therapeutics in the Kallikrein-Kinin System: Bradykinin Receptor Agonists or Antagonists

    Directory of Open Access Journals (Sweden)

    J. N. Sharma

    2006-01-01

    Full Text Available The kallikrein-kinin system (KKS is a complex system produced in various organs. This system includes kininogen (precursor for kinin, kallikreins, and pharmacologically active bradykinin (BK, which is considered to be proinflammatory and/or cardioprotective. It is a proinflammatory polypeptide that is involved in many pathological conditions and can cause pain, inflammation, increased vascular permeability, vasodilation, contraction of various smooth muscles, as well as cell proliferation. On the other hand, it has been shown that BK has cardioprotective effects, as all components of KKS are located in the cardiac muscles. Numerous observations have indicated that decreased activity of this system may lead to cardiovascular diseases, such as hypertension, cardiac failure, and myocardial infarction. BK acts on two receptors, B1 and B2, which are linked physiologically through their natural stimuli and their common participation in a variety of inflammatory responses. Recently, numerous BK antagonists have been developed in order to treat several diseases that are due to excessive BK formation. Although BK has many beneficial effects, it has been recognized to have some undesirable effects that can be reversed with BK antagonists. In addition, products of this system have multiple interactions with other important metabolic pathways, such as the renin-angiotensin system.

  19. Alpha7 Nicotinic Acetylcholine Receptor Is a Target in Pharmacology and Toxicology

    Directory of Open Access Journals (Sweden)

    Miroslav Pohanka

    2012-02-01

    Full Text Available Alpha7 nicotinic acetylcholine receptor (α7 nAChR is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer’s disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer’s disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.

  20. Pharmacological tolerance to alpha 1-adrenergic receptor antagonism mediated by terazosin in humans.

    Science.gov (United States)

    Vincent, J; Dachman, W; Blaschke, T F; Hoffman, B B

    1992-01-01

    Chronic administration of alpha 1-receptor antagonists is associated with loss of clinical efficacy, especially in congestive heart failure, although the mechanism is uncertain. To evaluate changes in venous alpha 1-adrenoceptor responsiveness during chronic alpha 1-adrenoceptor blockade, dose-response curves to phenylephrine and angiotensin II were constructed in 10 healthy subjects before, during, and after administration of terazosin 1 mg orally for 28 d. Terazosin initially shifted the dose-response curve of phenylephrine to the right, with a significant increase in ED50 for phenylephrine from a control value of 102 to 759 ng/min on day 1 of terazosin (P < 0.001). However, by day 28, the dose-response curve had shifted back towards baseline with an ED50 of 112 ng/min. After discontinuing terazosin, the ED50 for phenylephrine remained near the baseline value, indicating no evidence of supersensitivity to phenylephrine. There was no change in responsiveness to angiotensin II during the course of treatment with terazosin. Plasma terazosin concentrations were stable throughout the period of drug administration. The mean Kd of terazosin was estimated as 11 +/- 15 nM in the first few days of treatment. This study demonstrates that pharmacological tolerance to the alpha 1-adrenoceptor blocking action of terazosin occurs in man and may be responsible for loss in efficacy with chronic therapy. PMID:1358918

  1. Pharmacological Profile of Nociceptin/Orphanin FQ Receptors Interacting with G-Proteins and β-Arrestins 2.

    Directory of Open Access Journals (Sweden)

    D Malfacini

    Full Text Available Nociceptin/orphanin FQ (N/OFQ controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP. Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells. In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified.

  2. Pharmacological characterization of mouse GPRC6A, an L-alpha-amino-acid receptor modulated by divalent cations

    DEFF Research Database (Denmark)

    Christiansen, B; Hansen, K B; Wellendorph, P

    2007-01-01

    GPRC6A is a novel member of family C of G protein-coupled receptors with so far unknown function. We have recently described both human and mouse GPRC6A as receptors for L-alpha-amino acids. To date, functional characterization of wild-type GPRC6A has been impaired by the lack of activity...... in quantitative functional assays. The aim of this study was thus to develop such an assay and extend the pharmacological characterization of GPRC6A....

  3. Purinergic signaling at immunological synapses.

    Science.gov (United States)

    Dubyak, G R

    2000-07-01

    The early studies and hypotheses of Geoffrey Burnstock catalyzed intensive characterization of roles for nucleotides and P2 nucleotide receptors in neurotransmission and neuromodulation. These latter analyses have focused on the mechanisms of nucleotide release and action in the microenvironments of nerve endings and synapses. However, studies of various white blood cells, such as monocytes, neutrophils, and lymphocytes, suggest that locally released nucleotides also modulate intercellular signaling at so-called 'immunological synapses'. This communication describes recent findings and speculations regarding nucleotide release and signaling in several key phases of the immune and inflammatory responses.

  4. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2.

    Science.gov (United States)

    Lundström, L; Bissantz, C; Beck, J; Dellenbach, M; Woltering, T J; Wichmann, J; Gatti, S

    2017-02-16

    The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist (3)[H]-LY354740 and mGlu2 PAM (3)[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of (3)[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of (3)[H]-LY354740 binding sites. (3)[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr(3.40) and Asn(5.46). Also of remark, in the described experimental conditions S731A (Ser(5.42)) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity.

  5. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP Channels in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2015-12-01

    Full Text Available Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ, the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7-8 subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics.

  6. Rat neuronal nicotinic acetylcholine receptors containing a7 subunit: pharmacological properties of ligand binding and function

    Institute of Scientific and Technical Information of China (English)

    Yingxian XIAO; Galya R ABDRAKHMANOVA; Maryna BAYDYUK; Susan HERNANDEZ; Kenneth J KELLAR

    2009-01-01

    Aim: To compare pharmacological properties of heterologously expressed homomeric a7 nicotinic acetylcholine receptors (a.7 nAChRs) with those of native nAChRs containing a.7 subunit (a.7* nAChRs) in rat hippocampus and cerebral cortex. Methods: We established a stably transfected HEK-293 cell line that expresses homomeric rat a7 nAChRs. We studies ligand binding profiles and functional properties of nAChRs expressed in this cell line and native rat a.7* nAChRs in rat hippocampus and cerebral cortex. We used [125IJ-a-bungarotoxin to compare ligand binding profiles in these cells with those in rat hippocampus and cerebral cortex. The functional properties of the a.7 nAChRs expressed in this cell line were studied using whole-cell current recording.Results: The newly established cell line, KXa7Rl, expresses homomeric a7 nAChRs that bind [125I]-a-bungarotoxin with a Kd value of 0.38±0.06 nmol/L, similar to Kj values of native rat a.7* nAChRs from hippocampus (Kd=0.28±0.03 nmol/L) and cerebral cortex (Kd=0.33±0.05 nmol/L). Using whole-cell current recording, the homomeric a7 nAChRs expressed in the cells were activated by acetylcholine and (-)-nicotine with EC50 values of 280±19 nmol/L and 180±40 nmol/L, respectively. The acetylcholine activated currents were potently blocked by two selective antagonists of a.7 nAChRs, a-bungarotoxin (IC5o=19±2 nmol/L) and methyllycaconitine (IC50=100±10 pmol/L). A comparative study of ligand binding profiles, using 13 nicotinic ligands, showed many similarities between the homomeric a.7 nAChRs and native a.7* receptors in rat brain, but it also revealed several notable differences.Conclusion: This newly established stable cell line should be very useful for studying the properties of homomeric a7 nAChRs and comparing these properties to native a.7* nAChRs.

  7. Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus.

    Science.gov (United States)

    Zhang, Yue; Nelson, Raoul D; Carlson, Noel G; Kamerath, Craig D; Kohan, Donald E; Kishore, Bellamkonda K

    2009-05-01

    Lithium (Li)-induced nephrogenic diabetes insipidus (NDI) has been attributed to the increased production of renal prostaglandin (PG)E(2). Previously we reported that extracellular nucleotides (ATP/UTP), acting through P(2y2) receptor in rat medullary collecting duct (mCD), produce and release PGE(2). Hence we hypothesized that increased production of PGE(2) in Li-induced NDI may be mediated by enhanced purinergic signaling in the mCD. Sprague-Dawley rats were fed either control or Li-added diet for 14 or 21 days. Li feeding resulted in marked polyuria and polydipsia associated with a decrease in aquaporin (AQP)2 protein abundance in inner medulla ( approximately 20% of controls) and a twofold increase in urinary PGE(2). When acutely challenged ex vivo with adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), UTP, or ADP, mCD of Li-fed rats showed significantly higher increases (50-130% over control diet-fed rats) in PGE(2) production, indicating that more than one subtype of P(2y) receptor is involved. This was associated with a 3.4-fold increase in P(2y4), but not P(2y2), receptor mRNA expression in the inner medulla of Li-fed rats compared with control diet-fed rats. Confocal laser immunofluorescence microscopy revealed predominant localization of both P(2y2) and P(2y4) receptors in the mCD of control or Li diet-fed rats. Together, these data indicate that in Li-induced NDI 1) purinergic signaling in the mCD is sensitized with increased production of PGE(2) and 2) P(2y2) and/or P(2y4) receptors may be involved in the enhanced purinergic signaling. Our study also reveals the potential beneficial effects of P(2y) receptor antagonists in the treatment and/or prevention of Li-induced NDI.

  8. EP2 and EP4 receptors mediate PGE2 induced relaxation in murine colonic circular muscle: pharmacological characterization.

    Science.gov (United States)

    Martinez-Cutillas, M; Mañé, N; Gallego, D; Jimenez, M; Martin, M T

    2014-12-01

    Prostaglandin E2 (PGE2) is a regulator of gastrointestinal motility that might be involved in impaired motor function associated to gut inflammation. The aim of the present work is to pharmacologically characterize responses to exogenous and endogenous PGE2 in the mouse colon targeting EP2 and EP4 receptors. Wild type (WT) and EP2 receptor knockout (EP2-KO) mice were used to characterize PGE2 and butaprost (EP2 receptor agonist) effects on smooth muscle resting membrane potential and myogenic contractility in circularly oriented colonic preparations. In WT animals, PGE2 and butaprost concentration-dependently inhibited spontaneous contractions and hyperpolarized smooth muscle cells. Combination of both EP2 (PF-04418948 0.1μM) and EP4 receptor antagonists (L-161,982 10μM) was needed to block both electrical and mechanical PGE2 responses. Butaprost inhibitory responses (both electrical and mechanical) were totally abolished by PF-04418948 0.1μM. In EP2-KO mice, PGE2 (but not butaprost) concentration-dependently inhibited spontaneous contractions and hyperpolarized smooth muscle cells. In EP2-KO mice, PGE2 inhibition of spontaneous contractility and hyperpolarization was fully antagonized by L-161,982 10μM. In WT animals, EP2 and EP4 receptor antagonists caused a smooth muscle depolarization and an increase in spontaneous mechanical activity. PGE2 responses in murine circular colonic layer are mediated by post-junctional EP2 and EP4 receptors. PF-04418948 and L-161,982 are selective EP2 and EP4 receptor antagonists that inhibit PGE2 responses. These antagonists might be useful pharmacological tools to limit prostaglandin effects associated to dismotility in gut inflammatory processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions.

    Science.gov (United States)

    Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric

    2016-04-01

    RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.

  10. Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt(1)]N/OFQ(1-13).

    Science.gov (United States)

    Cerlesi, Maria Camilla; Ding, Huiping; Bird, Mark F; Kiguchi, Norikazu; Ferrari, Federica; Malfacini, Davide; Rizzi, Anna; Ruzza, Chiara; Lambert, David G; Ko, Mei-Chuan; Calo, Girolamo; Guerrini, Remo

    2017-01-05

    An innovative chemical strategy named peptide welding technology (PWT) has been developed for the facile synthesis of tetrabranched peptides. [Dmt(1)]N/OFQ(1-13)-NH2 acts as a universal agonist for nociceptin/orphanin FQ (N/OFQ) and classical opioid receptors. The present study investigated the pharmacological profile of the PWT derivative of [Dmt(1)]N/OFQ(1-13)NH2 (PWT2-[Dmt(1)]) in several assays in vitro and in vivo after spinal administration in monkeys subjected to the tail withdrawal assay. PWT2-[Dmt(1)] mimicked the effects of [Dmt(1)]N/OFQ(1-13)-NH2 displaying full agonist activity, similar affinity/potency and selectivity at human recombinant N/OFQ (NOP) and opioid receptors in receptor binding, stimulation of [(35)S]GTPγS binding, calcium mobilization in cells expressing chimeric G proteins, and BRET studies for measuring receptor/G-protein and receptor/β-arrestin 2 interaction. In vivo in monkeys PWT2-[Dmt(1)] elicited dose-dependent and robust antinociceptive effects being more potent and longer lasting than [Dmt(1)]N/OFQ(1-13)-NH2. The analgesic action of PWT2-[Dmt(1)] was sensitive to the NOP receptor antagonist J-113397, but not naltrexone. Thus, the present study demonstrated that the tetrabranched derivative of [Dmt(1)]N/OFQ(1-13)-NH2 obtained with the PWT technology maintains the in vitro pharmacological profile of the parent peptide but displays higher potency and longer lasting action in vivo.

  11. On the Pharmacology of Farnesoid X Receptor Agonists: Give me an “A”, Like in “Acid”

    Directory of Open Access Journals (Sweden)

    Eva Hambruch

    2016-06-01

    Full Text Available The Farnesoid X Receptor (FXR has recently moved into the spotlight through the release of clinical data using Obeticholic Acid, an FXR agonist, that demonstrated effectiveness of this bile acid-like drug in patients with Primary Biliary Cirrhosis and Non-alcoholic Steatohepatitis (NASH. FXR holds the promise to become an attractive drug target for various conditions, from Non-alcoholic Fatty Liver Disease (NAFLD, NASH, liver cirrhosis, portal hypertension and a variety of cholestatic disorders to intestinal diseases including inflammatory bowel disease and bile acid diarrhea. Despite the wide therapeutic potential, surprisingly little is known about the pharmacology, pharmacokinetics and tissue distribution properties of drugs targeting FXR. Are tissue specific FXR agonists preferable for different indications, or might one type of ligand fit all purposes? This review aims to summarize the sparse data which are available on this clinically and pharmacologically relevant topic and provides a mechanistic model for understanding tissue-specific effects in vivo.

  12. A Review of the Receptor-Binding Properties of p-Synephrine as Related to Its Pharmacological Effects

    Directory of Open Access Journals (Sweden)

    Sidney J. Stohs

    2011-01-01

    Full Text Available Bitter orange (Citrus aurantium extract and its primary protoalkaloid p-synephrine are used widely in weight loss/weight management and sports performance products. Because of structural similarities, the pharmacological effects of p-synephrine are widely assumed to be similar to those of ephedrine, m-synephrine (phenylephrine, and endogenous amine neurotransmitters as norepinephrine and epinephrine. However, small structural changes result in the receptor binding characteristics of these amines that are markedly different, providing a plausible explanation for the paucity of adverse effects associated with the wide-spread consumption of p-synephrine in the form of dietary supplements as well as in various Citrus foods and juices. This paper summarizes the adrenoreceptor binding characteristics of p-synephrine relative to m-synephrine, norepinephrine, and other amines as related to the observed pharmacological effects.

  13. An Enantiomer of an Oral Small Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties

    Directory of Open Access Journals (Sweden)

    Susanne Neumann

    2016-07-01

    Full Text Available We are developing an orally available small molecule, allosteric TSH receptor (TSHR agonist for follow up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870 that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S-(+ isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was therefore predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM than C2 (EC50 = 46 nM which was more potent than E1 (EC50 = 217 nM. In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium-iodide symporter mRNA of 20-fold, 4-fold and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5 day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen®. Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer.

  14. Pharmacological profile of lixisenatide: A new GLP-1 receptor agonist for the treatment of type 2 diabetes.

    Science.gov (United States)

    Werner, Ulrich; Haschke, Guido; Herling, Andreas W; Kramer, Werner

    2010-09-24

    The glucagon-like peptide-1 (GLP-1) receptor represents an established therapeutic target in type 2 diabetes mellitus (T2DM). Agents that activate this receptor improve glucose tolerance alongside a low risk of hypoglycaemia, and have the potential to modify disease progression. Lixisenatide is a new potent and selective GLP-1 receptor agonist currently in development. The preclinical pharmacological profile of Lixisenatide suggests actions that are highly relevant to the long-term maintenance of glucose homeostasis. Lixisenatide protected Ins-1 cells (a rat-derived beta-cell line) from both lipid- and cytokine-induced apoptosis. More importantly, Lixisenatide also prevented lipotoxicity-induced insulin depletion in human islets and preserved insulin production, storage and pancreatic beta-cell function in vitro. Enhancement of insulin biosynthesis and pancreatic beta-cell volume could also be demonstrated in animal models of type 2 diabetes. The improvement of glucose-stimulated insulin secretion provided by Lixisenatide occurred in a strictly glucose-dependent manner. In animal models of diabetes, Lixisenatide improved basal blood glucose and HbA(1c) with a rapid onset and sustained duration of action, and prevented the deterioration of pancreatic responsiveness and glucose homeostasis. Lixisenatide also delayed gastric emptying and reduced food intake. The efficacy/safety profile of Lixisenatide is currently being studied further in an extensive ongoing Phase III clinical study programme. This article reviews the preclinical pharmacological profile of Lixisenatide.

  15. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling.

    Science.gov (United States)

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-04-26

    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  16. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

    National Research Council Canada - National Science Library

    Richard D. Ye; François Boulay; Ji Ming Wang; Claes Dahlgren; Craig Gerard; Marc Parmentier; Charles N. Serhan; Philip M. Murphy

    2009-01-01

    Formyl peptide receptors (FPRs) are a small group of seven-transmembrane domain, G protein-coupled receptors that are expressed mainly by mammalian phagocytic leukocytes and are known to be important in host defense and inflammation...

  17. Benzyl-1,2,4-triazoles as CB1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation

    Science.gov (United States)

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range. PMID:27127651

  18. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor.

    Science.gov (United States)

    Guerrieri, Elena; Mallareddy, Jayapal Reddy; Tóth, Géza; Schmidhammer, Helmut; Spetea, Mariana

    2015-03-18

    Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.

  19. PHARMACOLOGICAL ASPECTS OF R-(+)-7-OH-DPAT, A PUTATIVE DOPAMINE D-3 RECEPTOR-LIGAND

    NARCIS (Netherlands)

    DAMSMA, G; BOTTEMA, T; WESTERINK, BHC; TEPPER, PG; DIJKSTRA, D; PUGSLEY, TA; MACKENZIE, RG; HEFFNER, TG; WIKSTROM, H

    1993-01-01

    The R-(+)-isomer of 7-hydroxy-2-(N,N-di-n-propylamino)tetralin (7-OH-DPAT) bound with a more than 200-fold higher affinity to cloned human dopamine D-3 receptors (K-i=0.57 nM) than to dopamine D-2 receptors; the corresponding S-(-)-enantiomer had considerably less affinity for both dopamine receptor

  20. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Benned-Jensen, Tau; Holst, Peter J

    2006-01-01

    Epstein-Barr virus (EBV)-induced receptor 2 (EBI2) is an orphan seven-transmembrane (7TM) receptor originally identified as the most up-regulated gene (>200-fold) in EBV-infected cells. Here we show that EBI2 signals with constitutive activity through Galpha(i) as determined by a receptor-mediate...

  1. The expression of P2Y2 subtype purinergic receptors in patients with Hirschsprung's disease%嘌呤受体亚型P2Y2在先天性巨结肠中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    韩秀芳; 黄英; 高红; 张树成; 张志波; 王练英

    2009-01-01

    Objective To investigate the expression of P2Y2 subtype purinergic receptors in normal and spastic segments of colons in patients with Hirschsprung's Disease (HD), and try to reveal the relationship between P2Y2 subtype receptors and pathogenesis of HD. Methods From 2000 to 2008, resected colon specimens of 30 cases with HD were selected for this study. Normal colon segment served as the control group, while the transitional and spastic segments as the experimental group. Im-munohistochemical staining and RT-PCR were applied to detect the expression of P2Y2 subtype recep-tors. Results A large number of P2Y2 positive gangliocytes were observed in the control group,while none were observed in spastic segments, and significantly less P2Y2 positive gangliocytes could be found in the transitional segments (P<0. 05). The results of RT-PCR correlated with the findings of immunohistochemical assay. Conclusions The P2Y2 subtype purinergic receptors are not expressed in the spastic colon segments,which can be related with the pathogenesis of HD.%目的 研究HD患儿各段肠管中ATP受体亚型P2Y2的表达情况.初步探讨P2Y2受体表达与HD发生的关系.方法 随机选取2000至2008年在我院行手术治疗的HD患儿结肠标本共30例,将HD患儿正常段肠管设为对照组,移行段及痉挛段肠管设为实验组,应用免疫组化及RT-PCR法观察ATP受体P2Y亚型P2Y2在各肠段的表达情况.结果HD患儿正常段肠管的神经节细胞中有大量P2Y2阳性细胞的表达,而在痉挛段肠管中没有P2Y2阳性细胞的表达,移行段组织中可见P2Y2阳性细胞的表达,但其数量明显少于对照组,差别具有统计学意义(P<0.05).RT-PCR结果显示mRNA水平的表达与免疫组化一致.结论 HD患儿痉挛段肠管中ATP受体P2Y2的表达缺失,P2Y2的表达缺失可能与HD的发生有关.

  2. [Evidence on the key role of the metabotrobic glutamatergic receptors in the pathogenesis of schizophrenia: a "breakthrough" in pharmacological treatment].

    Science.gov (United States)

    Pannese, Rossella; Minichino, Amedeo; Pignatelli, Marco; Delle Chiaie, Roberto; Biondi, Massimo; Nicoletti, Ferdinando

    2012-01-01

    The metabotropic glutamate receptors (mGluRs) are expressed pre- and post synaptically throughout the nervous system where they serve as modulators of synaptic transmission and neuronal excitability. The glutamatergic system is involved in a wide range of physiological processes in the brain, and its dysfunction plays an important role in the etiology and pathophysiology of psychiatric disorders, including schizophrenia. This paper reviews the neurodevelopmental origin and genetic susceptibility of schizophrenia relevant to NMDA receptor neurotransmission, and discusses the relationship between NMDA hypofunction and different domains of symptom in schizophrenia as well as putative treatment modality for the disorder. mGlu receptors have been hypothesizes as attractive therapeutic targets for the development of novel interventions for psychiatric disorders. Group II of mGlu receptors are of particular interest because of their unique distribution and the regulatory roles they have in neurotransmission. The glutamate hypothesis of schizophrenia predicts that agents that restore the balance in glutamatergic neurotransmission will ameliorate the symptomatology associated with this illness. Development of potent, efficacious, systemically active drugs will help to address the antipsychotic potential of these novel therapeutics. This review will discuss recent progress in elucidating the pharmacology and function of group II receptors in the context of current hypotheses on the pathophysiology of schizophrenia and the need for new and better antipsychotics.

  3. Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Murdoch, Hannah

    2014-01-01

    this series resulted in compounds completely lacking activity, acting as FFA3 PAMs, or appearing to act as FFA3-negative allosteric modulators. However, the pharmacology of this series was further complicated in that certain analogs displaying overall antagonism of FFA3 function actually appeared to generate......, considerable care must be taken to define the pharmacological characteristics of specific compounds before useful predictions of their activity and their use in defining specific roles of FFA3 in either in vitro and in vivo settings can be made....

  4. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    Science.gov (United States)

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

  5. Functional, molecular and pharmacological advances in 5-HT7 receptor research.

    Science.gov (United States)

    Hedlund, Peter B; Sutcliffe, J Gregor

    2004-09-01

    The 5-HT7 receptor was among a group of 5-HT receptors that were discovered using targeted cloning strategies 12 years ago. This receptor is a seven-transmembrane-domain G-protein-coupled receptor that is positively linked to adenylyl cyclase. The distributions of 5-HT7 receptor mRNA, immunolabeling and radioligand binding exhibit strong similarities, with the highest receptor densities present in the thalamus and hypothalamus and significant densities present in the hippocampus and cortex. The recent availability of selective antagonists and knockout mice strains has dramatically increased our knowledge about this receptor. Together with unselective agonists, these new tools have helped to reveal the 5-HT7 receptor distribution in more detail. Important functional roles for the 5-HT7 receptor in thermoregulation, circadian rhythm, learning and memory, hippocampal signaling and sleep have also been established. Hypotheses driving current research indicate that this receptor might be involved in mood regulation, suggesting that the 5-HT7 receptor is a putative target in the treatment of depression.

  6. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  7. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    OpenAIRE

    Pandey, S. C.; Davis, J M; PANDEY, G. N.

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtype...

  8. Melanocortin receptor accessory protein 2 (MRAP2) interplays with the zebrafish melanocortin 1 receptor (MC1R) but has no effect on its pharmacological profile.

    Science.gov (United States)

    Cortés, Raúl; Agulleiro, Maria Josep; Navarro, Sandra; Guillot, Raúl; Sánchez, Elisa; Cerdá-Reverter, José Miguel

    2014-05-15

    The melanocortin system is probably one of the most complex hormonal systems since it integrates agonist, encoded in the proopiomelanocortin precursor, endogenous antagonist, agouti signaling protein and agouti-related protein, five different G-protein coupled receptors and two accessory proteins. These accessory proteins interact with melanocortin receptors to allow traffic to the plasma membrane or to regulate the pharmacological profile. The MC1R fill the extension locus, which is primarily responsible for the regulation of pigmentation. In zebrafish, both MC1R and MRAP2 system are expressed in the skin. We demonstrate that zebrafish MC1R physically, or closely, interacts with the MRAP2 system, although this interaction did not result in modification of the studied pharmacological profile. However, progressive fasting induced skin darkening but also an upregulation of the MRAP2 expression in the skin, suggesting an unknown role for MRAP2a that could involve receptor desensitization processes. We also demonstrate that crowding stress induces skin darkening and a downregulation of MC1R expression in the skin.

  9. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity.

    Science.gov (United States)

    Brenchat, Alex; Nadal, Xavier; Romero, Luz; Ovalle, Sergio; Muro, Asunción; Sánchez-Arroyos, Ricard; Portillo-Salido, Enrique; Pujol, Marta; Montero, Ana; Codony, Xavier; Burgueño, Javier; Zamanillo, Daniel; Hamon, Michel; Maldonado, Rafael; Vela, José Miguel

    2010-06-01

    The involvement of the 5-HT(7) receptor in nociception and pain, particularly chronic pain (i.e., neuropathic pain), has been poorly investigated. In the present study, we examined whether the 5-HT(7) receptor participates in some modulatory control of nerve injury-evoked mechanical hypersensitivity and thermal (heat) hyperalgesia in mice. Activation of 5-HT(7) receptors by systemic administration of the selective 5-HT(7) receptor agonist AS-19 (1 and 10mg/kg) exerted a clear-cut reduction of mechanical and thermal hypersensitivities that were reversed by co-administering the selective 5-HT(7) receptor antagonist SB-258719. Interestingly, blocking of 5-HT(7) receptors with SB-258719 (2.5 and 10mg/kg) enhanced mechanical (but not thermal) hypersensitivity in nerve-injured mice and induced mechanical hypersensitivity in sham-operated mice. Effectiveness of the treatment with a 5-HT(7) receptor agonist was maintained after repeated systemic administration: no tolerance to the antiallodynic and antihyperalgesic effects was developed following treatment with the selective 5-HT(7) receptor agonist E-57431 (10mg/kg) twice daily for 11 days. The 5-HT(7) receptor co-localized with GABAergic cells in the dorsal horn of the spinal cord, suggesting that the activation of spinal inhibitory GABAergic interneurons could contribute to the analgesic effects of 5-HT(7) receptor agonists. In addition, a significant increase of 5-HT(7) receptors was found by immunohistochemistry in the ipsilateral dorsal horn of the spinal cord after nerve injury, suggesting a "pain"-triggered regulation of receptor expression. These results support the idea that the 5-HT(7) receptor subtype is involved in the control of pain and point to a new potential use of 5-HT(7) receptor agonists for the treatment of neuropathic pain.

  10. Characterising pharmacological ligands to study the long chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4

    DEFF Research Database (Denmark)

    Milligan, G; Alvarez-Curto, E; Watterson, K R

    2015-01-01

    control of blood glucose and improve tissue insulin sensitivity, both receptors are being studied as potential therapeutic targets for the control of type II diabetes. Furthermore, genetic and systems biology studies in both humans and mouse models link FFA4 to diabetes and obesity. Although activated...... of the sphingosine 1 phosphate receptor S1P1 . Screening and subsequent medicinal chemistry programmes have developed a number of FFA1 selective agonists that are effective in promoting insulin secretion in a glucose concentration-dependent manner, and in lowering blood glucose levels. However, the recent...... termination of phase III clinical trials employing TAK-875/Fasiglifam has caused a setback and raises important questions over the exact nature and mechanistic causes of the problems. Progress in the identification and development of highly FFA4-selective pharmacological tools has been less rapid and several...

  11. Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors.

    Science.gov (United States)

    Schneider, Erich H; Seifert, Roland

    2010-12-01

    The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.

  12. Identification of Novel G Protein-Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism.

    Science.gov (United States)

    De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C

    2017-06-01

    GPR143 regulates melanosome biogenesis and organelle size in pigment cells. The mechanisms underlying receptor function remain unclear. G protein-coupled receptors (GPCRs) are excellent pharmacologic targets; thus, we developed and applied a screening approach to identify potential GPR143 ligands and chemical modulators. GPR143 interacts with β-arrestin; we therefore established a β-arrestin recruitment assay to screen for compounds that modulate activity. Because GPR143 is localized intracellularly, screening with the wild-type receptor would be restricted to agents absorbed by the cell. For the screen we used a mutant receptor, which shows similar basal activity as the wild type but traffics to the plasma membrane. We tested two compound libraries and investigated validated hits for their effects on melanocyte pigmentation. GPR143, which showed high constitutive activity in the β-arrestin assay, was inhibited by several compounds. The three validated inhibitors (pimozide, niclosamide, and ethacridine lactate) were assessed for impact on melanocytes. Pigmentation and expression of tyrosinase, a key melanogenic enzyme, were reduced by all compounds. Because GPR143 appears to be constitutively active, these compounds may turn off its activity. X-linked ocular albinism type I, characterized by developmental eye defects, results from GPR143 mutations. Identifying pharmacologic agents that modulate GPR143 activity will contribute significantly to our understanding of its function and provide novel tools with which to study GPCRs in melanocytes and retinal pigment epithelium. Pimozide, one of three GPR143 inhibitors identified in this study, maybe be a good lead structure for development of more potent compounds and provide a platform for design of novel therapeutic agents.

  13. Identification of Novel G Protein–Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism

    Science.gov (United States)

    De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C.

    2017-01-01

    Purpose GPR143 regulates melanosome biogenesis and organelle size in pigment cells. The mechanisms underlying receptor function remain unclear. G protein–coupled receptors (GPCRs) are excellent pharmacologic targets; thus, we developed and applied a screening approach to identify potential GPR143 ligands and chemical modulators. Methods GPR143 interacts with β-arrestin; we therefore established a β-arrestin recruitment assay to screen for compounds that modulate activity. Because GPR143 is localized intracellularly, screening with the wild-type receptor would be restricted to agents absorbed by the cell. For the screen we used a mutant receptor, which shows similar basal activity as the wild type but traffics to the plasma membrane. We tested two compound libraries and investigated validated hits for their effects on melanocyte pigmentation. Results GPR143, which showed high constitutive activity in the β-arrestin assay, was inhibited by several compounds. The three validated inhibitors (pimozide, niclosamide, and ethacridine lactate) were assessed for impact on melanocytes. Pigmentation and expression of tyrosinase, a key melanogenic enzyme, were reduced by all compounds. Because GPR143 appears to be constitutively active, these compounds may turn off its activity. Conclusions X-linked ocular albinism type I, characterized by developmental eye defects, results from GPR143 mutations. Identifying pharmacologic agents that modulate GPR143 activity will contribute significantly to our understanding of its function and provide novel tools with which to study GPCRs in melanocytes and retinal pigment epithelium. Pimozide, one of three GPR143 inhibitors identified in this study, maybe be a good lead structure for development of more potent compounds and provide a platform for design of novel therapeutic agents. PMID:28632878

  14. Flow cytometric analysis with a fluorescently labeled formyl peptide receptor ligand as a new method to study the pharmacological profile of the histamine H2 receptor.

    Science.gov (United States)

    Werner, Kristin; Kälble, Solveig; Wolter, Sabine; Schneider, Erich H; Buschauer, Armin; Neumann, Detlef; Seifert, Roland

    2015-10-01

    The histamine H2 receptor (H2R) is a Gs protein-coupled receptor. Its activation leads to increases in the second messenger adenosine-3',5'-cyclic monophosphate (cAMP). Presently, several systems are established to characterize the pharmacological profile of the H2R, mostly requiring radioactive material, animal models, or human blood cells. This prompted us to establish a flow cytometric analysis with a fluorescently labeled formyl peptide receptor (FPR) ligand in order to investigate the H2R functionally and pharmacologically. First, we stimulated U937 promonocytes, which mature in a cAMP-dependent fashion upon H2R activation, with histamine (HA) or selective H2R agonists and measured increases in cAMP concentrations by mass spectrometry. Next, indicative for the maturation of U937 promonocytes, we assessed the FPR expression upon incubation with HA or H2R agonists. FPR expression was measured either indirectly by formyl peptide-induced changes in intracellular calcium concentrations ([Ca(2+)]i) or directly with the fluorescein-labeled FPR ligand fNleLFNleYK-Fl. HA and H2R agonists concentration-dependently induced FPR expression, and potencies and efficacies of fMLP-induced increases in [Ca(2+)]i and FPR density correlated linearly. Accordingly, flow cytometric analysis of FPR expression constitutes a simple, inexpensive, sensitive, and reliable method to characterize the H2R pharmacologically. Furthermore, we evaluated FPR expression at the mRNA level. Generally, quantitative real-time polymerase chain reaction confirmed functional data. Additionally, our study supports the concept of functional selectivity of the H2R, since we observed dissociations in the efficacies of HA and H2R agonists in cAMP accumulation and FPR expression.

  15. Pharmacological activation of the bile acid nuclear farnesoid X receptor is feasible in patients with quiescent Crohn's colitis.

    Directory of Open Access Journals (Sweden)

    Fiona D M van Schaik

    Full Text Available BACKGROUND: The bile acid-activated nuclear receptor Farnesoid X Receptor (FXR is critical in maintaining intestinal barrier integrity and preventing bacterial overgrowth. Patients with Crohn's colitis (CC exhibit reduced ileal FXR target gene expression. FXR agonists have been shown to ameliorate inflammation in murine colitis models. We here explore the feasibility of pharmacological FXR activation in CC. METHODS: Nine patients with quiescent CC and 12 disease controls were treated with the FXR ligand chenodeoxycholic acid (CDCA; 15 mg/kg/day for 8 days. Ileal FXR activation was assessed in the fasting state during 6 hrs after the first CDCA dose and on day 8, by quantification of serum levels of fibroblast growth factor (FGF 19. Since FGF19 induces gallbladder (GB refilling in murine models, we also determined concurrent GB volumes by ultrasound. On day 8 ileal and cecal biopsies were obtained and FXR target gene expression was determined. RESULTS: At baseline, FGF19 levels were not different between CC and disease controls. After the first CDCA dose, there were progressive increases of FGF19 levels and GB volumes during the next 6 hours in CC patients and disease controls (FGF19: 576 resp. 537% of basal; GB volumes: 190 resp. 178% of basal without differences between both groups, and a further increase at day 8. In comparison with a separate untreated control group, CDCA affected FXR target gene expression in both CC and disease controls, without differences between both groups. CONCLUSIONS: Pharmacological activation of FXR is feasible in patients with CC. These data provide a rationale to explore the anti-inflammatory properties of pharmacological activation of FXR in these patients. TRIAL REGISTRATION: TrialRegister.nl NTR2009.

  16. Mechanisms involved in VPAC receptors activation and regulation: lessons from pharmacological and mutagenesis studies.

    Directory of Open Access Journals (Sweden)

    Ingrid eLanger

    2012-10-01

    Full Text Available VIP plays diverse and important role in human physiology and physiopathology and their receptors constitute potential targets for the treatment of several diseases such as neurodegenerative disorder, asthma, diabetes and inflammatory diseases. This article reviews the current knowledge regarding the two VIP receptors, VPAC1 and VPAC2, with respect to mechanisms involved in receptor activation, G protein coupling, signaling, regulation and oligomerization.

  17. Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus

    OpenAIRE

    Zhang, Yue; Nelson, Raoul D.; Carlson, Noel G.; Kamerath, Craig D.; Kohan, Donald E.; Kishore, Bellamkonda K.

    2009-01-01

    Lithium (Li)-induced nephrogenic diabetes insipidus (NDI) has been attributed to the increased production of renal prostaglandin (PG)E2. Previously we reported that extracellular nucleotides (ATP/UTP), acting through P2y2 receptor in rat medullary collecting duct (mCD), produce and release PGE2. Hence we hypothesized that increased production of PGE2 in Li-induced NDI may be mediated by enhanced purinergic signaling in the mCD. Sprague-Dawley rats were fed either control or Li-added diet for ...

  18. Design, synthesis, and pharmacological characterization of novel, potent NMDA receptor antagonists

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Grazioso, Giovanni

    2004-01-01

    acids were tested at ionotropic and metabotropic glutamate receptors. None of the compounds was active, neither as agonists nor as antagonists, at 1 mM on metabotropic receptors (mGluR1, -2, -4, and -5 expressed in CHO cell lines). Conversely, the pair of stereoisomers 8A/8B showed a remarkable affinity......, antagonist potency, and selectivity for NMDA receptors, when tested on ionotropic glutamate receptors. The affinity of 8A proved to be 5 times higher than that of diastereomer 8B (K(i) values 0.21 and 0.96 microM, respectively). Furthermore, compounds 8A and 8B exhibited a noteworthy anticonvulsant activity...

  19. Characterisation and pharmacological analysis of a crustacean G protein-coupled receptor: the red pigment-concentrating hormone receptor of Daphnia pulex.

    Science.gov (United States)

    Marco, Heather G; Verlinden, Heleen; Vanden Broeck, Jozef; Gäde, Gerd

    2017-07-31

    This is the first pharmacological characterisation of a neuropeptide G protein-coupled receptor (GPCR) in a crustacean. We cloned the ORF of the red pigment-concentrating hormone from a German strain of Daphnia pulex (Dappu-RPCH), as well as that of the cognate receptor (Dappu-RPCHR). Dappu-RPCHR has the hallmarks of the rhodopsin superfamily of GPCRs, and is more similar to insect adipokinetic hormone (AKH) receptor sequences than to receptor sequences for AKH/corazonin-like peptide or corazonin. We provide experimental evidence that Dappu-RPCH specifically activates the receptor (EC50 value of 65 pM) in a mammalian cell-based bioluminescence assay. We further characterised the properties of the ligands for the Dappu-RPCHR by investigating the activities of a variety of naturally-occurring peptides (insect AKH and crustacean RPCH peptides). The insect AKHs had lower EC50 values than the crustacean RPCHs. In addition, we tested a series of Dappu-RPCH analogues, where one residue at a time is systematically replaced by an alanine to learn about the relative importance of the termini and side chains for activation. Mainly amino acids in positions 1 to 4 and 8 of Dappu-RPCH appear responsible for effective activation of Dappu-RPCHR. The substitution of Phe4 in Dappu-RPCH had the most damaging effect on its agonistic activity.

  20. Dopamine D sub 2 receptors in the cerebral cortex: Distribution and pharmacological characterization with ( sup 3 H)raclopride

    Energy Technology Data Exchange (ETDEWEB)

    Lidow, M.S.; Goldman-Rakic, P.S.; Rakic, P.; Innis, R.B. (Yale Univ., New Haven, CT (USA))

    1989-08-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D{sub 1} receptors in the cortex have been well documented. Comparable information on cortical D{sub 2} sites is lacking. The authors report here the results of binding studied in the cortex and neostriatum of rat and monkey using the D{sub 2} selective antagonist ({sup 3}H)raclopride. In both structures ({sup 3}H)raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D{sub 2} receptors. D{sub 2} sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study established the presence and widespread distribution of dopamine D{sub 2} receptors in the cortex.

  1. Pharmacological receptors of nematoda as target points for action of antiparasitic drugs

    Directory of Open Access Journals (Sweden)

    Trailović Saša M.

    2010-01-01

    Full Text Available Cholinergic receptors of parasitic nematodes are one of the most important possible sites of action of antiparasitic drugs. This paper presents some of our own results of electrophysiological and pharamcological examinations of nicotinic and muscarinic receptors of nematodes, as well as data from literature on a new class of anthelmintics that act precisely on cholinergic receptors. The nicotinic acetylcholine receptor (nAChR is located on somatic muscle cells of nematodes and it is responsible for the coordination of parasite movement. Cholinomimetic anthelmintics act on this receptor, as well as acetylcholine, an endogenic neurotransmitter, but they are not sensitive to enzyme acetylcholineesterase which dissolves acetylcholine. As opposed to the nicotinic receptor of vertebra, whose structure has been examined thoroughly, the stoichiometry of the nicotinic receptor of nematodes is not completely known. However, on the grounds of knowledge acquired so far, a model has been constructed recently of the potential composition of a type of nematodes nicotinic receptor, as the site of action of anthelmintics. Based on earlier investigations, it is supposed that a conventional muscarinic receptor exists in nematodes as well, so that it can also be a new pharamocological target for the development of antinematode drugs. The latest class of synthesized anthelmintics, named aminoacetonitriles (AAD, act via the nicotinic receptor. Monepantel is the first drug from the AAD group as a most significant candidate for registration in veterinary medicine. Even though several groups of cholinomimetic anthelmintics (imiodazothiazoles, tetrahydropyrimidines, organophosphat anthelmintics have been in use in veterinary practice for many years now, it is evident that cholinergic receptors of nematodes still present an attractive place in the examinations and development of new antinematode drugs. .

  2. Pharmacological investigations of N-substituent variation in morphine and oxymorphone: opioid receptor binding, signaling and antinociceptive activity.

    Science.gov (United States)

    Ben Haddou, Tanila; Béni, Szabolcs; Hosztafi, Sándor; Malfacini, Davide; Calo, Girolamo; Schmidhammer, Helmut; Spetea, Mariana

    2014-01-01

    Morphine and structurally related derivatives are highly effective analgesics, and the mainstay in the medical management of moderate to severe pain. Pharmacological actions of opioid analgesics are primarily mediated through agonism at the µ opioid peptide (MOP) receptor, a G protein-coupled receptor. Position 17 in morphine has been one of the most manipulated sites on the scaffold and intensive research has focused on replacements of the 17-methyl group with other substituents. Structural variations at the N-17 of the morphinan skeleton led to a diversity of molecules appraised as valuable and potential therapeutics and important research probes. Discovery of therapeutically useful morphine-like drugs has also targeted the C-6 hydroxyl group, with oxymorphone as one of the clinically relevant opioid analgesics, where a carbonyl instead of a hydroxyl group is present at position 6. Herein, we describe the effect of N-substituent variation in morphine and oxymorphone on in vitro and in vivo biological properties and the emerging structure-activity relationships. We show that the presence of a N-phenethyl group in position 17 is highly favorable in terms of improved affinity and selectivity at the MOP receptor, potent agonism and antinociceptive efficacy. The N-phenethyl derivatives of morphine and oxymorphone were very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, they were highly effective against acute thermal nociception in mice with marked increased antinociceptive potency compared to the lead molecules. It was also demonstrated that a carbonyl group at position 6 is preferable to a hydroxyl function in these N-phenethyl derivatives, enhancing MOP receptor affinity and agonist potency in vitro and in vivo. These results expand the understanding of the impact of different moieties at the morphinan nitrogen on ligand-receptor interaction, molecular mode of action and signaling, and may be

  3. Pharmacological investigations of N-substituent variation in morphine and oxymorphone: opioid receptor binding, signaling and antinociceptive activity.

    Directory of Open Access Journals (Sweden)

    Tanila Ben Haddou

    Full Text Available Morphine and structurally related derivatives are highly effective analgesics, and the mainstay in the medical management of moderate to severe pain. Pharmacological actions of opioid analgesics are primarily mediated through agonism at the µ opioid peptide (MOP receptor, a G protein-coupled receptor. Position 17 in morphine has been one of the most manipulated sites on the scaffold and intensive research has focused on replacements of the 17-methyl group with other substituents. Structural variations at the N-17 of the morphinan skeleton led to a diversity of molecules appraised as valuable and potential therapeutics and important research probes. Discovery of therapeutically useful morphine-like drugs has also targeted the C-6 hydroxyl group, with oxymorphone as one of the clinically relevant opioid analgesics, where a carbonyl instead of a hydroxyl group is present at position 6. Herein, we describe the effect of N-substituent variation in morphine and oxymorphone on in vitro and in vivo biological properties and the emerging structure-activity relationships. We show that the presence of a N-phenethyl group in position 17 is highly favorable in terms of improved affinity and selectivity at the MOP receptor, potent agonism and antinociceptive efficacy. The N-phenethyl derivatives of morphine and oxymorphone were very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, they were highly effective against acute thermal nociception in mice with marked increased antinociceptive potency compared to the lead molecules. It was also demonstrated that a carbonyl group at position 6 is preferable to a hydroxyl function in these N-phenethyl derivatives, enhancing MOP receptor affinity and agonist potency in vitro and in vivo. These results expand the understanding of the impact of different moieties at the morphinan nitrogen on ligand-receptor interaction, molecular mode of action and signaling

  4. Synthesis and pharmacological characterization at glutamate receptors of the four enantiopure isomers of tricholomic acid

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; De Amici, Marco

    2008-01-01

    of the studied amino acids reflect the relationship between the activity/selectivity and the stereochemistry of the two stereogenic centers: while the (2 S,5' S) stereoisomer is an agonist at the AMPA and KA receptors, its (2 R,5' R) enantiomer interacts selectively with the NMDA receptors; the (2 S,5' R...

  5. New Radioligands for Describing the Molecular Pharmacology of MT1 and MT2 Melatonin Receptors

    Directory of Open Access Journals (Sweden)

    Olivier Nosjean

    2013-04-01

    Full Text Available Melatonin receptors have been studied for several decades. The low expression of the receptors in tissues led the scientific community to find a substitute for the natural hormone melatonin, the agonist 2-[125I]-iodomelatonin. Using the agonist, several hundreds of studies were conducted, including the discovery of agonists and antagonists for the receptors and minute details about their molecular behavior. Recently, we attempted to expand the panel of radioligands available for studying the melatonin receptors by using the newly discovered compounds SD6, DIV880, and S70254. These compounds were characterized for their affinities to the hMT1 and hMT2 recombinant receptors and their functionality in the classical GTPS system. SD6 is a full agonist, equilibrated between the receptor isoforms, whereas S70254 and DIV880 are only partial MT2 agonists, with Ki in the low nanomolar range while they have no affinity to MT1 receptors. These new tools will hopefully allow for additions to the current body of information on the native localization of the receptor isoforms in tissues.

  6. Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2017-01-01

    The free fatty acid receptor 4 (FFA4), also known as GPR120, is a G protein-coupled receptor that is activated by long-chain fatty acids and that has been associated with regulation of appetite, release of insulin controlling hormones, insulin sensitization, anti-inflammatory and potentially anti...

  7. New Radioligands for Describing the Molecular Pharmacology of MT1 and MT2 Melatonin Receptors

    Science.gov (United States)

    Legros, Céline; Matthey, Ulrich; Grelak, Teresa; Pedragona-Moreau, Sandrine; Hassler, Werner; Yous, Saïd; Thomas, Emmanuel; Suzenet, Franck; Folleas, Benoît; Lefoulon, François; Berthelot, Pascal; Caignard, Daniel-Henri; Guillaumet, Gérald; Delagrange, Philippe; Brayer, Jean-Louis; Nosjean, Olivier; Boutin, Jean A.

    2013-01-01

    Melatonin receptors have been studied for several decades. The low expression of the receptors in tissues led the scientific community to find a substitute for the natural hormone melatonin, the agonist 2-[125I]-iodomelatonin. Using the agonist, several hundreds of studies were conducted, including the discovery of agonists and antagonists for the receptors and minute details about their molecular behavior. Recently, we attempted to expand the panel of radioligands available for studying the melatonin receptors by using the newly discovered compounds SD6, DIV880, and S70254. These compounds were characterized for their affinities to the hMT1 and hMT2 recombinant receptors and their functionality in the classical GTPγS system. SD6 is a full agonist, equilibrated between the receptor isoforms, whereas S70254 and DIV880 are only partial MT2 agonists, with Ki in the low nanomolar range while they have no affinity to MT1 receptors. These new tools will hopefully allow for additions to the current body of information on the native localization of the receptor isoforms in tissues. PMID:23698757

  8. Molecular cloning, sequence analysis and pharmacological properties of the porcine 5-HT(1D) receptor.

    NARCIS (Netherlands)

    P.L. Bhalla (Pankaj); H.S. Sharma (Hari); T. Wurch (Thierry); P.J. Pauwels (Petrus); P.R. Saxena (Pramod Ranjan)

    2000-01-01

    textabstractA cDNA encoding the full-length 5-HT(1D) receptor derived from porcine cerebral cortex was amplified, cloned and sequenced, using guinea-pig 5-HT(1D) receptor coding sequence oligonucleotide primers in reverse transcription-polymerase chain reaction (RT - PC

  9. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    Science.gov (United States)

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  10. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    Science.gov (United States)

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Synthesis, pharmacological evaluation and molecular modeling studies of triazole containing dopamine D3 receptor ligands.

    Science.gov (United States)

    Peng, Xin; Wang, Qi; Mishra, Yogesh; Xu, Jinbin; Reichert, David E; Malik, Maninder; Taylor, Michelle; Luedtke, Robert R; Mach, Robert H

    2015-02-01

    A series of 2-methoxyphenyl piperazine analogues containing a triazole ring were synthesized and their in vitro binding affinities at human dopamine D2 and D3 receptors were evaluated. Compounds 5b, 5c, 5d, and 4g, demonstrate high affinity for dopamine D3 receptors and moderate selectivity for the dopamine D3 versus D2 receptor subtypes. To further examine their potential as therapeutic agents, their intrinsic efficacy at both D2 and D3 receptors was determined using a forskolin-dependent adenylyl cyclase inhibition assay. Affinity at dopamine D4 and serotonin 5-HT1A receptors was also determined. In addition, information from previous molecular modeling studies of the binding of a panel of 163 structurally-related benzamide analogues at dopamine D2 and D3 receptors was applied to this series of compounds. The results of the modeling studies were consistent with our previous experimental data. More importantly, the modeling study results explained why the replacement of the amide linkage with the hetero-aromatic ring leads to a reduction in the affinity of these compounds at D3 receptors.

  12. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    Science.gov (United States)

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  13. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning.

    Science.gov (United States)

    Meneses, A; Hong, E

    1997-02-01

    1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.

  14. Identification and pharmacological characterization of the histamine H3 receptor in cultured rat astrocytes.

    Science.gov (United States)

    Mele, Tina; Jurič, Damijana Mojca

    2013-11-15

    Recently we reported that cultured rat cortical astrocytes express histamine H3 receptor that is functionally coupled to Gi/o proteins and participates to the stimulatory effect of histamine. Due to the lack of data on the distribution of histamine H3 receptors on glial cells we further investigated their presence in cultured astrocytes from different brain regions. Real-time PCR was performed to examine the expression of native histamine H3 receptor in cultured rat astrocytes from cortex,cerebellum, hippocampus and striatum.Double-antigen immunofluorescence staining and[3H]N-α-methylhistamine([3H]NαMH) binding studies were utilized to specifically identify and characterize receptor binding sites in astrocytes. Histamine H3 receptor mRNA was detected in rat astrocytes from all the regions under investigation with the highest levels in striatal astrocytes followed by hippocampal astrocytes and approximately equal levels in cerebellar and cortical astrocytes.Double-antigen immunofluorescence confirmed the presence of histamine H3 receptors on the membrane of all examined astroglial populations.[3H]NαMH bound with high affinity and specificity to an apparently single class of saturable sites on cortical astrocytic membranes(KD¼4.5570.46 nM; Bmax¼5.6370.21 fmol/mg protein)and competition assays with selective agonists and antagonists were consistent with labeling of histamine H3 receptor(range of pKi values 7.50–8.87). Our study confirmed the ability of cultured astrocytes from different rat brain regions to express histamine H3 receptors.The observed diverse distribution of the receptors within various astrocytic populations possibly mirrors their heterogeneity in the brain and indicates their active involvement in histamine-mediated effects.

  15. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2

    OpenAIRE

    Sawyer, Nicole; Cauchon, Elizabeth; Chateauneuf, Anne; Cruz, Rani P G; Donald W Nicholson; Metters, Kathleen M; O'Neill, Gary P; Gervais, Francois G

    2002-01-01

    The recombinant human prostaglandin D2 (PGD2) receptor, hCRTH2, has been expressed in HEK293(EBNA) and characterized with respect to radioligand binding and signal transduction properties. High and low affinity binding sites for PGD2 were identified in the CRTH2 receptor population by saturation analysis with respective equilibrium dissociation constants (KD) of 2.5 and 109 nM. This revealed that the affinity of PGD2 for CRTH2 is eight times less than its affinity for the DP receptor.Equilibr...

  16. ATP, P2X receptors and pain pathways.

    Science.gov (United States)

    Ding, Y; Cesare, P; Drew, L; Nikitaki, D; Wood, J N

    2000-07-01

    A role for ATP in nociception and pain induction was proposed on the basis of human psychophysical experiments shortly after the formulation of the purinergic hypothesis. Following the pharmacological definition of distinct P2X and P2Y purinergic receptor subtypes by Burnstock and his collaborators, molecular cloning studies have identified the gene products that underlie the effects of ATP on peripheral sensory neurons. One particular receptor, P2X(3), is of particular interest in the context of pain pathways, because it is relatively selectively expressed at high levels by nociceptive sensory neurons. Evidence that this receptor may play a role in the excitation of sensory neurons has recently been complemented by studies that suggest an additional presynaptic role in the regulation of glutamate release from primary afferent neurons in the dorsal horn of the spinal cord. In this brief review, we discuss the present state of knowledge of the role of ATP in pain induction through its action on peripheral P2X receptors.

  17. Effect of Sinomenine on Expression of Purinergic Receptors A2A and P2X7 in Mouse Model and In-vitro Macrophages Stimulated by Lipopolysaccharide%青藤碱对细菌内毒素刺激的小鼠及巨噬细胞嘌呤受体A2A、 P2X7表达的影响

    Institute of Scientific and Technical Information of China (English)

    李景; 吴阳阳; 周海松; 朱瑞丽; 易浪; 董燕; 王培训

    2016-01-01

    Objective To investigate the effect of sinomenine on the purinergic receptors A2A and P2X7 in endotoxemia mouse model and RAW264.7 macrophage model stimulated by lipopolysaccharide(LPS). Methods BALB/c mice were randomly divided into blank control group, model group and sinomenine group. Thirty minutes after the rats of sinomenine group were pretreated with intraperitoneal injection of sinomenine (40, 80, 160 mg/kg), the mice were given intraperitoneal injection of 15 mg/kg LPS to induce endotoxemia model. The serum levels of tumor necrosis factor-alpha(TNF-α) and interleukin-6(IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). The expression levels of purinergic receptor A2A and P2X7 in the liver and spleen were detected by reverse transcription-polymerase chain reaction(RT-PCR). RAW264.7 macrophages were divided into blank control group, LPS group and sinomenine group. Sinomenine group was firstly treated with sinomenine(300μmol/L) for 2 h, and then LPS group and sinomenine group were treated with LPS (100 ng/mL) for another 8 hours. TNF-α in the cell supernatant was measured by ELISA, and the expression levels of A2A and P2X7 in RAW264.7 cells were detected by RT-PCR. Results Stimulation with LPS could induce the increase of the mouse serum levels of TNF-α and IL-6 as well as the expression of A2A and P2X7 in mouse liver and spleen, and sinomenine had a counteraction on the above indexes(P<0.05) . In-vitro stimulation with LPS could induce the increase of the content of TNF-α and the expression of A2A and P2X7 in RAW264.7 cells , and sinomenine decreased TNF-α content and P2X7 expression (P<0.05) , but had an effect on enhancing A2A expression. Conclusion Sinomenine suppresses the expression of purinergic receptor P2X7 in mouse spleen and liver as well as in RAW264.7 macrophages, but its effect on the expression of A2A in various tissues and cells varies, whose related mechanism is needed further study.%【

  18. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  19. Modulation of the constitutive activity of the ghrelin receptor by use of pharmacological tools and mutagenesis

    DEFF Research Database (Denmark)

    Mokrosinski, Jacek; Holst, Birgitte

    2010-01-01

    -Trp-Phe-D-Trp-Leu-Leu peptides, it was found that space-generating mutations in the deeper part of the receptor improved inverse agonism, whereas similar mutations located in the more extracellular part improved agonism. Modulation of the basal signaling by mutations in the receptor structure is primarily obtained...... was the first inverse agonist to be identified for the ghrelin receptor, and this peptide has been used as a starting point for identification of the structural requirements for inverse agonist properties in the ligand. The receptor binding core motif was identified as D-Trp-Phe-D-Trp-Leu-Leu, and elongation...... of this peptide in the amino-terminal end determined the efficacy. Attachment of a positively charged amino acid was responsible for full inverse agonism, whereas an alanin converted the peptide into a partial agonist. Importantly, by use of mutational mapping of the residues critical for the modified D...

  20. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W;

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing...

  1. 5-HT6 receptor memory and amnesia: behavioral pharmacology--learning and memory processes.

    Science.gov (United States)

    Meneses, Alfredo; Pérez-García, Georgina; Ponce-Lopez, Teresa; Castillo, Carlos

    2011-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia, although the mechanisms involved are poorly understood. Hence, in this paper an attempt was made to summarize recent findings. Available evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effects in diverse conditions, including memory formation, age-related cognitive impairments, memory deficits in diseases such as schizophrenia, Parkinson, and Alzheimer's disease (AD). Notably, some 5-HT6 receptor agonists seem to have promnesic and/or antiamnesic effects. At the present, it is unclear why 5-HT6 receptor agonists and antagonists may facilitate memory or may reverse amnesia in some memory tasks. Certainly, 5-HT6 drugs modulate memory, which are accompanied with neural changes. Likewise, memory, aging, and AD modify 5-HT6 receptors and signaling cascades. Further investigation in different memory tasks, times, and amnesia models together with more complex control groups might provide further clues. Notably, human studies suggest a potential utility of 5-HT6 receptor antagonists in mild-to-moderate AD patients. Even individuals with mild cognitive impairment (MCI) offer a great opportunity to test them.

  2. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions.

    Science.gov (United States)

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Ahmarani, Lena; Perreault, Claudine; Jacques, Danielle

    2012-08-01

    Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.

  3. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease.

    Science.gov (United States)

    Gómez-Gálvez, Yolanda; Palomo-Garo, Cristina; Fernández-Ruiz, Javier; García, Concepción

    2016-01-04

    Inflammation is an important pathogenic factor in Parkinson's disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum. The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD. Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects. Parkinsonian inflammation can be reproduced experimentally in rodents by intrastriatal injections of lipopolysaccharide (LPS) which, through an intense activation of glial elements and peripheral infiltration, provokes a rapid deterioration of the striatum that may extend to the substantia nigra too. Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue. First, we found elevated levels of the CB2 receptor measured by qRT-PCR in the striatum and substantia nigra of LPS-lesioned mice, as well as an increase in the immunostaining for this receptor in the LPS-lesioned striatum. Second, we found a significant increase in CD68 immunostaining, which serve to identify activated microglia and also infiltrated peripheral macrophages, in these brain structures in response to LPS insult, which was much more intense in CB2 receptor-deficient mice in the case of the substantia nigra. Next, we observed that the activation of CB2 receptors with a selective agonist (HU-308) reversed LPS-induced elevation of CD68 immunostaining in the striatum and the parallel reduction in TH immunostaining. Lastly, we

  4. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy.

    Science.gov (United States)

    Löscher, W

    1998-04-01

    It is widely accepted that excitatory amino acid transmitters such as glutamate are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using NMDA receptors, but more recent evidence indicates potential roles for ionotropic non-NMDA (AMPA/kainate) and metabotropic glutamate receptors as well. Based on the role of glutamate in the development and expression of seizures, antagonism of glutamate receptors has long been thought to provide a rational strategy in the search for new, effective anticonvulsant drugs. Furthermore, because glutamate receptor antagonists, particularly those acting on NMDA receptors, protect effectively in the induction of kindling, it was suggested that they may have utility in epilepsy prophylaxis, for example, after head trauma. However, first clinical trials with competitive and uncompetitive NMDA receptor antagonists in patients with partial (focal) seizures, showed that these drugs lack convincing anticonvulsant activity but induce severe neurotoxic adverse effects in doses which were well tolerated in healthy volunteers. Interestingly, the only animal model which predicted the unfavorable clinical activity of competitive NMDA antagonists in patients with chronic epilepsy was the kindling model of temporal lobe epilepsy, indicating that this model should be used in the search for more effective and less toxic glutamate receptor antagonists. In this review, results from a large series of experiments on different categories of glutamate receptor antagonists in fully kindled rats are summarized and discussed. NMDA antagonists, irrespective whether they are competitive, high- or low-affinity uncompetitive, glycine site or polyamine site antagonists, do not counteract focal seizure activity and only weakly, if at all, attenuate propagation to secondarily generalized seizures in this model, indicating that once kindling is established, NMDA receptors are not critical for the expression of

  5. The application of the human beta-globin gene locus control region and murine erythroleukemia cell system to the expression and pharmacological characterization of human endothelin receptor subtypes.

    Science.gov (United States)

    Davies, A; Whiting, E; Bath, C; Tang, E; Brennand, J

    1995-06-01

    The cDNAs encoding both A and B subtypes of the human endothelin receptor have been inserted into mammalian cell expression vectors that utilize the human globin gene, locus control region. These constructs have been introduced into murine erythroleukemia cells and inducible high level expression of the receptors has been achieved (approximately 1.5-pM/mg membrane protein and approximately 13,500 binding sites/cell for both receptor subtypes). Cell lines expressing these receptors were obtained on a rapid time scale (3-4 weeks), facilitated by the need for the analysis of only small numbers of cell clones/receptor (approximately 6). Competitive binding assays with endothelin-1 gave IC50s of 130 +/- 30 pM for endothelin-A receptor and 160 +/- 30 pM for endothelin-B receptor. Similar studies with the different isoforms of endothelin, sarafatoxin-S6b and -S6c, BQ123 and BQ3020, all gave the expected selectivity profiles. The IC50s for all compounds were in close agreement with those reported for native receptors. Thus, this expression system, which has several advantages over other described expression systems, is capable of rapidly providing large quantities of receptor for detailed pharmacological analyses or drug screening. In addition, the expressed receptors display the expected pharmacological profiles in the absence of any complicating, competing interactions from other subtypes or binding sites.

  6. Pharmacology and toxicology of fibrates as hypolipidemic drugs mediated by nuclear receptor peroxisome proliferator—activated receptor

    Institute of Scientific and Technical Information of China (English)

    SugaT

    2002-01-01

    PPAR(peroxisome proliferator-activated receptor) is a family of nuclear receptor.In recent years,it has been focused for the discovery and development of new drugs which are mediated by PPARs.Fibrate hypolipidemic drugs are the specific and potent ligands to PPAR alpha and have been widely used for the treatment of hyperlipidemia.But these drugs induce hepatocarcinogenesis in rodent animals after the long-term administration.However,there are species differences on these phenomena which are not seen in mammals ioncluding human.To clarify the mechanism of carcinogenesis by these drugs in important for the evaluation of safety of these drugs in human.

  7. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    Science.gov (United States)

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  8. Design, synthesis and pharmacology of 1,1-bistrifluoromethylcarbinol derivatives as liver X receptor β-selective agonists.

    Science.gov (United States)

    Koura, Minoru; Matsuda, Takayuki; Okuda, Ayumu; Watanabe, Yuichiro; Yamaguchi, Yuki; Kurobuchi, Sayaka; Matsumoto, Yuuki; Shibuya, Kimiyuki

    2015-07-01

    A novel series of 1,3-bistrifluoromethylcarbinol derivatives that act as liver X receptor (LXR) β-selective agonists was discovered. Structure-activity relationship studies led to the identification of molecule 62, which was more effective (Emax) and selective toward LXRβ than T0901317 and GW3965. Furthermore, 62 decreased LDL-C without elevating the plasma TG level and significantly suppressed the lipid-accumulation area in the aortic arch in a Bio F1B hamster fed a diet high in fat and cholesterol. We demonstrated that our LXRβ agonist would be potentially useful as a hypolipidemic and anti-atherosclerotic agent. In this manuscript, we report the design, synthesis and pharmacology of 1,3-bistrifluoromethylcarbinol derivatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Science.gov (United States)

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  10. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

  11. Conjugation with receptor-targeted histidine-rich peptides enhances the pharmacological effectiveness of antisense oligonucleotides.

    Science.gov (United States)

    Nakagawa, Osamu; Ming, Xin; Carver, Kyle; Juliano, Rudy

    2014-01-15

    Ineffective delivery to intracellular sites of action is one of the key limitations to the use of antisense and siRNA oligonucleotides as therapeutic agents. Here, we describe molecular scale antisense oligonucleotide conjugates that bind selectively to a cell surface receptor, are internalized, and then partially escape from nonproductive endosomal locations to reach their sites of action in the nucleus. Peptides that include bombesin sequences for receptor targeting and a run of histidine residues for endosomal disruption were covalently linked to a splice switching antisense oligonucleotide. The conjugates were tested for their ability to correct splicing and up-regulate expression of a luciferase reporter in prostate cancer cells that express the bombesin receptor. We found that trivalent conjugates that included both the targeting sequence and several histidine residues were substantially more effective than conjugates containing only the bombesin or histidine moieties. This demonstrates the potential of creating molecular scale oligonucleotide conjugates with both targeting and endosome escape capabilities.

  12. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  13. Purinergic nerves and purinoceptors: early perspectives.

    Science.gov (United States)

    Satchell, D

    2000-07-01

    I have had the pleasure and privilege of being involved in one facet of Geoffrey Burnstock's early career. I have reviewed this work together with more recent developments in the area. In 1968, the presence of non-adrenergic, non-cholinergic inhibitory nerves had been established but the identity of their neurotransmitter was unknown. Stimulation of these nerves in recycled perfused toad and guinea-pig stomachs caused release of adenosine and inosine. When ATP was added to recycled perfusates, it was broken down to adenosine and inosine. These findings together with information that AMP was released from stimulated, isolated turkey Auerbach's plexus which was known to contain the nerves, suggested that ATP could be the neurotransmitter. This was supported by observations that ATP elicited responses similar to that of nerve stimulation in a variety of tissues. Developments from the early purinergic nerve hypothesis are considered including independence of extracellular actions of ATP from its intracellular actions, identification and cloning of purinoceptors and cotransmission of ATP with other substances.

  14. The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist.

    Science.gov (United States)

    Patsalos, Philip N

    2015-01-01

    The clinical pharmacology profile of a drug critically determines its therapeutics, and this review summarizes the characteristics associated with the antiepileptic drug (AED) perampanel. A PubMed literature search was performed for perampanel. Congress abstract data are included where necessary and Eisai Ltd provided access to unpublished data on file. After oral ingestion, perampanel is rapidly absorbed and peak plasma concentrations occur 0.5-2.5 h later; its bioavailability is ~100%. Although the rate of perampanel absorption is slowed by food co-ingestion, the extent absorbed remains unchanged; therefore, perampanel can be administered without regard to meal times. The pharmacokinetics of perampanel are linear and predictable over the clinically relevant dose range (2-12 mg); perampanel is 95% protein-bound to albumin and α1-acid glycoprotein. Perampanel is extensively metabolized (>90%) in the liver, primarily by cytochrome P450 (CYP) 3A4, to various pharmacologically inactive metabolites. In healthy volunteers, the apparent terminal half-life is ~105 h, whereas the calculated effective half-life is 48 h. These half-life values allow for once-daily dosing, which will aid patient compliance and in the event of a missed dose, will have minimal impact on seizure control. In healthy volunteers prescribed carbamazepine, half-life decreases to 25 h. Clearance values are not significantly different in adolescents (~13.0 ml/min) and the elderly (~10.5 ml/min) compared with adults (10.9 ml/min). Perampanel has minimal propensity to cause pharmacokinetic interactions. However, it is the target of such interactions and CYP3A4-inducing AEDs enhance its clearance; this can be used to advantage because dose titration can be faster and thus optimum therapeutic outcome can be achieved sooner. Perampanel 12 mg, but not 4 or 8 mg, enhances the metabolism of the progesterone component of the oral contraceptive pill, necessitating the need for an additional reliable

  15. Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice.

    Science.gov (United States)

    Gomes, Felipe V; Del Bel, Elaine A; Guimarães, Francisco S

    2013-10-01

    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa plant that produces antipsychotic effects in rodents and humans. It also reverses L-dopa-induced psychotic symptoms and improves motor function in Parkinson's patients. This latter effect raised the possibility that CBD could have beneficial effects on motor related striatal disorders. To investigate this possibility we evaluated if CBD would prevent catalepsy induced by drugs with distinct pharmacological mechanisms. The catalepsy test is largely used to investigate impairments of motor function caused by interference on striatal function. Male Swiss mice received acute pretreatment with CBD (5, 15, 30 or 60mg/kg, ip) 30min prior to the D2 receptor antagonist haloperidol (0.6mg/kg), the non-selective nitric oxide synthase (NOS) inhibitor L-nitro-N-arginine (L-NOARG, 80mg/kg) or the CB1 receptor agonist WIN55,212-2 (5mg/kg). The mice were tested 1, 2 or 4h after haloperidol, L-NOARG or WIN55,212-2 injection. These drugs significantly increased catalepsy time and this effect was attenuated dose-dependently by CBD. CBD, by itself, did not induce catalepsy. In a second set of experiments the mechanism of CBD effects was investigated. Thirty minutes before CBD (30mg/kg) the animals received the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). The anticataleptic effect of CBD was prevented by WAY100635. These findings indicate that CBD can attenuate catalepsy caused by different mechanisms (D2 blockade, NOS inhibition and CB1 agonism) via 5-HT1A receptor activation, suggesting that it could be useful in the treatment of striatal disorders.

  16. Kampo medicine: Evaluation of the pharmacological activity of 121 herbal drugs on GABA(A and 5 HT3A receptors

    Directory of Open Access Journals (Sweden)

    Katrin M Hoffmann

    2016-07-01

    Full Text Available Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM. During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and its constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, we performed a broad screening of Kampo remedies to look for pharmacologically relevant 5 HT3A and GABA(A receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness or insomnia. Therefore, we analyzed the pharmacological effects of 121 herbal drugs from Kampo medicine as ethanol tinctures on heterologously expressed 5 HT3A and GABA(A receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix and Leonurus japonicus (herba were the most effective inhibitory compounds on the 5 HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5 HT3A receptor antagonist. We also identified several potentiating herbs (e.g., Magnolia officinalis (cortex, Syzygium aromaticum (flos and Panax ginseng (radix for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects, for instance Salvia miltiorrhiza (radix were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing a better understanding of their physiological effects and clinical applications.

  17. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations

    DEFF Research Database (Denmark)

    de la Fuente Revenga, M; Balle, Thomas; Jensen, Anders A.

    2015-01-01

    Exploration of small selective ligands for the nicotinic acetylcholine receptors (nAChRs) based on acetylcholine (ACh) has led to the development of potent agonists with clear preference for the α4β2 nAChR, the most prevalent nAChR subtype in the central nervous system. In this work we present th...

  18. Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Krogsgaard-Larsen, P

    1998-01-01

    We have studied the effects of the enantiomers of 2-amino-3-(3-hydroxyisoxazol-5-yl)propionic acid (homoibotenic acid, HIBO) and analogues substituted with a methyl, bromo or butyl group in the four position of the ring at cloned metabotropic glutamate (mGlu) receptors expressed in Chinese hamste...

  19. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    Science.gov (United States)

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  20. The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABA A receptor-ionophores.

    Science.gov (United States)

    Maksay, Gábor; Thompson, Sally A; Wafford, Keith A

    2003-06-01

    Human alpha(1)beta(3) epsilon GABA(A) receptors were expressed in Xenopus oocytes and examined using the conventional two-electrode voltage-clamp technique and compared to alpha(1)beta(3)gamma(2) receptors. The effects of several GABA(A) agonists were studied, and the allosteric modulation of the channel by a number of GABAergic modulators investigated. The presence of the epsilon subunit increased the potency and efficacy of direct activation by partial GABA(A) agonists (piperidine-4-sulphonic acid and thio-4-PIOL), pentobarbital and neuro-steroids. Direct activation by 3-hydroxylated neurosteroids was restricted to 3alpha epimers, while chirality at C5 was indifferent. The 3beta-sulfate esters of pregnenolone and dehydroepiandrosterone inhibited the spontaneous currents with efficacies higher, while bicuculline methiodide and SR 95531 did so lower than picrotoxin and TBPS. Furosemide, fipronil, triphenylcyanoborate and Zn(2+) blocked the spontaneous currents of alpha(1)beta(3) epsilon receptors with different efficacies. Flunitrazepam and 4'-chlorodiazepam inhibited the spontaneous currents with micromolar potencies. In conclusion, spontaneously active alpha(1)beta(3) epsilon GABA(A) receptors can be potentiated and blocked by GABAergic agents within a broad range of efficacy.

  1. Pharmacology and crystal structure of novel 2,3-quinoxalinediones at kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Pallesen, Jakob Staun; Pasini, Diletta

    2017-01-01

    with the patho-physiology of CNS diseases such as epilepsy, schizophrenia and depression. Selective tool compounds are therefore needed to address the functional roles of different types of iGluRs. A few selective compounds that can discriminate between AMPA and kainate (KA) receptors are available. However...

  2. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik;

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis...

  3. A pharmacological profile of the high-affinity GluK5 kainate receptor

    DEFF Research Database (Denmark)

    Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S

    2016-01-01

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [3H]-kainate in receptor binding assays (Kd = 6.9 nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128 kDa) and deglycosylated (111 kDa) protein, which was identical to the band...

  4. Pharmacological targeting of protease-activated receptor 2 affords protection from bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    C. Lin (Cong); J. von der Thusen (Jan); J. Daalhuisen (Joost); M. Ten Brink (Marieke); B. Crestani (Bruno); T. van der Poll (Tom); K. Borensztajn (Keren); C. Arnold Spek (C.)

    2015-01-01

    textabstractIdiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease that remains refractory to therapy. Despite increasing evidence that protease-activated receptor 2 (PAR-2) contributes to fibrosis, its importance in pulmonary fibrosis is under debate. We addressed whet

  5. Synthesis and pharmacological evaluation of benzofuran-acetamides as "antineophobic" mitochondrial DBI receptor complex ligands

    NARCIS (Netherlands)

    Liao, Y; Kozikowski, AP; Guidotti, A; Costa, E

    1998-01-01

    A series of novel benzofuran analogues of N,N-di-n-hexyl-2-phenylindole-3-acetamide (5, FGIN-1-27), a potent and highly specific mitochondrial DBI receptor complex ligand, were synthesized by a modified Fischer method and found in vitro and in vivo to be equally potent and selective as FGIN-1-27. (C

  6. Signalling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum

    Science.gov (United States)

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a subst...

  7. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  8. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

    Science.gov (United States)

    Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V

    2017-03-02

    The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca(2+) mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation.

  9. Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice

    NARCIS (Netherlands)

    Grefhorst, A; van Dijk, TH; Hammer, A; van der Sluijs, FH; Havinga, R; Havekes, LM; Romijn, JA; Groot, PH; Reijngoud, DJ; Kuipers, F

    2005-01-01

    Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mic

  10. Ligand-Directed Functional Selectivity at the Mu Opioid Receptor Revealed by Label-Free Integrative Pharmacology On-Target

    Science.gov (United States)

    Morse, Megan; Tran, Elizabeth; Sun, Haiyan; Levenson, Robert; Fang, Ye

    2011-01-01

    Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR) sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT) approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR) arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs. PMID:22003401

  11. Pharmacological and genetic manipulation of kappa opioid receptors: effects on cocaine- and pentylenetetrazol-induced convulsions and seizure kindling.

    Science.gov (United States)

    Kaminski, Rafal M; Witkin, Jeffrey M; Shippenberg, Toni S

    2007-03-01

    The present study used pharmacological and gene ablation techniques to examine the involvement of kappa opioid receptors (KOPr) in modulating the convulsant effects of two mechanistically different drugs: cocaine and pentylenetetrazol (PTZ; GABA-A receptor antagonist) in mice. Systemic administration of the selective KOPr-1 agonist, U69593 (0.16-0.6mg/kg; s.c.), failed to modify cocaine-evoked convulsions or cocaine kindling. Similarly, no alteration in responsiveness to cocaine was observed in wild-type mice that received the selective KOPr-1 antagonist, nor-binaltorphimine (nor-BNI; 5mg/kg) or in mice lacking the gene encoding KOPr-1. In contrast to cocaine, U69593 attenuated the seizures induced by acute or repeated PTZ administration. Nor-BNI decreased the threshold for PTZ-evoked seizures and increased seizure incidence during the initial induction of kindling relative to controls. Decreased thresholds for PTZ-induced seizures were also observed in KOPr-1 knock out mice. Together, these data demonstrate an involvement of endogenous KOPr systems in modulating vulnerability to the convulsant effects of PTZ but not cocaine. Furthermore, they demonstrate that KOPr-1 activation protects against acute and kindled seizures induced by this convulsant. Finally, the results of our study suggest that KOPr-1 antagonists will not have therapeutic utility against cocaine-induced seizures, while they may prove beneficial in attenuating several actions of cocaine that have been linked to its abuse.

  12. Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free integrative pharmacology on-target.

    Directory of Open Access Journals (Sweden)

    Megan Morse

    Full Text Available Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs.

  13. [Pharmacological characteristics of drugs targeted on calcium-sensing receptor.-properties of cinacalcet hydrochloride as allosteric modulator].

    Science.gov (United States)

    Nagano, Nobuo; Tsutsui, Takaaki

    2016-06-01

    Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.

  14. Pharmacological characterization of AC-262536, a novel selective androgen receptor modulator.

    Science.gov (United States)

    Piu, Fabrice; Gardell, Luis R; Son, Thomas; Schlienger, Nathalie; Lund, Birgitte W; Schiffer, Hans H; Vanover, Kim E; Davis, Robert E; Olsson, Roger; Bradley, Stefania Risso

    2008-03-01

    Because of the limitations and liabilities of current testosterone therapies, non-steroidal tissue-selective androgen receptor modulators may provide a clinically meaningful advance in therapy. Using a functional cell-based assay AC-262536 was identified as a potent and selective AR ligand, with partial agonist activity relative to the natural androgen testosterone. A 2-week chronic study in castrated male rats indicated that AC-262536 significantly improves anabolic parameters in these animals, especially in stimulating the growth of the levator ani and in suppressing elevated LH levels. In sharp contrast to testosterone, AC-262536 has weak androgenic effects, as measured by prostate and seminal vesicle weights. Thus, AC-262536 represents a novel class of selective androgen receptor modulators (SARMs) with beneficial anabolic effects.

  15. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia

    OpenAIRE

    Hsieh, Dennis Jine-Yuan; Liao, Ching-Fong

    2002-01-01

    A zebrafish M2 muscarinic acetylcholine receptor (mAChR) gene was cloned. It encodes 495 amino acids in a single exon. The derived amino acid sequence is 73.5% identical to its human homologue.Competitive binding studies of the zebrafish M2 receptor and [3H]-NMS gave negative log dissociation constants (pKi) for each antagonist as follows: atropine (9.16)>himbacine (8.05)⩾4-DAMP (7.83)>AF-DX 116 (7.26)⩾pirenzepine (7.18)⩾tropicamide (6.97)⩾methoctramine (6.82)⩾p-F-HHSiD (6.67)>carbachol (5.20...

  16. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease.

    Science.gov (United States)

    Bryant, Clare E; Orr, Selinda; Ferguson, Brian; Symmons, Martyn F; Boyle, Joseph P; Monie, Tom P

    2015-01-01

    Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.

  17. Cardiac N-methyl D-aspartate receptors as a pharmacological target

    OpenAIRE

    Makhro, Asya; Tian, Qinghai; Kaestner, Lars; Kosenkov, Dmitry; Faggian, Giuseppe; Gassmann, Max; Schwarzwald, Colin; BOGDANOVA, Anna

    2016-01-01

    This study focuses on characterization of the cardiac N-methyl D-aspartate receptors (NMDARs) as a target for endogenous and synthetic agonists and antagonists. Using isolated perfused rat hearts, we have shown that intracoronary administration of the NMDAR agonists and antagonists has a pronounced effect on autonomous heart function. Perfusion of rat hearts with autologous blood supplemented with NMDAR agonists was associated with induction of tachycardia, sinus arrhythmia and ischemia occur...

  18. Annulated heterocyclic bioisosteres of norarecoline. Synthesis and molecular pharmacology at five recombinant human muscarinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R

    1995-01-01

    inhibitors of the binding of tritiated quinuclidinyl benzilate (QNB), pirenzepine (PZ), and oxotremorine-M (Oxo-M) to tissue membrane preparations. In the [3H]-Oxo-M binding assay, receptor affinities in the low nanomolar range were measured for 4a (IC50 = 0.010 microM), 4b (IC50 = 0.003 microM), 4c (IC50...

  19. Pharmacological tolerance to alpha 1-adrenergic receptor antagonism mediated by terazosin in humans.

    OpenAIRE

    Vincent, J; Dachman, W; Blaschke, T F; Hoffman, B. B.

    1992-01-01

    Chronic administration of alpha 1-receptor antagonists is associated with loss of clinical efficacy, especially in congestive heart failure, although the mechanism is uncertain. To evaluate changes in venous alpha 1-adrenoceptor responsiveness during chronic alpha 1-adrenoceptor blockade, dose-response curves to phenylephrine and angiotensin II were constructed in 10 healthy subjects before, during, and after administration of terazosin 1 mg orally for 28 d. Terazosin initially shifted the do...

  20. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy

    OpenAIRE

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disease leading to motor neuron degeneration and progressive paralysis. Other studies have revealed defects in skeletal muscle even in the absence of motor neuron anomalies, focusing on acetylcholine receptors (AChRs) and supporting the so-called “dying-back” hypothesis. Our results indicate that the endocannabinoid palmitoylethanolamide (PEA) reduces the rundown of AChRs currents in ALS muscle and can clinically improve patients’ pulmonary funct...

  1. G protein-linked receptors labeled by [3H]histamine in guinea pig cerebral cortex. I. Pharmacological characterization [corrected].

    Science.gov (United States)

    Sinkins, W G; Kandel, M; Kandel, S I; Schunack, W; Wells, J W

    1993-04-01

    Binding of histamine to washed membranes from guinea pig cerebral cortex can be described empirically as two classes of distinct and independent sites (log IP1 = -8.45 +/- 0.02, R1;t = 98 +/- 6 pmol/g of protein; log KP2 = -6.34 +/- 0.22, R2.t = 990 +/- 60 pmol/g of protein). At 1.4 nm [3H]histamine, the kinetics of association and dissociation are biexponential. The values of k-Pj/k+Pj calculated for parallel one-step processes agree well with the corresponding values of KPj. Both k-p1 and k-P2 are increased by 0.1 mM guanylylimidodiphosphate; apparent capacity at equilibrium is reduced for both classes of sites, with little or no change in KP1 or KP2. Twenty-six H2 and H3 agonists and antagonists block access of [3H]histamine to the same sites, and the binding patterns reveal either one or two hyperbolic terms [i.e., sigma nj = 1 F' jKj/(Kj+[L])]. Two terms are required for six agonists and six antagonists, and F'2 varies widely from ligand to ligand. Also, the quantity log (K2/K1) is correlated with F'1 among agonists but with F'2 among antagonists (K1 < K2). The pharmacological selectivity is suggestive of both H2 and H3 receptors. An H2 specificity emerges from the appropriate values of Kj for 12 H2 agonists (i.e., K1 when n = 1 and K2 when n = 2; p = 0.00045), although a specificity distinct from that of H2 receptors is found with H2 antagonists. An H3 specificity emerges from the inhibitory potencies (IC50) of eight H3 agonists (p = 0.00025) and eight H3 antagonists (p = 0.0019); also, the sites labeled by [3H]histamine resemble H3 receptors reportedly labeled by N alpha-[3H]methylhistamine and (R)-alpha-[3H]methylhistamine. Ligand-dependent differences in F'2 are inconsistent with the notion of distinct and independent sites, and the tendency of antagonists to promote the sites of weaker affinity (F'2) argues against a ligand-regulated equilibrium between two states. The physical significance of the binding parameters is therefore unclear. The failure to

  2. Methylphenidate and μ opioid receptor interactions: a pharmacological target for prevention of stimulant abuse.

    Science.gov (United States)

    Zhu, Jinmin; Spencer, Thomas J; Liu-Chen, Lee-Yuan; Biederman, Joseph; Bhide, Pradeep G

    2011-01-01

    Methylphenidate (MPH) is one of the most commonly used and highly effective treatments for attention deficit hyperactivity disorder (ADHD) in children and adults. As the therapeutic use of MPH has increased, so has its abuse and illicit street-use. Yet, the mechanisms associated with development of MPH-associated abuse and dependence are not well understood making it difficult to develop methods to help its mitigation. As a result, many ADHD patients especially children and youth, that could benefit from MPH treatment do not receive it and risk lifelong disabilities associated with untreated ADHD. Therefore, understanding the mechanisms associated with development of MPH addiction and designing methods to prevent it assume high public health significance. Using a mouse model we show that supra-therapeutic doses of MPH produce rewarding effects (surrogate measure for addiction in humans) in a conditioned place preference paradigm and upregulate μ opioid receptor (MOPR) activity in the striatum and nucleus accumbens, brain regions associated with reward circuitry. Co-administration of naltrexone, a non-selective opioid receptor antagonist, prevents MPH-induced MOPR activation and the rewarding effects. The MPH-induced MOPR activation and rewarding effect require activation of the dopamine D1 but not the D2-receptor. These findings identify the MOPR as a potential target for attenuating rewarding effects of MPH and suggest that a formulation that combines naltrexone with MPH could be a useful pharmaceutical approach to alleviate abuse potential of MPH and other stimulants.

  3. Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor

    Energy Technology Data Exchange (ETDEWEB)

    Szallasi, A.; Blumberg, P.M. (National Institutes of Health, Bethesda, MD (USA))

    1990-01-01

    Capsaicin, the pungent constituent of chili peppers, represents the paradigm for the capsaicinoids or vanilloids, a family of compounds shown to stimulate and then desensitize specific subpopulations of sensory receptors, including C-polymodal nociceptors, A-delta mechanoheat nociceptors and warm receptors of the skin, as well as enteroceptors of thin afferent fibers. An exciting recent advance in the field has been the finding that resiniferatoxin (RTX), a naturally occurring diterpene containing a homovanillic acid ester, a key structural motif of capsaicin, functions as an ultrapotent capsaicin analog. For most of the responses characteristic of capsaicin, RTX is 100-10,000 fold more potent. Structure/activity analysis indicates, however, that RTX and related homovanillyl-diterpene esters display distinct spectra of activity. Specific ({sup 3}H)RTX binding provides the first direct proof for the existence of vanilloid receptors. We expect that the RTX class of vanilloids will promote rapid progress in understanding of vanilloid structure/activity requirements and mechanism.

  4. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

    Science.gov (United States)

    Ligresti, Alessia; De Petrocellis, Luciano; Di Marzo, Vincenzo

    2016-10-01

    Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ(9)-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.

  5. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    DEFF Research Database (Denmark)

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    by their inefficient functional expression in vitro. In the present study we have characterized and compared the pharmacological properties displayed by α6β4 and α6β4β3 nicotinic acetylcholine receptors assembled in tsA201 cells from the classical α6/α3 chimera (C1) and two novel α6/α3 chimeras (C6F223L and C16F223L...... should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these receptors....

  6. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Federica Finetti

    Full Text Available BACKGROUND: Blockade of Prostaglandin (PG E(2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1 gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β increased mPGES-1 expression, PGE(2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF and fibroblast growth factor-2 (FGF-2 expression. AF3485 reduced PGE(2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION: Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.

  7. Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels.

    Science.gov (United States)

    Lee, Moonhee; Jantaratnotai, Nattinee; McGeer, Edith; McLarnon, James G; McGeer, Patrick L

    2011-01-19

    Mg(2+) is a known antagonist of some Ca(2+) ion channels. It may therefore be able to counteract the toxic consequences of excessive Ca(2+) entry into immune-type cells. Here we examined the effects of Mg(2+) on inflammation induced by Ca(2+) influx into microglia and THP-1 cells following activation of purinergic receptors. Using tissue culture, an inflammatory response was induced by treatment with either the P2X7 purinergic receptor agonist 2',3'-[benzoyl-4-benzoyl]-ATP (BzATP) or the P2Y2,4 receptor agonist uridine 5'-triphosphate (UTP). Both microglia and THP-1 cells expressed the mRNAs for these receptors. Treatment produced a rapid rise in intracellular Ca(2+) which was significantly reduced by Mg(2+) or the calcium chelator BAPTA-AM. Purinergic receptor stimulation activated the intracellular inflammatory pathway P38 MAP kinase and NFκB. This caused release of TNFα, IL-6, nitrite ions and other materials that are neurotoxic to SH-SY5Y cells. These effects were all ameliorated by Mg(2+). They were also partly ameliorated by the P2X7R antagonists, oxATP and KN-62, the P2YR antagonist MRS2179, and the store operated Ca(2+) channel blocker, SK96365. These results indicate that elevated Mg(2+) is a broad spectrum inhibitor of Ca(2+) entry into microglia or THP-1 cells. Mg(2+) administration may be a strategy for reducing the damaging consequences Ca(2+) induced neuroinflammation in degenerative neurological disorders such as Alzheimer disease and Parkinson disease.

  8. Toll-like receptors in hepatocellular carcinoma: potential novel targets for pharmacological intervention.

    Science.gov (United States)

    Zou, Hai; Wang, Wu-Ke; Liu, Yan-Long; Braddock, Martin; Zheng, Ming-Hua; Huang, Dong-Sheng

    2016-09-01

    Toll-like receptors (TLRs) are expressed by a wide variety of cell types including immune cells. They play a crucial role in the inflammatory and host defense response against microorganisms, and triggering TLRs can mediate the activation of innate immunity. Furthermore, research suggests that various TLRs may function differently on different tumor cells. The change in TLR activity may elicit an anti-tumor activity in hepatocellular carcinoma (HCC) cells and may serve as a novel therapeutic target for HCC therapy. This review discusses the role of the TLR family in HCC and the underlying signaling pathway of TLRs as a form of pattern recognition receptor in mediating inflammation and HCC immunity responses. Agonists and antagonists of TLRs, which render TLRs as potential therapeutic targets, activate downstream molecules, subsequently causing HCC cell survival. The proliferation or protection against the development of HCC is also described. A series of studies have highlighted a crucial role of TLRs in HCC and consider TLR signaling pathways as potential therapeutic targets for HCC. However, the conclusions of these studies are in part paradoxical and controversial. Thus, it is necessary to extend further research to help determine the signaling pathways involved.

  9. Acute phenobarbital administration induces hyperalgesia: pharmacological evidence for the involvement of supraspinal GABA-A receptors

    Directory of Open Access Journals (Sweden)

    C.M. Yokoro

    2001-03-01

    Full Text Available The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.

  10. Hyperalgesic effect induced by barbiturates, midazolam and ethanol: pharmacological evidence for GABA-A receptor involvement

    Directory of Open Access Journals (Sweden)

    M.A.K.F. Tatsuo

    1997-02-01

    Full Text Available The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg, pentobarbital (17-33 mg/kg, and thiopental (7.5-30 mg/kg, of the benzodiazepine midazolam (10 mg/kg or of ethanol (0.4-1.6 g/kg administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP, which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

  11. Preclinical pharmacology of FL442, a novel nonsteroidal androgen receptor modulator.

    Science.gov (United States)

    Poutiainen, Pekka K; Huhtala, Tuulia; Jääskeläinen, Tiina; Petsalo, Aleksanteri; Küblbeck, Jenni; Kaikkonen, Sanna; Palvimo, Jorma J; Raunio, Hannu; Närvänen, Ale; Peräkylä, Mikael; Juvonen, Risto O; Honkakoski, Paavo; Laatikainen, Reino; Pulkkinen, Juha T

    2014-04-25

    The preclinical profiles of two most potent compounds of our recently published cycloalkane[d]isoxazole pharmacophore-based androgen receptor (AR) modulators, FL442 (4-(3a,4,5,6,7,7a-hexahydro-benzo[d]isoxazol-3-yl)-2-(trifluoromethyl)benzonitrile) and its nitro analog FL425 (3-(4-nitro-3-(trifluoromethyl)phenyl)-3a,4,5,6,7,7a-hexahydrobenzo[d]isoxazole), were explored to evaluate their druggability for the treatment of AR dependent prostate cancer. The studies revealed that both compounds are selective to AR over other closely related steroid hormone receptors and that FL442 exhibits equal inhibition efficiency towards the androgen-responsive LNCaP prostate cancer cell line as the most widely used antiandrogen bicalutamide and the more recently discovered enzalutamide. Notably, FL442 maintains antiandrogenic activity with enzalutamide-activated AR mutant F876L. In contrast to bicalutamide, FL442 does not stimulate the VCaP prostate cancer cells which express elevated levels of the AR. Distribution analyses showed that [(14)CN]FL442 accumulates strongly in the mouse prostate. In spite of its low plasma concentration obtained by intraperitoneal administration, FL442 significantly inhibited LNCaP xenograft tumor growth. These findings provide a preclinical proof for FL442 as a promising AR targeted candidate for a further optimization.

  12. Purinergic signalling in a latent stem cell niche of the rat spinal cord.

    Science.gov (United States)

    Marichal, Nicolás; Fabbiani, Gabriela; Trujillo-Cenóz, Omar; Russo, Raúl E

    2016-06-01

    The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca(2+) imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1-P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current-voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca(2+) waves in RG that were triggered by Ca(2+) influx and propagated via Ca(2+) release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca(2+) signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.

  13. cAMP biosensors applied in molecular pharmacological studies of G protein-coupled receptors

    DEFF Research Database (Denmark)

    Mathiesen, Jesper Mosolff; Vedel, Line; Bräuner-Osborne, Hans

    2013-01-01

    end-point assays for quantifying GPCR-mediated changes in intracellular cAMP levels exist. More recently, fluorescence resonance energy transfer (FRET)-based cAMP biosensors that can quantify intracellular cAMP levels in real time have been developed. These FRET-based cAMP biosensors have been used...... primarily in single cell FRET microscopy to monitor and visualize changes in cAMP upon GPCR activation. Here, a similar cAMP biosensor with a more efficient mCerulean/mCitrine FRET pair is described for use in the 384-well plate format. After cloning and expression in HEK293 cells, the biosensor...... is characterized in the 384-well plate format and used for measuring the signaling of the G(s)-coupled ß(2)-adrenergic receptor. The procedures described may be applied for other FRET-based biosensors in terms of characterization and conversion to the 384-well plate format....

  14. Cytisine derivatives as ligands for neuronal nicotine receptors and with various pharmacological activities.

    Science.gov (United States)

    Boido, Caterina Canu; Tasso, Bruno; Boido, Vito; Sparatore, Fabio

    2003-03-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) form a family of ACh-gated cation channels made up of different subtypes. They are widely distributed in peripheral and central nervous systems and are involved in complex cerebral processes as learning, memory, nociception, movement, etc. The possibility that subtype-selective ligands be used in the treatment of CNS disorders promoted the synthesis of a large number of structural analogues of nicotine and epibatidine, two very potent nAChR agonists. Pursuing our long standing research on the structural modification of quinolizidine alkaloids, we devoted our attention to cytisine, another very potent ligand for many nAChR subtypes. Thus a systematic structural modification of cytisine was undertaken in order to obtain compounds of potential therapeutic interest at peripheral as well as central level, with a particular concern for achieving nAChR subtype selective ligands. Up to the present more than 80 cytisine derivatives, mainly of N-substitution and a few by modifying the pyridone ring, have been prepared. The biological results, which concern so far about an half of the prepared compounds, indicate that the introduction of a nitro group in position 3 of the pyridone nucleus further enhances the high affinity of cytisine, while the introduction of substituents on the basic nitrogen, though reducing in different degrees the affinity, gives rise to compounds with a higher selectivity for central (alpha(4)beta(2)) versus gangliar (alpha(3)-containing) receptor subtype. On the other hand, the analgesic, antihypertensive and inotropic activities found in some N-substituted cytisines, represent an attractive starting point for the development of more active compounds.

  15. The role of purinergic signalling in exocrine pancreas

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund

    ATP is a fundamentally important molecule in intracellular processes, especially recognised as the molecular source of energy. ATP is however also released as a signal from most cell types, and extracellular signalling by ATP goes under the common name purinergic signalling and it includes releas...

  16. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all ...

  17. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties.

    Directory of Open Access Journals (Sweden)

    Morten Skøtt Thomsen

    Full Text Available The existence of α7β2 nicotinic acetylcholine receptors (nAChRs has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.

  18. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.

    Science.gov (United States)

    Pertwee, R G

    2008-01-01

    Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.

  19. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  20. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone.

    Directory of Open Access Journals (Sweden)

    Khalid S Mohammad

    Full Text Available During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-beta has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-beta signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-beta signaling on bone remain unclear. To examine the role of TGF-beta in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-beta type I receptor (TbetaRI kinase on bone mass, architecture and material properties. Inhibition of TbetaRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TbetaRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TbetaRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TbetaRI inhibitors may be effective in treating conditions of skeletal fragility.

  1. Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor.

    Science.gov (United States)

    Aldea, Marcos; Castillo, Mar; Mulet, José; Sala, Salvador; Criado, Manuel; Sala, Francisco

    2010-05-01

    Nicotinic acetylcholine receptors (nAChRs) transmit the agonist signal to the channel gate through a number of extracellular domains. We have previously shown that particular details of the process of coupling binding to gating could be quantitative and qualitatively different in muscle and neuronal type nAChRs. We have extended previous studies on homomeric alpha7 nAChRs to heteromeric alpha3beta4 nAChRs, by mutating residues located at loops 2 and 7, and M2-M3 linker of both alpha3 and beta4 subunits which, in order to monitor surface expression, were modified to bind alpha-bungarotoxin, and expressed in Xenopus oocytes. We show that, in general, mutations in these domains of both alpha3 and beta4 subunits affect the gating function, although the effects are slightly larger if they are inserted in the alpha3 subunit. However, the involvement of a previously reported intrasubunit interaction in coupling (Gln48-Ile130) seems to be restricted to the beta4 subunit. We also show that mutations at these domains, particularly loop 2 of the alpha3 subunit, change the pharmacological profile of alpha3beta4 nAChRs, decreasing nicotine's and increasing cytisine's effectiveness relative to acetylcholine. It is concluded that, unlike muscle nAChRs, the non-alpha subunits play a relevant role in the coupling process of neuronal alpha3beta4 nAChRs.

  2. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy.

    Science.gov (United States)

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-03-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease.

  3. In vivo pharmacological profile of S 38093, a novel histamine H3 receptor inverse agonist.

    Science.gov (United States)

    Panayi, Fany; Sors, Aurore; Bert, Lionel; Martin, Brigitte; Rollin-Jego, Gaelle; Billiras, Rodolphe; Carrié, Isabelle; Albinet, Karine; Danober, Laurence; Rogez, Nathalie; Thomas, Jean-Yves; Pira, Luigi; Bertaina-Anglade, Valérie; Lestage, Pierre

    2017-03-14

    S 38093, a novel histamine H3 receptor inverse agonist, was tested in a series of neurochemical and behavioral paradigms designed to evaluate its procognitive and arousal properties. In intracerebral microdialysis studies performed in rats, S 38093 dose-dependently increased histamine extracellular levels in the prefrontal cortex and facilitated cholinergic transmission in the prefrontal cortex and hippocampus of rats after acute and chronic administration (10mg/kg i.p.). Acute oral administration of S 38093 at 0.1mg/kg significantly improved spatial working memory in rats in the Morris water maze test. The compound also displayed cognition enhancing properties in the two-trial object recognition task in rats, in a natural forgetting paradigm at 0.3 and 1mg/kg p.o. and in a scopolamine-induced memory deficit situation at 3mg/kg p.o. The property of S 38093 to promote episodic memory was confirmed in a social recognition test in rats at 0.3 and 1mg/kg i.p. Arousal properties of S 38093 were assessed in freely moving rats by using electroencephalographic recordings: at 3 and 10mg/kg i.p., S 38093 significantly reduced slow wave sleep delta power and induced at the highest dose a delay in sleep latency. S 38093 at 10mg/kg p.o. also decreased the barbital-induced sleeping time in rats. Taken together these data indicate that S 38093, a novel H3 inverse agonist, displays cognition enhancing at low doses and arousal properties at higher doses in rodents.

  4. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy

    Science.gov (United States)

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease. PMID:26929355

  5. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    Science.gov (United States)

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals.

  6. Functional pharmacological evidence for EP2 and EP4 prostanoid receptors in immortalized human trabecular meshwork and non-pigmented ciliary epithelial cells.

    Science.gov (United States)

    Crider, J Y; Sharif, N A

    2001-02-01

    The aim of these studies was to characterize the molecular pharmacology of the prostanoid receptors positively coupled to stimulation of adenylyl cyclase activity in immortalized human trabecular meshwork (TM-3) cells and to compare these results with that of the receptors in immortalized human nonpigmented epithelial (NPE) cells. In general, the TM-3 and NPE cells showed a similar profile with respect to their responses to various prostaglandin (PG) receptor agonists. The rank order of potency (EC50; means +/- SEM) for these compounds in the TM-3 cells was: PGE2 (124 +/- 21 nM) > 13,14-dihydro-PGE1 (430 +/- 110 nM) = PGE1 (522 +/- 345 nM) > 11-deoxy-PGE1 (1063 +/- 118 nM) = 16,16-dimethyl-PGE2 (1776 +/- 460 nM) = butaprost (1920 +/- 527 nM) > PGD2 = PGI2 = PGF2alpha (n = 3 - 12). While the agonist profile indicated the presence of EP2 receptors, the effects of the EP4 receptor antagonists suggested the additional expression of EP4 receptors in both of these cells. Thus, the EP4 receptor antagonist, AH23848B, at a concentration of 30 microM, caused a dextral shift in the PGE2 concentration-response curves in both TM-3 and NPE cells coupled with a 20-28% decrease in the maximal response of PGE2, indicating apparent noncompetitive antagonism profiles. The antagonist potency of AH23848B in these cells was: Kb = 38.4 +/- 14.8 microM and 23.5 +/- 4.5 microM; -log Kb = 4.7. The other EP4 receptor antagonist, AH22921 (-log Kb = 4.1 - 4.7), was weaker than AH23848B. Taken together, these pharmacological studies have shown than TM-3 and NPE cells apparently contain functional EP2 and EP4 prostanoid receptors positively coupled to adenylyl cyclase.

  7. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Directory of Open Access Journals (Sweden)

    Claudia Röser

    Full Text Available Secretion in blowfly (Calliphora vicina salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT, which activates both inositol 1,4,5-trisphosphate (InsP(3/Ca(2+ and cyclic adenosine 3',5'-monophosphate (cAMP signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7 that share high similarity with mammalian 5-HT(2 and 5-HT(7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+] in a dose-dependent manner (EC(50 = 24 nM. In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i (EC(50 = 4 nM. We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α or Cv5-HT(7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM activates only the Cv5-HT(2α receptor, 5-carboxamidotryptamine (300 nM activates only the Cv5-HT(7 receptor, and clozapine (1 µM antagonizes the effects of 5-HT via Cv5-HT(7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+- and cAMP-signalling cascades.

  8. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    Directory of Open Access Journals (Sweden)

    Robert A Volkmann

    Full Text Available GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenylsulfonamidomethyl-N-((2-methylthiazol-5-ylmethylpyrazine-2-carboxamide and MPX-007 (5-(((3-fluoro-4-fluorophenylsulfonamidomethyl-N-((2-methylthiazol-5-ylmethylmethylpyrazine-2-carboxamide. MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  9. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    Science.gov (United States)

    Volkmann, Robert A; Fanger, Christopher M; Anderson, David R; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B; Fagiolini, Michela; Menniti, Frank S

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  10. Pharmacology, pharmacokinetics and metabolism of the dopamine receptor agonist 5-hydroxy-6-methyl-2-di-n-propylaminotetralin (DK-118) in the cat

    Energy Technology Data Exchange (ETDEWEB)

    Koons, J.C.

    1985-01-01

    The dopamine receptor agonist 5-hydroxy-6-methyl-2-di-n-propylaminotetralin (DK-118) lowers blood pressure, heart rat and inhibits tachycardia induced in cats by electrical stimulation of sympathetic nerves innervating the heart. DK-118, unlike most of its chemically related dopaminergic analogs, exhibits a slow onset of activity suggesting that one or more metabolites of the drug may be responsible for its pharmacologic effects. The purpose of the work described in this thesis was to gain information regarding the possible bioactivation of DK-118 in cats. In one series of experiments, cats were pretreated with inhibitors of drug metabolism, metyrapone or SKF 525-A, and alterations of the pharmacologic effects of DK-118 determined. A high-performance liquid chromatography assay-using electrochemical detection was developed to quantify urine and plasma concentrations of DK-118 in control, metyrapone pretreated and SKF 525-A pretreated cats. Urinary metabolites of (/sup 14/C)DK-118 were identified employing HPLC, GC/MS and FAB/MS. Pharmacologic activity and receptor binding of selected metabolites were determined. Data presented in this thesis are consistent with the hypothesis that metabolites contribute to some of the pharmacologic effects of DK-118.

  11. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies?

    Science.gov (United States)

    Acsai, Károly; Ördög, Balázs; Varró, András; Nánási, Péter P

    2016-05-15

    Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.

  12. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    OpenAIRE

    Katrin M Hoffmann; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA r...

  13. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia models.

    Science.gov (United States)

    Sadashiva, C T; Chandra, J N Narendra Sharath; Kavitha, C V; Thimmegowda, A; Subhash, M N; Rangappa, Kanchugarakoppal S

    2009-12-01

    Earlier we have reported the effect of arecoline thiazolidinone and morpholino arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia models. To elucidate further our SAR study on the chemistry and muscarinic receptor binding efficacy, a series of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues 6(a-m) were designed and synthesized from 3-pyridine carboxaldehyde by reacting with different amines in the presence of gamma-ferrite as catalyst and subjected to in vitro muscarinic receptor binding studies using male Wistar rat brain membrane homogenate and extended to in vivo pharmacological evaluation of memory and learning in male Wistar rats. Derivative 6j having diphenylamine moiety attached to nitrogen of thiazolidinone showed significant affinity for the M1 receptor binding.

  14. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility.

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-02-01

    Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. © 2013 The British Pharmacological Society.

  15. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.

    Science.gov (United States)

    Löscher, W; Lehmann, H; Behl, B; Seemann, D; Teschendorf, H J; Hofmann, H P; Lubisch, W; Höger, T; Lemaire, H G; Gross, G

    1999-01-01

    Antagonists at the ionotropic non-NMDA [AMPA (amino-methyl proprionic acid)/kainate] type of glutamate receptors have been suggested to possess several advantages compared to NMDA (N-methyl-D-aspartate) receptor antagonists, particularly in terms of risk/benefit ratio, but the non-NMDA receptor antagonists available so far have not fulfilled this promise. From a large series of pyrrolyl-quinoxalinedione derivatives, we selected six new competitive non-NMDA receptor antagonists. The basis of selection was high potency and selectivity for AMPA and/or kainate receptors, high in vivo potency after systemic administration, and an acceptable ratio between neuroprotective or anticonvulsant effects and adverse effects. Pharmacological characteristics of these novel compounds are described in this study with special emphasis on their effects in the kindling model of temporal lobe epilepsy, the most common type of epilepsy in humans. In most experiments, NBQX and the major antiepileptic drug valproate were used for comparison with the novel compounds. The novel non-NMDA receptor antagonists markedly differed in their AMPA and kainate receptor affinities from NBQX. Thus, while NBQX essentially did not bind to kainate receptors at relevant concentrations, several of the novel compounds exhibited affinity to rat brain kainate receptors or recombinant kainate receptor subtypes in addition to AMPA receptors. One compound, LU 97175, bound to native high affinity kainate receptors and rat GluR5-GluR7 subunits, i.e. low affinity kainate binding sites, with much higher affinities than to AMPA receptors. All compounds potently blocked AMPA-induced cell death in vitro and, except LU 97175, AMPA-induced convulsions in vivo. In the kindling model, compounds with a high affinity for GluR7 (LU 97175) or compounds (LU 115455, LU 136541) which potently bind to AMPA receptors and low affinity kainate receptor subunits were potent anticonvulsants in the kindling model, whereas the AMPA

  16. Determination of Adenosine A1 Receptor Agonist and Antagonist Pharmacology Using Saccharomyces cerevisiae: Implications for Ligand Screening and Functional Selectivity

    Science.gov (United States)

    Stewart, Gregory D.; Valant, Celine; Dowell, Simon J.; Mijaljica, Dalibor; Devenish, Rodney J.; Scammells, Peter J.; Sexton, Patrick M.

    2009-01-01

    The budding yeast, Saccharomyces cerevisiae, is a convenient system for coupling heterologous G protein-coupled receptors (GPCRs) to the pheromone response pathway to facilitate empirical ligand screening and/or GPCR mutagenesis studies. However, few studies have applied this system to define GPCR-G protein-coupling preferences and furnish information on ligand affinities, efficacies, and functional selectivity. We thus used different S. cerevisiae strains, each expressing a specific human Gα/yeast Gpa1 protein chimera, and determined the pharmacology of various ligands of the coexpressed human adenosine A1 receptor. These assays, in conjunction with the application of quantitative models of agonism and antagonism, revealed that (−)-N6-(2-phenylisopropyl)adenosine was a high-efficacy agonist that selectively coupled to Gpa/1Gαo, Gpa1/Gαi1/2, and Gpa1/Gαi3, whereas the novel compound, 5′-deoxy-N6-(endo-norborn-2-yl)-5′-(2-fluorophenylthio)adenosine (VCP-189), was a lower-efficacy agonist that selectively coupled to Gpa1/Gαi proteins; the latter finding suggested that VCP-189 might be functionally selective. The affinity of the antagonist, 8-cyclopentyl-1,3-dipropylxanthine, was also determined at the various strains. Subsequent experiments performed in mammalian Chinese hamster ovary cells monitoring cAMP formation/inhibition, intracellular calcium mobilization, phosphorylation of extracellular signal-regulated kinase 1 and 2 or 35S-labeled guanosine 5′-(γ-thio)triphosphate binding, were in general agreement with the yeast data regarding agonist efficacy estimation and antagonist affinity estimation, but revealed that the apparent functional selectivity of VCP-189 could be explained by differences in stimulus-response coupling between yeast and mammalian cells. Our results suggest that this yeast system is a useful tool for quantifying ligand affinity and relative efficacy, but it may lack the sensitivity required to detect functional selectivity of

  17. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity.

    Science.gov (United States)

    Deaglio, Silvia; Robson, Simon C

    2011-01-01

    Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.

  18. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  19. Purinergic Receptors in Quiescence and Localization of Leukemic Stem Cells

    Science.gov (United States)

    2012-05-01

    LSK and SLAM LSK cells following radiation (6 Gy, TBI). NAC treatment almost completely abolished the p38 M APK activation. While we were unable to...triggered the activation of both p38 M APK and JNK pathway in KG-1 leukemia cells starting as early as 5 min after UDP-Glc treatment. For JNK proteins...investigate whether UDP-Glc induces the activation of p38 M APK and JNK in primary human leukemia cells, we transplanted human acute leukemia samples

  20. Isolation of the serotoninergic 5-HT4(e) receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines

    Science.gov (United States)

    Mialet, Jeanne; Berque-Bestel, Isabelle; Eftekhari, Pierre; Gastineau, Monique; Giner, Mireille; Dahmoune, Yamina; Donzeau-Gouge, Patrick; Hoebeke, Johan; Langlois, Michel; Sicsic, Sames; Fischmeister, Rodolphe; Lezoualc'h, Frank

    2000-01-01

    RT–PCR technique was used to clone the human 5-HT4(e) receptor (h5-HT4(e)) from heart atrium. We showed that this h5-HT4(e) receptor splice variant is restricted to brain and heart atrium. Recombinant h5-HT4(e) receptor was stably expressed in CHO and C6-glial cell lines at 347 and 88 fmol mg−1 protein, respectively. Expression of h5-HT4(e) receptors at the cell membrane was confirmed by immunoblotting. The receptor binding profile, determined by competition with [3H]-GR113808 of a number of 5-HT4 ligands, was consistent with that previously reported for other 5-HT4 receptor isoforms. Surprisingly, we found that the rank order of potencies (EC50) of 5-HT4 agonists obtained from adenylyl cyclase functional assays was inversely correlated to their rank order of affinities (Ki) obtained from binding assays. Furthermore, EC50 values for 5-HT, renzapride and cisapride were 2 fold lower in C6-glial cells than in CHO cells. ML10302 and renzapride behaved like partial agonists on the h5-HT4(e) receptor. These results are in agreement with the reported low efficacy of the these two compounds on L-type Ca2+ currents and myocyte contractility in human atrium. A constitutive activity of the h5-HT4(e) receptor was observed in CHO cells in the absence of any 5-HT4 ligand and two 5-HT4 antagonists, GR113808 and ML10375, behaved as inverse agonists. These data show that the h5-HT4(e) receptor has a pharmacological profile which is close to the native h5-HT4 receptor in human atrium with a functional potency which is dependent on the cellular context in which the receptor is expressed. PMID:10683202

  1. Purinergic Inhibition of ENaC Produces Aldosterone Escape

    OpenAIRE

    Stockand, James D.; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A.; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-01-01

    The mechanisms underlying “aldosterone escape,” which refers to the excretion of sodium (Na+) during high Na+ intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na+ channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na+ intake in mice. Physiologic concentrat...

  2. Short- and long-term (trophic) purinergic signalling.

    Science.gov (United States)

    Burnstock, Geoffrey

    2016-08-05

    There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.

  3. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Carlos Eduardo, E-mail: carlos.leite@pucrs.br [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-003 (Brazil); Maboni, Lucas de Oliveira [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Cruz, Fernanda Fernandes [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Rosemberg, Denis Broock [Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, CEP 89809-000 (Brazil); and others

    2013-11-01

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE{sub 2}. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE{sub 2} occurs, followed by an increase of MPO (as a consequence

  4. Genetic and pharmacological evidence that 5-HT2C receptor activation, but not inhibition, affects motivation to feed under a progressive ratio schedule of reinforcement.

    Science.gov (United States)

    Fletcher, Paul J; Sinyard, Judy; Higgins, Guy A

    2010-11-01

    Previous work showed that 5-HT(2C) receptor agonists reduce cocaine self-administration on a progressive ratio (PR) schedule of reinforcement, whereas a 5-HT(2C) receptor antagonist enhances responding for cocaine. The present experiments examined the effects of Ro60-0175 (5-HT(2C) agonist) and SB242084 (5-HT(2C) receptor antagonist) in rats on responding for food on a PR schedule; responding was also determined in mice lacking functional 5-HT(2C) receptors. In food-restricted rats, lever pressing reinforced by regular food pellets or sucrose pellets was reduced by Ro60-0175. This effect was blocked by SB242084, and was absent in mice lacking functional 5-HT(2C) receptors. A number of studies examined the effects of SB242084 on responding for food under a variety of conditions. These included manipulation of food type (regular pellets versus sucrose pellets), nutritional status of the animals (food restriction versus no restriction), and rate of progression of the increase in ratio requirements on the PR schedule. In all cases there was no evidence of enhanced responding for food by SB242084. Mice lacking functional 5-HT(2C) receptors did not differ from wildtype mice in responding for food in either food-restricted or non-restricted states. The effects of Ro60-0175 are consistent with its effects on food consumption and motivation to self-administer cocaine. Unlike their effects on cocaine self-administration, pharmacological blockade of 5-HT(2C) receptors, and genetic disruption of 5-HT(2C) receptor function do not alter the motivation to respond for food. Because the 5-HT(2C) receptor exerts a modulatory effect on dopamine function, the differential effects of reduced 5-HT(2C) receptor mediated transmission on responding for food versus cocaine may relate to a differential role of this neurotransmitter in mediating these two behaviours.

  5. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson's disease.

    Science.gov (United States)

    Jörg, Manuela; May, Lauren T; Mak, Frankie S; Lee, Kiew Ching K; Miller, Neil D; Scammells, Peter J; Capuano, Ben

    2015-01-22

    A relatively new strategy in drug discovery is the development of dual acting ligands. These molecules are potentially able to interact at two orthosteric binding sites of a heterodimer simultaneously, possibly resulting in enhanced subtype selectivity, higher affinity, enhanced or modified physiological response, and reduced reliance on multiple drug administration regimens. In this study, we have successfully synthesized a series of classical heterobivalent ligands as well as a series of more integrated and "drug-like" dual acting molecules, incorporating ropinirole as a dopamine D2 receptor agonist and ZM 241385 as an adenosine A2A receptor antagonist. The best compounds of our series maintained the potency of the original pharmacophores at both receptors (adenosine A2A and dopamine D2). In addition, the integrated dual acting ligands also showed promising results in preliminary blood-brain barrier permeability tests, whereas the classical heterobivalent ligands are potentially more suited as pharmacological tools.

  6. Safety, pharmacokinetics and pharmacological effects of the selective androgen receptor modulator, GSK2881078, in healthy men and postmenopausal women.

    Science.gov (United States)

    Clark, Richard V; Walker, Ann C; Andrews, Susan; Turnbull, Philip; Wald, Jeffrey A; Magee, Mindy H

    2017-10-01

    Selective androgen receptor modulators (SARMs) induce anabolic effects on muscle without the adverse effects of androgenic steroids. In this first-in-human study, we report the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics of the SARM GSK2881078. In Part A, healthy young men (n = 10) received a single dose of study drug (0 mg, 0.05 mg, 0.1 mg, 0.2 mg GSK2881078 or matching-placebo). In Part B, repeat-dose cohorts in men (n = 65) were 0.05 mg, 0.2 mg then 0.08 mg, 0.24 mg, 0.48 mg, 0.75 mg, or placebo; in women (n = 24) they were 0.24 mg, 0.35 mg, or placebo (7 days for 0.5 mg, 14 days for other doses). PK analysis showed dose-proportional increases in exposure and a long >100-h half-life. No significant effects on vital signs, electrocardiograms, cardiac telemetry or standard clinical laboratory studies were observed. A dose-response effect was observed on lowering both high-density lipoprotein and sex hormone-binding globulin. In females at 0.35 mg, differences from placebo were -0.518 (95% confidence interval: -0.703, -0.334) mmol l(-1) and -39.1 (-48.5, -29.7) nmol l(-1) , respectively. Women showed greater sensitivity to these parameters at lower doses than men. Drug-related adverse events (AEs) were mild. One woman developed a drug rash and was withdrawn. Two men had elevated creatine phosphokinase after physical exertion during follow-up. A serious AE occurred in a subject on placebo. These data demonstrate pharmacodynamic effects with acceptable tolerability and support further clinical evaluation of this SARM. © 2017 The British Pharmacological Society.

  7. Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury.

    Science.gov (United States)

    Cirillo, Giovanni; Colangelo, Anna Maria; Berbenni, Miluscia; Ippolito, Vita Maria; De Luca, Ciro; Verdesca, Francesco; Savarese, Leonilde; Alberghina, Lilia; Maggio, Nicola; Papa, Michele

    2015-12-01

    Modulation of spinal reactive gliosis following peripheral nerve injury (PNI) is a promising strategy to restore synaptic homeostasis. Oxidized ATP (OxATP), a nonselective antagonist of purinergic P2X receptors, was found to recover a neuropathic behavior following PNI. We investigated the role of intraperitoneal (i.p.) OxATP treatment in restoring the expression of neuronal and glial markers in the mouse spinal cord after sciatic spared nerve injury (SNI). Using in vivo two-photon microscopy, we imaged Ca(2+) transients in neurons and astrocytes of the dorsal horn of spinal cord at rest and upon right hind paw electrical stimulation in sham, SNI, and OxATP-treated mice. Neuropathic behavior was investigated by von Frey and thermal plantar test. Glial [glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1)] and GABAergic [vesicular GABA transporter (vGAT) and glutamic acid decarboxylase 65/76 (GAD65/67)] markers and glial [glutamate transporter (GLT1) and GLAST] and neuronal amino acid [EAAC1, vesicular glutamate transporter 1 (vGLUT1)] transporters have been evaluated. In SNI mice, we found (i) increased glial response, (ii) decreased glial amino acid transporters, and (iii) increased levels of neuronal amino acid transporters, and (iv) in vivo analysis of spinal neurons and astrocytes showed a persistent increase of Ca(2+) levels. OxATP administration reduced glial activation, modulated the expression of glial and neuronal glutamate/GABA transporters, restored neuronal and astrocytic Ca(2+) levels, and prevented neuropathic behavior. In vitro studies validated that OxATP (i) reduced levels of reactive oxygen species (ROS), (ii) reduced astrocytic proliferation, (iii) increase vGLUT expression. All together, these data support the correlation between reactive gliosis and perturbation of the spinal synaptic homeostasis and the role played by the purinergic system in modulating spinal plasticity following PNI.

  8. Subcellular propagation of calcium waves in Müller glia does not require autocrine/paracrine purinergic signaling.

    Science.gov (United States)

    Phuong, Tam T T; Yarishkin, Oleg; Križaj, David

    2016-09-02

    The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca(2+) waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca(2+) wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca(2+) waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.

  9. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1-like dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Jason M Meyer

    2012-01-01

    Full Text Available BACKGROUND: Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS: We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2 from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1-like (Gα(s-coupled receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM. Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50 = 5.8±1.5 nM and norepinephrine (EC(50 = 760±180 nM, while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1 dopamine receptor (hD(1 revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2

  10. Purinergic mechanosensory transduction and visceral pain

    Directory of Open Access Journals (Sweden)

    Burnstock Geoffrey

    2009-11-01

    Full Text Available Abstract In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  11. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2.

    Science.gov (United States)

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-12-15

    Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell-matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca(2+) signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions.

  12. Allosteric modulation of ATP-gated P2X receptor channels

    Science.gov (United States)

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  13. The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration.

    Science.gov (United States)

    Färber, Katrin; Markworth, Sören; Pannasch, Ulrike; Nolte, Christiane; Prinz, Vincent; Kronenberg, Golo; Gertz, Karen; Endres, Matthias; Bechmann, Ingo; Enjyoji, Keiichi; Robson, Simon C; Kettenmann, Helmut

    2008-02-01

    Microglia is activated by brain injury. They migrate in response to ATP and although adenosine alone has no effect on wild type microglial migration, we show that inhibition of adenosine receptors impedes ATP triggered migration. CD39 is the dominant cellular ectonucleotidase that degrades nucleotides to nucleosides, including adenosine. Importantly, ATP fails to stimulate P2 receptor mediated migration in cd39(-/-) microglia. However, the effects of ATP on migration in cd39(-/-) microglia can be restored by co-stimulation with adenosine or by addition of a soluble ectonucleotidase. We also tested the impact of cd39-deletion in a model of ischemia, in an entorhinal cortex lesion and in the facial nucleus after facial nerve lesion. The accumulation of microglia at the pathological sites was markedly decreased in cd39(-/-) animals. We conclude that the co-stimulation of purinergic and adenosine receptors is a requirement for microglial migration and that the expression of cd39 controls the ATP/adenosine balance.

  14. Dopaminergic receptor agents and the basal ganglia : pharmacological properties and interactions with the GABA-ergic system

    NARCIS (Netherlands)

    Timmerman, Wigerline

    1992-01-01

    In the present series of studies, attention was focussed particularly on dopaminergic D2 receptor compounds, with emphasis on the enantiomers of the potent and selective dopamine D2 receptor agonist N-0437. Drugs that display activity at D2 receptors are of great interest as potentially new therapeu

  15. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).

    Science.gov (United States)

    Kampa, Marilena; Notas, George; Pelekanou, Vassiliki; Troullinaki, Maria; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Lavrentaki, Katerina; Castanas, Elias

    2012-08-01

    The complexity of estrogen actions mainly relies to the presence of different identified receptors (ERα, ERβ, their isoforms, and GPR30/GPER) and their discrete cellular distribution. Depending on the localization of the receptor that mediates estrogen effects, nuclear and extra-nuclear actions have been described. The latter can trigger a number of signaling events leading also to transcriptional modifications. In an attempt to clarify the nature of the receptor(s) involved in the membrane initiated effect of estrogens on gene expression, we performed a whole transcriptome analysis of breast cancer cell lines with different receptor profiles (T47D, MCF7, MDA-MB-231, SK-BR-3). A pharmacological approach was conducted with the use of estradiol (E(2)) or membrane-impermeable E(2)-BSA in the absence or presence of a specific ERα-β or GPR30/GPER antagonist. Our results clearly show that in addition to the ERα isoforms and/or GPR30/GPER that mainly mediate the transcriptional effect of E(2)-BSA, there is a specific transcriptional signature (found in T47D and MCF-7 cells) suggesting the presence of an unidentified membrane ER element (ERx). Analysis of its signature and phenotypic verification revealed that important cell function such as apoptosis, transcriptional regulation, and growth factor signaling are associated with ERx. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  17. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    Science.gov (United States)

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  18. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    Directory of Open Access Journals (Sweden)

    Jonathan eShelton

    2015-01-01

    Full Text Available Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6 induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg. Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15 or advance (CT22 wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light-induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  19. The Chemistry and Pharmacology of Anatoxin-a and Related Homotropanes with respect to Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Timothy Gallagher

    2006-04-01

    Full Text Available Abstract: This chapter covers the chemistry and nicotinic pharmacology of naturally occurring homotropane alkaloids, with an emphasis of anatoxin-a. In addition to anatoxin-a, homoanatoxin and pinnamine, as well as the major classes of synthetic derivatives of anatoxin-a including UB-165, are discussed.

  20. The 5-HT3 receptor antagonists ICS 205-930 and GR38032F, putative anxiolytic drugs, differ from diazepam in their pharmacological profile.

    Science.gov (United States)

    Papp, M; Przegalinski, E

    1989-01-01

    The pharmacological profile of the two 5-HT(3) (5-hydroxytryptamine) receptor antagonists, the putative anxiolytics ICS 205-930 and GR38032F was compared with that of diazepam in four standard behavioural tests in rats. All the investigated drugs induced an anxiolytic effect in the passive avoidance test, having reduced the latency to re-enter the chamber previously associated with an inescapable footshock, and increased the time spent in that chamber. On the basis of the lowest effective dose, both ICS 205-930 and GR38032F were about 20 times more potent than diazepam, though the anxiolytic activity of either 5- HT(3) receptor antagonist was confined to a narrow dose range (ICS 205-930: 93.7-187.5 μg/ kg, GR38032F: 125-375 μg/kg), their higher doses having been ineffective. The anxiolytic effect of diazepam, but not of ICS 205-930, was abolished by flumazenil. In contrast to diazepam, neither ICS 205-930 nor GR38032F-both given in doses up to 20 mg/kg-showed any activity in the pentylenetetrazol-induced seizures, open field, and rota-rod tests. These results suggest that the 5-HT(3) receptor antagonists may represent a new class of anxiolytic drugs devoid of anticonvulsant, sedative or muscle-relaxant properties, and that their anxi olytic activity is not mediated by benzodiazepine receptors.

  1. Design, synthesis, pharmacological evaluation and molecular dynamics of β-amino acids morphan-derivatives as novel ligands for opioid receptors.

    Science.gov (United States)

    Nieto, Carlos T; Gonzalez-Nunez, Veronica; Rodríguez, Raquel E; Diez, David; Garrido, Narciso M

    2015-08-28

    Structure-Activity Relationship (SAR) is a current approach in the design of new pharmacological agents. We previously reported the synthesis of a novel analogue of morphine, a 2-azabicyclo[3.3.1]nonane, which contains a β-amino acid. This bicyclic core exhibits two distinctive chemical handles for further elaboration, which allowed us to create a library of morphan-containing compounds by in silico molecular docking on the μ opioid receptor. Lead candidates were synthesized and biological tests were performed to evaluate their ability to bind to opioid receptors. The four top compounds, three phenyl esters and an N-phenylethyl morphan derivative, were selected for Molecular Dynamics simulations to get topological and thermodynamic information. Aromatic morphan derivatives displayed an interacting domain which fits into a hydrophobic cleft and the effect of the substituents in their affinity was explained by the differences in the calculated binding free energies. Our results indicate that the 3D arrangement of the aromatic ring in the morphine derivatives is not a key issue for a specific ligand - μ receptor interaction. Thus, these morphan derivatives represent a new class of opioid receptor ligands which may be of great use in the clinical practice.

  2. Pharmacological properties of homomeric and heteromeric GluR1o and GluR3o receptors

    DEFF Research Database (Denmark)

    Nielsen, B S; Banke, T G; Schousboe, A

    1998-01-01

    Homomeric and heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits GluR1o and GluR3o were expressed in Spodoptera frugiperda (Sf9) insect cells. Membranes containing the recombinant receptors showed a doublet of bands of the expected size (99-109 kDa) after...

  3. Pharmacological properties of cloned muscarinic receptors expressed in A9 L cells; comparison with in vitro models

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Buttini, M.

    1991-01-01

    The effects of a series of muscarinic agonists and antagonists at cloned m1 and m3 muscarinic receptors expressed in mouse fibroblast A9 L cells have been compared with their effects in in vitro models of M1(rat superior cervical ganglion) and M3(guinea-pig ileum) muscarinic receptors. A good

  4. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    NARCIS (Netherlands)

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using ph

  5. Pharmacological properties of cloned muscarinic receptors expressed in A9 L cells; comparison with in vitro models

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Buttini, M.

    1991-01-01

    The effects of a series of muscarinic agonists and antagonists at cloned m1 and m3 muscarinic receptors expressed in mouse fibroblast A9 L cells have been compared with their effects in in vitro models of M1(rat superior cervical ganglion) and M3(guinea-pig ileum) muscarinic receptors. A good correl

  6. Trichomoniasis immunity and the involvement of the purinergic signaling

    Directory of Open Access Journals (Sweden)

    Camila Braz Menezes

    2016-08-01

    Full Text Available Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.

  7. Synthesis of novel triplets with a 1,3,5-trioxazatriquinane skeleton and their pharmacologies for opioid receptors.

    Science.gov (United States)

    Nagase, Hiroshi; Kutsumura, Noriki

    2015-06-01

    We designed and synthesized novel triplet molecules with 1,3,5-trioxazatriquinane skeletons. One class comprises double-capped triplets with a morphinan skeleton; the other class comprises simple phenol derivatives with phenethylamine moieties. One compound with m-phenolic hydroxyl group, called SYK-146, is a highly selective, potent agonist for the κ receptor, with activity nearly equivalent to that of U-50488H. The o-phenolic isomer of SYK-146, called SYK-524, showed potent but non-selective agonistic activity for the opioid receptors. We also added several simple phenol derivatives to a library of compounds that target opioid receptors, and they showed high hit rates for the receptor. This library might also be expected to show high hit rates for other receptors.

  8. Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists.

    Science.gov (United States)

    Woodward, R M; Polenzani, L; Miledi, R

    1993-04-01

    Poly(A)+ RNA from mammalian retina expresses bicuculline/baclofen-insensitive gamma-aminobutyric acid (GABA) receptors in Xenopus oocytes with properties similar to those of homooligomeric GABA rho 1 receptors. The pharmacological profile of these rho-like receptors was extended by measuring sensitivities to various GABAA and GABAB receptor ligands. For direct comparison the same compounds were also assayed with GABAA receptors expressed by rat brain RNA. The potency sequence for heterocyclic GABA analogues at the GABA rho-like receptors was GABA (1.3) > muscimol (2.3) > isoguvacine (100) (approximate EC50 in parentheses; all EC50 and Kb values given in microM). Both muscimol and isoguvacine were partial agonists at the rho-like receptors. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol (Kb congruent to 32), piperidine-4-sulfonic acid (Kb congruent to 85), and isonipecotic acid (Kb congruent to 1000) acted primarily as competitive antagonists, showing little or no activity as agonists. The sulfonic acid GABA analogue 3-aminopropanesulfonic acid was also a competitive antagonist (Kb congruent to 20). Conformationally restricted GABA analogues trans- and cis-4-aminocrotonic acid (TACA and CACA) were agonists at the rho-like receptors. TACA (EC50 congruent to 0.6) had twice the potency of GABA and was 125 times more potent than CACA (EC50 congruent to 75). Z-3-(Amidinothio)propenoic acid, an isothiouronium analogue of GABA, had little activity as an agonist but instead acted as a competitive antagonist (Kb congruent to 20). At concentrations of > 100 microM, bicuculline did have some weak competitive inhibitory effects on the GABA rho-like receptors (Kb congruent to 6000), but it was at least 5000 times more potent at GABAA receptors. Strychnine (Kb congruent to 70) and SR-95531 (Kb congruent to 35) also were competitive inhibitors of the rho-like receptors but were, respectively, 20 and 240 times more potent at GABAA receptors. The GABAB receptor ligands baclofen

  9. Pharmacological and ionic characterizations of the muscarinic receptors modulating (/sup 3/H)acetylcholine release from rat cortical synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, E.M.; Otero, D.H.

    1985-05-01

    The muscarinic receptors that modulate acetylcholine release from rat cortical synaptosomes were characterized with respect to sensitivity to drugs that act selectively at M1 or M2 receptor subtypes, as well as to changes in ionic strength and membrane potential. The modulatory receptors appear to be of the M2 type, since they are activated by carbachol, acetylcholine, methacholine, oxotremorine, and bethanechol, but not by pilocarpine, and are blocked by atropine, scopolamine, and gallamine (at high concentrations), but not by pirenzepine or dicyclomine. The ED50S for carbachol, acetylcholine, and oxotremorine are less than 10 microM, suggesting that the high affinity state of the receptor is functional. High ionic strength induced by raising the NaCl concentration has no effect on agonist (oxotremorine) potency, but increases the efficacy of this compound, which disagrees with receptor-binding studies. On the other hand, depolarization with either KCl or with veratridine (20 microM) reduces agonist potencies by approximately an order of magnitude, suggesting a potential mechanism for receptor regulation.

  10. Pharmacological characterization of the nociceptin/orphanin FQ receptor on ethanol-mediated motivational effects in infant and adolescent rats.

    Science.gov (United States)

    Miranda-Morales, Roberto Sebastián; Pautassi, Ricardo M

    2016-02-01

    Activation of nociceptin/orphanin FQ (NOP) receptors attenuates ethanol drinking and prevents relapse in adult rodents. In younger rodents (i.e., infant rats), activation of NOP receptors blocks ethanol-induced locomotor activation but does not attenuate ethanol intake. The aim of the present study was to extend the analysis of NOP modulation of ethanol's effects during early ontogeny. Aversive and anxiolytic effects of ethanol were measured in infant and adolescent rats via conditioned taste aversion and the light-dark box test; whereas ethanol-induced locomotor activity and ethanol intake was measured in adolescents only. Before these tests, infant rats were treated with the natural ligand of NOP receptors, nociceptin (0.0, 0.5 or 1.0 μg) and adolescent rats were treated with the specific agonist Ro 64-6198 (0.0, 0.1 or 0.3 mg/kg). The activation of NOP receptors attenuated ethanol-induced anxiolysis in adolescents only, and had no effect on ethanol's aversive effects. Administration of Ro 64-6198 blocked ethanol-induced locomotor activation but did not modify ethanol intake patterns. The attenuation of ethanol stimulating and anxiolytic effect by activation of NOP receptors indicates a modulatory role of this receptor on ethanol effects, which is expressed early in ontogeny.

  11. Pharmacological characterization of homobaclofen on wild type and mutant GABA(B)1b receptors coexpressed with the GABA(B)2 receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Madsen, Bo E.; Krogsgaard-Larsen, P

    2001-01-01

    Homobaclofen (5-amino-3-(4-chlorophenyl) pentanoic acid) is a homologue of the classical GABA(B) receptor agonist baclofen. In a recent study, the two enantiomers of this compound were tested in a GABA(B) receptor selective [3H]gamma-aminobutyric acid ([3H]GABA) binding assay using rat brain...

  12. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Zwart, Ruud; Ursu, Daniel;

    2015-01-01

    AChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293...... cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology...

  13. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

    Science.gov (United States)

    Wang, Lin-Lin; Zhao, Rui; Li, Jiao-Yong; Li, Shan-Shan; Liu, Min; Wang, Meng; Zhang, Meng-Zhou; Dong, Wen-Wen; Jiang, Shu-Kun; Zhang, Miao; Tian, Zhi-Ling; Liu, Chang-Sheng; Guan, Da-Wei

    2016-09-05

    Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.

  14. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  15. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  16. The Influence of Simulated Microgravity on Purinergic Signaling Is Different between Individual Culture and Endothelial and Smooth Muscle Cell Coculture

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-01-01

    Full Text Available Exposure to microgravity conditions causes cardiovascular deconditioning in astronauts during spaceflight. Until now, no specific drugs are available for countermeasure, since the underlying mechanism is largely unknown. Endothelial cells (ECs and smooth muscle cells (SMCs play key roles in various vascular functions, many of which are regulated by purinergic 2 (P2 receptors. However, their function in ECs and SMCs under microgravity conditions is still unclear. In this study, primary ECs and SMCs were isolated from bovine aorta and verified with specific markers. We show for the first time that the P2 receptor expression pattern is altered in ECs and SMCs after 24 h exposure to simulated microgravity using a clinostat. However, conditioned medium compensates this change in specific P2 receptors, for example, P2X7. Notably, P2 receptors such as P2X7 might be the important players during the paracrine interaction. Additionally, ECs and SMCs secreted different cytokines under simulated microgravity, leading into a pathogenic proliferation and migration. In conclusion, our data indicate P2 receptors might be important players responding to gravity changes in ECs and SMCs. Since some artificial P2 receptor ligands are applied as drugs, it is reasonable to assume that they might be promising candidates against cardiovascular deconditioning in the future.

  17. A Pharmacological Primer of Biased Agonism

    OpenAIRE

    Andresen, Bradley T.

    2011-01-01

    Biased agonism is one of the fastest growing topics in G protein-coupled receptor pharmacology; moreover, biased agonists are used in the clinic today: carvedilol (Coreg®) is a biased agonist of beta-adrenergic receptors. However, there is a general lack of understanding of biased agonism when compared to traditional pharmacological terminology. Therefore, this review is designed to provide a basic introduction to classical pharmacology as well as G protein-coupled receptor signal transductio...

  18. Optogenetic Evocation of Field Inhibitory Postsynaptic Potentials in Hippocampal Slices: A Simple and Reliable Approach for Studying Pharmacological Effects on GABAA and GABAB Receptor-Mediated Neurotransmission

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2014-01-01

    Full Text Available The GABAergic system is the main source of inhibition in the mammalian brain. Consequently, much effort is still made to develop new modulators of GABAergic synaptic transmission. In contrast to glutamatergic postsynaptic potentials (PSPs, accurate monitoring of GABA receptor-mediated PSPs (GABAR-PSPs and their pharmacological modulation in brain tissue invariably requires the use of intracellular recording techniques. However, these techniques are expensive, time- and labor-consuming, and, in case of the frequently employed whole-cell patch-clamp configuration, impact on intracellular ion concentrations, signaling cascades, and pH buffering systems. Here, we describe a novel approach to circumvent these drawbacks. In particular, we demonstrate in mouse hippocampal slices that selective optogenetic activation of interneurons leads to prominent field inhibitory GABAAR- and GABABR-PSPs in area CA1 which are easily and reliably detectable by a single extracellular recording electrode. The field PSPs exhibit typical temporal and pharmacological characteristics, display pronounced paired-pulse depression, and remain stable over many consecutive evocations. Additionally validating the methodological value of this approach, we further show that the neuroactive steroid 5-THDOC (5 µM shifts the inhibitory GABAAR-PSPs towards excitatory ones.

  19. Identification and pharmacological characterization of a series of new 1H-4-substituted-imidazoyl histamine H3 receptor ligands.

    Science.gov (United States)

    Yates, S L; Phillips, J G; Gregory, R; Pawlowski, G P; Fadnis, L; Khan, M A; Ali, S M; Tedford, C E

    1999-05-01

    A new series of 1H-4-substituted imidazole compounds were synthesized and identified as potent and selective histamine (HA) H3 receptor ligands. These ligands establish that HA H3 antagonists exhibit stereoselective and conformational preferences in their binding to the HA H3 receptor. Structure-activity relationships were determined in vitro by HA H3 receptor-binding affinities using [3H]Nalpha-methylhistamine and rat cerebral cortical tissue homogenates. Several derivatives containing olefin, amide, and acetylene functional groups were identified as potent HA H3 receptor ligands. In the olefin series, GT-2227 (4-(6-cyclohexylhex-cis-3-enyl)imidazole) was identified as a potent HA H3 receptor ligand with a Ki of 4.2 +/- 0.6 nM, while the trans isomer (GT-2228) displayed a reduced potency (Ki = 15.2 +/- 2.4 nM). GT-2227 was also found to have excellent central nervous system penetration in an ex vivo binding paradigm (ED50 = 0.7 mg/kg i.p.). In the acetylene series, GT-2260 and GT-2286 both exhibited high affinity (Ki = 2.9 +/- 0.2 and 0.95 +/- 0.3 nM) and excellent central nervous system penetration profiles (ED50 = 0.43 and 0.48 mg/kg i.p., respectively). As a prototype for the series, GT-2227 showed high affinity for the human HA H3 receptor (3.2 nM) and minimal affinity for the human HA H1 (Ki = 13,407 +/- 540 nM) and H2 (Ki = 4,469 +/- 564 nM) receptor subtypes. GT-2227 also showed good selectivity for the HA H3 receptor over a broad spectrum of other neurotransmitter receptors (IC50 >/= 1 microM). Furthermore, GT-2227 improved acquisition in a cognitive paradigm without behavioral excitation or effect on spontaneous locomotor activity. In summary, the present studies demonstrate the development of novel HA H3-selective ligands, and lend support for the use of such agents in the treatment of disorders associated with cognitive or attentional deficits.

  20. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    Science.gov (United States)

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  1. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory.

    Science.gov (United States)

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.

  2. Chemistry, pharmacology, and behavioral studies identify chiral cyclopropanes as selective α4β2-nicotinic acetylcholine receptor partial agonists exhibiting an antidepressant profile. Part II.

    Science.gov (United States)

    Zhang, Han-Kun; Yu, Li-Fang; Eaton, J Brek; Whiteaker, Paul; Onajole, Oluseye K; Hanania, Taleen; Brunner, Daniela; Lukas, Ronald J; Kozikowski, Alan P

    2013-07-11

    A 3-pyridyl ether scaffold bearing a cyclopropane-containing side chain was recently identified in our efforts to create novel antidepressants that act as partial agonists at α4β2-nicotinic acetylcholine receptors. In this study, a systematic structure-activity relationship investigation was carried out on both the azetidine moiety present in compound 3 and its right-hand side chain, thereby discovering a variety of novel nicotinic ligands that retain bioactivity and feature improved chemical stability. The most promising compounds, 24, 26, and 30, demonstrated comparable or enhanced pharmacological profiles compared to the parent compound 4, and the N-methylpyrrolidine analogue 26 also exhibited robust antidepressant-like efficacy in the mouse forced swim test. The favorable ADMET profile and chemical stability of 26 further indicate this compound to be a promising lead as a drug candidate warranting further advancement down the drug discovery pipeline.

  3. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans.

    Science.gov (United States)

    Rabiner, E A; Beaver, J; Makwana, A; Searle, G; Long, C; Nathan, P J; Newbould, R D; Howard, J; Miller, S R; Bush, M A; Hill, S; Reiley, R; Passchier, J; Gunn, R N; Matthews, P M; Bullmore, E T

    2011-08-01

    Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [(11)C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4-100 mg) or NTX (range, 2-50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50 = 7.10 ng ml(-1)) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration-RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption.

  4. Pharmacologic modulation of the calcium-sensing receptor enhances hematopoietic stem cell lodgment in the adult bone marrow

    OpenAIRE

    Lam, Ben S.; Cunningham, Cynthia; Adams, Gregor B.

    2011-01-01

    The ability of hematopoietic stem cells (HSCs) to undergo self-renewal is partly regulated by external signals originating from the stem cell niche. Our previous studies with HSCs obtained from fetal liver of mice deficient for the calcium-sensing receptor (CaR) have shown the crucial role of this receptor in HSC lodgment and engraftment in the bone marrow (BM) endosteal niche. Using a CaR agonist, Cinacalcet, we assessed the effects of stimulating the CaR on the function of murine HSCs. Our ...

  5. Thalamocortical dynamics of sleep: roles of purinergic neuromodulation.

    Science.gov (United States)

    Halassa, Michael M

    2011-04-01

    Thalamocortical dynamics, the millisecond to second changes in activity of thalamocortical circuits, are central to perception, action and cognition. Generated by local circuitry and sculpted by neuromodulatory systems, these dynamics reflect the expression of vigilance states. In sleep, thalamocortical dynamics are thought to mediate "offline" functions including memory consolidation and synaptic scaling. Here, I discuss thalamocortical sleep dynamics and their modulation by the ascending arousal system and locally released neurochemicals. I focus on modulation of these dynamics by electrically silent astrocytes, highlighting the role of purinergic signaling in this glial form of communication. Astrocytes modulate cortical slow oscillations, sleep behavior, and sleep-dependent cognitive function. The discovery that astrocytes can modulate sleep dynamics and sleep-related behaviors suggests a new way of thinking about the brain, in which integrated circuits of neurons and glia control information processing and behavioral output.

  6. Acupuncture-Induced Analgesia: A Neurobiological Basis in Purinergic Signaling.

    Science.gov (United States)

    Tang, Yong; Yin, Hai-Yan; Rubini, Patrizia; Illes, Peter

    2016-12-01

    Chronic pain is a debilitating and rather common health problem. The present shortage in analgesic drugs with a favorable spectrum but without remarkable side effects furthered the search for alternative therapeutic manipulations. Increasing evidence from both basic and clinical research on acupuncture, a main alternative therapy of traditional Chinese medicine, suggests that chronic pain is sensitive to acupuncture procedures. Clarification of the underlying mechanisms is a challenge of great theoretical and practical significance. The seminal hypothesis of Geoffrey Burnstock and the astounding findings of Maiken Nedergaard on the involvement of purinergic signaling in the beneficial effects of acupuncture fertilized the field and led to an intensification of research on acupurines. In this review, we will summarize the state-of-the-art situation and try to forecast how the field is likely to develop in the future. © The Author(s) 2016.

  7. Pharmacological blockade of the aromatase enzyme, but not the androgen receptor, reverses androstenedione-induced cognitive impairments in young surgically menopausal rats.

    Science.gov (United States)

    Mennenga, Sarah E; Koebele, Stephanie V; Mousa, Abeer A; Alderete, Tanya J; Tsang, Candy W S; Acosta, Jazmin I; Camp, Bryan W; Demers, Laurence M; Bimonte-Nelson, Heather A

    2015-07-01

    Androstenedione, the main circulating ovarian hormone present after menopause, has been shown to positively correlate with poor spatial memory in an ovary-intact rodent model of follicular depletion, and to impair spatial memory when administered exogenously to surgically menopausal ovariectomized rats. Androstenedione can be converted directly to estrone via the aromatase enzyme, or to testosterone. The current study investigated the hormonal mechanism underlying androstenedione-induced cognitive impairments. Young adult ovariectomized rats were given either androstenedione, androstenedione plus the aromatase inhibitor anastrozole to block conversion to estrone, androstenedione plus the androgen receptor blocker flutamide to block androgen receptor activity, or vehicle treatment, and were then administered a battery of learning and memory maze tasks. Since we have previously shown that estrone administration to ovariectomized rats impaired cognition, we hypothesized that androstenedione's conversion to estrone underlies, in part, its negative cognitive impact. Here, androstenedione administration impaired spatial reference and working memory. Further, androstenedione did not induce memory deficits when co-administered with the aromatase inhibitor, anastrozole, whereas pharmacological blockade of the androgen receptor failed to block the cognitive impairing effects of androstenedione. Anastrozole alone did not impact performance on any cognitive measure. The current data support the tenet that androstenedione impairs memory through its conversion to estrone, rather than via actions on the androgen receptor. Studying the effects of aromatase and estrogen metabolism is critical to elucidating how hormones impact women's health across the lifespan, and results hold important implications for understanding and optimizing the hormone milieu from the many endogenous and exogenous hormone exposures across the lifetime. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Pharmacological Evidence that Histamine H3 Receptors Mediate Histamine-Induced Inhibition of the Vagal Bradycardic Out-flow in Pithed Rats.

    Science.gov (United States)

    García, Mónica; García-Pedraza, José Ángel; Villalón, Carlos M; Morán, Asunción

    2016-02-01

    In vivo stimulation of cardiac vagal neurons induces bradycardia by acetylcholine (ACh) release. As vagal release of ACh may be modulated by autoreceptors (muscarinic M2 ) and heteroreceptors (including serotonin 5-HT1 ), this study has analysed the pharmacological profile of the receptors involved in histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats. For this purpose, 180 male Wistar rats were pithed, artificially ventilated and pre-treated (i.v.) with 1 mg/kg atenolol, followed by i.v. administration of physiological saline (1 ml/kg), histamine (10, 50, 100 and 200 μg/kg) or the selective histamine H1 (2-pyridylethylamine), H2 (dimaprit), H3 (methimepip) and H4 (VUF 8430) receptor agonists (1, 10, 50 and 100 μg/kg each). Under these conditions, electrical stimulation (3, 6 and 9 Hz; 15 ± 3 V and 1 ms) of the vagus nerve resulted in frequency-dependent bradycardic responses, which were (i) unchanged during the infusions of saline, 2-pyridylethylamine, dimaprit or VUF 8430; and (ii) dose-dependently inhibited by histamine or methimepip. Moreover, the inhibition of the bradycardia caused by 50 μg/kg of either histamine or methimepip (which failed to inhibit the bradycardic responses to i.v. bolus injections of acetylcholine; 1-10 μg/kg) was abolished by the H3 receptor antagonist JNJ 10181457 (1 mg/kg, i.v.). In conclusion, our results suggest that histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats is mainly mediated by pre-junctional activation of histamine H3 receptors, as previously demonstrated for the vasopressor sympathetic out-flow and the vasodepressor sensory CGRPergic (calcitonin gene-related peptide) out-flow.

  9. Pharmacological evaluation of novel 5-HT 3 receptor antagonist, QCM-13 (N-cyclohexyl-3-methoxyquinoxalin-2-carboxamide as anti-anxiety agent in behavioral test battery

    Directory of Open Access Journals (Sweden)

    Deepali Gupta

    2015-01-01

    Full Text Available Objective: In the last few decades, serotonin type-3 (5-HT 3 receptor antagonists have been identified as potential targets for anxiety disorders. In preclinical studies, 5-HT 3 antagonists have shown promising antianxiety effects. In this study, a novel 5-HT 3 receptor antagonist, QCM-13(N-cyclohexyl-3-methoxyquinoxalin-2-carboxamide was evaluated for anxiolytic-like activity in rodent behavioral test battery. Materials and Methods: Mice were given QCM-13 (2 and 4 mg/kg, intraperitoneally [i.p.] or diazepam (2 mg/kg, i.p. or vehicle and after 30 min, mice were subjected to four validated behavioral test batteries viz. elevated plus maze, hole board, light-dark and open field tests. Interaction study of QCM-13 with m-chlorophenyl piperazine (mCPP (mCPP, a 5-HT 2A/2C receptor agonist, 1 mg/kg, i.p. and buspirone (BUS, a partial 5-HT 1A agonist, 10 mg/kg, i.p. were performed to assess the pharmacological mechanism of the drug. Results: QCM-13 expressed potential anxiolytic effect with significant (P < 0.05 increase in behavioral parameters measured in aforementioned preliminary models. Besides, QCM-13 was unable to reverse the anxiogenic effect of mCPP, but potentiated anxiolytic affect of BUS. Conclusion: The results suggest that QCM-13 can be a potential therapeutic candidate for the management of anxiety-like disorders and combination doses of novel 5-HT 3 receptor antagonist with standard anxiolytics may improve therapeutic efficacy.

  10. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    Science.gov (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.

  11. Pharmacological blockade of serotonin 5-HT₇ receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission.

    Directory of Open Access Journals (Sweden)

    Pascal Bonaventure

    Full Text Available The role of 5-HT₇ receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT₇ antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg significantly reversed the deficits induced by MK-801 (0.1 mg/kg but augmented the deficit induced by scopolamine (0.06 mg/kg. The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT₇ receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.

  12. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...

  13. In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B(4) receptor antagonist.

    Science.gov (United States)

    Birke, F W; Meade, C J; Anderskewitz, R; Speck, G A; Jennewein, H M

    2001-04-01

    BIIL 284 is a new LTB(4) receptor antagonist. It is a prodrug and has negligible binding to the LTB(4) receptor. However, ubiquitous esterases metabolize BIIL 284 to the active metabolites BIIL 260 and BIIL 315, the glucuronidated form of BIIL 260. Both metabolites have high affinity to the LTB(4) receptor on isolated human neutrophil cell membranes with K(i) values of 1.7 and 1.9 nM, respectively. On vital human neutrophilic granulocytes K(i) was around 1 nM. BIIL 260 and BIIL 315 interact with the LTB(4) receptor in a saturable, reversible, and competitive manner. BIIL 260 and its glucuronide BIIL 315 also potently inhibited LTB(4)-induced intracellular Ca(2+) release in human neutrophils (IC(50) values of 0.82 and 0.75 nM, respectively) as measured with Fura-2. High efficacy of BIIL 284 has been demonstrated in various in vivo models. BIIL 284 inhibited LTB(4)-induced mouse ear inflammation with ED(50) = 0.008 mg/kg p.o., LTB(4)-induced transdermal chemotaxis in guinea pigs with ED(50) = 0.03 mg/kg p.o., LTB(4)-induced neutropenia in various species (monkey: ED(50) = 0.004 mg/kg p.o.), and LTB(4)-induced Mac1-expression in monkeys (ED(50) = 0.05 mg/kg p.o. in Tylose). Full blockade of LTB(4) receptors over 24 h was achieved by 0.3 mg/kg BIIL 284 after single oral dose as measured by LTB(4)-induced neutropenia or Mac1-expression in the monkey model. BIIL 284 is an unusually potent and long-acting orally active LTB(4) antagonist, and is therefore under clinical development as a novel anti-inflammatory principle.

  14. Pharmacological profile of a bifunctional ligand of the formyl peptide receptor1 fused to the myc epitope.

    Science.gov (United States)

    Charest-Morin, Xavier; Roy, Caroline; Fernandes, Maria J G; Marceau, François

    2015-03-01

    In human peripheral blood neutrophils or in myeloid PLB-985 cells differentiated towards a neutrophil-like phenotype, the peptide N-formyl-L-norleucyl-L-leucyl-L-phenylalanyl-L-norleucyl-L-tyrosyl-L-leucyl-fluorescein isothiocyanate (f-Nle-Leu-Phe-Nle-Tyr-Lys-FITC) binds to and activates formyl peptide receptor1 (FPR1) and is submitted to receptor-mediated endocytosis (microscopy, cytofluorometry). This peptide may be considered a C-terminally extended version of f-Met-Leu-Phe which carries a fluorescent cargo into cells. By analogy to other peptide hormones for which we have evaluated epitope-tagged agonists as carriers of antibody cargoes, we have designed and evaluated f-Nle-Leu-Phe-Nle-Tyr-Lys-myc, C-terminally extended with the 10-residue myc tag. This peptide is as potent as f-Met-Leu-Phe to compete for f-Nle-Leu-Phe-Nle-Tyr-Lys-FITC uptake by PLB-985 cells, but did not mediate (10-1000nM) the internalization of the fluorescent anti-myc monoclonal antibody 4A6 added to the extracellular fluid at ~7nM (microscopy). The nonfluorescent version of the antibody (28nM) acts as a pre-receptor antagonist of f-Nle-Leu-Phe-Nle-Tyr-Lys-myc, but not of f-Met-Leu-Phe (superoxide release assay in differentiated PLB-985 cells). A further prolonged analog, f-Nle-Leu-Phe-Nle-Tyr-Lys-(Asn-Gly)5-myc, designed to decrease the possible steric hindrance between FPR1 and the bound anti-myc antibody, has little affinity for the receptor, precluding a direct assessment of this issue. Thus, the relatively low-affinity anti-myc antibody used at a high concentration functionally behaves as a selective pre-receptor antagonist of the agonist f-Nle-Leu-Phe-Nle-Tyr-Lys-myc. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Implicaciones farmacológicas de los receptores activados por los proliferadores de peroxisomas (PPAR Pharmacologic implications of peroxisome proliferator activated receptors (PPAR

    Directory of Open Access Journals (Sweden)

    Luis Carlos Mejía Rivera

    2001-01-01

    Full Text Available Los receptores activados por los proliferadores de peroxisomas (PPAR son un grupo de proteínas pertenecientes a la familia de receptores de ubicación nuclear que se comportan como factores que modulan la transcripción del DNA al unirse a elementos de respuesta específicos de ciertos genes blanco. Hasta el momento se han descrito tres tipos principales de PPAR designados como α, δ, y γ; estos receptores se encuentran involucrados en la regulación de diferentes procesos metabólicos; por esto se han convertido en uno de los grupos de receptores más intensamente estudiados. Los PPARα participan tanto en el catabolismo de los ácidos grasos como en el transporte extracelular de lípidos; los fibratos, sus agonistas, tienen utilidad ampliamente demostrada en el manejo de algunas dislipidemias. Las tiazolidindionas utilizadas como fármacos antihiperglicemiantes son agonistas de los PPARγ; todavía existen muchos interrogantes acerca de su relación con el metabolismo de los carbohidratos pero su uso en el manejo de la diabetes mellitus tipo 2 cada vez gana más importancia. Por otro lado, los antiinflamatorios no esteroideos se relacionan de alguna manera con las funciones de los PPARδ; hasta el momento se ha logrado establecer una relación molecular y epidemiológica de estos fármacos y receptores con el cáncer de colon. PPAR are a group of proteins, members of the receptors located within the nucleus. These receptors modulate DNA transcriptional activity by binding to specific response elements on target genes. To date, three main types of PPAR have been identified designed α, δand γthese receptors are involved in the regulation of diferent metabolic processes, being the group of receptors more intensely studied. PPARαare greatly involved in both catabolism of fatty acids and transport of extracellular lipids; fibrates, their agonists, are of proved usefulness in some dyslipidemias. Thiazolidinediones used as antihyperglicemiant

  16. An in vivo pharmacological evaluation of pardoprunox (SLV308)--a novel combined dopamine D(2)/D(3) receptor partial agonist and 5-HT(1A) receptor agonist with efficacy in experimental models of Parkinson's disease.

    Science.gov (United States)

    Jones, C A; Johnston, L C; Jackson, M J; Smith, L A; van Scharrenburg, G; Rose, S; Jenner, P G; McCreary, A C

    2010-08-01

    Partial D(2/3) dopamine (DA) receptor agonists provide a novel approach to the treatment of the motor symptoms of Parkinson's disease (PD) that may avoid common dopaminergic side-effects, including dyskinesia and psychosis. The present study focussed on the in vivo pharmacological and therapeutic characterisation of the novel D(2/3) receptor partial agonist and full 5-HT(1A) receptor agonist pardoprunox (SLV308; 7-[4-methyl-1-piperazinyl]-2(3H)-benzoxazolone monochloride). Pardoprunox induced contralateral turning behaviour in rats with unilateral 6-hydroxydopamine-induced lesions of the substantia nigra pars compacta (SNpc) (MED=0.03mg/kg; po). In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets, pardoprunox dose-dependently increased locomotor activity (MED=0.03mg/kg; po) and decreased motor disability (MED=0.03mg/kg; po). The effects of pardoprunox were reversed by the D(2) antagonist sulpiride. In contrast pardoprunox attenuated novelty-induced locomotor activity (MED=0.01mg/kg; po), (+)-amphetamine-induced hyperlocomotion (MED=0.3mg/kg; po) and apomorphine-induced climbing (MED=0.6mg/kg; po) in rodents. Pardoprunox also induced 5-HT(1A) receptor-mediated behaviours, including flat body posture and lower lip retraction (MED=0.3mg/kg; po) and these were reversed by the 5-HT(1A) receptor antagonist WAY100635. Collectively, these findings demonstrate that pardoprunox possesses dopamine D2/3 partial agonist effects, 5-HT1A agonist effects and reduces parkinsonism in animal models. functional DA D(2) receptor partial agonist activity and is effective in experimental models predictive of efficacy in PD. The presence of functional 5-HT(1A) agonist activity might confer anti-dyskinetic activity and have effects that control neuropsychiatric components of PD.

  17. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Cao Xiaoyan

    2007-04-01

    Full Text Available Abstract NMDA receptors (NMDARs are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC.

  18. Synthesis, pharmacological activity and structure affinity relationships of spirocyclic σ(1) receptor ligands with a (2-fluoroethyl) residue in 3-position.

    Science.gov (United States)

    Maestrup, Eva Grosse; Wiese, Christian; Schepmann, Dirk; Brust, Peter; Wünsch, Bernhard

    2011-01-01

    In order to develop a fluorinated radiotracer for imaging of σ(1) receptors in the central nervous system a series of (2-fluoroethyl) substituted spirocyclic piperidines 3 has been prepared. In the key step of the synthesis 2-bromocinnamaldehyde acetal 5 was added to piperidones 6 with various substituents at the N-atom. Unexpectedly, this reaction led to 2-benzoxepines 8, which were contracted with acid to afford the spirocyclic 2-benzofuranacetaldehydes 9. The best yields were obtained, when the transformations up to the alcohols 10 were performed without isolation of intermediates. Generally the (2-fluoroethyl) derivatives 3 have higher σ(1) affinity and σ(1)/σ(2) selectivity than the corresponding (3-fluoropropyl) derivatives 2. The most promising candidate for the development as radiotracer is the (2-fluoroethyl) derivative 3a (WMS-1828, fluspidine, 1'-benzyl-3-(2-fluoroethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]), which shows subnanomolar σ(1) affinity (K(i)=0.59nM) and excellent selectivity over the σ(2) subtype (1331-fold) as well as some other receptor systems. The novel synthetic strategy also allows the systematic pharmacological evaluation of intermediate alcohols 10. Despite their high σ(1) affinity (K(i)=6-32nM) and selectivity the alcohols 10 are 10-30-fold less potent than the bioisosteric fluoro derivatives 3. Copyright © 2010. Published by Elsevier Ltd.

  19. Pharmacology of (S)-homoquisqualic acid and (S)-2-amino-5-phosphonopentanoic acid [(S)-AP5] at cloned metabotropic glutamate receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1998-01-01

    1 In this study we have determined the pharmacological profile of (S)-quisqualic acid, (S)-2-amino-4-phosphonobutyric acid ((S)-AP4) and their higher homologues (S)-homoquisqualic acid, (S)-2-amino-5-phosphonopentanoic acid ((S)-AP5), respectively, and (R)-AP5 at subtypes of metabotropic (S...... competitive antagonism at mGlu1 (KB = 184 microM) and full agonism at mGlu5 (EC50 = 36 microM) and mGlu2 (EC50 = 23 microM), but was inactive at mGlu4. 4 (S)-AP4 was a potent and selective mGlu4 agonist (EC50 = 0.91 microM) being inactive at mGlu1, mGlu2 and mGlu5 both as agonist and antagonist. 5 (S)-AP5...... displayed very weak agonist activity at mGlu4. At the mGlu2 receptor subtype (S)-AP5 acted as a competitive antagonist (KB = 205 microM), whereas the compound was inactive at mGlu, and mGlu5. (R)-AP5 was inactive at all mGlu receptor subtypes tested both as agonist and antagonist. 6 These studies...

  20. Melatonin modulation of presynaptic nicotinic acetylcholine receptors located on short noradrenergic neurons of the rat vas deferens: a pharmacological characterization

    Directory of Open Access Journals (Sweden)

    Zago W.M.

    1999-01-01

    Full Text Available Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

  1. Pharmacological evidence for the mediation of the panicolytic effect of fluoxetine by dorsal periaqueductal gray matter μ-opioid receptors.

    Science.gov (United States)

    Roncon, Camila Marroni; Almada, Rafael Carvalho; Maraschin, Jhonatan Christian; Audi, Elisabeth Aparecida; Zangrossi, Hélio; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne

    2015-12-01

    Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the μ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs.

  2. Combined histamine H1/H2 receptor antagonists: part I. Pharmacological hybrids with pheniramine- and roxatidine-like substructures.

    Science.gov (United States)

    Schulze, F R; Buschauer, A; Schunack, W

    1998-07-01

    A series of hybrid compounds combining the pharmacophores of both pheniramine-type histamine H1 receptor antagonists and roxatidine-type H2 receptor antagonists have been synthesized and tested for histamine antagonism at the isolated ileum (H1) and the spontaneously beating right atrium (H2) of the guinea pig. The 'polar group' of the H2 antagonist moiety (cyanoguanidine, nitroethenediamine or urea) and the side chain amino group of the H1 antagonist portion have been linked by a polymethylene spacer or by a piperazine system. The incorporation of a flexible spacer (2-7 methylene groups) resulted in H1 antagonists achieving up to 2.4 times the activity of pheniramine. Depending on the nature of the polar group the highest H2 antagonist potency resides in compounds with spacers ?2 methylene groups. Nitroethenediamine 24c with a seven-membered chain and a chlorpheniramine substructure proved to be approximately equipotent with pheniramine at the H1 and with ranitidine at the H2 receptor (pKB values 7.82 and 7.1, respectively).

  3. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists

    OpenAIRE

    Moreno, José L.; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C.; González-Maeso, Javier

    2011-01-01

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agon...

  4. Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis.

    Science.gov (United States)

    Köfalvi, Attila; Rodrigues, Ricardo J; Ledent, Catherine; Mackie, Ken; Vizi, E Sylvester; Cunha, Rodrigo A; Sperlágh, Beáta

    2005-03-16

    Despite the profound effect of cannabinoids on motor function, and their therapeutic potential in Parkinson's and Huntington's diseases, the cellular and subcellular distributions of striatal CB1 receptors are not well defined. Here, we show that CB1 receptors are primarily located on GABAergic (vesicular GABA transporter-positive) and glutamatergic [vesicular glutamate transporter-1 (VGLUT-1)- and VGLUT-2-positive] striatal nerve terminals and are present in the presynaptic active zone, in the postsynaptic density, as well as in the extrasynaptic membrane. Both the nonselective agonist WIN552122 [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt] (EC50, 32 nM) and the CB1-selective agonist ACEA [N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] inhibited [3H]GABA release from rat striatal slices. The effect of these agonists was prevented by the CB1-selective antagonists SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] (1 microM) and AM251 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt] (1 microM), indicating that cannabinoids inhibit the release of GABA via activation of presynaptic CB1 receptors. Cannabinoids modulated glutamate release via both CB1 and non-CB1 mechanisms. Cannabinoid agonists and antagonists inhibited 25 mM K+-evoked [3H]glutamate release and sodium-dependent [3H]glutamate uptake. Partial involvement of CB1 receptors is suggested because low concentrations of SR141716A partly and AM251 fully prevented the effect of WIN552122 and CP55940 [5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol]. However, the effect of CB1 agonists and antagonists persisted in CB1 knock-out mice, indicating the involvement of non-CB1,CB1-like receptors. In contrast, cannabinoids did not modulate [3H]dopamine release or [3H]dopamine and [3H

  5. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    Science.gov (United States)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial

  6. Pharmacological analysis of the activation and receptor properties of the tonic GABA(CR current in retinal bipolar cell terminals.

    Directory of Open Access Journals (Sweden)

    Stefanie M Jones

    Full Text Available GABAergic inhibition in the central nervous system (CNS can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A receptors (GABA(ARs respectively. Retinal bipolar cells (BCs exhibit a tonic current mediated by GABA(CRs in their axon terminal, in addition to synaptic GABA(AR and GABA(CR currents, which strongly regulate BC output. The tonic GABA(CR current in BC terminals (BCTs is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(CRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(CR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(CRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(CR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(CRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(CRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(ARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(CR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.

  7. Identification, pharmacological evaluation and binding mode analysis of novel chromene and chromane based σ1 receptor ligands.

    Science.gov (United States)

    Laurini, Erik; Harel, Dipak; Marson, Domenico; Schepmann, Dirk; Schmidt, Thomas J; Pricl, Sabrina; Wünsch, Bernhard

    2014-08-18

    A set of aminoethyl substituted chromenes 3 and chromanes 4, originally developed as antiprotozoal drugs was evaluated as novel types of σ1 receptor ligands. Analysis of SAR showed that chromenes 3 have a higher σ1 affinity than chromanes 4. A distance of four bond lengths between the basic amino moiety and the phenyl ring (3c), an alicyclic N-substituent such as the cyclohexylmethyl moiety (3l), and methylation of the secondary amine to afford a tertiary amine (3n) result in very high σ1 affinity and selectivity over the σ2 subtype. Compounds 3a-n and 4a-e were docked into the putative binding site of the σ1 receptor model and the relevant binding mode was analyzed and scored. Specifically, for the best σ1 ligand 3n, a salt bridge between Asp126 and the protonated amino group, an H-bond between the receptor backbone NH group (Ala122-Glu123) and the methoxy moiety of 3n, a lipophilic protein cavity encasing the chromene ring, and a T-shaped π-π stacking between the indole ring of Trp121 and the phenyl ring of 3n represent the most important ligand/protein stabilizing interactions. The binding pose of 3n was compared with the binding poses of the non-methylated chromene 3c, the saturated chromane 4c, and the N-cyclohexylmethyl derivative 3l. The contribution of the single amino acids to the overall free binding enthalpy was analyzed.

  8. Involvement of H1 receptors in the central antinociceptive effect of histamine: pharmacological dissection by electrophysiological analysis.

    Science.gov (United States)

    Braga, P C; Soldavini, E; Pecile, A; Sibilia, V; Netti, C

    1996-01-16

    Intracerebroventricular (i.c.v.) administration of histamine (HA, 0.025-0.1 microM/rat) to arthritic rats induces a dose-related inhibition of the neuronal thalamic firing evoked by peripheral noxious stimuli. To characterize the type(s) of HA receptors involved in this depressing activity of the amine we used electrophysiological techniques to examine the effects of i.c.v. administration of H1 and H2 agonists and antagonists on the spontaneous and evoked nociceptive firing of the thalamic neurons in rats rendered arthritic by Freund's adjuvant. The H1 agonist 2-pyridylethylamine (0.4-1.0 microM/rat, i.c.v.) displayed a dose-dependent antinociceptive effect very similar to that of HA, while the H2 agonist dimaprit (0.05-0.2 microM/rat, i.c.v.) did not modify thalamic firing. Neither mepyramine (H1 antagonist, 0.1 microM/rat, i.c.v.) nor zolantidine (H2 antagonist, 0.01 microM/rat, i.c.v.) modified the evoked firing of rat thalamic neurons. When administered before HA (0.1 microM/rat, i.c.v.) mepyramine but not zolantidine was able to inhibit the antinociceptive effect of HA. On the basis of the present electrophysiological results, we suggest that a specific interaction of histamine with H1 receptors may be important for its antinociceptive effect on afferent peripheral inputs to the thalamus.

  9. Action of natural products on p2 receptors: a reinvented era for drug discovery.

    Science.gov (United States)

    Faria, Robson; Ferreira, Leonardo; Bezerra, Rômulo; Frutuoso, Valber; Alves, Luiz

    2012-11-01

    Natural products contribute significantly to available drug therapies and have been a rich source for scientific investigation. In general, due to their low cost and traditional use in some cultures, they are an object of growing interest as alternatives to synthetic drugs. With several diseases such as cancer, and inflammatory and neuropathic diseases having been linked to the participation of purinergic (P2) receptors, there has been a flurry of investigations on ligands within natural products. Thirty-four different sources of these compounds have been found so far, that have shown either agonistic or antagonistic effects on P2 receptors. Of those, nine different plant sources demonstrated effects on P2X2, P2X3, P2X7, and possibly P2Y12 receptor subtypes. Microorganisms, which represent the largest group, with 26 different sources, showed effects on both receptor subtypes, ranging from P2X1 to P2X4 and P2X7, and P2Y1, P2Y2, P2Y4, and P2Y6. In addition, there were seventeen animal sources that affected P2X7 and P2Y1 and P2Y12 receptors. Natural products have provided some fascinating new mechanisms and sources to better understand the P2 receptor antagonism. Moreover, current investigations should clarify further pharmacological mechanisms in order to consider these products as potential new medicines.

  10. Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Luiz Alves

    2012-11-01

    Full Text Available Natural products contribute significantly to available drug therapies and have been a rich source for scientific investigation. In general, due to their low cost and traditional use in some cultures, they are an object of growing interest as alternatives to synthetic drugs. With several diseases such as cancer, and inflammatory and neuropathic diseases having been linked to the participation of purinergic (P2 receptors, there has been a flurry of investigations on ligands within natural products. Thirty-four different sources of these compounds have been found so far, that have shown either agonistic or antagonistic effects on P2 receptors. Of those, nine different plant sources demonstrated effects on P2X2, P2X3, P2X7, and possibly P2Y12 receptor subtypes. Microorganisms, which represent the largest group, with 26 different sources, showed effects on both receptor subtypes, ranging from P2X1 to P2X4 and P2X7, and P2Y1, P2Y2, P2Y4, and P2Y6. In addition, there were seventeen animal sources that affected P2X7 and P2Y1 and P2Y12 receptors. Natural products have provided some fascinating new mechanisms and sources to better understand the P2 receptor antagonism. Moreover, current investigations should clarify further pharmacological mechanisms in order to consider these products as potential new medicines.

  11. The role of purinergic and dopaminergic systems on MK-801-induced antidepressant effects in zebrafish.

    Science.gov (United States)

    da Silva, Raquel Bohrer; Siebel, Anna Maria; Bonan, Carla Denise

    2015-12-01

    Depression is a serious disease characterized by low mood, anhedonia, loss of interest in daily activities, appetite and sleep disturbances, reduced concentration, and psychomotor agitation. There is a growing interest in NMDA antagonists as a promising target for the development of new antidepressants. Considering that purinergic and dopaminergic systems are involved in depression and anxiety states, we characterized the role of these signaling pathways on MK-801-induced antidepressant effects in zebrafish. Animals treated with MK-801 at the doses of 5, 10, 15, or 20μM during 15, 30, or 60min spent longer time in the top area of aquariums in comparison to control group, indicating an anxiolytic/antidepressant effect induced by this drug. Animals treated with MK-801 spent longer time period at top area until 2 (5μM MK-801) and 4 (20μM MK-801) hours after treatment, returning to basal levels from 24h to 7days after exposure. Repeated MK-801 treatment did not induce cumulative effects, since animals treated daily during 7days had the same behavioral response pattern observed since the first until the 7th day. In order to investigate