WorldWideScience

Sample records for purified rat cyp

  1. Sex difference in induction of hepatic CYP2B and CYP3A subfamily enzymes by nicardipine and nifedipine in rats

    International Nuclear Information System (INIS)

    Konno, Yoshihiro; Sekimoto, Masashi; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-01-01

    Male and female of F344 rats were treated per os with nicardipine (Nic) and nifedipine (Nif), and changes in the levels of mRNA and protein of hepatic cytochrome P450 (P450) enzymes, CYP2B1, CYP2B2, CYP3A1, CYP3A2, CYP3A9, and CYP3A18 were examined. Furthermore, hepatic microsomal activities for pentoxyresorufin O-dealkylation (PROD) and nifedipine oxidation, which are mainly mediated by CYP2B and CYP3A subfamily enzymes, respectively, were measured. Analyses of RT-PCR and Western blotting revealed that Nic and Nif induced predominantly CYP3A and CYP2B enzymes, respectively. As for the gene activation of CYP2B enzymes, especially CYP2B1, Nif showed high capacity in both sexes of rats, whereas Nic did a definite capacity in the males but little in the females. Gene activations of CYP3A1, CYP3A2, and CYP3A18 by Nic occurred in both sexes of rats, although that of CYP3A9 did only in the male rats. Although gene activations of CYP3A1 and CYP3A2 by Nif were observed in both sexes of rats, a slight activation of the CYP3A9 gene occurred only in female rats, and the CYP3A18 gene activation, in neither male nor female rats. Thus, changes in levels of the mRNA or protein of CYP2B and CYP3A enzymes, especially CYP2B1 and CYP3A2, were closely correlated with those in hepatic PROD and nifedipine oxidation activities, respectively. The present findings demonstrate for the first time the sex difference in the Nic- and Nif-mediated induction of hepatic P450 enzymes in rats and further indicate that Nic and Nif show different specificities and sex dependencies in the induction of hepatic P450 enzymes

  2. Effect of sulfur dioxide inhalation on CYP2B1/2 and CYP2E1 in rat liver and lung

    Energy Technology Data Exchange (ETDEWEB)

    Guohua Qin; Ziqiang Meng [Shanxi University, Taiyuan (China). Institute of Environmental Medicine and Toxicology

    2006-07-15

    Sulfur dioxide (SO{sub 2}) is a ubiquitous air pollutant, present in low concentrations in the urban air and in higher concentrations in the working environment. In this study, we investigated the effects of inhaled SO{sub 2} on the O-dealkylase of pentoxyresorufin (PROD) and p-nitrophenol hydroxylases (p-NP) activities and mRNA levels of CYP2B1/2 and CYP2E1 in the lung and liver of Wistar rats. Male Wistar rats were housed in exposure chambers and treated with 14.11 {+-}1.53, 28.36 {+-} 2.12, and 56.25 {+-} 4.28 mg /m{sup 3}SO{sub 2} for 6 h/day for 7 days, while control rats were exposed to filtered air in the same condition. The mRNAs of CYP2B1/2 and -2E1 were analyzed in livers and lungs by using reverse-transcription polymerase chain reaction (RT-PCR). Results showed that the PROD activities and mRNA of CYP2B1/2 were decreased in livers and lungs of rats exposed to SO{sub 2}. The p-NP activities and mRNA of CYP2E1 were decreased in lungs but not in livers of rats exposed to SO{sub 2}. Total liver microsomal cytochrome P-450 (CYP) contents were diminished in SO{sub 2} -exposed rats. These results lead to two conclusions: (1) SO{sub 2} exposure can suppress CYP2B1/2 and CYP2E1 in lungs and CYP2B1/2 in livers of rats, thus modifying the liver and lung toxication/detoxication potential, and (2) the total liver microsomal CYP contents were diminished, although the activity and mRNA expression of CYP2E1 in rat livers were not affected by SO{sub 2} exposure.

  3. Aspartame Administration and Insulin Treatment Altered Brain Levels of CYP2E1 and CYP3A2 in Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Nosti-Palacios, Rosario; Gómez-Garduño, Josefina; Molina-Ortiz, Dora; Calzada-León, Raúl; Dorado-González, Víctor Manuel; Vences-Mejía, Araceli

    2014-07-01

    This study demonstrates that aspartame consumption and insulin treatment in a juvenile diabetic rat model leads to increase in cytochrome P450 (CYP) 2E1 and CYP3A2 isozymes in brain. Diabetes mellitus was induced in postweaned 21-day-old Wistar male rat by streptozotocin. Animals were randomly assigned to one of the following groups: untreated control, diabetic (D), D-insulin, D-aspartame, or the D-insulin + aspartame-treated group. Brain and liver tissue samples were used to analyze the activity of CYP2E1 and CYP3A2 and protein levels. Our results indicate that combined treatment with insulin and aspartame in juvenile diabetic rats significantly induced CYP2E1 in the cerebrum and cerebellum without modifying it in the liver, while CYP3A2 protein activity increased both in the brain and in the liver. The induction of CYP2E1 in the brain could have important in situ toxicological effects, given that this CYP isoform is capable of bioactivating various toxic substances. Additionally, CYP3A2 induction in the liver and brain could be considered a decisive factor in the variation of drug response and toxicity. © The Author(s) 2014.

  4. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    Science.gov (United States)

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluation of CYP1A1 and CYP2B1/2 m-RNA induction in rat liver slices using the NanoString technology: a novel tool for drug discovery lead optimization.

    Science.gov (United States)

    Palamanda, Jairam R; Kumari, Pramila; Murgolo, Nicholas; Benbow, Larry; Lin, Xinjie; Nomeir, Amin A

    2009-08-01

    Cytochrome P450 (CYP) induction in rodents and humans is considered a liability for new chemical entities (NCEs) in drug discovery. In particular, CYP1A1 and CYP2B1/2 have been associated with the induction of liver tumors in oncogenicity studies during safety evaluation studies of potential drugs. In our laboratory, real time PCR (Taqman) has been used to quantify the induction of rat hepatic CYP1A1 and CYP2B1/2 in precision -cut rat liver slices. A novel technology that does not require m-RNA isolation or RT-PCR, (developed by NanoString Technologies) has been investigated to quantify CYP1A1 and CYP2B1/2 induction in rat liver slices. Seventeen commercially available compounds were evaluated using both Taqman and NanoString technologies. Precision-cut rat liver slices were incubated with individual compounds for 24 hr at 37 degrees C in a humidified CO(2) incubator and CYP1A1 and CYP2B1/2 m-RNA were quantified. The results from the NanoString technology were similar to those of the Taqman(R) with a high degree of correlation for both CYP isoforms (r(2)>0.85). Therefore, NanoString provides an additional new technology to evaluate the induction of CYP1A1 and 2B1/2, as well as potentially other enzymes or transporters in rat liver slices.

  6. PPARalpha-dependent modulation of hepatic CYP1A by clofibric acid in rats.

    Science.gov (United States)

    Shaban, Zein; El-Shazly, Samir; Ishizuka, Mayumi; Kimura, Kazuhiro; Kazusaka, Akio; Fujita, Shoichi

    2004-09-01

    Fibrates, hypolipidemic drugs, have been reported to suppress the metabolic activities of cytochrome P450 1A1 and 1A2 in rats but the mechanism has not been elucidated. In the present study we tested the hypothesis that the inhibitory effect of fibrates on arylhydrocarbon receptor (AhR) function may be due to their stimulatory effects on PPARalpha. Sudan III (S.III) treatment induced CYP 1A1 and CYP 1A2 protein expression, mRNA and their metabolic activities, methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD), in Wistar rats higher than those in the control. Co-treatment of rats with S.III and clofibric acid (CA) caused a 40-50% decrease in the induced levels of CYP1A1 and CYP1A2 protein, mRNA expression and their metabolic activities and reduced AhR protein expression. When we treated HepG2 cells with S.III and/or CA, no suppressive effect on S.III-induced CYP1A1 protein expression due to CA was found. HepG2 cells were transiently transfected with increasing concentrations of PPARalpha mammalian expression vector and exposed to the same treatment. CA co-treatment with S.III decreased AhR protein and S.III-induced CYP1A1 protein expression with increasing dose of PPARalpha transfected into HepG2 cells. Our results demonstrate that the suppressive effect of fibrates on CYP1A is PPARalpha-dependent and suggest that PPARalpha has an inhibitory effect on AhR function.

  7. AhR Activation Underlies the CYP1A Autoinduction by A-998679 in Rats

    Directory of Open Access Journals (Sweden)

    Michael J. Liguori

    2012-10-01

    Full Text Available Xenobiotic-mediated induction of cytochrome P450 (CYP drug metabolizing enzymes (DMEs is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 (3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl benzonitrile, was shown to enhance its own clearance via induction of CYP1A1 and CYP1A2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound’s plasma AUC decreased at 30 mg/kg (95% and 100 mg/kg (80%. Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of CYP1A, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver, and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces CYP1A1 and CYP1A2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons, may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A related mechanisms of drug metabolism and toxicity.

  8. Studies on a novel peptide isolated and purified from rat insulinoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Al-Akhras, G N

    1987-01-01

    Rat insulinoma peptide (RIP) which appears to be either a fragment of, or an altered rat C-peptide was isolated and purified by dialysis. The purity of this peptide was investigated using polyacrylamide gel electrophoresis with sodium dodecyl sulfate, isoelectric focusing, and high performance liquid chromatography. RIP may contain two peptides similar to each other but differing in their isoelectric points. The molecular weight of RIP was found to be 1982 daltons by fast atoms bombardment mass spectrometry giving a chain length of approximately 22 amino acid residues. From information obtained using radioimmunoassay employing antiserum R901, RIP appears to share a common C-terminus with rat C-peptide. A radioimmunoassay for RIP was developed using the purified RIP as immunogen and for standards and tracers. An indirect enzyme linked immunosorbent assay (ELISA) for rat insulinoma peptide was developed using purified RIP for immunogen and semi-purified RIP as a standard.

  9. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    Science.gov (United States)

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  10. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  11. The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1

    Science.gov (United States)

    Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li

    2016-01-01

    Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558

  12. Correlation between spermatogenesis disorders and rat testes CYP2E1 mRNA contents under experimental alcoholism or type I diabetes.

    Science.gov (United States)

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Matvienko, Anatoliy V; Kovalenko, Valentina M

    2014-09-01

    The aim of the study was to investigate the correlation between spermatogenesis disorders and CYP2E1 mRNA contents in testes of rats with experimental alcoholism or type I diabetes. Two pathological states characterized by CYP2E1 induction were simulated on Wistar male rats: experimental alcoholism and type I diabetes. As controls for each state, equal number of animals (of the same age and weight) were used. Morphological evaluation of rat testes was carried out. The spermatogenic epithelium state was estimated by four points system. CYP2E1 mRNA expression was rated by method of reverse transcriptase polymerase chain reaction. Pearson correlation coefficients were used for describing relationships between variables. The presence of alcoholism and diabetes-mediated quantitative and qualitative changes in male rat spermatogenic epithelium in comparison with norm has been demonstrated. The increased levels of testes CYP2E1 have been fixed simultaneously. CYP2E1 mRNA content negatively strongly correlated with spermatogenic index value (r=-0.99; Palcoholism. The strong correlation between CYP2E1 mRNA content and number of spermatogonia (r=0.99; P<0.001) and "windows" occurrence (r=0.96; P<0.001) has been fixed in diabetic rats testes. Present investigation has demonstrated that the testicular failure following chronic ethanol consumption and diabetes type I in male rats accompanied CYP2E1 mRNA over-expression in testes. The correlation between the levels of CYP2E1 mRNA in testes and spermatogenesis disorders allow supposing the involvement of CYP2E1 into the non-specific pathogenetic mechanisms of male infertility under above-mentioned pathologies. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Impact of inhalational exposure to ethanol fuel on the pharmacokinetics of verapamil, ibuprofen and fluoxetine as in vivo probe drugs for CYP3A, CYP2C and CYP2D in rats.

    Science.gov (United States)

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; de Moraes, Natália Valadares; Lepera, José Salvador

    2015-10-01

    Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Consequences of daily corticosteroid dosing with or without pre-treatment with quinidine on the in vivo cytochrome P450 2D (CYP2D) enzyme in rats: effect on O-demethylation activity of dextromethorphan and expression levels of CYP2D1 mRNA.

    Science.gov (United States)

    Giri, Poonam; Delvadia, Prashant; Gupta, Laxmikant; Patel, Nirmal; Trivedi, Priyal; Lad, Krishna; Patel, Hiren M; Srinivas, Nuggehally R

    2018-01-01

    1. Present investigation was carried out in rats to study influence of corticosteroids after repeated dosing with/without pre-treatment with CYP2D inhibitor quinidine on the CYP2D1 mRNA levels and CYP2D enzyme activity using dextromethorphan as probe substrate. 2. CYP2D1 mRNA was measured in liver homogenate using quantitative real-time polymerase chain reaction [qRT-PCR] and enzymatic reaction was studied ex vivo in liver S-9 fractions of rats treated with oral 10 mg/kg dexamethasone or prednisolone for five days or pre-treated with quinidine and followed by treatment with oral 10 mg/kg corticosteroids for five days. 3. Five days repeat dosing of dexamethasone or prednisolone decreased the activity of the rat liver CYP2D by 37% and 34%, at 30 min incubation and decreased CYP2D1 mRNA levels by 62% and 61%, respectively. 4. Pre-treatment of quinidine decreased the enzymatic activity of rat CYP2D by 58% and did not potentiate CYP2D inhibition by corticosteroids. This observation was further complemented by qRT-PCR data. 5. Corticosteroids caused CYP2D inhibition in rats vs. literature evidence of CYP2D induction in human hepatocytes/pregnant humans demonstrating lack of concordance. In vivo inhibition should be factored for interpretation of pharmacokinetic data of CYP2D substrates when treated with corticosteroids in rats.

  15. Influences of Oldenlandia diffusa on the CYP450 Activities in Rats Using a Cocktail Method by UHPLC-MS/MS

    Directory of Open Access Journals (Sweden)

    Yiping Lin

    2018-01-01

    Full Text Available Oldenlandia diffusa has been used to treat various cancers. Cytochrome P450, a drug metabolic enzyme, might be influenced by herbal medicine. Currently, the problem that remains is the effective treatment in drug-drug interaction situation. Potential influences of Oldenlandia diffusa were elucidated on the CYP450 activities in rats using a cocktail method. Blood samples were precipitated by acetonitrile. Quantitative determination of target test object was done by ultra-performance liquid chromatography tandem mass spectrometry detection. Influences of oldenlandia diffusa on the activities of five CYP450 subtypes in rats were evaluated by five specific probe drugs (phenacetin for CYP1A2, omeprazole for CYP2C19, tolbutamide for CYP2C9, metoprolol for CYP2D6, and midazolam for CYP3A4 according to the pharmacokinetic parameters changes. No statistically significant difference (P>0.05 in pharmacokinetic behaviors can be observed in the five probe drugs. There is a potential guidance on clinical drug combination with Oldenlandia diffusa. Oldenlandia diffusa in compound preparation showed well security.

  16. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Gueguen, Y.; Linard, C.; Dudoignon, N.; Grison, S.; Baudelin, C.; Marquette, C.; Gourmelon, P.; Aigueperse, J.; Dublineau, I.

    2005-01-01

    In addition to its natural presence at high concentrations in some areas, uranium has several civilian and military applications that could cause contamination of human populations, mainly through chronic ingestion. Reports describe the accumulation of this radionuclide in some organs (including the bone, kidney, and liver) after acute or chronic contamination and show that it produces chemical or radiological toxicity or both. The literature is essentially devoid of information about uranium-related cellular and molecular effects on metabolic functions such as xenobiotic detoxification. The present study thus evaluated rats chronically exposed to depleted uranium in their drinking water (1 mg/(rat day)) for 9 months. Our specific aim was to evaluate the hepatic and extrahepatic mRNA expression of CYP3A1/A2, CYP2B1, and CYP1A1 as well as of the nuclear receptors PXR, CAR, and RXR in these rats. CYP3A1 mRNA expression was significantly higher in the brain (200%), liver (300%), and kidneys (900%) of exposed rats compared with control rats, while CYP3A2 mRNA levels were higher in the lungs (300%) and liver (200%), and CYP2B1 mRNA expression in the kidneys (300%). Expression of CYP1A1 mRNA did not change significantly during this study. PXR mRNA levels increased in the brain (200%), liver (150%), and kidneys (200%). Uranium caused CAR mRNA expression in the lungs to double. Expression of RXR mRNA did not change significantly in the course of this study, nor did the hepatic activity of CYP2C, CYP3A, CYP2A, or CYP2B. Uranium probably affects the expression of drug-metabolizing CYP enzymes through the PXR and CAR nuclear receptors. These results suggest that the stimulating effect of uranium on these enzymes might lead to hepatic or extrahepatic toxicity (or both) during drug treatment and then affect the entire organism

  17. Linked expression of Ah receptor, ARNT, CYP1A1, and CYP1B1 in rat mammary epithelia, in vitro, is each substantially elevated by specific extracellular matrix interactions that precede branching morphogenesis.

    Science.gov (United States)

    Larsen, Michele Campaigne; Brake, Paul B; Pollenz, Richard S; Jefcoate, Colin R

    2004-11-01

    Cytochrome P4501B1 (CYP1B1), the major constitutively expressed CYP in the rat mammary gland, is induced by Ah-receptor (AhR) ligands, while CYP1A1 is predominantly expressed only after induction. These CYPs contribute to carcinogenic activation of polycyclic aromatic hydrocarbons (PAHs). AhR, ARNT, and CYP1B1 were only weakly expressed, even after 2,3,7,8-tetrachlorodibenzo-p-dioxin induction, when rat mammary epithelial cells (RMEC) were cultured on plastic. RMEC cultured on the extracellular matrix (ECM), Matrigel, or on a floating gel of collagen I demonstrated branching morphogenesis and substantially increased basal CYP1B1 and induced CYP1A1 expression, in parallel with large increases in AhR and ARNT expression. Branching was more pronounced in the Wistar Kyoto than in the Wistar Furth rat strain. Although EGF enhanced branching, neither strain nor growth factor treatment substantially impacted CYP expression. Increased AhR and ARNT expression is observed within 24 h of dispersal on Matrigel, substantially prior to branch formation. Culture on thin layers of collagen I, collagen IV, and laminin, respectively, failed to reproduce the branching morphogenesis or increases in AhR, ARNT, or CYP expression. However, adherent, gelled collagen I recapitulated the increased protein expression, without supporting branching. This increased protein expression was closely paralleled by enhanced expression of beta-catenin and E-cadherin, components of cell-cell adhesion complexes. A synthetic peptide that selectively antagonizes integrin-ECM interactions reduced branch formation, without diminishing AhR, ARNT, and CYP expression. These data demonstrate that early ECM surface adhesion interactions mediate AhR and ARNT expression, which enhances CYP expression, independent of branching morphogenesis.

  18. Effects of Flos carthami on CYP2D6 and on the Pharmacokinetics of Metoprolol in Rats

    Directory of Open Access Journals (Sweden)

    Gaofeng Liu

    2011-01-01

    Full Text Available Flos carthami is a traditional Chinese herbal medicine. Clinically, the Flos carthami Injection has been used concomitantly with other Western drugs and may be used concomitantly with β-blockers, such as metoprolol, to treat cerebrovascular and coronary heart diseases, in China. Metoprolol is a CYP2D6 substrate and is predominantly metabolized by this isozyme. However, we do not know whether there is an effect of Flos carthami on CYP2D6 and the consequences of such an effect. Concern is raised regarding the possible herb-drug interaction. In this report, the effects of Flos carthami on the activity of CYP2D6 in vivo and in vitro and on the pharmacokinetics of metoprolol, in rats, are investigated. To assess the inhibitory potency of Flos carthami, the concentration associated with 50% inhibition (IC50 of dextromethorphan metabolism was determined based on the concentration-inhibition curves. The inhibitory effect of Flos carthami on CYP2D6 was also compared with cimetidine in vitro. Flos carthami could significantly inhibit CYP2D6 in rats both in vitro and in vivo (P<.05 and could slow down the metabolic rate of metoprolol as suggested by prolonged t1/2 (67.45%, by increased Cmax (74.51% and AUC0−∞ (76.89%. These results suggest that CYP2D6 is a risk factor when Flos carthami is administered concomitantly with metoprolol or other CYP2D6 substrates.

  19. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers

    International Nuclear Information System (INIS)

    Pustylnyak, Vladimir O.; Gulyaeva, Lyudmila F.; Lyakhovich, Vyacheslav V.

    2005-01-01

    The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca 2+ /calmodulin-dependent kinase II (W 7 ) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W 7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W 7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W 7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes

  20. Influences of Realgar-Indigo naturalis, A Traditional Chinese Medicine Formula, on the Main CYP450 Activities in Rats Using a Cocktail Method

    Directory of Open Access Journals (Sweden)

    Huan-Hua Xu

    2017-01-01

    Full Text Available The purpose of this work was to study the influences of Realgar-Indigo naturalis (RIF and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs. Realgar, a toxic traditional Chinese medicine (TCM, does have curative effect on acute promyelocytic leukemia (APL. Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism.

  1. Elevated expression of steroidogenesis pathway genes; CYP17, GATA6 and StAR in prenatally androgenized rats.

    Science.gov (United States)

    Jahromi, Marziyeh Salehi; Tehrani, Fahimeh Ramezani; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2016-11-15

    It is believed that excess androgen exposure of the fetus, via altered gene expression, causes hyperandrogenism a key feature of polycystic ovary syndrome (PCOS). The aim of this study was to evaluate expression of Cytochrome P450-17 (CYP17), GATA-binding protein (GAGT6) and Steroidogenic acute regulatory protein (StAR), genes of adult female rats prenatally exposed to androgen excess, closely reflect endocrine and ovarian disturbances of PCOS in women, by comparing them during different phases of estrus cycle with those of non-treated rats. Both the adult prenatally testosterone exposed and control rats (n=23, each) were divided into four groups based on their observed vaginal smear (proestrus, estrus, metestrus and diestrus) and the relative expression of CYP17, GATA6 and StAR genes was measured in ovarian theca cells using Cyber-green Real-Time PCR. Serum sex steroid hormones and gonadotropins levels were measured using the ELISA method; a comparison of these two groups showed that there was an overall increase in the studied genes (CYP17; 2.39 fold change, 95% CI: 1.23-3.55; PPCOS. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhanced oral bioavailability of metoprolol with gallic acid and ellagic acid in male Wistar rats: involvement of CYP2D6 inhibition.

    Science.gov (United States)

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2016-12-01

    Cytochrome P450-2D6 (CYP2D6), a member of the CYP450 mixed function oxidase system, is an important CYP isoform with regard to herbal-drug interactions and is responsible for the metabolism of nearly 25% of drugs. Until now, studies on the effects of various phytochemicals on CYP2D6 activity in vivo have been very rare. Gallic acid and ellagic acid are natural polyphenols which are widely distributed in fruits and medicinal plants. In the present study, the effects of gallic acid and ellagic acid pretreatment on intestinal transport and oral bioavailability of metoprolol were investigated. The intestinal transport of metoprolol was assessed by conducting an in situ single pass intestinal perfusion (SPIP) study. The bioavailability study was conducted to evaluate the pharmacokinetic parameters of orally administered metoprolol in rats. After pretreatment with gallic acid and ellagic acid, no significant change in effective permeability of metoprolol was observed at the ileum part of rat intestine. A significant improvement in the peak plasma concentration (Cmax) and area under the serum concentration-time profile (AUC) and decrease in clearance were observed in rats pretreated with gallic acid and ellagic acid. Gallic acid and ellagic acid significantly enhanced the oral bioavailability of metoprolol by inhibiting CYP2D6-mediated metabolism in the rat liver. Hence, adverse herbal-drug interactions may result with concomitant ingestion of gallic acid and ellagic acid supplements and drugs that are CYP2D6 substrates. The clinical assessment of these interactions should be further investigated in human volunteers.

  3. CROSS-REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST PEPTIDE 277-294 OF RAINBOW TROUT CYP1A1 WITH HEPATIC CYP1A AMONG FISH. (R823881)

    Science.gov (United States)

    AbstractExposure to a variety of xenobiotics, including polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), results in the induction of CYP1A and related biological activity. Historically, antibodies against purified CYP1A have been raised...

  4. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat.

    Science.gov (United States)

    Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed; Ishizuka, Mayumi; Fujita, Shoichi

    2014-01-01

    Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.

  5. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  6. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G.; Okuno, Yasuyoshi

    2009-01-01

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 μM MTF and 100-500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver

  7. Comparison of the effects of the synthetic pyrethroid Metofluthrin and phenobarbital on CYP2B form induction and replicative DNA synthesis in cultured rat and human hepatocytes.

    Science.gov (United States)

    Hirose, Yukihiro; Nagahori, Hirohisa; Yamada, Tomoya; Deguchi, Yoshihito; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Isobe, Naohiko; Lake, Brian G; Okuno, Yasuyoshi

    2009-04-05

    High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 microM MTF and 50 microM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2'-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10-1000 microM MTF and 100-500 microM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5-50 ng/ml epidermal growth factor or 5-100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.

  8. Inducing rat brain CYP2D with nicotine increases the rate of codeine tolerance; predicting the rate of tolerance from acute analgesic response.

    Science.gov (United States)

    McMillan, Douglas M; Tyndale, Rachel F

    2017-12-01

    Repeated opioid administration produces analgesic tolerance, which may lead to dose escalation. Brain CYP2D metabolizes codeine to morphine, a bioactivation step required for codeine analgesia. Higher brain, but not liver, CYP2D is found in smokers and nicotine induces rat brain, but not liver, CYP2D expression and activity. Nicotine induction of rat brain CYP2D increases acute codeine conversion to morphine, and analgesia, however the role of brain CYP2D on the effects of repeated codeine exposure and tolerance is unknown. Rats were pretreated with nicotine (brain CYP2D inducer; 1mg/kg subcutaneously) or vehicle (saline; 1ml/kg subcutaneously). Codeine (40-60mg/kg oral-gavage) or morphine (20-30mg/kg oral-gavage) was administered daily and analgesia was assessed daily using the tail-flick reflex assay. Nicotine (versus saline) pretreatment increased acute codeine analgesia (1.32-fold change in AUC 0-60 min ; pnicotine did not alter acute morphine analgesia (1.03-fold; p>0.8), or the rate of morphine tolerance (8.1%/day versus 7.6%; p>0.9). The rate of both codeine and morphine tolerance (loss in peak analgesia from day 1 to day 4) correlated with initial analgesic response on day 1 (R=0.97, p<001). Increasing brain CYP2D altered initial analgesia and subsequent rate of tolerance. Variation in an individual's initial response to analgesic (e.g. high initial dose, smoking) may affect the rate of tolerance, and thereby the risk for dose escalation and/or opioid dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The effect of lycopene on the total cytochrome P450, CYP1A2 and CYP2E1

    Directory of Open Access Journals (Sweden)

    Melva Louisa

    2009-12-01

    Full Text Available Aim: Some carotenoids such as canthaxantin, astaxanthin and beta apo-8’-carotenal were reported to have modulatoryeffect on the cytochrome P450. The present study was conducted to investigate the effects of lycopene, a nonprovitamin A carotenoid, on microsomal cytochrome P450, CYP1A2 and CYP2E1.Methods: Total cytochrome P450 levels, CYP1A2 and CYP2E1-catalyzed reactions (acetanilide 4-hydroxylation and p-nitrophenol hydroxylation were studied in the liver microsomes of male Sprague Dawley rats. Microsomes were prepared using differential centrifugation combined with calcium aggregation method. Lycopene was orally administered in the dosages of 0, 25, 50 or 100 mg/kgBW/day for 14 days in a repeated fashion. Data were analyzed using ANOVA test.Results: Total cytochrome P450 level and acetanilide 4-hydroxylase activity were unaffected by any of the treatments. The CYP2E1 probe enzyme (p-nitrophenol hydroxylase was significantly reduced by repeated administration of 100mg/ kgBW/day lycopene (7.88 + 2.04 vs 12.26 + 2.77 n mol/min/mg prot.Conclusion: The present results suggest that lycopene does not affect the total cytochrome P450 or CYP1A2 activity but it inhibits the activity of CYP2E1 (p-nitrophenol hydroxylase in the rat. (Med J Indones 2009; 18: 233-8Keywords: lycopene, cytochrome P450, CYP1A2, CYP2E1

  10. In vitro screening of reversible and time-dependent inhibition on CYP3A by TM208 and TM209 in rat liver microsomes

    Directory of Open Access Journals (Sweden)

    Miaoran Ning

    2012-04-01

    Full Text Available TM208 and TM209, dithiocarbamate derivatives with potential anti-cancer effects, were evaluated in reversible and time-dependent cytochrome P450 (CYP 3A inhibition assays in rat liver microsomes using testosterone as probe substrate. Both compounds were found to be weak reversible inhibitors and moderate mechanism-based inhibitors of rat CYP3A. For reversible inhibition on rat CYP3A, the Ki values of competitive inhibition model were 12.10±1.75 and 13.94±1.31 μM, respectively. For time-dependent inhibition, the inactivation constants (Kl were 31.93±12.64 and 32.91±15.58 μM, respectively, and the maximum inactivation rates (kinact were 0.03497±0.0069 and 0.07259±0.0172 min−1 respectively. These findings would provide useful in vitro information for future in vivo DDI studies on TM208 or TM209.

  11. The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats.

    Science.gov (United States)

    Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali

    2018-01-01

    Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (PStAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.

  12. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  13. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  14. Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase

    International Nuclear Information System (INIS)

    Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.

    2006-01-01

    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards β-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 o C. In this system, β-carotene was hydroxylated to β-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low β-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated β-carotene at 3- and also 3'-positions, resulting in β-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol β-cryptoxanthin produced per nmol P450 per min

  15. Effects of Quercetin on CYP450 and Cytokines in Aroclor 1254 Injured Endometrial Cells of the Pregnant Rats

    Directory of Open Access Journals (Sweden)

    Lina Xu

    2014-01-01

    Full Text Available Polychlorinated biphenyls (PCBs are widespread persistent residual environmental pollutants, which affect seriously the growth and reproductive alterations in humans and animals. Aroclor 1254 is a commercial mixture of PCBs. Quercetin is a flavonoid, which acts on estrogen receptors and causes the development of estrogen-related diseases. In this paper, the primary cultured endometrial cells in the pregnant rats were isolated and Aroclor 1254 was used to induce the injured endometrial cells model. The cells were treated with gradient quercetin, the viability of the endometrial cells, the expressions of CYP450, the contents of TNF-α, IL-6, estradiol (E2, and progesterone (P4 were measured. It showed that the viability of the cultured endometrial cells, the expression of CYP1A1 and CYP2B1, and the contents of TNF-α, E2, and IL-6 in the injured endometrial cells increased with the treatment of quercetin. It shows that quercetin has protective effect on the injured endometrial cells in the pregnant rats, this provide a basis on herbal medicine protection for animal reproductive diseases caused by environmental endocrine disruptors.

  16. Impact of the herbal medicine Sophora flavescens on the oral pharmacokinetics of indinavir in rats: the involvement of CYP3A and P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jia-Ming Yang

    Full Text Available Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o. and indinavir (40 mg/kg, p.o. in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%-83% decrease in AUC(0-∞ and 38%-78% reduction in C(max. The CL (Clearance/F (fraction of dose available in the systemic circulation increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o. also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products.

  17. Effect of purified gambir leaves extract to prevent atherosclerosis in rats

    Directory of Open Access Journals (Sweden)

    Nanang Yunarto

    2016-03-01

    , antiaterosklerosis AbstractBackground: Atherosclerosis is a risk factor for coronary heart disease (CHD. Catechin have highantioxidant activity that can prevent atherosclerosis. Gambir (Uncaria gambir, Roxb. leaves extract havehigh catechin content thereby potentially inhibiting atherosclerosis. This research was aimed to examineeffect of purified gambir leaves extract to prevent atherosclerosis in rats.Methods: The experimental laboratory study was conducted in Pharmacy Laboratory and Animal Laboratory,National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia in 2014.Gambir leaves extract were purified to gain optimum catechin. Afterwards, antioxidant activity was testedusing 2.2-diphenyl-1-picrylhydrazyl (DPPH method, with ascorbic acid as positive control. Thirty six whitemale Sprague Dawley rats aged 2.5 months were randomly divided into six groups, i.e. normal control group,negative control group (aquadest, positive control group (atorvastatin 2 mg/200 g bw,extract dose I (20mg/200 g bw, dose II (40 mg/200 g bw and dose III (80 mg/200 g bw. The rats were given high fat diet andtreatment according to their group for 60 days, except for normal control group.Results: Catechin content in the purified gambir leaves extract was 92,69%. From antioxidant activity test, IC50 wasfound to be 11,76 μg/mL. Anti-atherosclerotic activity study shown that compared to negative control, all three dosesof purified gambir leaves extract were able to prevent atherosclerosis through inhibition of aortic wall thickening andfoam cell formation due to high fat diet (p<0.05. Anti-atherosclerotic activity increased with increasing dose.Conclusion: Gambir leaves purified extract had the effect of preventing the thickening of the walls andfoam cell formation rat aorta. (Health Science Journal of Indonesia 2015;6:105-10Keywords: gambir, catechin, antiatherosclerosis

  18. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide...... generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  19. Mode of action analysis for the synthetic pyrethroid metofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyte proliferation.

    Science.gov (United States)

    Deguchi, Yoshihito; Yamada, Tomoya; Hirose, Yukihiro; Nagahori, Hirohisa; Kushida, Masahiko; Sumida, Kayo; Sukata, Tokuo; Tomigahara, Yoshitaka; Nishioka, Kazuhiko; Uwagawa, Satoshi; Kawamura, Satoshi; Okuno, Yasuyoshi

    2009-03-01

    Two-year treatment with high doses of Metofluthrin produced hepatocellular tumors in both sexes of Wistar rats. To understand the mode of action (MOA) by which the tumors are produced, a series of studies examined the effects of Metofluthrin on hepatic microsomal cytochrome P450 (CYP) content, hepatocellular proliferation, hepatic gap junctional intercellular communication (GJIC), oxidative stress and apoptosis was conducted after one or two weeks of treatment. The global gene expression profile indicated that most genes with upregulated expression with Metofluthrin were metabolic enzymes that were also upregulated with phenobarbital. Metofluthrin induced CYP2B and increased liver weights associated with centrilobular hepatocyte hypertrophy (increased smooth endoplasmic reticulum [SER]), and induction of increased hepatocellular DNA replication. CYP2B1 mRNA induction by Metofluthrin was not observed in CAR knockdown rat hepatocytes using the RNA interference technique, demonstrating that Metofluthrin induces CYP2B1 through CAR activation. Metofluthrin also suppressed hepatic GJIC and induced oxidative stress and increased antioxidant enzymes, but showed no alteration in apoptosis. The above parameters related to the key events in Metofluthrin-induced liver tumors were observed at or below tumorigenic dose levels. All of these effects were reversible upon cessation of treatment. Metofluthrin did not cause cytotoxicity or peroxisome proliferation. Thus, it is highly likely that the MOA for Metofluthrin-induced liver tumors in rats is through CYP induction and increased hepatocyte proliferation, similar to that seen for phenobarbital. Based on analysis with the International Life Sciences Institute/Risk Science Institute MOA framework, it is reasonable to conclude that Metofluthrin will not have any hepatocarcinogenic activity in humans, at least at expected levels of exposure.

  20. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    Science.gov (United States)

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats.

    Science.gov (United States)

    Jian, Tun-Yu; He, Jian-Chang; He, Gong-Hao; Feng, En-Fu; Li, Hong-Liang; Bai, Min; Xu, Gui-Li

    2012-08-01

    Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Hepatic Cyp1a2 Expression Reduction during Inflammation Elicited in a Rat Model of Intermittent Hypoxia

    Directory of Open Access Journals (Sweden)

    Li-Xia Shi

    2017-01-01

    Conclusions: These results indicate a decrease in expression of hepatic CYPs and their regulator GR in rats exposed to IH. Therefore, this should be noted for patients on medication, especially those on drugs metabolized via the hepatic system, and close attention should be paid to the liver function of patients with OSA-associated IH.

  3. Enhanced Oral Bioavailability of Domperidone with Piperine in Male Wistar Rats: Involvement of CYP3A1 and P-gp Inhibition.

    Science.gov (United States)

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-01-01

    Domperidone is a commonly used antiemetic drug. The oral bioavailability of domperidone is very low due to its rapid first pass metabolism in the intestine and liver. Piperine, the main alkaloid present in black pepper has been reported to show inhibitory effects on Cytochrome P-450 (CYP-450) enzymes and P-glycoprotein (P-gp). In the present study we investigated the effect of piperine pretreatment on the intestinal transport and oral bioavailability of domperidone in male Wistar rats. The intestinal transport of domperidone was evaluated by an in-vitro non-everted sac method and in-situ single pass intestinal perfusion (SPIP) study. The oral pharmacokinetics of domperidone was evaluated by conducting oral bioavailability study in rats. A statistically significant improvement in apparent permeability (Papp) was observed in rats pretreated with piperine compared to the respective control group. The effective permeability (Peff) of domperidone was increased in the ileum of the piperine treated group. Following pretreatment with piperine, the peak plasma concentration (Cmax) and area under the concentration- time curve (AUC) were significantly increased. A significant decrease in time to reach maximum plasma concentration (Tmax), clearance and elimination rate constant (Kel) was observed in rats pretreated with piperine. Piperine enhanced the oral bioavailability of domperidone by inhibiting CYP3A1 and P-gp in rats. This observation suggests the possibility that the combination of piperine with other CYP3A4 and P-gp dual substrates may also improve bioavailability. Further clinical studies are recommended to verify this drug interaction in human volunteers and patients. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  4. Gestational exposure to BDE-99 produces toxicity through upregulation of CYP isoforms and ROS production in the fetal rat liver.

    Science.gov (United States)

    Blanco, Jordi; Mulero, Miquel; Domingo, José L; Sánchez, Domènec J

    2012-05-01

    On gestation day (GD) 6 to GD 19, pregnant Sprague Dawley rats were orally exposed to 0, 0.5, 1, and 2 mg/kg/day to one of the most prevalent polybrominated diphenyl ethers congeners found in humans, 2,2',4,4',5-pentaBDE (BDE-99). All dams were euthanized on GD 20, and live fetuses were evaluated for sex, body weight, and external, internal, and skeletal malformations and developmental variations. The liver from one fetus of each litter was excised for the evaluation of oxidative stress markers and the messenger RNA expression of multiple cytochrome P450 (CYP) isoforms. Exposure to BDE-99 during the gestational period produced delayed ossification, slight hypertrophy of the heart, and enlargement of the liver in fetuses. A transplacental effect of BDE-99, evidenced by the activation of nuclear hormones receptors that induce the upregulation of CYP1A1, CYP1A2, CYP2B1, and CYP3A2 isoforms, was also found in fetal liver. These isoforms are correlated with the activity level of the enzyme catalase and the levels of thiobarbituric acid reactive substances. However, teratogenic effects from BDE-99 exposure were not observed. Clear signs of embryo/fetal toxicity, due to a possible hormonal disruption, were evidenced by a large increase in the CYP system and the production of reactive oxygen species in fetal liver.

  5. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Arabidopsis thaliana cyclophilin 38 (AtCyp38)

    International Nuclear Information System (INIS)

    Vasudevan, Dileep; Gopalan, Gayathri; He, Zengyong; Luan, Sheng; Swaminathan, Kunchithapadam

    2005-01-01

    Crystallization of Arabidopsis thaliana cyclophilin 38. The crystal diffracts X-rays to 2.5 Å resolution. AtCyp38 is one of the highly divergent multidomain cyclophilins from Arabidopsis thaliana. A recombinant form of AtCyp38 (residues 83–437) was expressed in Escherichia coli and purified to homogeneity. The protein was crystallized using the vapour-batch technique with PEG 6000 and t-butanol as precipitants. Crystals of recombinant AtCyp38 diffracted X-rays to better than 2.5 Å resolution at 95 K using a synchrotron-radiation source. The crystal belongs to the C-centred orthorhombic space group C222 1 , with unit-cell parameters a = 58.2, b = 95.9, c = 167.5 Å, and contains one molecule in the asymmetric unit. The selenomethionine derivative of the AtCyp38 protein was overexpressed, purified and crystallized in the same space group and data were collected to 3.5 Å at the NSLS synchrotron. The structure is being solved by the MAD method

  6. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats

    OpenAIRE

    Chung-Ping Yu; Ching-Ya Huang; Shiuan-Pey Lin; Yu-Chi Hou

    2018-01-01

    Coptidis Rhizoma (CR), the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP), an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp) and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repe...

  7. Evaluation of pharmacokinetic and pharmacodynamic interaction between repaglinide and atazanavir in healthy, diabetic and hepatic impaired rats: possible inhibition of CYP3A, OATP, and P-glycoprotein transporters

    Directory of Open Access Journals (Sweden)

    Thirumal Eswara Goud

    2016-10-01

    Full Text Available The metabolic syndrome in HIV infected patients is particularly associated with the use protease inhibitors. Atazanavir is an inhibitor of the cytochrome P 450 (CYP system, in particular CYP3A4 and CYP2C9 which can affect the metabolism of several drugs. To treat metabolic syndrome in HIV patients repaglinide is used and it is a short acting insulin secretagogues undergoing metabolism with CYP 3A4 and CYP 2C8 enzyme system. The purpose of this study was to assess the possible pharmacokinetic and pharmacodynamic drug interaction of repaglinide and atazanavir in healthy, diabetic and impaired hepatic function rats. Human oral therapeutic doses of atazanavir and repaglinide were extrapolated to rats based on the body surface area. The pharmacokinetic parameters and blood glucose concentrations of repaglinide were determined after oral administration of repaglinide alone (0.5 mg/kg and in the presence of atazanavir (36 mg/kg in normal, diabetic and hepatic impaired rats. The pharmacokinetics (PK and blood glucose concentrations of repaglinide were significantly altered in the presence of atazanavir. The peak plasma concentration (Cmax, area under the plasma concentration time profile (AUC and elimination half-life of repaglinide were significantly (P<0.0001 increased. The repaglinide clearance (CL was significantly (P<0.0001 decreased in the presence of atazanavir treatment. In the presence of atazanavir, repaglinide hypoglycaemic activity was increased significantly (P<0.0001 when compared with the repaglinide control group. The present study demonstrated the significant difference in the PK/PD changes due to the enhanced bioavailability and decreased total body clearance of repaglinide may be due to the inhibition of the CYP P450 metabolic system, OATP and P-gp transporters by atazanavir.

  8. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-01-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining [ 3 H]nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure [ 3 H]nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-[ 3 H]nicotine-binding characteristics

  9. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    International Nuclear Information System (INIS)

    Walker, M.W.; Miller, R.J.

    1986-01-01

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21 0 C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10 -7 M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues

  10. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    International Nuclear Information System (INIS)

    Ohhira, Shuji; Enomoto, Mitsunori; Matsui, Hisao

    2006-01-01

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, including typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats

  11. PPARα activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase

    International Nuclear Information System (INIS)

    Fan Liqun; Brown-Borg, Holly; Brown, Sherri; Westin, Stefan; Mode, Agneta; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20 000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism

  12. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    Directory of Open Access Journals (Sweden)

    Withey Laura

    2007-07-01

    Full Text Available Abstract Background Cytochrome P450 (CYP enzymes have the potential to affect colorectal cancer (CRC risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively. Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility.

  13. Analysis of purified gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and tandem mass spectrometry.

    Science.gov (United States)

    Fairburn, B; Muthana, M; Hopkinson, K; Slack, L K; Mirza, S; Georgiou, A S; Espigares, E; Wong, C; Pockley, A G

    2006-09-01

    The stress protein gp96 exhibits a number of immunological activities, the majority of studies into which have used gp96 purified from a variety of tissues. On the basis of 1-D gel electrophoresis, the purity of these preparations has been reported to range between 70% and 99%. This study analyzed gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry (MS-MS). The procedure for purifying gp96 was reproducible, as similar protein profiles were observed in replicate gels of gp96 preparations. The purity of the preparations was typically around 70%, with minor co-purified proteins of varying molecular weights and mobilities being present. Dominant bands at 95-100 kDa in preparations from Wistar rats and C57BL/6 mice were identified as gp96 by ECL Western blotting. Multiple bands having similar, yet distinct molecular weights and differing pI mobility on ECL Western blots were confirmed as being gp96 in preparations from Wistar rats using MS-MS. The most striking feature of the 2-D gel analysis was the presence of additional dominant bands at 55 kDa in preparations from Wistar rats, and at 75-90 kDa in preparations from C57BL/6 mice. These were identified as gp96 by ECL Western blotting and, in the case of preparations from Wistar rats, by MS-MS. Although the lower molecular weight, gp96-related molecules might be partially degraded gp96, their reproducible presence, definition and characteristics suggest that they are alternative, species-specific isoforms of the molecule. A 55 kDa protein which exhibited a lower pI value than gp96 was present in all preparations and this was identified as calreticulin, another putative immunoregulatory molecule. This study confirms the reproducibility of the gp96 purification protocol and reveals the presence of multiple gp96 isoforms, some of which likely result from post-translational modifications such as differential glycosylation and

  14. The effect of low ambient temperature on the febrile responses of rats to semi-purified human endogenous pyrogen.

    Science.gov (United States)

    Stitt, J T; Shimada, S G

    1985-01-01

    The febrile responses of Sprague-Dawley rats to semi-purified human endogenous pyrogen were studied at a thermoneutral ambient temperature (26 degrees C) and in the cold (3 degrees C). It was found that while rats developed typical monophasic febrile responses at thermoneutrality, febrile responses were absent in the cold-exposed rats. Experiments were conducted to determine whether this lack of febrile responses in cold-exposed rats was due to an inability of these animals to generate or retain heat in the cold. Thermogenesis and vasoconstriction were stimulated in cold-exposed rats by selectively cooling the hypothalamus, using chronically implanted thermodes. It was shown that, using this stimulus, metabolic rate could be increased by more than 50 percent and body temperature could be driven up at a rate of 5 degrees C/hour in rats exposed to the cold. Therefore, it was concluded that the lack of febrile responses of cold-exposed rats to pyrogen is in no way due to a physical or physiological inability to retain heat. Instead, it appears that in some manner cold exposure suppresses the sensitivity or responsiveness of the rat to pyrogenic stimuli.

  15. Effect of partially purified angiotensin converting enzyme inhibitory ...

    African Journals Online (AJOL)

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  16. Cyclophilin B expression in renal proximal tubules of hypertensive rats.

    Science.gov (United States)

    Kainer, D B; Doris, P A

    2000-04-01

    Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.

  17. Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens.

    Science.gov (United States)

    Warrilow, Andrew G; Parker, Josie E; Kelly, Diane E; Kelly, Steven L

    2013-03-01

    Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 μM) and did not significantly inhibit Δ60HsCYP51.

  18. Effect of strychnine hydrochloride on liver cytochrome P450 mRNA expression and monooxygenase activities in rat

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2011-08-01

    Full Text Available Strychnos nux-vomica L. has been frequently used in traditional Chinese medicine but has high acute toxicity. It is commonly taken with Glycyrrhizae radix to decrease its toxicity but the mechanism of this interaction is unknown. In this work, the mRNA expression and the activity of four cytochrome P450 (CYP enzymes representative of four subfamilies (CYP1A, CYP3A, CYP2C and CYP2E were determined ex vivo in rat livers from groups of Wistar rats orally administered strychnine hydrochloride (SH at three doses (0.1, 0.3 and 0.9 mg/kg/day alone and, at the highest dose, in combination with glycyrrhetinic acid (GA, 25 mg/kg/day or liquiritin (LQ, 20 mg/kg/day once a day for 7 consecutive days. Compared to control, the mRNA expressions of CYP3A1, 1A2 and 2E1 were higher in rats receiving the highest dose of SH but lower for CYP3A1 and CYP2E1 in rats receiving the SH+GA and SH+LQ combinations. CYP2E1 activity was higher and CYP2C, CYP3A and CYP1A2 activities were lower in rats receiving the highest dose of SH. In contrast CYP1A2 and CYP2C activities were higher and CYP2E1 and CYP3A activities lower in rats receiving the SH+GA combination. CYP2E1 and CYP3A activities were also lower in rats receiving the SH+LQ combination. The results show that treatment with SH for 7 days affects the expression and the activity of CYP enzymes and that coadministration of GA and LQ modulates these effects. This modulation may explain the role of Glycyrrhizae radix in reducing the acute toxicity of Strychnos nux-vomica L.CYPs enzymes.

  19. Cholesterol 7alpha-hydroxylase (CYP7A1) activity is modified after chronic ingestion of depleted uranium in the rat.

    Science.gov (United States)

    Racine, R; Grandcolas, L; Grison, S; Stefani, J; Delissen, O; Gourmelon, P; Veyssière, G; Souidi, M

    2010-05-01

    Depleted uranium (DU) is a radioactive heavy metal derived from the nuclear energy production. Its wide use in civilian and military items increases the risk of its environmental dissemination, and thus the risk of internal contamination of populations living in such contaminated territories. Previous studies have shown that vitamin D and cerebral cholesterol metabolisms were affected following chronic ingestion of DU. Even more than the brain, the liver is a crucial organ in cholesterol homeostasis since it regulates cholesterol distribution and elimination at body level. The aim of this work was to assess the impact of a low-level chronic ingestion of DU on hepatic cholesterol metabolism. Rats were contaminated with DU in their drinking water at a concentration of 40mg/l for 9 months. The major effect induced by DU was a decrease of CYP7A1 specific activity (-60%) correlated with a matching decrease of its product 7alpha-hydroxycholesterol in the plasma. Hepatic gene expression of transporters ABC A1, ABC G5, ABC G8 and of nuclear receptor RXR was increased, whereas that of catabolism enzyme CYP7B1 was decreased. Thus, after a chronic ingestion of DU, rats experience a modulation of cholesterol catabolism but overcome it, since their cholesterolemia is preserved and no pathology is declared.

  20. Involvement of hepatic xenobiotic related genes in bromadiolone resistance in wild Norway rats, Rattus norvegicus (Berk.)

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Alsbo, Carsten

    2007-01-01

    To examine the role of xenobiotic relevant genes in bromadiolone resistance in wild Norway rats (Rattus norvegicus) we compared the constitutive liver gene expression and expression upon bromadiolone administration in bromadiolone resistant and anticoagulant susceptible female rats using a LNA...... expressed in resistant than susceptible rats upon bromadiolone exposure. To establish how bromadiolone affected xenobiotic gene expression in the two strains we compared bromadiolone expression profiles to saline profiles of both strains. Bromadiolone mediated significant up-regulation of Cyp2e1 and Cyp3a3...... expression in the resistant rats whereas the rodenticide conferred down-regulation of Cyp2e1, Cyp3a3 and Gpox1 and induction of Cyp2c12 expression in susceptible rats. Cyp2c13 and Cyp3a2 expression were markedly suppressed in both strains upon treatment. This suggests that xenobiotic relevant enzymes play...

  1. Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats

    DEFF Research Database (Denmark)

    Heijnen, Bart Fj; Pelkmans, Leonie Pj; Danser, Ah Jan

    2013-01-01

    This study investigated renin-angiotensin system (RAS)-induced cardiac remodeling and its reversibility in the presence and absence of high blood pressure (BP) in Cyp1a1-Ren2 transgenic inducible hypertensive rats (IHR). In IHR (pro)renin levels and BP can be dose-dependently titrated by oral...... administration of indole-3-carbinol (I3C). Young (four-weeks old) and adult (30-weeks old) IHR were fed I3C for four weeks (leading to systolic BP >200 mmHg). RAS-stimulation was stopped and animals were followed-up for a consecutive period. Cardiac function and geometry was determined echocardiographically...

  2. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations.

    Science.gov (United States)

    Kim, Jeong-Hyun; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Shin, Hee Jung; Na, Han Sung; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-01-01

    Recently, CYP2A6, CYP2B6, CYP2C8, and CYP2E1 have been reported to play a role in the metabolic effect of pharmacological and carcinogenic compounds. Moreover, genetic variations of drug metabolism genes have been implicated in the interindividual variation in drug disposition and pharmacological response. To define the distribution of single nucleotide polymorphisms (SNPs) in these four CYP2 family genes and to discover novel SNPs across ethnic groups, 288 DNAs composed of 48 African-Americans, 48 European-Americans, 48 Japanese, 48 Han Chinese, and 96 Koreans were resequenced. A total of 143 SNPs, 26 in CYP2A6, 45 in CYP2B6, 29 in CYP2C8, and 43 in CYP2E1, were identified, including 13 novel variants. Notably, two SNPs in the regulatory regions, a promoter SNP rs2054675 and a nonsynonymous rs3745274 (p.172Q>H) in CYP2B6, showed significantly different minor allele frequencies (MAFs) among ethnic groups (minimum P = 4.30 × 10(-12)). In addition, rs2031920 in the promoter region of CYP2E1 showed a wide range of MAF between different ethnic groups, and even among other various ethnic groups based on public reports. Among 13 newly discovered SNPs in this study, 5 SNPs were estimated to have potential functions in further in silico analyses. Some differences in genetic variations and haplotypes of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 were observed among populations. Our findings could be useful in further researches, such as genetic associations with drug responses.

  3. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP

  4. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats.

    Science.gov (United States)

    Yu, Chung-Ping; Huang, Ching-Ya; Lin, Shiuan-Pey; Hou, Yu-Chi

    2018-04-01

    Coptidis Rhizoma (CR), the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP), an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp) and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repeated dosing of CR in a parallel design. Blood samples were collected at specific time points and the blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. The results showed that a single dose (1.0 g/kg) and the 7th dose (1.0 g/kg) of CR significantly decreased the C max of CSP by 56.9% and 70.4%, and reduced the AUC 0-540 by 56.4% and 68.7%, respectively. Cell study indicated that CR decoction, berberine, coptisine, palmatine all activated the efflux transport of P-gp. Ex-vivo study showed that the serum metabolites of CR activated CYP 3A4. In conclusion, through using CSP as an in vivo probe substrate, we have verified that oral intake of CR activated the functions of P-gp and CYP3A based on in vivo and in vitro studies. Copyright © 2017. Published by Elsevier B.V.

  5. Steroidogenesis in amlodipine treated purified Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Rabia, E-mail: rabialatif08@hotmail.com [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: drmustafa786@gmail.com [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: waqham@hotmail.com [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: professormaslam@yahoo.com [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  6. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Metabolism of benzene and phenol by a reconstituted purified phenobarbital induced rat liver mixed function oxidase system

    International Nuclear Information System (INIS)

    Griffiths, J.C.

    1986-01-01

    Cytochrome P-450 and the electron-donor, NADPH-cytochrome c reductase were isolated from phenobarbital induced rat liver microsomes. Both benzene and its primary metabolite phenol, were substrates for the reconstituted purified phenobarbital induced rat liver mixed function oxidase system. Benzene was metabolized to phenol and the polyhydroxylated metabolites; catechol, hydroquinone and 1,2,4 benzenetriol. Benzene elicited a Type I spectral change upon its interaction with the cytochrome P-450 while phenol's interaction with the cytochrome P-450 produced a reverse Type I spectra. The formation of phenol showed a pH optimum of 7.0 compared with 6.6-6.8 for the production of the polyhyrdoxylated metabolites. Cytochrome P-450 inhibitors, such as metyrapone and SKF 525A, diminished the production of phenol from benzene but not the production of the polyhydroxylated metabolites from phenol. The radical trapping agents, DMSO, KTBA and mannitol, decreased the recovery of polyhydroxylated metabolites, from 14 C-labeled benzene and/or phenol. As KTBA and DMSO interacted with OH. There was a concomitant release of ethylene and methane, which was measured. Desferrioxamine, an iron-chelator and catalase also depressed the recovery of polyhydroxylated metabolites. In summary, benzene and phenol were both substrates for this reconstituted purified enzyme system, but they differed in binding to cytochrome P-450, pH optima and mode of hydroxylation

  8. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  9. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility.

    Science.gov (United States)

    Kristiansen, W; Haugen, T B; Witczak, O; Andersen, J M; Fosså, S D; Aschim, E L

    2011-02-01

    Testicular cancer (TC) incidence is increasing worldwide, but the aetiology remains largely unknown. An unbalanced level of oestrogens and androgens in utero is hypothesized to influence TC risk. Polymorphisms in genes encoding cytochrome P450 (CYP) enzymes involved in metabolism of reproductive hormones, such as CYP1A1, CYP3A5 and CYP3A7, may contribute to variability of an individual's susceptibility to TC. The aim of this case-control study was to investigate possible associations between different CYP genotypes and TC, as well as histological type of TC. The study comprised 652 TC cases and 199 controls of Norwegian Caucasian origin. Genotyping of the CYP1A1*2A (MspI), CYP1A1*2C (I462V), CYP1A1*4 (T461N), CYP3A5*3C (A6986G) and CYP3A7*2 (T409R) polymorphisms was performed using TaqMan allelic discrimination or sequencing. The CYP1A1*2A allele was associated with 44% reduced risk of TC with each polymorphic allele [odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.40-0.78, p(trend) = 0.001], whereas the CYP1A1*2C allele was associated with 56% reduced risk of TC with each polymorphic allele (OR = 0.44, 95% CI = 0.25-0.75, p(trend) = 0.003). The decreased risk per allele was significant for seminomas (OR = 0.46, 95% CI, 0.31-0.70, p(trend) < 0.001 and OR = 0.31, 95% CI = 0.14-0.66, p(trend) = 0.002, respectively), but only borderline significant for non-seminomas (OR = 0.65, 95% CI = 0.45-0.95, p(trend) = 0.027 and OR = 0.55, 95% CI = 0.30-1.01, p(trend) = 0.052, respectively). There were no statistically significant differences in the distribution of the CYP3A5*3C and CYP3A7*2 polymorphic alleles between TC cases and controls. This study suggests that polymorphisms in the CYP1A1 gene may contribute to variability of individual susceptibility to TC. © 2010 The Authors. International Journal of Andrology © 2010 European Academy of Andrology.

  10. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Gährs, Maike; Roos, Robert; Andersson, Patrik L.; Schrenk, Dieter

    2013-01-01

    Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highly purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC 50 estimates, being in the range of 1–4 μM for PCBs 28 and 52, and between 0.4 and 1 μM for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 μM with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners. - Highlights: • We analyzed six highly purified NDL-PCBs for CYP2B1 and CYP3A1 expression. • CAR plays a major, PXR a minor role in NDL-PCB-driven induction of CYPs. • The degree of chlorination seems to be the major parameter for the inducing potency. • There exists a competition between CAR and PXR. • Activated PXR may

  11. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gährs, Maike; Roos, Robert [University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern (Germany); Andersson, Patrik L. [Umeå University, Department of Chemistry, Linnaeus väg 6, SE-901 87 Umeå (Sweden); Schrenk, Dieter, E-mail: schrenk@rhrk.uni-kl.de [University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern (Germany)

    2013-10-01

    Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highly purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC{sub 50} estimates, being in the range of 1–4 μM for PCBs 28 and 52, and between 0.4 and 1 μM for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 μM with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners. - Highlights: • We analyzed six highly purified NDL-PCBs for CYP2B1 and CYP3A1 expression. • CAR plays a major, PXR a minor role in NDL-PCB-driven induction of CYPs. • The degree of chlorination seems to be the major parameter for the inducing potency. • There exists a competition between CAR and PXR. • Activated PXR

  12. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats

    Directory of Open Access Journals (Sweden)

    Chung-Ping Yu

    2018-04-01

    Full Text Available Coptidis Rhizoma (CR, the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP, an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repeated dosing of CR in a parallel design. Blood samples were collected at specific time points and the blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. The results showed that a single dose (1.0 g/kg and the 7th dose (1.0 g/kg of CR significantly decreased the Cmax of CSP by 56.9% and 70.4%, and reduced the AUC0-540 by 56.4% and 68.7%, respectively. Cell study indicated that CR decoction, berberine, coptisine, palmatine all activated the efflux transport of P-gp. Ex-vivo study showed that the serum metabolites of CR activated CYP 3A4. In conclusion, through using CSP as an in vivo probe substrate, we have verified that oral intake of CR activated the functions of P-gp and CYP3A based on in vivo and in vitro studies. Keywords: Cyclosporine, P-glycoprotein, Cytochrome P450 3A, Herb–drug interactions, Pharmacokinetics

  13. Metabolism and pharmacokinetics of rhynchophylline in rats.

    Science.gov (United States)

    Wang, Wei; Ma, Chao-Mei; Hattori, Masao

    2010-01-01

    The alkaloid, rhynchophylline (RHY), from the stems and hooks of Uncaria rhynchophylla was revealed in recent years to have protective effect on neuronal damage. The present research was carried out to investigate the in vivo metabolism of this bioactive alkaloid. After administering RHY to rats, LC-MS detected RHY in plasma, bile, brain, urine and feces, the glucuronides, 11-hydroxyrhynchophylline 11-O-beta-D-glucuronide (M1) and 10-hydroxyrhynchophylline 10-O-beta-D-glucuronide (M2) in bile, and 11-hydroxyrhynchophylline (M3) and 10-hydroxyrhynchophylline (M4) in urine and feces. Within 24 h, 78.0% of RHY was excreted into the feces and 12.6% into the urine of rats after oral administration of 37.5 mg/kg. Monitoring by LC-MS showed that 9.4% of RHY was metabolized to M3 and M4 in a ratio of about 1 : 1. RHY was also detected in the brain (0.650 ng/g) at 3 h after oral administration of the same dose. Cytochrome P450 (CYP) in rat liver microsomes played a key role in RHY hydroxylation. Specific inhibition of CYP isozymes indicated that CYP2D, CYP1A1/2 and CYP2C participated in RHY hydroxylation, but not CYP3A.

  14. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: the pathway and concentration dependence.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2008-04-01

    The aim of the present study was to estimate the relative contribution of rat P450 isoforms to the metabolism of caffeine and to assess the usefulness of caffeine as a marker substance for estimating the activity of P450 in rat liver and its potential for pharmacokinetic interactions in pharmacological experiments. The results obtained using rat cDNA-expressed P450s indicated that 8-hydroxylation was the main oxidation pathway of caffeine (70%) in the rat. CYP1A2 was found to be a key enzyme catalyzing 8-hydroxylation (72%) and substantially contributing to 3-N-demethylation (47%) and 1-N-demethylation (37.5%) at a caffeine concentration of 0.1mM (relevant to "the maximum therapeutic concentration in humans"). Furthermore, CYP2C11 considerably contributed to 3-N-demethylation (31%). The CYP2C subfamily (66%) - mainly CYP2C6 (27%) and CYP2C11 (29%) - played a major role in catalyzing 7-N-demethylation. At higher substrate concentrations, the contribution of CYP1A2 to the metabolism of caffeine decreased in favor of CYP2C11 (N-demethylations) and CYP3A2 (mainly 8-hydroxylation). The obtained results were confirmed with liver microsomes (inhibition and correlation studies). Therefore, caffeine may be used as a marker substance for assessing the activity of CYP1A2 in rats, using 8-hydroxylation (but not 3-N-demethylation-like in humans); moreover, caffeine may also be used to simultaneously, preliminarily estimate the activity of CYP2C using 7-N-demethylation as a marker reaction. Hence caffeine pharmacokinetics in rats may be changed by drugs affecting the activity of CYP1A2 and/or CYP2C, e.g. by some antidepressants.

  15. Pharmacogenetic Variation at CYP2D6, CYP2C9, and CYP2C19: Population Genetic and Forensic Aspects

    OpenAIRE

    Sistonen, Johanna

    2008-01-01

    Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would...

  16. Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 polymorphisms using HRMA in Psychiatry patients with schizophrenia and bipolar disease for personalized medicine.

    Science.gov (United States)

    Yenilmez, Ebru Dundar; Tamam, Lut; Karaytug, Onur; Tuli, Abdullah

    2018-06-19

    The interindividual genetic variations in drug metabolizing enzymes effects the impact and toxicity in plenty of drugs. The CYP1A2, CYP2C9, CYP2C19 and CYP2D6 gene polymorphisms characterized using high resolution melting analysis (HRMA) in follow-up patients in psychiatry clinic as a preliminary preparation for personalized medicine. Genotyping of CYP1A2*1F, CYP2C9 *2, *3, CYP2C19 *2, *3 and *17 and CYP2D6 *3, *4 was conducted in 101 patients using HRMA. Genotype and allele frequencies of the CYP variants were found to be in equilibrium with the Hardy-Weinberg equation. The frequency of the CYP1A2*1F allele in schizophrenia and bipolar disease was 0.694 and 0.255, respectively. The CYP2C9 allele frequencies were 0.087 (CYP2C9*2), and 0.549 (CYP2C9*3) for bipolar; 0.278 (CYP2C9*2) and 0.648 (CYP2C9*3) in schizophrenias. The CYP2C19*2 and *17 allele frequencies was 0.111 and 0.185 in schizophrenia and variant *2 was 0.117 and variant *17 was 0.255 in bipolar group. The frequency of the CYP2D6*3 allele was 0.027 in schizophrenias. The frequencies for the CYP2D6*4 variant was 0.092 and 0.096 in schizophrenia and bipolar groups, respectively. The knowledge in pharmacogenomics and also the developments in molecular genetics are growing rapidly. In the future this can be expected to provide new methodologies in the prediction of the activity in drug metabolizing enzymes. The HRMA is a rapid and useful technique to identify the genotypes for drug dosage adjustment before therapy in psychiatry patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The steroid metabolite 16(β)-OH-androstenedione generated by CYP21A2 serves as a substrate for CYP19A1.

    Science.gov (United States)

    Neunzig, J; Milhim, M; Schiffer, L; Khatri, Y; Zapp, J; Sánchez-Guijo, A; Hartmann, M F; Wudy, S A; Bernhardt, R

    2017-03-01

    The 21-hydroxylase (CYP21A2) is a steroidogenic enzyme crucial for the synthesis of mineralo- and glucocorticoids. It is described to convert progesterone as well as 17-OH-progesterone, through a hydroxylation at position C21, into 11-deoxycorticosterone (DOC) and 11-deoxycortisol (RSS), respectively. In this study we unraveled CYP21A2 to have a broader steroid substrate spectrum than assumed. Utilizing a reconstituted in vitro system, consisting of purified human CYP21A2 and human cytochrome P450 reductase (CPR) we demonstrated that CYP21A2 is capable to metabolize DOC, RSS, androstenedione (A4) and testosterone (T). In addition, the conversion of A4 rendered a product whose structure was elucidated through NMR spectroscopy, showing a hydroxylation at position C16-beta. The androgenic properties of this steroid metabolite, 16(β)-OH-androstenedione (16bOHA4), were investigated and compared with A4. Both steroid metabolites were shown to be weak agonists for the human androgen receptor. Moreover, the interaction of 16bOHA4 with the aromatase (CYP19A1) was compared to that of A4, indicating that the C16 hydroxyl group does not influence the binding with CYP19A1. In contrast, the elucidation of the kinetic parameters showed an increased K m and decreased k cat value resulting in a 2-fold decreased catalytic efficiency compared to A4. These findings were in accordance with our docking studies, revealing a similar binding conformation and distance to the heme iron of both steroids. Furthermore, the product of 16bOHA4, presumably 16-hydroxy-estrone (16bOHE1), was investigated with regard to its estrogenic activity, which was negligible compared to estradiol and estrone. Finally, 16bOHA4 was found to be present in a patient with 11-hydroxylase deficiency and in a patient with an endocrine tumor. Taken together, this study provides novel information on the steroid hormone biosynthesis and presents a new method to detect further potential relevant novel steroid metabolites

  18. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats

    DEFF Research Database (Denmark)

    Markussen, Mette Drude Kjær; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Background: Anticoagulant resistance in Norway rats, Rattus norvegicus (Berk.), has been suggested to be conferred by mutations in the VKORC1 gene, encoding the target protein of anticoagulant rodenticides. Other factors, e.g. pharmacokinetics, may also contribute to resistance, however. To examine......, Cyp3a2 and Cyp3a3 genes. On exposure to bromadiolone, females had higher Cyp2e1 expression than males, which possibly explains why female rats are generally more tolerant to anticoagulants than male rats. Conclusion: results suggest that bromadiolone resistance in a Danish strain of Norway rats...

  19. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-11-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.

  20. Can lactoferrin modulate the immunostimulant activity of levamisole in rats

    Directory of Open Access Journals (Sweden)

    Wafaa Abdou Mohamed Mohamed

    2014-03-01

    Full Text Available Objective: The aim of this study was to study the immunomodulatory activity improvement of levamisole by using lactoferrin when applied to immunosuppressed rat model. Methods: The study was designed as follows, 140 male albino rats (250-280 g 14 weeks old were used in our work. Rats were randomly divided into seven groups, 20 in each. The group I was kept as a control, group II was given cyclophosphamide (CYP at a single intraperitoneal dose of (250 mg/kg body weight, group III CYP and lactoferrin (Lac treated group, group IV orally administrated Lac only (0.5% in drinking water, group V treated with CYP and levamisole, group VI administrated levamisole orally at a dose of (2.5 mg/kg body weight and group VII was given CYP, Lac and levamisole. Animals were sacrificed and two separate blood samples were collected after 21 days from the beginning of the experiment for measuring the total and differential leukocyte count, serum total proteins, albumin, alpha globulin, beta globulin and gamma globulin, Nitric oxide (NO production and lysozyme activity. Results: CYP group showed significant decrease in the above mentioned parameters, which were improved after administration of both lactoferrin and levamisole. Conclusion: Our study concluded that lactoferrin improve the immunostimulant effect of levamisole in CYP- immunosuppressed rats. J Clin Exp Invest 2014; 5 (1: 48-53

  1. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets. These e......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  2. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy.

    Science.gov (United States)

    López-García, Miguel A; Feria-Romero, Iris A; Serrano, Héctor; Rayo-Mares, Darío; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva, Israel; Escalante-Santiago, David; Orozco-Suarez, Sandra

    2017-06-01

    Identified the polymorphisms of CYP2D6, CYP2C9, CYP2C19 and CYP3A4, within a rigorously selected population of pediatric patients with drug-resistant epilepsy. The genomic DNA of 23 drug-resistant epilepsy patients and 7 patients with good responses were analyzed. Ten exons in these four genes were genotyped, and the drug concentrations in saliva and plasma were determined. The relevant SNPs with pharmacogenomics relations were CYP2D6*2 (rs16947) decreased your activity and CYP2D6*4 (rs1065852), CYP2C19*2 (rs4244285) and CYP3A4*1B (rs2740574) by association with poor metabolizer. The strongest risk factors were found in the AA genotype and allele of SNP rs3892097 from the CYP2D6 gene, followed by the alleles A and T of SNPs rs2740574 and rs2687116, respectively from CYP3A4. The most important concomitance was between homozygous genotype AA of rs3892097 and genotype AA of rs2740574 with 78.3% in drug-resistant epilepsy patients as compared to 14.3% in control patients. The results demonstrated the important role of the CYP 3A4*1B allelic variant as risk factor for developing drug resistance and CYP2D6, CYP2C19 SNPs and haplotypes may affect the response to antiepileptic drugs. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  3. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole.

    Science.gov (United States)

    Zhuang, XiaoMei; Zhang, TianHong; Yue, SiJia; Wang, Juan; Luo, Huan; Zhang, YunXia; Li, Zheng; Che, JinJing; Yang, HaiYing; Li, Hua; Zhu, MingShe; Lu, Chuang

    2016-12-01

    Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6β-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the V max values in HLM and rhCYP3A5 with no significant changes in K m values. By adding CYP3cide with ICO to the incubation, the V max values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in V max values and decrease in K m values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Leukotriene formation by purified 5-lipoxygenase from rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Hogaboom, G.K.; Cook, M.; Sarau, H.M.; Newton, J.F.; Crooke, S.T.

    1986-01-01

    Arachidonate 5-lipoxygenase (5-LO) from rat basophilic leukemia (RBL-1) cell high speed (105,000 x g for 60 min) supernatants was purified to electrophoretic homogeneity by gel filtration and anion-exchange protein-high pressure liquid chromatography (HPLC). The 5-LO rapidly converted [ 14 C]arachidonate at 20 0 C to [ 14 C]5-hydroperoxyeicosate-traenoic acid (HPETE) as determined by reversed phase-HPLC, scanning spectrophotometry and radiochemical detection. In addition, 5-LO converted both 5-HPETE and arachidonate to 5,12-dihydroxyeicosatetraenoic acids (diHETEs). The 5,12-diHETEs were identified as 6-trans-leukotriene (LT) B4 and 6-trans-12-epi-LTB4 as determined by reversed phase HPLC, scanning spectrophotometry and gas chromatography-mass spectrometry. These data indicate that the RBL-1 5-LO and LTA4 synthetase activities reside on the same protein and that it catalyzes the bioconversion of arachidonate to not only 5-HPETE but also to LTA4. The results suggest that a critical regulatory step in LT biosynthesis in mammalian systems involves the intricate coupling of the enzymes 5-LO and LTA4 synthetase and the interactions of their respective cofactors, substrates and reaction products

  5. The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: A Molecular Docking Study

    Directory of Open Access Journals (Sweden)

    Nik Nur Syazana Bt Nik Mohamed Kamal

    2013-01-01

    Full Text Available Current methadone maintenance therapy (MMT is yet to ensure 100% successful treatment as the optimum dosage has yet to be determined. Overdose leads to death while lower dose causes the opioid withdrawal effect. Single-nucleotide polymorphisms (SNP in cytochrome P450s (CYPs, the methadone metabolizers, have been showen to be the main factor for the interindividual variability of methadone clinical effects. In this study, we investigated the effect of SNPs in three major methadone metabolizers (CYP2B6, CYP2D6, and CYP3A4 on methadone binding affinity. Results showed that CYP2B6*11, CYP2B6*12, CYP2B6*18, and CYP3A4*12 have significantly higher binding affinity to R-methadone compared to wild type. S-methadone has higher binding affinity in CYP3A4*3, CYP3A4*11, and CYP3A4*12 compared to wild type. R-methadone was shown to be the active form of methadone; thus individuals with CYP alleles that binds better to R-methadone will have higher methadone metabolism rate. Therefore, a higher dosage of methadone is necessary to obtain the opiate effect compared to a normal individual and vice versa. These results provide an initial prediction on methadone metabolism rate for individuals with mutant type CYP which enables prescription of optimum methadone dosage for individuals with CYP alleles.

  6. Expression and Purification of the Recombinant Cytochrome P450 CYP141 Protein of Mycobacterium Tuberculosis as a Diagnostic Tool and Vaccine Production.

    Science.gov (United States)

    Heidari, Reza; Rabiee-Faradonbeh, Mohammad; Darban-Sarokhalil, Davood; Alvandi, Amirhooshang; Abdian, Narges; Aryan, Ehsan; Soleimani, Neda; Gholipour, Abolfazl

    2015-06-01

    Tuberculosis (TB) is regarded as a health problem worldwide, particularly in developing countries. Mycobacterium tuberculosis (M. tuberculosis) is the cause of this disease. Approximately two billion people worldwide are infected by M. tuberculosis and annually about two million individuals die in consequence. Forty million people are estimated to die because of M. tuberculosis over the next 25 years if the measures for controlling this infection are not extensively developed. In the vaccination field, Bacillus Calmette-Guérin (BCG) is still the most effective vaccine but it shows no efficacy in adult pulmonary patients. One of the other problems regarding TB is its appropriate diagnosis. In this experimental study, the recombinant cytochrome P450 CYP141 protein of M. tuberculosis was expressed and purified to be used as a vaccine candidate and diagnostic purpose in subsequent investigations. The optimization of the cytochrome P450 CYP141 protein expression was evaluated in different conditions. Then, this protein was purified with a resin column of nickel-nitrilotriacetic acid and investigated via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting. The highest expression of the cytochrome P450 CYP141 protein was obtained by the addition of 1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) to the bacterial culture grown to an optical density at 600 nm (OD600) of 0.6, 16 hours after induction. This protein was subsequently purified with a purification of higher than 80%. The results of Western Blotting indicated that the purified protein was specifically detected. In this experimental study, for the first time in Iran the expression and purification of this recombinant protein was done successfully. This recombinant protein could be used as a vaccine candidate and diagnostic purpose in subsequent investigations.

  7. Association of CYP2B6, CYP3A5, and CYP2C19 genetic polymorphisms with sibutramine pharmacokinetics in healthy Korean subjects.

    Science.gov (United States)

    Kim, K A; Song, W K; Park, J Y

    2009-11-01

    We assessed the association of CYP2B6, CYP3A5, and CYP2C19 polymorphisms with sibutramine pharmacokinetics. Forty six healthy male subjects were enrolled, and their CYP2B6 (*4 and *6), CYP3A5 (*3), and CYP2C19 (*2, and *3) genotypes were analyzed. After a single 15-mg dose of sibutramine was administered, plasma concentrations of sibutramine and its metabolites, M1 and M2, were measured. CYP2B6 and CYP3A5 polymorphisms did not affect the pharmacokinetics of sibutramine and its metabolites. However, the CYP2C19 genotype substantially influenced plasma levels of sibutramine and its metabolites. The mean area under the curve (AUC) of sibutramine in CYP2C19 intermediate metabolizers (IMs; *1/*2 or *1/*3) and poor metabolizers (PMs; *2/*2, *2/*3)) was 18.5 and 252.2% higher, respectively, than the AUC in extensive metabolizers (EMs, *1/*1) (P sibutramine.

  8. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    Science.gov (United States)

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  9. Changes in the pharmacokinetics of glibenclamide in rats with streptozotocin-induced diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yuqing Li

    2012-04-01

    Full Text Available The aim of this study was to investigate the pharmacokinetics of glibenclamide (Gli administrated orally and intravenously to normal and diabetic rats. The AUC(0–720 min of orally administered Gli in diabetic rats (321.24 mg min/L was greater than that (57.752 mg min/L in normal rats. CL (0.019 L/min/kg was significantly slower than that (0.092 L/min/kg of normal rats. The AUC(0–480min of intravenous Gli in diabetic rats (1528.280 mg min/L also was significantly greater than that (509.523 mg min/L in normal rats, and CL was decreased approximately 3-fold. No significant difference in intestinal absorption of Gli was observed between normal and diabetic rats as determined by in situ single-pass intestinal perfusion. The clearance of Diclofenac (a substrate of CYP2C9 was determined to evaluate changes in hepatic drug-metabolizing enzyme activity in rats. The CL in diabetic rats was significantly lower (42.43% decrease than that in normal rats. Hepatic protein expression of CYP2C9 was measured using Western blot analysis; compared with normal rats, the hepatic protein expression of CYP2A9 was decreased in diabetic rats. Therefore, the slower clearance of Gli in diabetic rats can be attributed primarily to the lower expression of hepatic CYP2C9.

  10. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    International Nuclear Information System (INIS)

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra

    2006-01-01

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain

  11. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    Science.gov (United States)

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    International Nuclear Information System (INIS)

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-01-01

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  13. A COMPARISON OF THE METABOLISM OF METHOXYRESORUFIN, ACETANILIDE AND CAFFIENE IN RAT AND HUMAN CYP1A2 SUPERSOMES AND THEIR INHIBITION BY 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)

    Science.gov (United States)

    A COMPARISON OF THE METABOLISM OF METHOXYRESORUFIN, ACETANILIDE AND CAFFIENE IN RAT AND HUMAN CYP1A2 SUPERSOMES AND THEIR INHIBITION BY 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD). DF Staskal1, DG Ross2, LS Birnbaum2 and MJ DeVito2 1Curriculum In Toxicology, UNC-CH, Chapel Hill ...

  14. Protective Effect of Ethanolic Extract of Grape Pomace against the Adverse Effects of Cypermethrin on Weanling Female Rats

    Directory of Open Access Journals (Sweden)

    Abdel-Tawab H. Mossa

    2015-01-01

    Full Text Available The adverse effect of cypermethrin on the liver and kidney of weanling female rats and the protective effect of ethanolic extract of grape pomace were investigated in the present study. Weanling female rats were given cypermethrin oral at a dose of 25 mg kg−1 body weight for 28 consecutive days. An additional two Cyp-trated groups received extract at a dose of 100 and 200 mg kg−1 body weight, respectively, throughout the experimental duration. Three groups more served as extract and control groups. Administration of Cyp resulted in a significant increase in serum marker enzymes, for example, aminotransferases (AST and ALT, alkaline phosphatase (ALP, and gamma-glutamyl transferase (GGT, and increases the level of urea nitrogen and creatinine. In contrast, Cyp caused significant decrease in levels of total protein and albumin and caused histopathological alterations in liver and kidneys of female rats. Coadministration of the extract to Cyp-treated female rats restored most of these biochemical parameters to within normal levels especially at high dose of extract. However, extract administration to Cyp-treated rats resulted in overall improvement in liver and kidney damage. This study demonstrated the adverse biohistological effects of Cyp on the liver and kidney of weanling female rats. The grape pomace extract administration prevented the toxic effect of Cyp on the above serum parameters. The present study concludes that grape pomace extract has significant antioxidant and hepatorenal protective activity.

  15. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  16. Temporal kinetics and concentration-response relationships for induction of CYP1A, CYP2B, and CYP3A in primary cultures of beagle dog hepatocytes.

    Science.gov (United States)

    Graham, Richard A; Tyler, Lindsey O; Krol, Wojciech L; Silver, Ivin S; Webster, Lindsey O; Clark, Philip; Chen, Liangfu; Banks, Troy; LeCluyse, Edward L

    2006-01-01

    Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human. (c) 2006 Wiley Periodicals, Inc.

  17. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response

    Directory of Open Access Journals (Sweden)

    J. E. Zhang

    2017-05-01

    Full Text Available Genetic polymorphisms in the gene encoding cytochrome P450 (CYP 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149 obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS data from a prospective cohort of warfarin-treated patients (n = 711 was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017, an effect opposite to that previously reported with CYP4F2 (rs2108622. However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI, gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex

  18. WhichCyp

    DEFF Research Database (Denmark)

    Rostkowski, Michal; Spjuth, Ola; Rydberg, Patrik

    2013-01-01

    . AVAILABILITY: The WhichCyp server is freely available for use on the web at http://drug.ku.dk/whichcyp, where the WhichCyp Java program and source code is also available for download. CONTACT: pry@sund.ku.dk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online....

  19. Altered Protein Expression of Cardiac CYP2J and Hepatic CYP2C, CYP4A, and CYP4F in a Mouse Model of Type II Diabetes—A Link in the Onset and Development of Cardiovascular Disease?

    Directory of Open Access Journals (Sweden)

    Benoit Drolet

    2017-10-01

    Full Text Available Arachidonic acid can be metabolized by cytochrome P450 (CYP450 enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic. Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001; (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01. In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001; (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001. These alterations induced by Type II diabetes in the endogenous pathway (CYP450 of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated and cardiotoxic (CYP4A/CYP4F-generated metabolites of arachidonic acid.

  20. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H., E-mail: shapirob@vet.upenn.edu

    2015-04-01

    Perinatal exposure of rats and mice to the typically reported 4 mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform — all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2 mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. - Highlights: • A “low” neonatal dose of MSG causes an immediate but transient growth hormone depletion. • Adult circulating growth hormone contains mini pulses in an otherwise male profile. • CYP2C11 is permanently overexpressed > 250%; CYP2C6, 2C7 and albumin remain normal. • The bulk of the overexpressed CYP2C11 mRNA consists of an intron-retained form. • SOCS2

  1. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate

    International Nuclear Information System (INIS)

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H.

    2015-01-01

    Perinatal exposure of rats and mice to the typically reported 4 mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform — all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2 mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. - Highlights: • A “low” neonatal dose of MSG causes an immediate but transient growth hormone depletion. • Adult circulating growth hormone contains mini pulses in an otherwise male profile. • CYP2C11 is permanently overexpressed > 250%; CYP2C6, 2C7 and albumin remain normal. • The bulk of the overexpressed CYP2C11 mRNA consists of an intron-retained form. • SOCS2

  2. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    Science.gov (United States)

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  3. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane.

    Science.gov (United States)

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M P; Albano, E; Bianchi, F B

    2000-04-01

    Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack. The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum. Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes. AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.

  4. The different metabolism of morusin in various species and its potent inhibition against UDP-glucuronosyltransferase (UGT) and cytochrome p450 (CYP450) enzymes.

    Science.gov (United States)

    Shi, Xianbao; Yang, Shuman; Zhang, Gang; Song, Yonggui; Su, Dan; Liu, Yali; Guo, Feng; Shan, Lina; Cai, Jiqun

    2016-01-01

    1. The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes. 2. 100 μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00 μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11 μM, respectively. 3. Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83 μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75 nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey > rat > minipig > dog > human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12 mL/min/kg body weight, respectively. 4. This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.

  5. Hydrolysis of triolein in phospholipid vesicles and microemulsions by a purified rat liver acid lipase.

    Science.gov (United States)

    Burrier, R E; Brecher, P

    1983-10-10

    An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.

  6. Cypermethrin-induced histopathological, ultrastructural and biochemical changes in liver of albino rats: The protective role of propolis and curcumin

    Directory of Open Access Journals (Sweden)

    Manal Abdul-Hamid

    2017-06-01

    Full Text Available Cypermethrin (CYP, an insecticide belongs to a synthetic pyrethroid, is used for agriculture and household applications. The present study aimed to examine the toxic effects of CYP on rat liver and to clarify the hepatoprotective effects of propolis (PRO and curcumin (CUR against CYP. This study was assessed in male albino rats, each weighting (120–150 g. The rats were equally divided into six groups as follow; the 1st control group, 2nd PRO group (100 mg/kg/day and 3rd CUR group (100 mg/kg/day. While 4th, 5th and 6th groups were orally treated with CYP (30 mg/kg/day, CYP plus PRO and CYP plus CUR, respectively for 28 days. The present study revealed that CYP-induced significant increase in hepatic markers enzymes (ALT, AST and ALP and elevation in MDA concomitant with significant decrease of SOD and GPx levels. Histological and histochemical results revealed extensive vacuolar degeneration of hepatocytes, fatty change, blood vessel congestion and fibrosis in the liver of CYP- treated group and depletion of glycogen, protein and DNA. Moreover, ultrastructural observations showed vacuolation, damage of mitochondria and nuclear changes. On the other hand, treatment with PRO and CUR led to an obvious improvement of the injured liver tissues and ameliorating the damaging effects of CYP. In conclusion, PRO is markedly effective than CUR in protecting rats against CYP-induced histopathological, ultrastructural and biochemical changes. This protection may be due to its antioxidant properties and scavenging abilities against active free radicals.

  7. Grapefruit juice intake does not enhance but rather protects against aflatoxin B1-induced liver DNA damage through a reduction in hepatic CYP3A activity.

    Science.gov (United States)

    Miyata, Masaaki; Takano, Hiroki; Guo, Lian Q; Nagata, Kiyoshi; Yamazoe, Yasushi

    2004-02-01

    Influence of grapefruit juice intake on aflatoxin B1 (AFB1)-induced liver DNA damage was examined using a Comet assay in F344 rats given 5 mg/kg AFB1 by gavage. Rats allowed free access to grapefruit juice for 5 days prior to AFB1 administration resulted in clearly reduced DNA damage in liver, to 65% of the level in rats that did not receive grapefruit juice. Furthermore, rats treated with grapefruit juice extract (100 mg/kg per os) for 5 days prior to AFB1 treatment also reduced the DNA damage to 74% of the level in rats that did not receive grapefruit juice. No significant differences in the portal blood and liver concentrations of AFB1 were observed between grapefruit juice intake rats and the controls. In an Ames assay with AFB1 using Salmonella typhimurium TA98, lower numbers of revertant colonies were detected with hepatic microsomes prepared from rats administered grapefruit juice, compared with those from control rats. Microsomal testosterone 6beta-hydroxylation was also lower with rats given grapefruit juice than with control rats. Immunoblot analyses showed a significant decrease in hepatic CYP3A content, but not CYP1A and CYP2C content, in microsomes of grapefruit juice-treated rats than in non-treated rats. No significant difference in hepatic glutathione S-transferase (GST) activity and glutathione content was observed in the two groups. GSTA5 protein was not detected in hepatic cytosol of the two groups. In microsomal systems, grapefruit juice extract inhibited AFB1-induced mutagenesis in the presence of a microsomal activation system from livers of humans as well as rats. These results suggest that grapefruit juice intake suppresses AFB1-induced liver DNA damage through inactivation of the metabolic activation potency for AFB1 in rat liver.

  8. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    Directory of Open Access Journals (Sweden)

    Jun Hyun Han

    2015-04-01

    Full Text Available In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1, locations (SNPs in exons were preferred, and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2 (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18 was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43 was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68 and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11 showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  9. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population.

    Science.gov (United States)

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  10. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  11. CYP2D6 and CYP2C19 in Papua New Guinea: High frequency of previously uncharacterized CYP2D6 alleles and heterozygote excess.

    Science.gov (United States)

    von Ahsen, Nicolas; Tzvetkov, Mladen; Karunajeewa, Harin A; Gomorrai, Servina; Ura, Alice; Brockmöller, Jürgen; Davis, Timothy M E; Mueller, Ivo; Ilett, Kenneth F; Oellerich, Michael

    2010-08-18

    A high frequency of previously unknown CYP2D6 alleles have been reported in Oceania populations. Genetic and functional properties of these alleles remain unknown. We performed analyses of the genetic variability of CYP2D6 and CYP2C19 genes using AmpliChip genotyping in cohorts from two distinct Papua New Guinea (PNG) populations (Kunjingini, n=88; Alexishafen, n=84) focussing on the genetic characterisation of PNG-specific alleles by re-sequencing. Previously unknown CYP2D6 alleles have population frequencies of 24% (Kunjingini) and 12% (Alexishafen). An allele similar to CYP2D6*1, but carrying the 1661G>C substitution, was the second most frequent CYP2D6 allele (20% Kunjingini and 10% Alexishafen population frequency). Sequencing suggests the CYP2D6* 1661G>C allele originated from a cross-over between CYP2D6*1 and *2 and thus is predicted to confer fully active CYP2D6 enzyme. Two additional predicted full activity alleles [1661G>C;4180G>C] and 31G>A were found in the Kunjingini cohort (frequencies 3 c/c and 1%, respectively) and a novel predicted reduced activity allele [100C>T;1039C>T] was found in the Alexishafen cohort (frequency 2%). A high frequency of ultra-rapid (15%) and notably low frequencies of intermediate and poor CYP2D6 metabolizers (exogamy and recent introduction of alleles by migration that are yet to reach HWE in relatively isolated populations. The CYP2D6*1661 allele common in Oceania may be regarded as functionally equivalent to the full activity CYP2D6*1 allele.

  12. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine

    DEFF Research Database (Denmark)

    Jeppesen, U; Gram, L F; Vistisen, K

    1996-01-01

    OBJECTIVE: The purpose of this pharmacokinetic study was to investigate the dose-dependent inhibition of model substrates for CYP2D6, CYP2C19 and CYP1A2 by four marketed selective serotonin reuptake inhibitors (SSRIs): citalopram, fluoxetine, fluvoxamine and paroxetine. METHODS: The study...

  13. Rat hepatic β2-adrenergic receptor: structural similarities to the rat fat cell β1-adrenergic receptor

    International Nuclear Information System (INIS)

    Graziano, M.P.

    1984-01-01

    The mammalian β 2 -adrenergic receptor from rat liver has been purified by sequential cycles of affinity chromatography followed by steric-exclusion high performance liquid chromatography. Electrophoresis of highly purified receptor preparations on polyacrylamide gels in the presence of sodium dodecyl sulfate under reducing conditions reveals a single peptide M/sub r/ = 67,000, as judged by silver staining. Purified β 2 -adrenergic receptor migrates on steric-exclusion high performance liquid chromatography in two peaks, with M/sub r/ = 140,000 and 67,000. Specific binding of the high affinity, β-adrenergic receptor antagonists (-)[ 3 H]dihydroalprenolol and (-)[ 125 I]iodocyanopindolol to purified rat liver β-adrenergic receptor preparations displays stereoselectivity for (-)isomers of agonists and a rank order of potencies for agonists characteristics of a β 2 -adrenergic receptor. Radioiodinated, β 1 -adrenergic receptors from rat fat cells and β 2 -adrenergic receptors from rat liver purified in the presence of protease inhibitors comigrate in electrophoretic separations on polyacrylamide gels in the presence of sodium dodecyl sulfate as 67,000-M/sub r/ peptides. Autoradiograms of two dimensional partial proteolytic digests of the purified, radioiodinated rat liver β 2 -adrenergic receptor, generated with α-chymotrypsin, S. aureus V8 protease and elastase reveal a pattern of peptide fragments essentially identical to those generated by partial proteolytic digests of the purified, radioiodinated β 1 -adrenergic receptor from rat fat cells, by these same proteases. These data indicate that a high degree of homology exists between these two pharmacologically distinct mammalian β-adrenergic receptor proteins

  14. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  15. Inhibitory potency of 8-methoxypsoralen on cytochrome P450 2A6 (CYP2A6 allelic variants CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22: differential susceptibility due to different sequence locations of the mutations.

    Directory of Open Access Journals (Sweden)

    Kai Hung Tiong

    Full Text Available Human cytochrome P450 2A6 (CYP2A6 is a highly polymorphic isoform of CYP2A subfamily. Our previous kinetic study on four CYP2A6 allelic variants (CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22 have unveiled the functional significance of sequence mutations in these variants on coumarin 7-hydroxylation activity. In the present study, we further explored the ability of a typical CYP2A6 inhibitor, 8-methoxypsoralen (8-MOP, in inhibition of these alleles and we hypothesized that translational mutations in these variants are likely to give impact on 8-MOP inhibitory potency. The CYP2A6 variant and the wild type proteins were subjected to 8-MOP inhibition to yield IC50 values. In general, a similar trend of change in the IC50 and Km values was noted among the four mutants towards coumarin oxidation. With the exception of CYP2A6 16, differences in IC50 values were highly significant which implied compromised interaction of the mutants with 8-MOP. Molecular models of CYP2A6 were subsequently constructed and ligand-docking experiments were performed to rationalize experimental data. Our docking study has shown that mutations have induced enlargement of the active site volume in all mutants with the exception of CYP2A6 16. Furthermore, loss of hydrogen bond between 8-MOP and active site residue Asn297 was evidenced in all mutants. Our data indicate that the structural changes elicited by the sequence mutations could affect 8-MOP binding to yield differential enzymatic activities in the mutant CYP2A6 proteins.

  16. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    International Nuclear Information System (INIS)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-01-01

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 μM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 μM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 μM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 μM and 10 μM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  17. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    Science.gov (United States)

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  18. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  19. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    International Nuclear Information System (INIS)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-01-01

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR–RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 ± 2.15 vs. 6.24 ± 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: ► Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. ► Workers exposed to some OPs demonstrated increased DNA damage. ► CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. ► Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  20. An optimized methodology for combined phenotyping and genotyping on CYP2D6 and CYP2C19

    NARCIS (Netherlands)

    Tamminga, C.A; Wemer, J; Oosterhuis, B; Brakenhoff, J.P G; Gerrits, M.G F; de Zeeuw, R.A; de Leij, Lou; Jonkman, J.H.G.

    A method for simultaneous phenotyping and genotyping for CYP2D6 and CYP2C19 was tested. Six healthy volunteers were selected (three extensive and three poor metabolisers for CYP2D6). CYP2D6 was probed with dextromethorphan and metoprolol and CYP2C19 was probed with omeprazole. Blood samples were

  1. Effect of dioxin exposure on aromatase expression in ovariectomized rats

    International Nuclear Information System (INIS)

    Ye Lan; Leung, Lai K.

    2008-01-01

    Because of their persistence in the environment dioxins are one of the most concerned classes of carcinogens. Displaying both pro- and anti-agonistic properties to some hormone receptors, the pollutants are also known to be endocrine disruptors. Humans can be exposed to this pollutant through contaminated food, air, drinking water, etc. The female hormone estrogen may initiate various physiological functions, and excessive exposure to this hormone is a documented risk factor for carcinogenesis. Cyp19 (aromatase) catalyses the last step of estrogen biosynthesis, while cyp1a1 can hydroxylate and deactivate the hormone. In the present study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) on aromatase expression in the brain and adipose tissue in ovariectomized Sprague Dawley rats. Female rats were given 2.5 μg/kg TCDD p.o. before and after ovariectomy. Real-time PCR and western blot analysis indicated that pre-ovariectomy administration of TCDD could significantly reduce aromatase expression in the brain but increase the expression in the adipose tissue. In addition, increased plasma estrogen level and uterine weight were observed in these rats. These parameters did not change in rats with post-ovariectomy TCDD treatment. Our results suggested that the timing of exposure to the toxicant could determine the estrogenicity of TCDD. No correlation between cyp1a1 and cyp19 expression was observed

  2. CYP2A6 and CYP2E1 polymorphisms in a Brazilian population living in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    A. Rossini

    2006-02-01

    Full Text Available Cytochrome P450 (CYP is a superfamily of enzymes involved in the metabolism of endogenous compounds and xenobiotics. CYP2A6 catalyzes the oxidation of nicotine and the activation of carcinogens such as aflatoxin B1 and nitrosamines. CYP2E1 metabolizes ethanol and other low-molecular weight compounds and can also activate nitrosamines. The CYP2A6 and CYP2E1 genes are polymorphic, altering their catalytic activities and susceptibility to cancer and other diseases. A number of polymorphisms described are ethnic-dependent. In the present study, we determined the genotype and allele frequencies of the main CYP2A6 and CYP2E1 polymorphisms in a group of 289 volunteers recruited at the Central Laboratory of Hospital Universitário Pedro Ernesto. They had been residing in the city of Rio de Janeiro for at least 6 months and were divided into two groups according to skin color (white and non-white. The alleles were determined by allele specific PCR (CYP2A6 or by PCR-RFLP (CYP2E1. The frequencies of the CYP2A6*1B and CYP2A6*2 alleles were 0.29 and 0.02 for white individuals and 0.24 and 0.01 for non-white individuals, respectively. The CYP2A6*5 allele was not found in the population studied. Regarding the CYP2E1*5B allele, we found a frequency of 0.07 in white individuals, which was statistically different (P < 0.05 from that present in non-white individuals (0.03. CYP2E1*6 allele frequency was the same (0.08 in both groups. The frequencies of CYP2A6*1B, CYP2A6*2 and CYP2E1*6 alleles in Brazilians are similar to those found in Caucasians and African-Americans, but the frequency of the CYP2E1*5B allele is higher in Brazilians.

  3. CYP2A6 and CYP2E1 polymorphisms in a Brazilian population living in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Rossini A.

    2006-01-01

    Full Text Available Cytochrome P450 (CYP is a superfamily of enzymes involved in the metabolism of endogenous compounds and xenobiotics. CYP2A6 catalyzes the oxidation of nicotine and the activation of carcinogens such as aflatoxin B1 and nitrosamines. CYP2E1 metabolizes ethanol and other low-molecular weight compounds and can also activate nitrosamines. The CYP2A6 and CYP2E1 genes are polymorphic, altering their catalytic activities and susceptibility to cancer and other diseases. A number of polymorphisms described are ethnic-dependent. In the present study, we determined the genotype and allele frequencies of the main CYP2A6 and CYP2E1 polymorphisms in a group of 289 volunteers recruited at the Central Laboratory of Hospital Universitário Pedro Ernesto. They had been residing in the city of Rio de Janeiro for at least 6 months and were divided into two groups according to skin color (white and non-white. The alleles were determined by allele specific PCR (CYP2A6 or by PCR-RFLP (CYP2E1. The frequencies of the CYP2A6*1B and CYP2A6*2 alleles were 0.29 and 0.02 for white individuals and 0.24 and 0.01 for non-white individuals, respectively. The CYP2A6*5 allele was not found in the population studied. Regarding the CYP2E1*5B allele, we found a frequency of 0.07 in white individuals, which was statistically different (P < 0.05 from that present in non-white individuals (0.03. CYP2E1*6 allele frequency was the same (0.08 in both groups. The frequencies of CYP2A6*1B, CYP2A6*2 and CYP2E1*6 alleles in Brazilians are similar to those found in Caucasians and African-Americans, but the frequency of the CYP2E1*5B allele is higher in Brazilians.

  4. Study of RNA interference inhibiting rat ovarian androgen biosynthesis by depressing 17alpha-hydroxylase/17, 20-lyase activity in vivo

    Directory of Open Access Journals (Sweden)

    Yang Xing

    2009-07-01

    Full Text Available Abstract Background 17alpha-hydroxylase/17, 20-lyase encoded by CYP17 is the key enzyme in androgen biosynthesis pathway. Previous studies demonstrated the accentuation of the enzyme in patients with polycystic ovary syndrome (PCOS was the most important mechanism of androgen excess. We chose CYP17 as the therapeutic target, trying to suppress the activity of 17alpha-hydroxylase/17, 20-lyase and inhibit androgen biosynthesis by silencing the expression of CYP17 in the rat ovary. Methods Three CYP17-targeting and one negative control oligonucleotides were designed and used in the present study. The silence efficiency of lentivirus shRNA was assessed by qRT-PCR, Western blotting and hormone assay. After subcapsular injection of lentivirus shRNA in rat ovary, the delivery efficiency was evaluated by GFP fluorescence and qPCR. Total RNA was extracted from rat ovary for CYP17 mRNA determination and rat serum was collected for hormone measurement. Results In total, three CYP17-targeting lentivirus shRNAs were synthesized. The results showed that all of them had a silencing effect on CYP17 mRNA and protein. Moreover, androstenedione secreted by rat theca interstitial cells (TIC in the RNAi group declined significantly compared with that in the control group. Two weeks after rat ovarian subcapsular injection of chosen CYP17 shRNA, the GFP fluorescence of frozen ovarian sections could be seen clearly under fluorescence microscope. It also showed that the GFP DNA level increased significantly, and its relative expression level was 7.42 times higher than that in the control group. Simultaneously, shRNA treatment significantly decreased CYP17 mRNA and protein levels at 61% and 54%, respectively. Hormone assay showed that all the levels of androstenedione, 17-hydroxyprogesterone and testosterone declined to a certain degree, but progesterone levels declined significantly. Conclusion The present study proves for the first time that ovarian androgen

  5. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats:

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Anticoagulant resistance in Norway rats (Rattus norvegicus) has been suggested to be due to mutations in the VKORC1 gene, encoding the target protein of anticoagulant rodenticides such as warfarin and bromadiolone. Other factors, e.g. pharmacokinetics, may however also contribute to resistance. We...... that bromadiolone resistance in Norway rats involves enhanced anticoagulant clearance and metabolism catalyzed by specific cytochrome P450 enzymes, such as Cyp2e1, Cyp3a2 and Cyp3a3. This pharmacokinetically based resistance varies to some extend between the genders....

  6. Ciprofibrate, clofibric acid and respective glycinate derivatives. Effects of a four-week treatment on male lean and obese Zucker rats.

    Science.gov (United States)

    Lupp, Amelie; Karge, Elke; Deufel, Thomas; Oelschlägers, Herbert; Fleck, Christian

    2008-01-01

    Fibrates are widely prescribed in hyperlpidemic patients to prevent atherosclerosis. Their therapeutic use, however, can be associated with adverse effects like gastrointestinal disorders, myalgia, myositis and hepatotoxicity. In rodents large doses can even cause hepatocellular carcinoma. Additionally, interactions with the biotransformation of other compounds at the cytochrome P450 (CYP) system have been observed. Thus, the discovery of new substances or derivatives with less side effects is of great interest. In the present study the influence of a four-week daily oral administration of 2 mg/kg body weight ciprofibrate (CAS 52214-84-3) or of 100 mg/kg body weight clofibric acid (CAS 882-09-7) was compared to that of the respective doses of their newly synthesized glycine conjugates in adult male lean and obese Zucker rats. Although obese rats displayed distinctly higher serum lipid concentrations, after fibrate treatment values were significantly lowered in lean animals only. Livers of obese rats were significantly enlarged, histologically showing a fine-droplet like fatty degeneration and an increase in glycogen content, but no signs of inflammation. After fibrate administration histologically a hypertrophy, an eosinophilia, a reduced glycogen content and also hepatocyteapoptosis were observed. Livers of obese rats displayed higher CYP1A1 andCYP2E1 expression, but lower immunostaining for CYP2B1 and CYP3A2. No differences between the two groups of rats were seen with respect to CYP4A1 expression. Due to fibrate treatment especially CYP2E1 and CYP4A1, but also CYP1A1, 2B1 and 3A2 were induced. Resulting CYP mediated monooxygenase activities were also elevated in most cases. In general, effects of clofibric acid and clofibric acid glycinate (CAS 4896-55-3) were less distinct than those of ciprofibrate and its glycinate (CAS 640772-36-7). With no parameterinvestigated major differences were seen between the parent fibrates and their glycine conjugates. Thus, the

  7. What's wrong with CYP?

    Science.gov (United States)

    Shelton, J D

    1991-01-01

    The weaknesses of using couple years protection (CYP) for assessing the effectiveness of various measures of family planning are discussed. Limitations had been recognized in the past but have been largely ignored in the present context. This has been due to the unavailability of local data, and other standardizations have been too cumbersome for practical use. The advantage of using CYP is that it allows for easy calculation of a level of contraceptive use without differentiation by method. This measure reflects to some extent, for instance, access to family planning services, and prevention of unwanted fertility. It also measures output, and provides program managers with a tool to adjust supply to demand. The weakness are categorized in terms of contraceptive failure rates, sporadic and infrequent use with secondary partners, wastage, substitution, differences in fecundity, local specificity, lack of a discount for time, ability to reach high priority or underserved clients, secondary effects, quality of care, and so on. These weaknesses broadly effect the relationship of CYP with fertility; it is possible that adjustments can be made to improve the measure. The deficiencies in accounting for hard to reach clients, in measuring the secondary effects in AIDs and STD prevention, and in measuring satisfaction and continuation or other facets of quality of care not be accounted for in CYP. This suggests that a comprehensive assessment must utilize a variety of indicators, such as a direct measure of contraceptive prevalence, the proportion of children born to high risk women, continuation rates, and qualitative measures of the impact of care. Improvement of CYP is suggested as an inexpensive solution. Local data should be used, since the average age at sterilization in a particular population impacts greatly on the actual CYP provided by sterilization in a specific program. Cookbook conversion factors should be revised so that condoms (100 per CYP) credit is reduced

  8. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyender [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Kumar, Vivek [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Vashisht, Kapil; Singh, Priyanka [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Banerjee, Basu Dev, E-mail: banerjeebd@hotmail.com [Environmental Biochemistry and Molecular Biology laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi-110095 (India); Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Jain, Sudhir Kumar [Centre for Epidemiology and Parasitic Diseases, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India); Rai, Arvind [Division of Biochemistry and Biotechnology, National Centre for Disease Control 22, Sham Nath Marg, Delhi-110054 (India)

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  9. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    Science.gov (United States)

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  10. Upregulation of microRNA-320 decreases the risk of developing steroid-induced avascular necrosis of femoral head by inhibiting CYP1A2 both in vivo and in vitro.

    Science.gov (United States)

    Wei, Ji-Hua; Luo, Qun-Qiang; Tang, Yu-Jin; Chen, Ji-Xia; Huang, Chun-Lan; Lu, Ding-Gui; Tang, Qian-Li

    2018-06-20

    Steroid-induced avascular necrosis of femoral head (SANFH) occurs frequently in patients receiving high-dose steroid treatment for these underlying diseases. The target of this study is to investigate the effect of microRNA-320 (miR-320) on SANFH by targeting CYP1A2. CYP1A2 expression was detected using immunohistochemistry. Specimens were collected from patients with SANFH and femoral neck fracture. Seventy rats were assigned into seven groups. The targeting relationship between miR-320 and CYP1A2 was verified by bioinformatics website and dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to detect miR-320 and CYP1A2 expressions. The enzymatic activity of CYP1A2 was detected by fluorescence spectrophotometry. Hemorheology and microcirculation were measured in rats. MiR-320 expression decreased and CYP1A2 expression and enzymatic activity increased in SANFH patients compared to those with femoral neck fracture. CYP1A2 was the target gene of miR-320. Hemorheology and microcirculation results showed that up-regulated expression of CYP1A2 promoted the development of SANFH while increased expression of miR-320 inhibited the development of SANFH. Compared with the SANFH group, the SANFH + miR-320 mimic group showed increased miRNA-320 expression, and decreased CYP1A2 expression and enzymatic activity. Opposite results were found in the SANFH + miR-320 inhibitor group. The SANFH + miR-320 inhibitor + pCR-CYP1A2_KO group showed decreased miRNA-320 expression and the SANFH + pCR-CYP1A2_KO group showed decreased CYP1A2 expression and enzymatic activity. Our findings provide evidences that miR-320 might inhibit the development of SANFH by targeting CYP1A2. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Polysaccharide from fuzi (FPS) prevents hypercholesterolemia in rats.

    Science.gov (United States)

    Huang, Xiongqing; Tang, Juan; Zhou, Qin; Lu, Hanping; Wu, Yiling; Wu, Weikang

    2010-01-28

    Polysaccharide from fuzi (FPS), a Chinese herbal medicine extract, has been demonstrated to exert lipid lowering affects. In this study we examined potential mechanisms underlying this affect, specifically alterations in expression of the LDL-receptor (LDL-R), 3-hydroxy-3-methyl glutaryl (HMG)-CoA reductase and cytochrome P450 7alpha-1 (CYP7alpha-1), using a rat model of hypercholesterolemia. Male rats were fed either a normal or high cholesterol (HC) diet for two-weeks. Half of the rats on the HC diet were orally gavaged with FPS (224 mg/kg, 448 mg/kg or 896 mg/kg diet) daily. Serum lipid levels were quantified at end of the study period as were liver levels of LDL-R protein and mRNA expression of CYP7alpha-1 and HMG-CoA. Serum cholesterol and LDL-C concentrations were significantly elevated from control in HC rats, but not in those treated with FPS (P FPS group (P FPS group compared to both other groups (P FPS in hypercholesteremic rats is caused at least in part by increased hepatic LDL-R and CYP7alpha-1 expression and decreased HMG-CoA expression. Further study is needed to determine precisely where and how FPS exerts these effects. FPS offers potential as a therapeutic agent for the treatment of hypercholesterolemia.

  12. Relevance of the ancestry for the variability of the Drug-Metabolizing Enzymes CYP2C9, CYP2C19 and CYP2D6 polymorphisms in a multiethnic Costa Rican population.

    Science.gov (United States)

    Céspedes-Garro, Carolina; Rodrigues-Soares, Fernanda; Jiménez-Arce, Gerardo; Naranjo, María-Eugenia G; Tarazona-Santos, Eduardo; Fariñas, Humberto; Barrantes, Ramiro; Llerena, Adrián

    2016-09-01

    CYP2C9, CYP2C19 and CYP2D6 metabolize around 40% of drugs and their genes vary across populations. The Costa Rican population has a trihybrid ancestry and its key geographic location turns it into a suitable scenario to evaluate interethnic differences across populations. This study aims to describe the diversity of CYP2C9, CYP2C19 and CYP2D6 polymorphisms in Costa Rican populations in the context of their ancestry. A total of 448 healthy individuals were included in the study: Bribri (n= 47), Cabécar (n= 27), Maleku (n= 16), Guaymí (n= 30), Huetar (n= 48), Chorotega (n= 41), Admixed/Mestizos from the Central Valley/Guanacaste (n= 189), and Afro-Caribbeans (n= 50) from Limón. CYP2C9 (alleles *2, *3, *6) and CYP2C19 (*2, *3, *4, *5, *17) genotypes were determined by Real-Time PCR. African, European and Native American ancestry were inferred using 87 ancestry informative markers. The frequency of the decreased activity allele CYP2C9*2 is lower in the self-reported Amerindian groups compared to the admixed population, and the highest frequencies of CYP2C19*2 (null activity) and the CYP2C19*17 (increased activity) were found in the self-reported Afro-Caribbean population. Moreover, a frequency of 0.7 % CYP2C9 gPMs in the Admixed population and a variable frequency of CYP2C19 gUMs (0.0-32.6 %, more prevalent in Afro-Caribbeans) in Costa Rican populations, was found. Finally, the following alleles were positively correlated with genomic African ancestry and negatively correlated with genomic Native American ancestry: CYP2D6*5 (null activity), CYP2D6*17 (decreased activity), CYP2D6*29 (decreased activity) and CYP2C19*17 (increased activity). No correlation for CYP2C9 polymorphisms and genomic ancestry was found. Further studies assessing the CYP2C9 and CYP2C19 sequence in these populations, preferentially by sequencing these genes, are warranted.

  13. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jaruchotikamol, Atika [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jarukamjorn, Kanokwan [Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sirisangtrakul, Wanna [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sakuma, Tsutomu; Kawasaki, Yuki [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Nemoto, Nobuo [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2007-10-15

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression.

  14. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    International Nuclear Information System (INIS)

    Jaruchotikamol, Atika; Jarukamjorn, Kanokwan; Sirisangtrakul, Wanna; Sakuma, Tsutomu; Kawasaki, Yuki; Nemoto, Nobuo

    2007-01-01

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, β-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression

  15. Expression of CYP1C1 and CYP1A in Fundulus heteroclitus during PAH-induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Camus, Alvin C. [Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA (United States); Dong, Wu; Thornton, Cammi [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Willett, Kristine L., E-mail: kwillett@olemiss.edu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States)

    2010-09-15

    CYP1C1 is a relatively newly identified member of the cytochrome P450 family 1 in teleost fish. However, CYP1C1's expression and physiological roles relative to the more recognized CYP1A in polycyclic aromatic hydrocarbons (PAHs) induced toxicities are unclear. Fundulus heteroclitus fry were exposed at 6-8 days post-hatch (dph) and again at 13-15 dph for 6 h to dimethyl sulfoxide (DMSO) control, 5 mg/L benzo[a]pyrene (BaP), or 5 mg/L dimethylbenzanthracene (DMBA). Fry were euthanized at 0, 6, 18, 24 and 30 h after the second exposure. In these groups, both CYP1A and CYP1C1 protein expression were induced within 6 h after the second exposure. Immunohistochemistry (IHC) results from fry revealed strongest CYP1C1 expression in renal tubular and intestinal epithelial cells. Additional fish were examined for liver lesions 8 months after initial exposure. Gross lesions were observed in 20% of the BaP and 35% of the DMBA-treated fish livers. Histopathologic findings included foci of cellular alteration and neoplasms, including hepatocellular adenoma, hepatocellular carcinoma and cholangioma. Strong CYP1A immunostaining was detected diffusely in altered cell foci and on the invading margin of hepatocelluar carcinomas. Lower CYP1A expression was seen in central regions of the neoplasms. In contrast, CYP1C1 was only detectable and highly expressed in proliferated bile duct epithelial cells. Our CYP1C1 results suggest the potential for tissue specific CYP1C1-mediated PAH metabolism but not a more chronic role in progression to liver hepatocellular carcinoma.

  16. Hepatic CYP1A involved in metabolism and sequestration of PCDD, PCDF and coplanar PCB congeners in common cormorants

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, A.; Iwata, H.; Tanabe, S. [Ehime Univ., Matsuyama (Japan); Yoneda, K.; Tobata, S. [Japan Wildlife Research Center, Tokyo (Japan)

    2004-09-15

    Wildlife is chronically exposed to complex mixtures of dioxin-like compounds via the gastrointestinal tract, whereas laboratory animals, in most cases, are administered with single or repeated dose of a defined congener through various routes for a short period. The validity of such experimental approach for their toxicokinetics is completely unproven, and many questions still remain to be resolved. Exposure to dioxin-like compounds activates the aryl hydrocarbon receptor (AHR) and regulates the transcription of cytochrome P450 (CYP) 1A and other target genes. Altered expression of CYP1A is linked with production of reactive oxygen species and metabolic activation of PHAHs. Therefore, measurement of CYP expression levels is considered as a useful approach to assess the environmental exposure to dioxin-like compounds and their effects. Common cormorants (Phalacrocorax carbo) contained considerable amount of persistent organochlorines such as dioxin-like compounds, PCBs and DDTs. Our recent study verified contamination status of PCDD/DFs and Co-PCBs and immunochemically detected CYP1A-like protein in hepatic microsomal fraction using an anti-rat CYP1A1 polyclonal antibody. However, no comprehensive data is available on whether CYP protein expressions are influenced by PCDD/DFs and Co-PCBs, and are involved in their toxicokinetics. This study therefore investigates the effects of PCDD/DFs and Co-PCBs on CYP protein expressions in Lake Biwa populations of common cormorants. The role of CYP proteins related to congener profiles of residue concentration and tissue distribution will also be discussed.

  17. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats?

    Science.gov (United States)

    Başak, K; Başak, P Y; Doğuç, D K; Aylak, F; Oğuztüzün, S; Bozer, B M; Gültekin, F

    2017-10-01

    Glutathione-S-transferase (GST) and cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) metabolize and detoxify carcinogens, drugs, environmental pollutants, and reactive oxygen species. Changes of GST expression in tissues and gene mutations have been reported in association with many neoplastic skin diseases and dermatoses. Widely used artificial food coloring additives (AFCAs) also reported to effect primarily behavioral and cognitive function and cause neoplastic diseases and several inflammatory skin diseases. We aimed to identify the changes in expression of GSTs, CYP1A1, and vascular endothelial growth factor (VEGF) in rat skin which were maternally exposed AFCAs. A rat model was designed to evaluate the effects of maternal exposure of AFCAs on skin in rats. "No observable adverse effect levels" of commonly used AFCAs as a mixture were given to female rats before and during gestation. Immunohistochemical expression of GSTs, CYP1A1, and VEGF was evaluated in their offspring. CYP1A1, glutathione S-transferase pi (GSTP), glutathione S-transferase alpha (GSTA), glutathione S-transferase mu (GSTM), glutathione S-transferase theta (GSTT), and VEGF were expressed by epidermal keratinocytes, dermal fibroblasts, sebaceous glands, hair follicle, and subcutaneous striated muscle in the normal skin. CYP1A1, GSTA, and GSTT were expressed at all microanatomical sites of skin in varying degrees. The expressions of CYP1A1, GSTA, GSTT, and VEGF were decreased significantly, while GSTM expression on sebaceous gland and hair follicle was increased. Maternal exposure of AFCAs apparently effects expression of the CYP1A1, GSTs, and VEGF in the skin. This prominent change of expressions might play role in neoplastic and nonneoplastic skin diseases.

  18. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    Science.gov (United States)

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  19. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    Science.gov (United States)

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum.
RESULTS—Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes.
CONCLUSIONS—AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.


Keywords: liver/kidney microsomal antibody type 1; autoimmunity; autoimmune hepatitis; hepatitis C virus infection; confocal microscopy PMID:10716687

  20. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11 in the Liver of Mouse Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bangjun Zhang

    2015-03-01

    Full Text Available Microcystins (MCs are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11 at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD (CYP1A1 and erythromycin N-demthylase (ERND (CYP3A11 activities and increased aniline hydroxylase (ANH activity (CYP2E1 in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.

  1. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    Science.gov (United States)

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.

  2. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes

    International Nuclear Information System (INIS)

    Jia Nuan; Liu Xin; Wen Jun; Qian Linyi; Qian Xiaohong; Wu Yutian; Fan Guorong

    2007-01-01

    Carbon tetrachloride (CCl 4 ) is a well-known model compound for producing chemical hepatic injury. Cytochrome P450 is an important monooxygenase in biology. We investigated the CYP450 protein expression in the in vivo hepatotoxicity of rats induced by CCl 4 . In this experiment, CCl 4 were administered to male rats, and their livers at 24 h post-dosing were applied to the proteomic analysis. Blood biochemistry and histopathology were examined to identify specific changes. At the same time, a novel acetylation stable isotopic labeling method coupled with LTQ-FTICR mass spectrometry was applied to disclose the changes of cytochrome P450 expression amounts. The quantitative proteomics method demonstrated its correlation coefficient was 0.9998 in a 100-fold dynamic range and the average ratio of the labeled peptides was 1.04, which was very close to the theoretical ratio of 1.00 and the standard deviation (S.D.) of 0.21. With this approach, 17 cytochrome P450 proteins were identified and quantified with high confidence. Among them, the expression amount of 2C11, 3A2, and 2 E1 were down-regulated, while that of 2C6, 2B2, and 2B1 were up-regulated

  3. Effects of Simulated Hypogravity and Diet on Estrous Cycling in Rats

    Science.gov (United States)

    Tou, Janet C.; Grindeland, Richard E.; Baer, Lisa A.; Wade, Charles E.

    2003-01-01

    Environmental factors can disrupt ovulatory cycles. The study objective was to determine the effect of diet and simulated hypogravity on rat estrous cycles. Age 50 d Sprague-Dawley rats were randomly assigned to he fed either a purified or chow diet. Only normal cycling rats were used. Experimental rats (n=9-10/group) were kept as ambulatory controls (AC) or subjected to 40 d simulated hypogravity using a disuse atrophy hindlimb suspension (HLS) model. There was no effect on estrous cycles of AC fed either diet. At day 18, HLS rats fed either diet, had lengthened estrous cycles due to prolonged diestrus. HLS rats fed purified diet also had reduced time in estrus. Plasma estradiol was reduced in HLS rats fed purified diet but there was no effect on progesterone. This may have occurred because blood was collected from rats in estrus. Urinary progesterone collected during initial HLS was elevated in rats fed purified diet. In AC, corticosterone was elevated in chow vs purified diet fed rats. Differences were particularly striking following the application of a stressor with HLS/chow-fed rats displaying an enhanced stress response. Results emphasize the importance of diet selection when measuring endocrine-sensitive endpoints. HLS is a useful model for investigating the effects of environment on reproduction and providing insight about the impact extreme environment such as spaceflight on female reproductive health.

  4. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant

    Energy Technology Data Exchange (ETDEWEB)

    Shinkyo, Raku; Inouye, Kuniyo [Kyoto Univ. (Japan). Div. of Food Science and Biotechnology; Kamakura, Masaki; Ikushiro, Shin-ichi; Sakaki, Toshiyuki [Toyama Prefectural Univ. (Japan). Biotechnology Research Center

    2006-09-15

    Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s ({delta}1A1 and {delta}F240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that {delta}F240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both {delta}F240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 {mu}M, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing {delta}F240A to the bioremediation of PCDD-contaminated soil. (orig.)

  5. Effects of CYP3A5, CYP2C19, and CYP2B6 on the clinical efficacy and adverse outcomes of sibutramine therapy: a crucial role for the CYP2B6*6 allele.

    Science.gov (United States)

    Hwang, In Cheol; Park, Ji Young; Ahn, Hong Yup; Kim, Kyoung Kon; Suh, Heuy Sun; Ko, Ki Dong; Kim, Kyoung-Ah

    2014-01-20

    Various cytochrome P450 isoforms modulate sibutramine activity and influence sibutramine plasma levels and pharmacokinetics. However, there are no available data to demonstrate the association of these polymorphisms with the clinical outcomes of sibutramine administration. This study was a sub-investigation of a 12-week, double-blind, placebo-controlled trial examining the additive effect of orlistat on sibutramine. The final analysis was restricted to 101 women who had fulfilled the protocol. We evaluated the effects of genetic polymorphisms of CYP3A5, CYP2C19 and CYP2B6 on the % weight loss and the occurrence of adverse events. The change of pulse rate from baseline value was affected by both CYP2B6 and CYP3A5 genetic polymorphisms (Psibutramine treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Differences in hepatic microsomal cytochrome P-450 isoenzyme induction by pyrazole, chronic ethanol, 3-methylcholanthrene, and phenobarbital in high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats.

    Science.gov (United States)

    Lucas, D; Ménez, J F; Berthou, F; Cauvin, J M; Deitrich, R A

    1992-10-01

    High and low alcohol sensitivity (HAS and LAS) rats have been selected for their differences in ethanol-induced sleep time. Liver monooxygenase activities were studied in HAS and LAS rats before and after treatments with known inducers such as chronic ethanol, pyrazole, 3-methylcholanthrene (3-MC) and phenobarbital (PB) to determine whether the selection procedure also selected for differences in the cytochrome P-450 (P-450) inducibility. This previously has been shown with long sleep (LS) and short sleep (SS) mice, which were selected using a similar criterion. 3-MC and PB, in conjunction with chronic ethanol treatment, were used in order to evaluate the interactions of ethanol with these inducers. Prior to treatment, total P-450 content was slightly lower in LAS than in HAS rats. However, both lines displayed the same microsomal monooxygenase activities related to different P-450 isozymes. This was demonstrated by ethoxyresorufin deethylation (EROD) for cytochrome P-450 1A1 (CYP1A1), acetanilide hydroxylation (ACET) for CYP1A2, pentoxyresorufin dealkylation (PROD) for CYP2B, 1-butanol oxidation (BUTAN) and N-nitrosodimethylamine demethylation (NDMA) for CYP2E1. After the different treatments, HAS rats did not differ from LAS rats in their CYP2E1 inducibility. However, pyrazole, PB and 3-MC treatment led to differences in CYP1A and CYP2B monooxygenase activities between the two lines. The enhancement of PROD by pyrazole treatment was less prominent in LAS (1.7-fold of the control value) than in HAS rats (3.8-fold).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.

    Science.gov (United States)

    Magome, Hiroshi; Nomura, Takahito; Hanada, Atsushi; Takeda-Kamiya, Noriko; Ohnishi, Toshiyuki; Shinma, Yuko; Katsumata, Takumi; Kawaide, Hiroshi; Kamiya, Yuji; Yamaguchi, Shinjiro

    2013-01-29

    Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.

  8. CYP1A1 and CYP1B1 in human lymphocytes as biomarker of exposure: effect of dioxin exposure and polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, M. van; Sanderson, T.; Berg, M. van den [Inst. for Risk Assessment Sciences, Utrecht (Netherlands)

    2004-09-15

    There are several known genetic polymorphisms of the CYP1A1 and CYP1B1 genes. A polymorphism in the 3'-untranslated region of the CYP1A1 gene (CYP1A1 MspI or CYP1A1 m1) is often studied in relation with breast or lung cancer, but little is known about the functional effect of this polymorphism. An amino acid substitution in codon 432 (Val to Leu) of the CYP1B1 gene is associated with a lower catalytic activity of the enzyme. However, the involvement of these polymorphisms on the inducibility of CYP1A1 and CYP1B1 gene expression is unclear. CYP1A1 and CYP1B1 mRNA expression levels can be determined in peripheral blood lymphocytes. This makes them potential candidates for use as biomarker of exposure to environmental compounds. Interindividual variations in mRNA expression patterns, catalytic activity and polymorphisms are very important factors when CYP1A1 and CYP1B1 expression patterns are used as biomarker of exposure, but little is known about it. Spencer et al. showed a concentration-dependent increase of CYP1B1 mRNA in lymphocytes upon exposure in vitro to 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD), the most potent dioxin. Yet, only a few studies describe the in vivo correlation between polymorphisms, mRNA expression level and exposure to environmental factors. In this study, we wanted to obtain a better insight in the CYP1A1 and CYP1B1 mRNA expression and enzyme activity in human lymphocytes. We determined the constitutive CYP1A1 and CYP1B1 mRNA expression in lymphocytes of ten healthy volunteers and the variability in sensitivity toward enzyme induction by TCDD. Further, the CYP1A1 m1 and CYP1B1 Val432Leu polymorphisms were determined.

  9. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium.

    Science.gov (United States)

    Abdulmughni, Ammar; Jóźwik, Ilona K; Brill, Elisa; Hannemann, Frank; Thunnissen, Andy-Mark W H; Bernhardt, Rita

    2017-11-01

    Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D 3 (VD 3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD 3 deficiency and other disorders. However, the chemical synthesis of VD 3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD 3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD 3 . Product yield amounted to 54.9 mg·L -1 ·day -1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD 3 binding as the related VD 3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD 3 hydroxylation. The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450

  10. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes

    Science.gov (United States)

    Villagra, David; Goethe, John; Schwartz, Harold I; Szarek, Bonnie; Kocherla, Mohan; Gorowski, Krystyna; Windemuth, Andreas; Ruaño, Gualberto

    2011-01-01

    Aims We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. Methods A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. Results The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. Conclusions We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes. PMID:21861665

  11. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Zhong, Yanjun; Dong, Guicheng; Luo, Haiguang; Cao, Jie; Wang, Chang; Wu, Jianyuan; Feng, Yu-Qi; Yue, Jiang

    2012-01-01

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  12. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population.

    Science.gov (United States)

    Fukushima-Uesaka, Hiromi; Saito, Yoshiro; Watanabe, Hidemi; Shiseki, Kisho; Saeki, Mayumi; Nakamura, Takahiro; Kurose, Kouichi; Sai, Kimie; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Kitakaze, Masafumi; Hanai, Sotaro; Nakajima, Toshiharu; Matsumoto, Kenji; Saito, Hirohisa; Goto, Yu-ichi; Kimura, Hideo; Katoh, Masaaki; Sugai, Kenji; Minami, Narihiro; Shirao, Kuniaki; Tamura, Tomohide; Yamamoto, Noboru; Minami, Hironobu; Ohtsu, Atsushi; Yoshida, Teruhiko; Saijo, Nagahiro; Kitamura, Yutaka; Kamatani, Naoyuki; Ozawa, Shogo; Sawada, Jun-ichi

    2004-01-01

    In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A4 in a Japanese population, the distal enhancer and proximal promoter regions, all exons, and the surrounding introns were sequenced from genomic DNA of 416 Japanese subjects. We found 24 SNPs, including 17 novel ones: two in the distal enhancer, four in the proximal promoter, one in the 5'-untranslated region (UTR), seven in the introns, and three in the 3'-UTR. The most common SNP was c.1026+12G>A (IVS10+12G>A), with a 0.249 frequency. Four non-synonymous SNPs, c.554C>G (p.T185S, CYP3A4(*)16), c.830_831insA (p.E277fsX8, (*)6), c.878T>C (p.L293P, (*)18), and c.1088 C>T (p.T363M, (*)11) were found with frequencies of 0.014, 0.001, 0.028, and 0.002, respectively. No SNP was found in the known nuclear transcriptional factor-binding sites in the enhancer and promoter regions. Using these 24 SNPs, 16 haplotypes were unambiguously identified, and nine haplotypes were inferred by aid of an expectation-maximization-based program. In addition, using data from 186 subjects enabled a close linkage to be found between CYP3A4 and CYP3A5 SNPs, especially among the SNPs at c.1026+12 in CYP3A4 and c.219-237 (IVS3-237, a key SNP site for CYP3A5(*)3), c.865+77 (IVS9+77) and c.1523 in CYP3A5. This result suggested that CYP3A4 and CYP3A5 are within the same gene block. Haplotype analysis between CYP3A4 and CYP3A5 revealed several major haplotype combinations in the CYP3A4-CYP3A5 block. Our findings provide fundamental and useful information for genotyping CYP3A4 (and CYP3A5) in the Japanese, and probably Asian populations. Copyright 2003 Wiley-Liss, Inc.

  13. Lansoprazole increases testosterone metabolism and clearance in male Sprague-Dawley rats: implications for leydig cell carcinogenesis

    International Nuclear Information System (INIS)

    Coulson, Michelle; Gibson, G. Gordon; Plant, Nick; Hammond, Tim; Graham, Mark

    2003-01-01

    Leydig cell tumours (LCTs) are frequently observed during rodent carcinogenicity studies, however, the significance of this effect to humans remains a matter of debate. Many chemicals that produce LCTs also induce hepatic cytochromes P450 (CYPs), but it is unknown whether these two phenomena are causally related. Our aim was to investigate the existence of a liver-testis axis wherein microsomal enzyme inducers enhance testosterone metabolic clearance, resulting in a drop in circulating hormone levels and a consequent hypertrophic response from the hypothalamic-pituitary-testis axis. Lansoprazole was selected as the model compound as it induces hepatic CYPs and produces LCTs in rats. Male Sprague-Dawley rats were dosed with lansoprazole (150 mg/kg/day) or vehicle for 14 days. Lansoprazole treatment produced effects on the liver consistent with an enhanced metabolic capacity, including significant increases in relative liver weights, total microsomal CYP content, individual CYP protein levels, and enhanced CYP-dependent testosterone metabolism in vitro. Following intravenous administration of [ 14 C]testosterone, lansoprazole-treated rats exhibited a significantly smaller area under the curve and significantly higher plasma clearance. Significant reductions in plasma and testicular testosterone levels were observed, confirming the ability of this compound to perturb androgen homeostasis. No significant changes in plasma LH, FSH, or prolactin levels were detected under our experimental conditions. Lansoprazole treatment exerted no marked effects on testicular testosterone metabolism. In summary, lansoprazole treatment induced hepatic CYP-dependent testosterone metabolism in vitro and enhanced plasma clearance of radiolabelled testosterone in vivo. These effects may contribute to depletion of circulating testosterone levels and hence play a role in the mode of LCT induction in lansoprazole-treated rats

  14. Genotypes for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevitY

    DEFF Research Database (Denmark)

    Bathum, L; Andersen-Ranberg, K; Boldsen, J

    1998-01-01

    (PCR). The CYP2D6*5 alleles were identified with a long PCR method. For CYP2C19 we identified the alleles CYP2C19*1, CYP2C19*2 and CYP2C19*3 with an oligonucleotide ligation assay. RESULTS: The four alleles for CYP2D6 did not occur in Hardy-Weinberg proportions. The frequency of poor metabolism...... was slightly higher (10.2%) than expected [7.7%; odds ratio (OR) = 1.36 (0.75-2.40)]. The genotypes for CYP2C19 occur in Hardy-Weinberg proportions. The frequency of poor metabolism (3.8%) was not significantly different from a young control group [3.1%; OR = 1.21 (0.26-5.75)]. CONCLUSION: CYP2D6 could play...... a role in human longevity due to the lack of Hardy-Weinberg proportions. If CYP2D6 only plays a role in longevity by protecting the poor metabolizers from cancer, we should expect a rise in the frequency in these genotypes in Denmark from 7.7% among young adults to 10-11% among very old people. We found...

  15. Metabolism of six CYP probe substrates in fetal hepatocytes

    Directory of Open Access Journals (Sweden)

    Abdul Naveed Shaik

    2016-06-01

    Full Text Available Cytochrome P-450 (CYP are the most common drug metabolizing enzymes and are abundantly expressed in liver apart from kidney, lungs, intestine, brain etc. Their expression levels change with physiological conditions and disease states. The expression of these CYPs is less in human foetus and neonates compared to adults, which results in lower clearance of xenobiotics in infants and neonates compared to adults. Hepatocytes are the cells which are largely used to study these CYPs. We have isolated hepatocytes from aborted foetus to study the metabolism of six probe substrates: phenacetin, diclofenac, S-mephenytoin, dextromethorphan, nifedipine and testosterone. The results obtained show the expression of various CYPs (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 in human foetus and their involvement in metabolism of CYP probe substrates.

  16. Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24-oxidation pathway.

    Science.gov (United States)

    Tieu, Elaine W; Tang, Edith K Y; Tuckey, Robert C

    2014-07-01

    CYP24A1 is the multicatalytic cytochrome P450 responsible for the catabolism of vitamin D via the C23- and C24-oxidation pathways. We successfully expressed the labile human enzyme in Escherichia coli and partially purified it in an active state that permitted detailed characterization of its metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] and the intermediates of the C24-oxidation pathway in a phospholipid-vesicle reconstituted system. The C24-oxidation pathway intermediates, 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, 24-oxo-1,23,25-trihydroxyvitamin D3 and tetranor-1,23-dihydroxyvitamin D3, were enzymatically produced from 1,25(OH)2 D3 using rat CYP24A1. Both 1,25(OH)2 D3 and 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 were found to partition strongly into the phospholipid bilayer when in aqueous medium. Changes to the phospholipid concentration did not affect the kinetic parameters for the metabolism of 1,25(OH)2 D3 by CYP24A1, indicating that it is the concentration of substrates in the membrane phase (mol substrate·mol phospholipid(-1) ) that determines their rate of metabolism. CYP24A1 exhibited Km values for the different C24-intermediates ranging from 0.34 to 15 mmol·mol phospholipid(-1) , with 24-oxo-1,23,25-trihydroxyvitamin D3 [24-oxo-1,23,25(OH)3 D3] displaying the lowest and 1,24,25-trihydroxyvitamin D3 [1,24,25(OH)3 D3] displaying the highest. The kcat values varied by up to 3.8-fold, with 1,24,25(OH)3 D3 displaying the highest kcat (34 min(-1) ) and 24-oxo-1,23,25(OH)3 D3 the lowest. The data show that the cleavage of the side chain of 24-oxo-1,23,25(OH)3 D3 occurs with the highest catalytic efficiency (kcat /Km ) and produces 1-hydroxy-23-oxo-24,25,26,27-tetranorvitamin D3 and not 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3, as the primary product. These kinetic analyses also show that intermediates of the C24-oxidation pathway effectively compete with precursor substrates for binding to the active site of the

  17. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes

    Directory of Open Access Journals (Sweden)

    Alice Varghese

    2015-01-01

    Full Text Available Terminalia arjuna is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Alcoholic and aqueous bark extracts of T. arjuna, arjunic acid, arjunetin and arjungenin were evaluated for their potential to inhibit CYP3A4, CYP2D6 and CYP2C9 enzymes in human liver microsomes. We have demonstrated that alcoholic and aqueous bark extract of T. arjuna showed potent inhibition of all three enzymes in human liver microsomes with IC50 values less than 50 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP enzymes in human liver microsomes. Enzyme kinetics studies suggested that the extracts of arjuna showed reversible non-competitive inhibition of all the three enzymes in human liver microsomes. Our findings suggest strongly that arjuna extracts significantly inhibit the activity of CYP3A4, CYP2D6 and CYP2C9 enzymes, which is likely to cause clinically significant drug–drug interactions mediated via inhibition of the major CYP isozymes.

  18. Association of CYP3A4 and CYP3A5 polymorphisms with Iranian ...

    African Journals Online (AJOL)

    Elham Badavi

    2015-04-20

    Apr 20, 2015 ... cancer, CYP3A5 (P-value = 0.561) and CYP3A4 allele distribution. У 2015 The Authors. ... other hand, causes alternative splicing and blocks protein pro- ... Homozygote individuals for A/A genotype present only one peak.

  19. Effect of methamphetamine on the pharmacokinetics of dextromethorphan and midazolam in rats.

    Science.gov (United States)

    Dostalek, M; Hadasova, E; Hanesova, M; Pistovcakova, J; Sulcova, A; Jurica, J; Tomandl, J; Linhart, I

    2005-01-01

    Methamphetamine is the fourth most frequently reported compound associated with drug abuse on admission of patients to treatment centres after cocaine, heroin and marijuana. It is metabolized in the organism with a reaction that is catalyzed by cytochrome P450, mainly by the CYP2D and CYP3A subfamily, 4-hydroxyamphetamine and amphetamine being dominant metabolites. The present pharmacokinetic study was undertaken to investigate the possible influence of methamphetamine (10 mg/kg, i.p., once daily for six days) on the pharmacokinetics of dextromethorphane as a model substrate for rat cytochrome P-4502D2 and midazolam as a model substrate for CYP3A1/2. Animals received a single injection of dextromethorphane (10 mg/kg) or midazolam (5 mg/kg) in the tail vein 24 h after the last dose of methamphetamine or administration of placebo. The results of pharmacokinetic analysis showed a significantly increased rate of dextrorphane and 3-hydroxymorphinan formation, and a marked stimulatory effect of methamphetamine on CYP2D2 metabolic activity. Similarly, the kinetics of midazolam's metabolic conversion to hydroxy derivates of midazolam indicated a significant increase in CYP3A1/2 activity. The results showed that the administration of methamphetamine significantly stimulated the metabolic activity of CYP2D2 as well as that of CYP3A1/2. With regard to the high level of homology between human and rat CYP isoforms studied, the results may have a clinical impact on future pharmacotherapy for methamphetamine abuse.

  20. Porcine foetal and neonatal CYP3A liver expression

    Directory of Open Access Journals (Sweden)

    Marie Louise Hiort Hermann

    2011-05-01

    Full Text Available Human cytochrome P450 3A7 (CYP3A7 and cytochrome P450 3A4 (CYP3A4 are hepatic metabolising enzymes which participates in the biotransformation of endo- and exogenous substances in foetuses and neonates respectively. These CYP3A enzymes display an inverse relationship: CYP3A7 is the dominant enzyme in the foetal liver, whereas the expression of CYP3A4 is low. After parturition there is a shift in the expression, thus CYP3A7 is down regulated, while the level of CYP3A4 gradually increases and becomes the dominant metabolising CYP3A enzyme in the adult. The minipig is increasingly being used as a model for humans in biomedical studies, because of its many similarities with the human physiology and anatomy. The aim of this study was to examine whether, as in humans, a shift is seen in the hepatic expression of a CYP3A7- like enzyme to cytochrome P450 3A29 (CYP3A29 (an orthologue to the human CYP3A4 in minipigs. This was elucidated by examining the hepatic mRNA expression of CYP3A7 and CYP3A29 in 39 foetuses and newborn Göttingen minipigs using quantitative real time polymerase chain reaction (qPCR. Furthermore the immunochemical level of CYP3A7-LE and CYP3A29 was measured in liver microsomes using western blotting. The expression of CYP3A29 was approximately 9- fold greater in neonates compared to foetuses, and a similar difference was reflected on the immunochemical level. It was not possible to detect a significant level of foetal CYP3A7 mRNA, but immunoblotting showed a visible difference depending on age. This study demonstrates an increase in the expression of CYP3A29, the CYP3A4 orthologue in perinatal minipigs as in humans, which suggests that the minipig could be a good model when testing for human foetal toxicity towards CYP3A4 substrates.

  1. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    Science.gov (United States)

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    International Nuclear Information System (INIS)

    Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier; Galons, Herve; Crete, Dominique; Debray, Marcel; Scherrmann, Jean-Michel; Noble, Florence

    2008-01-01

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg -1 sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  4. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  5. Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary.

    Science.gov (United States)

    Lombardi, Leonardo Augusto; Simões, Ricardo Santos; Maganhin, Carla Cristina; Baracat, Maria Cândida Pinheiro; Silva-Sasso, Gisela Rodrigues; Florencio-Silva, Rinaldo; Soares, José Maria; Baracat, Edmund Chada

    2014-07-01

    to evaluate the immunohistochemical expression of proliferative, apoptotic and steroidogenic enzyme markers in the ovaries of rats with polycystic ovary syndrome (PCOS). twenty rats were divided into two groups: GCtrl - estrous phase, and PCOS - with polycystic ovaries. The GCtrl animals were subjected to a lighting period from 7 am to 7 pm, while the animals with PCOS group remained with continuous lighting for 60 days. Subsequently, the animals were anesthetized, the ovaries were removed and fixed in 10% formaldehyde, prior to paraffin embedding. Sections were stained using H.E. or subjected to immunohistochemical methods for the detection of Ki-67, cleaved caspase-3, CYP11A1, CYP17A1 and CYP19A1. The results were analyzed using Student's t-test (p ovaries of rats with PCOS, responsible for the high levels of androgens and estradiol.

  6. Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction.

    Science.gov (United States)

    Zhang, TianHong; Zhang, KeRong; Ma, Li; Li, Zheng; Wang, Juan; Zhang, YunXia; Lu, Chuang; Zhu, Mingshe; Zhuang, XiaoMei

    2018-04-01

    Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Effect of acetaminophen administration to rats chronically exposed to depleted uranium

    International Nuclear Information System (INIS)

    Gueguen, Y.; Grandcolas, L.; Baudelin, C.; Grison, S.; Tissandie, E.; Jourdain, J.R.; Paquet, F.; Voisin, P.; Aigueperse, J.; Gourmelon, P.; Souidi, M.

    2007-01-01

    The extensive use of depleted uranium (DU) in both civilian and military applications results in the increase of the number of human beings exposed to this compound. We previously found that DU chronic exposure induces the expression of CYP enzymes involved in the metabolism of xenobiotics (drugs). In order to evaluate the consequences of these changes on the metabolism of a drug, rats chronically exposed to DU (40 mg/l) were treated by acetaminophen (APAP, 400 mg/kg) at the end of the 9-month contamination. Acetaminophen is considered as a safe drug within the therapeutic range but in the case of overdose or in sensitive animals, hepatotoxicity and nephrotoxicity could occur. In the present work, plasma concentration of APAP was higher in the DU group compared to the non-contaminated group. In addition, administration of APAP to the DU-exposed rats increased plasma ALT (p < 0.01) and AST (p < 0.05) more rapidly than in the control group. Nevertheless, no histological alteration of the liver was observed but renal injury characterized by incomplete proximal tubular cell necrosis was higher for the DU-exposed rats. Moreover, in the kidney, CYP2E1 gene expression, an important CYP responsible for APAP bioactivation and toxicity, is increased (p < 0.01) in the DU-exposed group compared to the control group. In the liver, CYP's activities were decreased between control and DU-exposed rats. These results could explain the worse elimination of APAP in the plasma and confirm our hypothesis of a modification of the drug metabolism following a DU chronic contamination

  8. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

    International Nuclear Information System (INIS)

    Dračínská, Helena; Bárta, František; Levová, Kateřina; Hudecová, Alena; Moserová, Michaela; Schmeiser, Heinz H.; Kopka, Klaus; Frei, Eva; Arlt, Volker M.; Stiborová, Marie

    2016-01-01

    Highlights: • Oxidation and reduction of aristolochic acid I (AAI) dictate its (geno)toxicity in vivo. • Cytochrome P450 (CYP) 1A1 and 1A2 are induced in rats treated with Sudan I and AAI. • Induced CYP1A enzyme activity resulted in decreased AAI-DNA adduct levels in vivo. • CYP1A1 and 1A2 mainly detoxify AAI and attenuate its genotoxicity in vivo. - Abstract: Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H:quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the 32 P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts.

  9. Porcine foetal and neonatal CYP3A liver expression

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Skaanild, Mette Tingleff

    2011-01-01

    enzyme in the foetal liver, whereas the expression of CYP3A4 is low. After parturition there is a shift in the expression, thus CYP3A7 is down regulated, while the level of CYP3A4 gradually increases and becomes the dominant metabolising CYP3A enzyme in the adult. The minipig is increasingly being used......3A4) in minipigs. This was elucidated by examining the hepatic mRNA expression of CYP3A7 and CYP3A29 in 39 foetuses and newborn Göttingen minipigs using quantitative real time polymerase chain reaction (qPCR). Furthermore the immunochemical level of CYP3A7-LE and CYP3A29 was measured in liver...

  10. Haplotypes frequencies of CYP2B6 in Malaysia

    Directory of Open Access Journals (Sweden)

    N Musa

    2012-01-01

    Full Text Available Background: Drugs with complex pharmacology are used in the management of drug use disorder (DUD and HIV/AIDS in Malaysia and in parts of South-East Asia. Their multiethnic populations suggest complexity due to the genetic polymorphism, such as CYP2B6 that metabolizes methadone and anti-retroviral. Aims: Our aim was to explore the genetic polymorphism of CYP2B6 among Malays, Chinese, Indians, and opiate-dependent individuals in Malaysia. Settings and Design: The study utilized DNA from our previous studies on CYPs and new recruitments from opiate-dependent individuals. Materials and Methods: For the new recruitment, after obtaining consent and baseline demography, 5 ml blood was obtained from patients attending methadone maintenance therapy (MMT Clinics. Genomic DNA was extracted using standard methods. 10 nucleotide changes associated with CYP2B6FNx0110, CYP2B6FNx012, CYP2B6FNx0117, CYP2B6FNx0111, CYP2B6FNx018, CYP2B6FNx0114, CYP2B6FNx019, CYP2B6FNx014, CYP2B6FNx016, CYP2B6FNx0127, and CYP2B6FNx0120 were determined using multiplex nested allele-specific PCR. Statistical Analysis: Descriptive statistics were used to summarize demographic data. Differences in allele frequencies between populations were tested using Chi-squared test and were corrected using the Bonferroni test. Results: CYP2B6 polymorphism in Malaysia is variable with trends that suggest an ethnic difference. Reduced activity CYP2B6FNx016 occurred in 13% to 26% among Malays, Chinese, Indians and opiate-dependent individuals. Another ′reduced activity′, CYP2B6FNx012 allele, was found at much lower percentages in the groups. Conclusions: The relative commonness of reduced-activity CYP2B6 alleles in our study called for attention in terms of dosage requirements for MMT and ARV in Malaysia. It also implored follow-up association studies to determine its relevance and consequences in personalized medicine for drug use disorder and HIV/AIDS.

  11. Inhibition of mirtazapine metabolism by Ecstasy (MDMA) in isolated perfused rat liver model.

    Science.gov (United States)

    Jamshidfar, Sanaz; Ardakani, Yalda H; Lavasani, Hoda; Rouini, Mohammadreza

    2017-06-28

    Nowadays MDMA (3,4-methylendioxymethamphetamine), known as ecstasy, is widely abused among the youth because of euphoria induction in acute exposure. However, abusers are predisposed to depression in chronic consumption of this illicit compound. Mirtazapine (MRZ), an antidepressant agent, may be prescribed in MDMA-induced depression. MRZ is extensively metabolized in liver by CYP450 isoenzymes. 8-hydroxymirtazapine (8-OH) is mainly produced by CYP2D6. N-desmethylmirtazapine (NDES) is generated by CYP3A4. MDMA is also metabolized by the mentioned isoenzymes and demonstrates mechanism-based inhibition (MBI) in association with CYP2D6. Several studies revealed that MDMA showed inhibitory effects on CYP3A4. In the present study, our aim was to evaluate the impact of MDMA on the metabolism of MRZ in liver. Therefore, isolated perfused rat liver model was applied as our model of choice in this assessment. The subjects of the study were categorized into two experimental groups. Rats in the control group received MRZ-containing Krebs-Henselit buffer (1 μg/ml). Rats in the treatment group received aqueous solution of 1 mg/ml MDMA (3 mg/kg) intraperitoneally 1 hour before receiving MRZ. Perfusate samples were analyzed by HPLC. Analyses of perfusate samples showed 80% increase in the parent drug concentrations and 50% decrease in the concentrations of both metabolites in our treatment group compared to the control group. In the treatment group compared to the control group, AUC (0-120) of the parent drug demonstrated 50% increase and AUC (0-120) of 8-OH and NDES showed 70% and 60% decrease, respectively. Observed decrease in metabolic ratios were 83% and 79% for 8-OH and NDES in treatment group compared to control group, respectively. Hepatic clearance (CL h ) and intrinsic clearance (Cl int ) showed 20% and 60% decrease in treatment group compared to control group. All findings prove the inhibitory effects of ecstasy on both CYP2D6 and CYP3A4 hepatic isoenzymes. In

  12. Comparison of voiding function and nociceptive behavior in two rat models of cystitis induced by cyclophosphamide or acetone

    Science.gov (United States)

    Saitoh, Chikashi; Yokoyama, Hitoshi; Chancellor, Michael B.; de Groat, William C.; Yoshimura, Naoki

    2009-01-01

    Aims Nociceptive behavior and its relationship with bladder dysfunction were investigated in two cystitis models, which were induced by intraperitoneal (ip) injection of cyclophosphamide (CYP) or intravesical instillation of acetone, using freely moving, non-catheterized conscious rats. Methods Female Sprague-Dawley rats were used. Cystitis was induced by ip injection of CYP (100 and 200mg/kg) or intravesical instillation of acetone (10, 30 and 50%) via a polyethylene catheter temporarily inserted into the bladder through the urethra. Then the incidence of nociceptive behavior (immobility with decreased breathing rates) was scored. Voided urine was collected simultaneously and continuously to measure bladder capacity. The plasma extravasation in the bladder was quantified by an evans blue (EB) dye leakage technique. Results CYP (100mg/kg, ip) induced nociceptive behavior without affecting bladder capacity or EB concentration in the bladder. A higher dose of CYP (200mg/kg, ip) decreased bladder capacity and increased EB levels as well as nociceptive behavior. In contrast, intravesical instillation of acetone (30%) decreased bladder capacity and increased EB levels, but evoked nociceptive behavior less frequently compared with CYP-treated animals. In capsaicin pretreated rats, nociceptive behavior induced by CYP or acetone was reduced; however, the overall effects of CYP or acetone on bladder capacity and bladder EB levels were unaffected. Conclusions These results suggest that there is a difference in the induction process of nociceptive behavior and small bladder capacity after two different types of bladder irritation and that C-fiber sensitization is more directly involved in pain sensation than reduced bladder capacity. PMID:19618450

  13. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    Science.gov (United States)

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  14. Fenproporex N-dealkylation to amphetamine--enantioselective in vitro studies in human liver microsomes as well as enantioselective in vivo studies in Wistar and Dark Agouti rats.

    Science.gov (United States)

    Kraemer, Thomas; Pflugmann, Thomas; Bossmann, Michael; Kneller, Nicole M; Peters, Frank T; Paul, Liane D; Springer, Dietmar; Staack, Roland F; Maurer, Hans H

    2004-09-01

    Fenproporex (FP) is known to be N-dealkylated to R(-)-amphetamine (AM) and S(+)-amphetamine. Involvement of the polymorphic cytochrome P450 (CYP) isoform CYP2D6 in metabolism of such amphetamine precursors is discussed controversially in literature. In this study, the human hepatic CYPs involved in FP dealkylation were identified using recombinant CYPs and human liver microsomes (HLM). These studies revealed that not only CYP2D6 but also CYP1A2, CYP2B6 and CYP3A4 catalyzed this metabolic reaction for both enantiomers with slight preference for the S(+)-enantiomer. Formation of amphetamine was not significantly changed by quinidine and was not different in poor metabolizer HLM compared to pooled HLM. As in vivo experiments, blood levels of R(-)-amphetamine and S(+)-amphetamine formed after administration of FP were determined in female Dark Agouti rats (fDA), a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats (mDA), an intermediate model, and in male Wistar rats (WI), a model of the human CYP2D6 extensive metabolizer phenotype. Analysis of the plasma samples showed that fDA exhibited significantly higher plasma levels of both amphetamine enantiomers compared to those of WI. Corresponding plasma levels in mDA were between those in fDA and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher amphetamine plasma levels, which did not significantly differ from those in fDA. The in vivo studies suggested that CYP2D6 is not crucial to the N-dealkylation but to another metabolic step, most probably to the ring hydroxylation. Further studies are necessary for elucidating the role of CYP2D6 in FP hydroxylation.

  15. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    International Nuclear Information System (INIS)

    Wu Defeng; Cederbaum, Arthur

    2006-01-01

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G -Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and

  16. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences

    Energy Technology Data Exchange (ETDEWEB)

    Iwanari, M.; Nakajima, M.; Yokoi, T. [Div. of Drug Metabolism, Kanazawa Univ., Kanazawa (Japan); Kizu, R.; Hayakawa, K. [Lab. of Hygienic Chemistry, Kanazawa Univ., Kanazawa (Japan)

    2002-06-01

    Nitropolycyclic aromatic hydrocarbons (NPAHs) are found in diesel exhaust and ambient air. NPAHs as well as polycyclic aromatic hydrocarbons (PAHs) are known to have mutagenicity, carcinogenicity, and endocrine-disruptive effects. In the present study, the inducibility of the human cytochrome P450-1 (CYP1) family by NPAHs was compared with those produced by their parent PAHs and some reductive metabolites, amino-PAHs. Furthermore, to investigate the differences in the inducibility of the CYP1 family in human tissues, various human tissue-derived cell lines, namely HepG2 (hepatocellular carcinoma), ACHN (renal carcinoma), A549 (lung carcinoma), MCF-7 (breast carcinoma), LS-180 (colon carcinoma), HT-1197 (bladder carcinoma), HeLa (cervix of uterus adenocarcinoma), OMC-3 (ovarian carcinoma), and NEC14 (testis embryonal carcinoma), were treated with NPAHs, PAHs, or amino-PAHs. The mRNA levels of CYP1A1, CYP1A2, and CYP1B1 were determined with reverse transcription-polymerase chain reaction (RT-PCR). The cell lines were classified into two groups: CYP1 inducible cell lines, comprising HepG2, MCF-7, LS-180, and OMC-3 cells, and CYP1 non-inducible cell lines, comprising ACHN, A549, HT-1197, HeLa, and NEC14 cells. In inducible cell lines, the induction profile of chemical specificity was similar for CYP1A1, CYP1A2, and CYP1B1, although the extent of induction differed among the cell lines and for the CYP isoforms. Pyrene, 1-nitropyrene, 1-aminopyrene, 1,3-, 1,6-, and 1,8-dinitropyrenes slightly induced CYP1 mRNAs, but 1,3-dinitropyrene produced a 6-fold induction of CYP1A1 mRNA in MCF-7 cells. 2-Nitrofluoranthene and 3-nitrofluoranthene exhibited stronger inducibility than fluoranthene in the inducible cell lines. 6-Nitrochrysene induced CYP1 mRNAs to the same extent or more potently than chrysene. The induction potencies of 6-nitrobenzo[a]pyrene and 7-nitrobenz[a]anthracene were weaker than those of their parents benzo[a]pyrene and benz[a]anthracene, respectively. This

  17. Effect of Launaea procumbens extract on oxidative marker, p53, and CYP 2E1: a randomized control study

    Directory of Open Access Journals (Sweden)

    Rahmat Ali Khan

    2016-03-01

    Full Text Available Background: Ethyl acetate extracts of Launaea procumbens is used for the treatment of liver dysfunction as an herbal medicine in Pakistan. In this study, the protective effects of ethyl acetate extracts were evaluated against CCl4-induced liver injuries in rat. Methods: To examine the protective effects against oxidative stress of carbon tetrachloride in rats, 30 male rats were equally divided into 5 groups (6 rats. Among five groups, one was treated with CCl4 (3 ml/kg i.p. in olive oil b.w. twice a week for 4 weeks. Others were orally fed with extracts (100, 200 mg/kg b.w., with CCl4 twice a week for 4 weeks. Results: Administration of CCl4 altered the serum marker enzymes, lipid profile, CYP 2E1, p53 expression, antioxidant enzymes, nuclear organizer regions (AgNORs, and DNA. Supplement of L. procumbens ameliorated the effects of CCl4, improved CYP 2E1, p53, and increased the activities of antioxidant enzymes while activity of liver marker enzymes (ALP, ALT, AST, g-GT and contents of lipid per oxidation contents (TBARS, AgNORs, and DNA fragmentation were decreased. Similarly body weight was increased while liver and relative liver weight was decreased with co-administration of various extracts, suggesting that L. procumbens effectively protect liver against the CCl4-induced oxidative damage in rats. Conclusion: The hepatoprotective and free radical scavenging effects might be due to the presence of bioactive constituents in the extract.

  18. Association of CYP3A4 and CYP3A5 polymorphisms with Iranian ...

    African Journals Online (AJOL)

    Background: Polymorphisms of different gene have been reported to be associated with cancer including breast cancer. Hospitalization rate for breast cancer has increased over the years in Iran. Aim: The aim of this study was to examine whether polymorphisms in the CYP3A4 and. CYP3A5 genes affect the risk of ...

  19. Polymorphisms of CYP17A1, CYP19, and androgen in Brazilian women with uterine leiomyomas

    DEFF Research Database (Denmark)

    Rosa, Fabíola Encinas; Canevari, Renata de Azevedo; Ambrosio, Eliane Papa

    2008-01-01

    BACKGROUND: Uterine leiomyomas are common, benign, smooth muscle tumors representing a significant public health problem. The aim of this study was to investigate CYP17A1, CYP19, and androgen (AR) polymorphisms, their relative risks for uterine leiomyomas and possible associations with clinical...... parameters. METHODS: Uterine leiomyoma tissues and blood samples were obtained from 87 patients, as were peripheral blood samples from 68 control women. Clinical data were recorded in both groups. The CYP17A1 (rs743572) polymorphism was analyzed by PCR-RFLP, and the CYP19 [TTTA](n) repeat and AR [CAG...... were exclusive to the leiomyoma group. The LOH assay showed allele losses at AR locus in four informative tumors and X chromosome inactivation analysis revealed that these tumors retained the active allele. CONCLUSIONS: The overall lack of association between uterine leiomyomas with polymorphisms...

  20. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    Science.gov (United States)

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats.

    Science.gov (United States)

    Boussenna, Ahlem; Goncalves-Mendes, Nicolas; Joubert-Zakeyh, Juliette; Pereira, Bruno; Fraisse, Didier; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2015-12-01

    Dextran sodium sulphate (DSS)-induced colitis is a widely used model for inflammatory bowel disease. However, various factors including nutrition may affect the development of this colitis. This study aimed to compare and characterize the impact of purified and non-purified basal diets on the development of DSS-induced colitis in the rat. Wistar rats were fed a non-purified or a semi-synthetic purified diet for 21 days. Colitis was then induced in half of the rats by administration of DSS in drinking water (4% w/v) during the last 7 days of experimentation. At the end of the experimental period, colon sections were taken for histopathological examination, determination of various markers of inflammation (myeloperoxidase: MPO, cytokines) and oxidative stress (superoxide dismutase: SOD, catalase: CAT, glutathione peroxidase: GPx and glutathione reductase: GRed activities), and evaluation of the expression of various genes implicated in this disorder. DSS ingestion induced a more marked colitis in animals receiving the purified diet, as reflected by higher histological score and increased MPO activity. A significant decrease in SOD and CAT activities was also observed in rats fed the purified diet. Also, in these animals, administration of DSS induced a significant increase in interleukin (IL)-1α, IL-1β and IL-6. In addition, various genes implicated in inflammation were over-expressed after ingestion of DSS by rats fed the purified diet. These results show that a purified diet promotes the onset of a more severe induced colitis than a non-purified one, highlighting the influence of basal diet in colitis development.

  2. Amphipol trapping of a functional CYP system

    DEFF Research Database (Denmark)

    Laursen, Tomas; Naur, Peter; Møller, Birger Lindberg

    2013-01-01

    backbone randomly grafted with hydrophobic side chains. An optimal ratio of 1:2 w/w of protein to APol (A8-35) was required for trapping the single transmembrane helices of CYP79A1, CYP71E1, and the electron partner cytochrome P450 oxidoreductase (POR). CYP79A1 and POR retained their individual activity......In plants, some enzymes of the cytochrome P450 (CYP) superfamily are thought to organize into transient dynamic metabolons to optimize the biosynthesis of bioactive natural products. Metabolon formation may facilitate efficient turnover of labile and toxic intermediates and prevent undesired...

  3. Editor's Highlight: Mode of Action Analysis for Rat Hepatocellular Tumors Produced by the Synthetic Pyrethroid Momfluorothrin: Evidence for Activation of the Constitutive Androstane Receptor and Mitogenicity in Rat Hepatocytes.

    Science.gov (United States)

    Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Nagahori, Hirohisa; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Lake, Brian G; Cohen, Samuel M; Yamada, Tomoya

    2017-08-01

    High dietary levels of momfluorothrin, a nongenotoxic synthetic pyrethroid, induced hepatocellular tumors in male and female Wistar rats in a 2-year bioassay. The mode of action (MOA) for rat hepatocellular tumors was postulated to occur via activation of the constitutive androstane receptor (CAR), as momfluorothrin is a close structural analogue of the pyrethroid metofluthrin, which is known to produce rat liver tumors through a CAR-mediated MOA. To elucidate the MOA for rat hepatocellular tumor formation by momfluorothrin, this study was conducted to examine effects on key and associative events of the CAR-mediated MOA for phenobarbital based on the International Programme on Chemical Safety framework. A 2-week in vivo study in Wistar rats revealed that momfluorothrin induced CYP2B activities, increased liver weights, produced hepatocyte hypertrophy and increased hepatocyte replicative DNA synthesis. These effects correlated with the dose-response relationship for liver tumor formation and also showed reversibility upon cessation of treatment. Moreover, momfluorothrin did not increase CYP2B1/2 mRNA expression and hepatocyte replicative DNA synthesis in CAR knockout rats. Using cultured Wistar rat hepatocytes and the RNA interference technique, knockdown of CAR resulted in a suppression of induction of CYP2B1/2 mRNA levels by momfluorothrin. Alternative MOAs for liver tumor formation were excluded. A global gene expression profile analysis of the liver of male Wistar rats treated with momfluorothrin for 2 weeks also showed similarity to the prototypic CAR activator phenobarbital. Overall, these data strongly support that the postulated MOA for momfluorothrin-induced rat hepatocellular tumors as being mediated by CAR activation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and detoxification efficiency.

    Science.gov (United States)

    Bao, Haibo; Gao, Hongli; Zhang, Yixi; Fan, Dongzhe; Fang, Jichao; Liu, Zewen

    2016-05-01

    Two P450 monooxygenase genes, CYP6AY1 and CYP6ER1, were reported to contribute importantly to imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Although recombinant CYP6AY1 could metabolize imidacloprid efficiently, the expression levels of CYP6ER1 gene were higher in most resistant populations. In the present study, three field populations were collected from different countries, and the bioassay, RNAi and imidacloprid metabolism were performed to evaluate the importance of two P450s in imidacloprid resistance. All three populations, DOT (Dongtai) from China, CNA (Chainat) from Thailand and HCM (Ho Chi Minh) from Vietnam, showed high resistance to imidacloprid (57.0-, 102.9- and 89.0-fold). CYP6AY1 and CYP6ER1 were both over expressed in three populations, with highest ratio of 13.2-fold for CYP6ER1 in HCM population. Synergism test and RNAi analysis confirmed the roles of both P450 genes in imidacloprid resistance. However, CYP6AY1 was indicated more important in CNA population, and CYP6AY1 and CYP6ER1 were equal in HCM population, although the expression level of CYP6ER1 (13.2-fold) was much higher than that of CYP6AY1 (4.11-fold) in HCM population. Although the recombinant proteins of both P450 genes could metabolize imidacloprid efficiently, the catalytic activity of CYP6AY1 (Kcat=3.627 pmol/min/pmol P450) was significantly higher than that of CYP6ER1 (Kcat=2.785 pmol/min/pmol P450). It was supposed that both P450 proteins were important for imidacloprid resistance, in which CYP6AY1 metabolized imidacloprid more efficiently and CYP6ER1 gene could be regulated by imidacloprid to a higher level. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  6. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    Science.gov (United States)

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Purified human somatomedin A and rat multiplication stimulating activity

    Energy Technology Data Exchange (ETDEWEB)

    Rechler, M M; Fryklund, L; Nissley, S P; Hall, K; Podskalny, J M; Skottner, A; Moses, A C [National Institutes of Health, Bethesda, Md. (USA); Kabi AB, Stockholm [Sweden; National Inst. of Arthritis, Metabolism and Digestive Diseases, Bethesda, Md. (USA). Diabetes Branch)

    1978-01-01

    Specific receptors for MSA and/or somatomedin A could be demonstrated in intact cells or membranes from chick embryo fibroblasts, human fibroblasts, human placenta, rat liver, and the BRL 3A2 cell line, a subclone of the line that produces MSA. Unlabeled MSA and somatomedin A inhibited the binding of /sup 125/I-labeled MSA and /sup 125/I-labeled somatomedin A to each of these receptors with comparable potency. In chick embryo fibroblasts, human fibroblasts, and human placental membranes, the binding of both radioactive ligands also was inhibited by insulin, consistent with the interpretation that /sup 125/I-labeled MSA and /sup 125/I-labeled somatomedin A were binding to the same receptor. By contrast, in the BRL 3A2 cell line, insulin inhibited the binding of /sup 125/I-labeled somatomedin A, but not the binding of /sup 125/I-labeled MSA, suggesting that the two labeled peptides were binding to different receptors in this cell line. Moreover, /sup 125/I-labeled MSA, but not /sup 125/I-labeled somatomedin A, bound specifically to rat liver plasma membranes. These results indicate that human somatomedin A and rat MSA are closely related, but not identical, peptides.

  8. Novel mutations of CYP3A4 in Chinese.

    Science.gov (United States)

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic

  9. Implication of Xenobiotic Metabolizing Enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 Polymorphisms in Breast Carcinoma

    Directory of Open Access Journals (Sweden)

    Gabbouj Sallouha

    2008-04-01

    Full Text Available Abstract Background Xenobiotic Metabolizing Enzymes (XMEs contribute to the detoxification of numerous cancer therapy-induced products. This study investigated the susceptibility and prognostic implications of the CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 gene polymorphisms in breast carcinoma patients. Methods The authors used polymerase chain reaction and restriction enzyme digestion to characterize the variation of the CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 gene in a total of 560 unrelated subjects (246 controls and 314 patients. Results The mEH (C/C mutant and the NAT2 slow acetylator genotypes were significantly associated with breast carcinoma risk (p = 0.02; p = 0.01, respectively. For NAT2 the association was more pronounced among postmenopausal patients (p = 0.006. A significant association was found between CYP2D6 (G/G wild type and breast carcinoma risk only in postmenopausal patients (p = 0.04. Association studies of genetic markers with the rates of breast carcinoma specific overall survival (OVS and the disease-free survival (DFS revealed among all breast carcinoma patients no association to DFS but significant differences in OVS only with the mEH gene polymorphisms (p = 0.02. In addition, the mEH wild genotype showed a significant association with decreased OVS in patients with axillary lymph node-negative patients (p = 0.03 and with decreasesd DFS in patients with axillary lymph node-positive patients (p = 0.001. However, the NAT2 intermediate acetylator genotype was associated with decreased DFS in axillary lymph node-negative patients. Conclusion The present study may prove that polymorphisms of some XME genes may predict the onset of breast carcinoma as well as survival after treatment.

  10. Endurance exercise and conjugated linoleic acid (CLA supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rosario Barone

    Full Text Available A new role for fat supplements, in particular conjugated linoleic acid (CLA, has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  11. Functional, histological structure and mastocytes alterations in rat urinary bladders following acute and [corrected] chronic cyclophosphamide treatment.

    Science.gov (United States)

    Juszczak, K; Gil, K; Wyczolkowski, M; Thor, P J

    2010-08-01

    Neurogenic inflammation is linked to urinary bladder overactivity development. Cyclophosphamide (CYP) damages all mucosal defence lines of urinary bladder and induces cystitis with overactivity. The aim of this study was to estimate the effect of CYP on rat urinary bladder function, histological structure and mastocytes numbers following acute and chronic CYP treatment. Fourty two female rats were divided into four groups: I (control), II (acute cystitis), III (chronic cystitis), IV (sham group). Acute and chronic cystitis were induced by CYP in single dose and four doses (1(st), 3(rd), 5(th), 7(th) day), respectively. In group I-III the cystometric evaluation was performed. Sections of the bladder were stained with HE and toluidine blue for the detection of mastocytes. The severity of inflammation was examined according to mucosal abrasion, haemorrhage, leukocyte infiltration and oedema. Acute and chronic CYP treatment caused inflammatory macroscopic and microscopic changes (mucosal abrasion, haemorrhage, oedema) and increased infiltration of inflammatory cells in urinary bladder. Acute treatment induced the infiltration of mastocytes within bladder wall contrary to chronic one decrement. Acute treatment caused more severe mucosal abrasion, whereas chronic one revealed more developed haemorrhage changes. Additionally, cystometric evaluation revealed urinary bladder overactivity development in both types of cystitis. Basal pressure and detrusor overactivity index after acute treatment increased considerably in comparison with the increase obtained after chronic one. Our results proved that acute model of CYP-induced cystitis in rats is more credible for further evaluation of neurogenic inflammation response in pathogenesis of overactive bladder as compared to chronic one.

  12. Evaluation of the precision-cut liver and lung slice systems for the study of induction of CYP1, epoxide hydrolase and glutathione S-transferase activities.

    Science.gov (United States)

    Pushparajah, Daphnee S; Umachandran, Meera; Plant, Kathryn E; Plant, Nick; Ioannides, Costas

    2007-02-28

    The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.

  13. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  14. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-01-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  15. Regulation of zebrafish CYP3A65 transcription by AHR2

    International Nuclear Information System (INIS)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-01-01

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  16. Regulation of zebrafish CYP3A65 transcription by AHR2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Tzou, Wen-Shyong [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Hu, Chin-Hwa, E-mail: chhu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China)

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  17. Benefits of Preventive Administration of Chlorella sp. on Visceral Pain and Cystitis Induced by a Single Administration of Cyclophosphamide in Female Wistar Rat.

    Science.gov (United States)

    Hidalgo-Lucas, Sophie; Rozan, Pascale; Guérin-Deremaux, Laetitia; Baert, Blandine; Violle, Nicolas; Saniez-Degrave, Marie-Hélène; Bisson, Jean-François

    2016-05-01

    Chlorella sp. is a green microalgae containing nutrients, vitamins, minerals, and chlorophyll. In some communities, Chlorella sp. is a traditional medicinal plant used for the management of inflammation-related diseases. In a rat model, ROQUETTE Chlorella sp. (RCs) benefits were investigated on visceral pain and associated inflammatory parameters related to cystitis both induced by cyclophosphamide (CYP). RCs was orally administered every day from day 1-16 (250 and 500 mg/kg body weight). Six hours after an intraperitoneal injection of 200 mg/kg body weight of CYP, body temperature, general behavior, food intake, and body weight were recorded. Twenty-four hours after CYP injection, rats were tested in two behavioral tests, an open field and the aversive light stimulus avoidance conditioning test, to evaluate the influence of pain on general activity and learning ability of rats. After euthanasia, bladders were weighed, their thickness was scored, and the urinary hemoglobin was measured. RCs orally administered at the two dosages significantly reduced visceral pain and associated inflammatory parameters related to cystitis both induced by CYP injection, and improved rat behavior. To conclude, RCs demonstrated beneficial effects against visceral pain and cystitis.

  18. Effects of depleted uranium after short-term exposure on vitamin D metabolism in rat

    International Nuclear Information System (INIS)

    Tissandie, E.; Gueguen, Y.; Paquet, F.; Aigueperse, J.; Souidi, M.; Lobaccaro, J.M.A.

    2006-01-01

    Uranium is a natural radioactive heavy metal. Its toxicity has been demonstrated for different organs, including bone, kidney, liver and brain. Effects of an acute contamination by depleted uranium (DU) were investigated in vivo on vitamin D 3 biosynthetic pathway. Rats received an intragastric administration of DU (204 mg/kg) and various parameters were studied either on day 1 or day 3 after contamination. Cytochrome P450 (CYP27A1, CYP2R1, CYP27B1, CYP24A1) enzymes involved in vitamin D metabolism and two vitamin D 3 -target genes (ECaC1, CaBP-D9K) were assessed by real time RT-PCR in liver and kidneys. CYP27A1 activity was measured in liver and vitamin D and parathyroid hormone (PTH) level were measured in plasma. In acute treated-rats, vitamin D level was increased by 62% and decreased by 68% in plasma, respectively at day 1 and at day 3, which paralleled with a concomitant decrease of PTH level (90%) at day 3. In liver, cyp2r1 mRNA level was increased at day 3. Cyp27a1 activity decreased at day 1 and increased markedly at day 3. In kidney, cyp27b1 mRNA was increased at days 1 and 3 (11- and 4-fold respectively). Moreover, ecac1 and cabp-d9k mRNA levels were increased at day 1 and decreased at day 3. This work shows for the first time that DU acute contamination modulates both activity and expression of CYP enzymes involved in vitamin D metabolism in liver and kidney, and consequently affects vitamin D target genes levels. (orig.)

  19. Progress of CypA and Lung Cancer-related Research

    Directory of Open Access Journals (Sweden)

    Zhe QIAN

    2010-08-01

    Full Text Available CypA is the most important member of Cyclophilins. It is a widely expressed protein in nature possessing PPIase and chaperone activities which help the precise folding of protein. Also, it is involved in immunosuppression, inflammation and the balance of cholesterol. As the understanding of CypA function has deepened, people began to realize that there might exist a relationship between CypA and cancer. Lung cancer is the first carcinoma which was found as expressing high level of CypA. CypA plays the roles in increasing proliferation, antiapoptosis, invasion and metastasis in lung cancer. The study of CypA may open a new window for the early diagnosis, prognosis and novel therapeutic drugs targeting.

  20. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    OpenAIRE

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2014-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms o...

  1. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  2. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  3. Identification of a tryptanthrin metabolite in rat liver microsomes by liquid chromatography/electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Lee, Sang Kyu; Kim, Ghee Hwan; Kim, Dong Hyeon; Kim, Dong Hyun; Jahng, Yurngdong; Jeong, Tae Cheon

    2007-10-01

    Tryptanthrin originally isolated from Isatis tinctoria L. has been characterized to have anti-inflammatory activities through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase mediated prostaglandin and leukotriene syntheses. To characterize phase I metabolite(s), tryptanthrin was incubated with rat liver microsomes in the presence of NADPH-generating system. One metabolite was identified by liquid chromatography/electrospray ionization-tandem mass spectrometry. M1 could be identified as a metabolite mono-hydroxylated on the aromatic ring of indole moiety from the MS(2) spectra of protonated tryptanthrin and M1. The structure of metabolite was confirmed as 8-hydroxytryptanthrin with a chemically synthesized authentic standard. The formation of M1 was NADPH-dependent and was inhibited by SKF-525A, a general CYP-inhibitor, indicating the cytochrome P450 (CYP)-mediated reaction. In addition, it was proposed that M1 might be formed by CYP 1A in rat liver microsomes from the experiments with enriched rat liver microsomes.

  4. Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary

    Directory of Open Access Journals (Sweden)

    Leonardo Augusto Lombardi

    2014-07-01

    Full Text Available Objective: to evaluate the immunohistochemical expression of proliferative, apoptotic and steroidogenic enzyme markers in the ovaries of rats with polycystic ovary syndrome (PCOS. Methods: twenty rats were divided into two groups: GCtrl - estrous phase, and PCOS - with polycystic ovaries. The GCtrl animals were subjected to a lighting period from 7 am to 7 pm, while the animals with PCOS group remained with continuous lighting for 60 days. Subsequently, the animals were anesthetized, the ovaries were removed and fixed in 10% formaldehyde, prior to paraffin embedding. Sections were stained using H.E. or subjected to immunohistochemical methods for the detection of Ki-67, cleaved caspase-3, CYP11A1, CYP17A1 and CYP19A1. The results were analyzed using Student's t-test (p < 0,05. Results: morphological results showed evidence of interstitial cells originating from the inner theca cells of degenerating ovarian cysts in PCOS. Immunoexpression of Ki-67 was higher in the granulosa cells in GCtrl, and the theca interna cells in PCOS, while cleaved caspase-3 was higher in granulosa cells of ovarian cysts from PCOS and in the theca interna cells of GCtrl. Immunoreactivity of CYP11A1 in the theca interna, granulosa and interstitial cells was similar between the two groups, while CYP17A1 and CYP19A1 were higher in the granulosa and interstitial cells in the PCOS group. Conclusion: the results indicate that the interstitial cells are derived from the theca interna and that enzymatic changes occur in the theca interna and interstitial cells in ovaries of rats with PCOS, responsible for the high levels of androgens and estradiol.

  5. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    Science.gov (United States)

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  6. CYP2D6*4, CYP3A5*3 and ABCB1 3435T polymorphisms and drug-related falls in elderly people

    NARCIS (Netherlands)

    Blonk, Maren I.; van der Velde, Nathalie; van den Bemt, Patricia M. L. A.; van Schaik, Ron H. N.; van der Cammen, Tischa J. M.

    2010-01-01

    The objective of this study is to investigate the association between CYP2D6*4, CYP3A5*3 and ABCB1 3435T polymorphisms and drug-related falls. Multivariate logistic regression was performed in an existing database in order to study the association between falls history and CYP2D6*4, CYP3A5*3, ABCB1

  7. Cistanche tubulosa ethanol extract mediates rat sex hormone levels by induction of testicular steroidgenic enzymes.

    Science.gov (United States)

    Wang, Tian; Chen, Chen; Yang, Man; Deng, Baiwan; Kirby, Gordon Michael; Zhang, Xiaoying

    2016-01-01

    Plants of the genus Cistanche Hoffmg. et Link (Orobanchaceae) are usually used as ethno-medicine in Eastern Asia. Pharmacology studies have shown that Cistanche possesses an androgen-like effect; however, the exact mechanism is unclear. The present study determines the effect of ethanol extract of Cistanche tubulosa (Schenk) R. Wight stem (CTE) on hormone levels and testicular steroidogenic enzymes in rats. Phenylethanoid glycoside content of CTE was detected by UV spectrophotometry. Rats were fed with different doses of CTE (0.2, 0.4, and 0.8 g/kg) by intragastric administration for 20 d. Sperm parameters were measured by staining and counting method. The level of progesterone and testosterone in serum was quantified by radioimmunoassay. The expression levels of cholesterol side-chain cleavage enzyme (CYP11A1), 17α-hydroxylase/17, 20-lyase (CYP17A1), and a liver metabolic enzyme (CYP3A4) in the microsome were assessed by immunohistochemical staining or/and western blot analysis. The study illustrates that the administration of CTE (0.4 and 0.8 g/kg) increased sperm count (2.3- and 2.7-folds) and sperm motility (1.3- and 1.4-folds) and decreased the abnormal sperm (0.76- and 0.6-folds). The serum level of progesterone and testosterone in rats was also increased by CTE administration (p blot analysis confirmed that the expression of CYP11A1, CYP17A1, and CYP3A4 was enhanced by CTE (p < 0.05). It was also found that high-dose of CTE can cause mild hepatic edema. Our results suggest that the increase in sex hormone levels could be mediated by the induction of testicular steroidogenic enzymes.

  8. Effects of Pristane on Cytochrome P450 Isozyme Expression in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Marvin A. Cuchens

    2005-04-01

    Full Text Available Chemical carcinogenesis studies are powerful tools to obtain information on potential mechanisms of chemical factors for malignancies. In this study Western blot analyses, using monoclonal antibodies specific for three different cytochrome P450 (CYP isozymes (CYP1A1, CYP1A2 and CYP2B, were employed to examine the effect(s of 3-methylcholanthrene and/or pristane (2,6,10,14-tetramethylpentadecane on the basal and inducible levels of expression of CYP proteins within Copenhagen rat tissues. Pristane exposure led to tissue specific differences in the CYP isozymes expressed and elicited increased CYP protein expression over 3-methylcholanthrene induced levels in microsomes isolated from liver, Peyer's Patches, and thymus. Within the context of the chemical carcinogenesis model employed in this study, these observations correlated with the induction of B-cell malignancies by low doses of 3-methylcholanthrene and of thymic lymphomas by a high 3-methylcholanthrene dose. The data suggest that pristane treatment affects CYP isozyme expression. This pristane-mediated effect clearly could be a contributing factor in the chemical carcinogenesis of the previously observed lymphoid malignancies, and a possible basis for the tumor enhancing effects of pristane.

  9. Inhibitory Effects of Juices Prepared from Individual Vegetables on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.

    Science.gov (United States)

    Tsujimoto, Masayuki; Agawa, Chie; Ueda, Shinya; Yamane, Takayoshi; Kitayama, Haruna; Terao, Aya; Fukuda, Tomoya; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2017-01-01

    Human intestinal absorption and drug metabolism vary to a large extent among individuals. For example, CYP3A4 activity has large individual variation that cannot be attributed to only genetic differences. Various flavonoids in vegetables, such as kaempferol and quercetin, possess inhibitory effects, and some vegetable and fruit juices have also been found to inhibit CYP3A4 activity. Therefore, differences in daily intake of flavonoid-containing vegetables may induce individual variation in intestinal bioavailability. To identify a vegetable that strongly inhibits CYP3A4, we investigated the effects of juices, prepared from individual vegetables, on CYP3A4 activity using recombinant CYP3A4 and LS180 cells in this study. Nine vegetable juices (cabbage, Japanese radish, onion, tomato, eggplant, carrot, Chinese cabbage, green pepper, and lettuce), were prepared and recombinant CYP3A4 and LS180 cells were used for evaluation of CYP3A4 activity. Metabolism to 6β-hydroxytestosterone by recombinant CYP3A4 was strongly inhibited by cabbage, onion, and green pepper juices, and cabbage and green pepper juices significantly inhibited CYP3A4 activity in a preincubation time-dependent manner. In addition, CYP3A4 activity in LS180 cells was significantly inhibited by cabbage and onion juices. In conclusion, this study showed that juices prepared from some individual vegetables could significantly inhibit CYP3A4 activity. Therefore, variation in the daily intake of vegetables such as cabbage and onion may be one of the factors responsible for individual differences in intestinal bioavailability.

  10. Efficacy of piroxicam for postoperative pain after lower third molar surgery associated with CYP2C8*3 and CYP2C9

    Directory of Open Access Journals (Sweden)

    Calvo AM

    2017-07-01

    Full Text Available Adriana Maria Calvo, Paulo Zupelari-Gonçalves, Thiago José Dionísio, Daniel Thomas Brozoski, Flávio Augusto Faria, Carlos Ferreira Santos Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil Objective: Nonsteroidal anti-inflammatory drugs (NSAIDs are metabolized by the cytochrome P450 enzymes (CYPs, predominantly CYP2C8 and CYP2C9. The aim of this study was to evaluate the possible association of polymorphisms in the CYP2C8*3 and CYP2C9 genes with the clinical efficacy of oral piroxicam (20 mg daily for 4 days after lower third molar surgeries with regard to postoperative pain, swelling, trismus, adverse reactions, need for rescue medication and the volunteer’s overall satisfaction. Materials and methods: For this purpose, 102 volunteers were genotyped for CYP2C8*3 and CYP2C9 polymorphisms. Briefly, genomic DNA was isolated from saliva collected from volunteers subjected to invasive lower third molar surgeries, and the preoperative, intraoperative and postoperative parameters were collected and analyzed. Results: An equal amount of piroxicam sufficiently managed postoperative pain and inflammatory symptoms, with visual analog pain scores typically <40 mm for all genotypes investigated. Furthermore, only two out of 102 volunteers heterozygous for CYP2C8*3 and CYP2C9*3 reported adverse side effects. Conclusion: In general, slow metabolizers of piroxicam, who were volunteers with mutant alleles, were indifferent from normal metabolizers with the wild-type alleles and therefore did not require specialized piroxicam doses to manage postoperative pain and inflammation. Keywords: piroxicam, lower third molar surgery, P450, CYP2C8, CYP2C9, pharmacogenetics 

  11. Endosulfan-alpha Induces CYP26 and CYP3A4 by Activating the Pregnane X Receptor But Not the Constitutive Androstane Receptor

    Science.gov (United States)

    2006-01-01

    CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513-1519. Dinham B (1993) The Pesticide Hazard. A Global Health and...Coumoul X, Diry M and Barouki R (2002) PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513...system: CYP3A4 and CYP2B6 induction by pesticides . Biochem Pharmacol 68:2347-2358. 71 Nelson D (2003) Cytochrome P450 Homepage (http

  12. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes.

    Science.gov (United States)

    Girennavar, Basavaraj; Poulose, Shibu M; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2006-04-15

    Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively.

  13. TCDD dysregulation of 13 AHR-target genes in rat liver

    International Nuclear Information System (INIS)

    Watson, John D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-01-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED 50 equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules following

  14. TCDD dysregulation of 13 AHR-target genes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Watson, John D., E-mail: john.watson@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Smith, Ashley B., E-mail: ashleyblaines@gmail.com [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Okey, Allan B., E-mail: allan.okey@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Pohjanvirta, Raimo, E-mail: raimo.pohjanvirta@helsinki.fi [Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio (Finland); Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki (Finland); Boutros, Paul C., E-mail: paul.boutros@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules

  15. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1 C YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+) s evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  16. Dexamethasone hepatic induction in rats subsequently treated with high dose buprenorphine does not lead to respiratory depression

    International Nuclear Information System (INIS)

    Hreiche, Raymond; Megarbane, Bruno; Pirnay, Stephane; Borron, Stephen W.; Monier, Claire; Risede, Patricia; Milan, Nathalie; Descatoire, Veronique; Pessayre, Dominique; Baud, Frederic J.

    2006-01-01

    In humans, asphyxic deaths and severe poisonings have been attributed to high-dosage buprenorphine, a maintenance therapy for heroin addiction. However, in rats, intravenous buprenorphine at doses up to 90 mg kg -1 was not associated with significant effects on arterial blood gases. In contrast, norbuprenorphine, the buprenorphine major cytochrome P450 (CYP) 3A-derived metabolite, is a potent respiratory depressant. Thus, our aim was to study the consequences of CYP3A induction on buprenorphine-associated effects on resting ventilation in rats. We investigated the effects on ventilation of 30 mg kg -1 buprenorphine alone or following cytochrome P450 (CYP) 3A induction with dexamethasone, using whole body plethysmography (N = 24) and arterial blood gases (N = 12). Randomized animals in 4 groups received sequential intraperitoneal dosing with: (dexamethasone [days 1-3] + buprenorphine [day 4]), (dexamethasone solvent [days 1-3] + buprenorphine [day 4]), (dexamethasone [days 1-3] + buprenorphine solvent [day 4]), or (dexamethasone solvent [days 1-3] + buprenorphine solvent [day 4]). Buprenorphine alone caused a significant rapid and sustained increase in the inspiratory time (P -1 buprenorphine on rat ventilation. Our results suggest a limited role of drug-mediated CYP3A induction in the occurrence of buprenorphine-attributed respiratory depression in addicts

  17. Effects of dietary inulin, statin, and their co-treatment on hyperlipidemia, hepatic steatosis and changes in drug-metabolizing enzymes in rats fed a high-fat and high-sucrose diet

    Directory of Open Access Journals (Sweden)

    Sugatani Junko

    2012-03-01

    Full Text Available Abstract Background Rats fed a high-fat and high-sucrose (HF diet develop hepatic steatosis and hyperlipidemia. There are several reports that a change in nutritional status affects hepatic levels of drug-metabolizing enzymes. Synthetic inulin is a dietary component that completely evades glucide digestion. Supplementing a HF diet with inulin ameliorates hypertriglycemia and hepatic steatosis, but not hypercholesterolemia. This study aimed at distinguishing the effects of synthetic inulin and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin, which inhibit cholesterol biosynthesis. Methods We examined effects of co-treatment with synthetic inulin (5% and fluvastatin (0, 4, and 8 mg/kg, per os on body weight, epidydimal white adipose tissue weight, serum and hepatic lipid profiles, and hepatic cytochrome P450 (CYP mRNA and protein profiles in rats fed a standard diet or a HF diet for 3 weeks. Results Treatment with the synthetic inulin (5% or fluvastatin at 4 mg/kg (lethal dose in rats fed the HF diet, 8 mg/kg ameliorated the elevation in hepatic triacylglycerol and total cholesterol levels in rats fed the HF diet. Whereas co-treatment with the inulin (5% and fluvastatin (4 mg/kg had a tendency to more strongly suppress the elevation in serum levels of very low density lipoprotein triacylglycerol than either treatment alone, no additive or synergistic effect was found in decrease in hepatic lipid levels. Hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein and methoxyresorufin O-demethylase and ethoxyresorufin O-deethylase activities were reduced in rats fed the HF diet. The synthetic inulin alleviated the reduction in hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein more strongly than fluvastatin, and no synergistic effects were observed on co-treatment. Furthermore, hepatic levels of aryl hydrocarbon receptor mRNA were decreased in rats fed the HF diet and recovered to near normal values with the intake of dietary inulin

  18. Tamoxifen and CYP2D6

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P.; Damkier, Per

    2018-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...

  19. Comparative study of polymorphism frequencies of the CYP2D6, CYP3A5, CYP2C8 and IL-10 genes in Mexican and Spanish women with breast cancer.

    Science.gov (United States)

    Alcazar-González, Gregorio Antonio; Calderón-Garcidueñas, Ana Laura; Garza-Rodríguez, María Lourdes; Rubio-Hernández, Gabriela; Escorza-Treviño, Sergio; Olano-Martin, Estibaliz; Cerda-Flores, Ricardo Martín; Castruita-Avila, Ana Lilia; González-Guerrero, Juan Francisco; le Brun, Stéphane; Simon-Buela, Laureano; Barrera-Saldaña, Hugo Alberto

    2013-10-01

    Pharmacogenetic studies in breast cancer (BC) may predict the efficacy of tamoxifen and the toxicity of paclitaxel and capecitabine. We determined the frequency of polymorphisms in the CYP2D6 gene associated with activation of tamoxifen, and those of the genes CYP2C8, CYP3A5 and DPYD associated with toxicity of paclitaxel and capecitabine. We also included a IL-10 gene polymorphism associated with advanced tumor stage at diagnosis. Genomic DNAs from 241 BC patients from northeast Mexico were genotyped using DNA microarray technology. For tamoxifen processing, CYP2D6 genotyping predicted that 90.8% of patients were normal metabolizers, 4.2% ultrarapid, 2.1% intermediate and 2.9% poor metabolizers. For paclitaxel and the CYP2C8 gene, 75.3% were normal, 23.4% intermediate and 1.3% poor metabolizers. Regarding the DPYD gene, only one patient was a poor metabolizer. For the IL-10 gene, 47.1% were poor metabolizers. These results contribute valuable information towards personalizing BC chemotherapy in Mexican women.

  20. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    International Nuclear Information System (INIS)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-01-01

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K i values of 2 ± 0.3, 5 ± 0.5, 16 ± 1.4, and 39 ± 1.2 μg/ml (mean ± SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C, and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K i = 3 ± 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K i 418 ± 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1

  1. Variants in estrogen-biosynthesis genes CYP17 and CYP19 and breast cancer risk: a family-based genetic association study

    International Nuclear Information System (INIS)

    Ahsan, Habibul; Whittemore, Alice S; Chen, Yu; Senie, Ruby T; Hamilton, Steven P; Wang, Qiao; Gurvich, Irina; Santella, Regina M

    2005-01-01

    Case-control studies have reported inconsistent results concerning breast cancer risk and polymorphisms in genes that control endogenous estrogen biosynthesis. We report findings from the first family-based association study examining associations between female breast cancer risk and polymorphisms in two key estrogen-biosynthesis genes CYP17 (T→C promoter polymorphism) and CYP19 (TTTA repeat polymorphism). We conducted the study among 278 nuclear families containing one or more daughters with breast cancer, with a total of 1123 family members (702 with available constitutional DNA and questionnaire data and 421 without them). These nuclear families were selected from breast cancer families participating in the Metropolitan New York Registry, one of the six centers of the National Cancer Institute's Breast Cancer Family Registry. We used likelihood-based statistical methods to examine allelic associations. We found the CYP19 allele with 11 TTTA repeats to be associated with breast cancer risk in these families. We also found that maternal (but not paternal) carrier status of CYP19 alleles with 11 repeats tended to be associated with breast cancer risk in daughters (independently of the daughters' own genotype), suggesting a possible in utero effect of CYP19. We found no association of a woman's breast cancer risk either with her own or with her mother's CYP17 genotype. This family-based study indicates that a woman's personal and maternal carrier status of CYP19 11 TTTA repeat allele might be related to increased breast cancer risk. However, because this is the first study to report an association between CYP19 11 TTTA repeat allele and breast cancer, and because multiple comparisons have been made, the associations should be interpreted with caution and need confirmation in future family-based studies

  2. Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles

    International Nuclear Information System (INIS)

    Rodriguez-Antona, Cristina; Sayi, Jane G.; Gustafsson, Lars L.; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2005-01-01

    The human cytochrome P450 3A (CYP3A) enzymes, which metabolize 50% of currently used therapeutic drugs, exhibit great interindividual differences in activity that have a major impact on drug treatment outcome, but hitherto no genetic background importantly contributing to this variation has been identified. In this study we show that CYP3A4 mRNA and hnRNA contents with a few exceptions vary in parallel in human liver, suggesting that mechanisms affecting CYP3A4 transcription, such as promoter polymorphisms, are relevant for interindividual differences in CYP3A4 expression. Tanzanian (n = 143) healthy volunteers were phenotyped using quinine as a CYP3A probe and the results were used for association studies with CYP3A4 genotypes. Carriers of CYP3A4*1B had a significantly lower activity than those with CYP3A4*1 whereas no differences were seen for five other SNPs investigated. Nuclear proteins from the B16A2 hepatoma cells were found to bind with less affinity to the CYP3A4*1B element around -392 bp as compared to CYP3A4*1. The data indicate the existence of a genetic CYP3A4 polymorphism with functional importance for interindividual differences in enzyme expression

  3. Metabolites of hirsuteine and hirsutine, the major indole alkaloids of Uncaria rhynchophylla, in rats.

    Science.gov (United States)

    Nakazawa, Takahiro; Banba, Koh-ichi; Hata, Kazumasa; Nihei, Yutaka; Hoshikawa, Ayumi; Ohsawa, Keisuke

    2006-08-01

    The metabolic fate of hirsuteine (HT) and hirsutine (HS), the major indole alkaloids of Uncaria rhynchophylla, was investigated using rats. On HPLC analysis, urine from rats orally administered HT were found to contain two metabolites (HT1 and HT2) together with unchanged HT. Similarly HS also was metabolized to two compounds (HS1 and HS2). Metabolite structures were determined to be 11-hydroxyhirsuteine-11-O-beta-D-glucuronide (HT1), 11-hydroxyhirsuteine (HT2), 11-hydroxyhirsutine-11-O-beta-D-glucuronide (HS1) and 11-hydroxyhirsutine (HS2), based on spectroscopic and chemical data. HT1 and HS1 were also detected in bile from rats administered HT and HS, respectively. Total cumulative urinary excretion within 72 h of oral administration was approximately 14% and 26% of the HT and HS doses, respectively, while total cumulative biliary excretion was 35% and 46%, respectively. HT and HS 11-hydroxylation were catalyzed by rat liver microsomes. This 11-hydroxylation activity was inhibited by addition of SKF-525A (a nonselective CYP inhibitor) or cimetidine (a CYP2C inhibitor). These results indicate that orally administered HT and HS are converted to 11-hydroxy metabolites in rats, and that the metabolites are predominantly excreted in bile rather than urine following glucuronidation. Furthermore, the results suggest that CYP2C enzymes are involved, at least in part, in the specific 11-hydroxylation of HT and HS.

  4. CYP2E1 Metabolism of Styrene Involves Allostery

    Science.gov (United States)

    Hartman, Jessica H.; Boysen, Gunnar

    2012-01-01

    We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E1−1. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E1−1. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108

  5. Heterologous expression of Helicoverpa armigera cytochrome P450 CYP6B7 in Pichia pastoris and interactions of CYP6B7 with insecticides.

    Science.gov (United States)

    Zhao, Chunqing; Song, Genmiao; Duan, Hongxia; Tang, Tao; Wang, Chen; Qiu, Lihong

    2017-09-01

    Previous studies indicated that constitutive over-expression of cytochrome P450 CYP6B7 was involved in fenvalerate resistance in Helicoverpa armigera. In this study, the CYP6B7 gene from H. armigera (namely HaCYP6B7), was heterologously expressed in Pichia pastoris GS115. A vector pPICZA-HaCYP6B7 was constructed and transformed into P. pastoris GS115, the transformant of pPICZA-HaCYP6B7-GS115 was then cultured and induced by 1% (v/v) methanol and the heterologous expression of HaCYP6B7 protein in P. pastoris was confirmed by SDS-PAGE and western blot. Microsomes containing the expressed HaCYP6B7 showed activities against model substrate p-nitroanisole and 7-ethoxycoumarin, with p-nitroanisole O-demethylation (PNOD) and 7-ethoxycoumarin O-deethylation (ECOD) activities of 15.66- and 4.75-fold of the control, respectively. Moreover, it showed degradation activities against the insecticides bifenthrin, fenvalerate and chlorpyrifos, with clearance activities of 6.88-, 1.49- and 2.27-fold of the control, respectively. The interactions of HaCYP6B7 with insecticides were further confirmed by molecular docking in silico with binding scores of 5.450, 5.295 and 2.197 between putative HaCYP6B7 protein and bifenthrin, fenvalerate and chlorpyrifos, respectively. The results of present study provided more direct and important evidence on the role of HaCYP6B7 conferring pyrethroid resistance in H. armigera. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Piroxicam Reverses Endotoxin-Induced Hypotension in Rats: Contribution of Vasoactive Eicosanoids and Nitric Oxide

    Science.gov (United States)

    Buharalioglu, C. Kemal; Korkmaz, Belma; Cuez, Tuba; Sahan-Firat, Seyhan; Sari, Ayşe Nihal; Malik, Kafait U.; Tunctan, Bahar

    2011-01-01

    Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin-induced vascular hyporeactivity and hypotension resulting in multiple organ failure. Endotoxic shock is also characterized by decreased expression of constitutive cyclooxygenase (COX-1), cytochrome P450 (CYP) 4A and endothelial NOS (eNOS). Our previous studies demonstrated that dual inhibition of iNOS and COX with a selective COX-2 inhibitor, NS-398, or a non-selective COX inhibitor, indomethacin, restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from arachidonic acid (AA) by CYP4A in endotoxaemic rats. The aim of this study was to investigate the effects of piroxicam, a preferential COX-1 inhibitor, on the endotoxin-induced changes in blood pressure, expression of COX-1, inducible COX (COX-2), CYP4A1, eNOS, iNOS and heat shock protein 90 (hsp90), and production of PGI2, PGE2, 20-HETE and NO. Injection of endotoxin (10 mg/kg, i.p.) to male Wistar rats caused a fall in blood pressure and an increase in heart rate associated with elevated renal 6-keto-PGF1α and PGE2 levels as well as an increase in COX-2 protein expression. Endotoxin also caused an elevation in systemic and renal nitrite levels associated with increased renal iNOS protein expression. In contrast, systemic and renal 20-HETE levels and renal expression of eNOS, COX-1 and CYP4A1 were decreased in endotoxaemic rats. The effects of endotoxin, except for renal COX-1 and eNOS protein expression, were prevented by piroxicam (10 mg/kg, i.p.), given 1 hr after injection of endotoxin. Endotoxin did not change renal hsp90 protein expression. These data suggest that a decrease in the expression and activity of COX-2 and iNOS associated with an increase in CYP4A1 expression and 20-HETE synthesis contributes to the effect of piroxicam to prevent the hypotension during rat endotoxaemia. PMID:21463481

  7. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    Science.gov (United States)

    Concolino, Paola; Mello, Enrica; Minucci, Angelo; Giardina, Emiliano; Zuppi, Cecilia; Toscano, Vincenzo; Capoluongo, Ettore

    2009-01-01

    Background More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5' and 3' ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A>G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A>G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A>G splice mutation. Conclusion We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. PMID:19624807

  8. CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence

    DEFF Research Database (Denmark)

    Damkier, Per; Kjaersgaard, Anders; Barker, Kimberly A.

    2017-01-01

    *17 allele were 1.02 (CI 0.71-1.46) and 0.57 (CI 0.26-1.24), respectively. Accounting for CYP2D6 genotype status did not change these estimates. We found no evidence to support a clinically meaningful role of CYP2C19 polymorphisms and response to tamoxifen in breast cancer patients and, consequently, CYP2C19...... genotype status should not be included in clinical decisions on tamoxifen treatment....

  9. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51.

    Directory of Open Access Journals (Sweden)

    Shamila S Gunatilleke

    Full Text Available Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51 for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50 of 17 nM and was trypanocidal at 40 nM.The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5, fatty acid ω-hydroxylases (CYP4, 17α-hydroxylase/17,20-lyase (CYP17 and aromatase (CYP19. Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical

  10. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  11. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  12. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6.

    Science.gov (United States)

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    2017-05-01

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple biotransformation pathways, which is referred to as drug-drug-gene interaction (DDGI). In this systematic review, we report the impact of pharmacogenetics on DDI and DDGI in which three major drug-metabolizing enzymes - CYP2C9, CYP2C19 and CYP2D6 - are central. We observed that several DDI and DDGI are highly gene-dependent, leading to a different magnitude of interaction. Precision drug therapy should take pharmacogenetics into account when drug interactions in clinical practice are expected.

  13. Insights into CYP2B6-mediated drug–drug interactions

    Directory of Open Access Journals (Sweden)

    William D. Hedrich

    2016-09-01

    Full Text Available Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR and pregnane X receptor (PXR in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.

  14. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  15. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    Science.gov (United States)

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  16. No influence of the polymorphisms CYP2C19 and CYP2D6 on the efficacy of cyclophosphamide, thalidomide, and bortezomib in patients with Multiple Myeloma

    International Nuclear Information System (INIS)

    Vangsted, Annette J; Rasmussen, Henrik B; Søeby, Karen; Klausen, Tobias W; Abildgaard, Niels; Andersen, Niels F; Gimsing, Peter; Gregersen, Henrik; Vogel, Ulla; Werge, Thomas

    2010-01-01

    The response to treatment varies among patients with multiple myeloma and markers for prediction of treatment outcome are highly needed. Bioactivation of cyclophosphamide and thalidomide, and biodegradation of bortezomib, is dependent on cytochrome P450 metabolism. We explored the potential influence of different polymorphisms in the CYP enzymes on the outcome of treatment. Data was analyzed from 348 patients undergoing high-dose treatment and stem cell support in Denmark in 1994 to 2004. Clinical information on relapse treatment in 243 individual patients was collected. The patients were genotyped for the non-functional alleles CYP2C19*2 and CYP2D6*3, *4, *5 (gene deletion), *6, and CYP2D6 gene duplication. In patients who were treated with bortezomib and were carriers of one or two defective CYP2D6 alleles there was a trend towards a better time-to-next treatment. We found no association between the number of functional CYP2C19 and CYP2D6 alleles and outcome of treatment with cyclophosphamide or thalidomide. Neither was the number of functional CYP2C19 and CYP2D6 alleles associated with neurological adverse reactions to thalidomide and bortezomib. There was no association between functional CYP2C19 and CYP2D6 alleles and treatment outcome in multiple myeloma patients treated with cyclophosphamide, thalidomide or bortezomib. A larger number of patients treated with bortezomib are needed to determine the role of CYP2D6 alleles in treatment outcome

  17. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    Science.gov (United States)

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effects of gene silencing of CypB on gastric cancer cells.

    Science.gov (United States)

    Guo, Feng; Zhang, Ying; Zhao, Chun-Na; Li, Lin; Guo, Yan-Jun

    2015-04-01

    To determine the effect of gene silencing of cyclophilin B (CypB) on growth and proliferation of gastric cancer cells. CypB siRNA lentivirus (LV-CypB-si) and control lentivirus (LV-si-con) were produced. CypB expression in gastric cancer cell lines was detected by Western blot. BGC823 and SGC7901 cells were chosen to be infected with LV-si-con and LV-CypB-si, and stable transfectants were isolated. The cell groups transfected with LV-CypB-siRNA, LV-siRNA-con and transfected no carrier were served as the experimental group, the implicit control group and the blank control group respectively. MTT and colony formation assays were used to examine the effect of CypB on the cell growth and proliferation in vitro. Cell cycle was analyzed with flow cytometry. The expression of VEGFR of BGC823-si and SGC7901-si was detected by Western blot. Gene silencing of CypB can inhibit gastric cancer cell growth, proliferation, cell cycle progress and tumorigenesis. CypB expression level was obviously higher in SGC7901 and BGC823 than MKN28 and GES. These two cell lines were infected with LV-si-con and LV-CypB-si respectively. MTT and cloney formation assays showed a significantly decreased rate of cell proliferation from the forth day or the fifth day in cells transfected with LV-CypB-si (PCypB resulted in slightly decreased percentage of S phase and increased percentage of G1 (PCypB could promote the G1-S transition of gastric cancer cell. In addition, the expression of VEGF of BGC823 and SGC7901 transfected with CypB siRNA was reduced in comparison with the implicit control group and the blank control group. Gene silencing of CypB decreases gastric cancer cells proliferation and in vivo tumorigenesis. These findings indiccate CypB could be a potential biomarker and therapeutic target for gastric cancer. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  19. Tiamulin inhibits human CYP3A4 activity in an NIH/3T3 cell line stably expressing CYP3A4 cDNA.

    Science.gov (United States)

    De Groene, E M; Nijmeijer, S M; Horbach, G J; Witkamp, R F

    1995-09-07

    Tiamulin is an antibiotic frequently used in veterinary medicine. The drug has been shown to produce clinically important interactions with other compounds that are administered simultaneously. An NIH/3T3 cell line, stably expressing human cytochrome P450 (EC 1.14.14.1) cDNA (CYP3A4), was used to study the effect of tiamulin on CYP3A4 activity. The 6 beta-hydroxylation activity of testosterone, which is increased in CYP3A4-expressing cells compared to vector-transfected cells, showed reduced activity after incubation with 1 microM tiamulin and was completely reduced to background level after incubation with 2, 5 and 10 microM tiamulin. The CYP3A4-expressing cell line was used in combination with a shuttle vector containing the bacterial lacZ' gene to study the effect of tiamulin on CYP3A4-mediated mutagenicity of aflatoxin B1. The mutation frequency of aflatoxin B1 could be completely inhibited by tiamulin in CYP3A4-expressing cells, but no effect was observed on the mutation frequency of the direct mutagen ethylmethanesulphonate. Western blotting of homogenates of the CYP3A4-expressing cell line showed stabilization of CYP3A4 protein after incubation with tiamulin, supporting the hypothesis that the mechanism of inhibition is by binding of tiamulin to the cytochrome.

  20. Identification of CYP1A inducing compounds in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Khan, C.W.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology; Hollebone, B.P.; Wang, Z. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Advancement Directorate; Brown, R.S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2004-07-01

    One of the major sources of polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems is crude oil. PAHs are responsible for developmental malformations in the early life stages of fish. The induction of CYP1A enzyme is characteristic of developmental toxicity caused by crude oil. As such, it is an effective biomarker of PAH uptake. It is not known which PAHs cause toxicity because of the complex chemical composition of crude oil. In this study, an approach called Toxicity Identification and Evaluation (TIE) was used with different crude oils to separate bioavailable PAHs into petroleum sub-fractions. The extent of CYP1A induction in rainbow trout was measured after 48 hour exposures to each fraction. Low temperature vacuum distillation was used to create white gas, kerosene, coal tar/bitumen and wax fractions. Hepatic CYP1A activity was induced by whole oil and some fractions. The highest PAH concentration was found in the coal tar/bitumen fraction which accounted for most CYP1A induction in whole oil. The wax fraction also caused moderate CYP1A induction, but the white gas fraction did not cause any CYP1A induction. The hypothesis that alkyl PAH may be the most significant source of CYP1A inducers in the coal tar/bitumen fraction was supported by chemical analysis of CYP1A induction potency. Results showed that benzo[a]pyrene accounts for nearly all of the CYP1A induction caused by the wax fraction.

  1. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    Science.gov (United States)

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  2. Intestinal lymphangiectasis and lipidosis in rats following subchronic exposure to indole-3-carbinol via oral gavage.

    Science.gov (United States)

    Boyle, Michael C; Crabbs, Torrie A; Wyde, Michael E; Painter, J Todd; Hill, Georgette D; Malarkey, David E; Lieuallen, Warren G; Nyska, Abraham

    2012-06-01

    To investigate the toxicity and carcinogenic potential of indole-3-carbinol (I3C), the National Toxicology Program has conducted 13-week subchronic studies in Fisher 344 rats and B6C3F1 mice, and chronic 2-year bioassays in Sprague-Dawley rats and B6C3F1 mice. While the chronic study results are not yet available, subchronic study results and short-term special evaluations of interim sacrifices in the 2-year rat bioassay are presented. F344 rats were orally gavaged ≤300 mg I3C/kg body weight 5 days a week for 13 weeks. Rats treated with ≥150 mg/kg demonstrated a dose-related dilation of lymphatics (lymphangiectasis) of the duodenum, jejunum, and mesenteric lymph nodes. Material within dilated lacteals stained positively for Oil Red O and Sudan Black, consistent with lipid. Electron microscopic evaluation confirmed extracellular lipid accumulation within the villar lamina propria, lacteals, and within villar macrophages. Analyses of hepatic and pulmonary CYP1A enzymes demonstrated dose-dependent I3C induction of CYP1A1 and 1A2. B6C3F1 mice orally gavaged ≤250 mg I3C/kg body weight did not demonstrate histopathological changes; however, hepatic CYP induction was similar to that in rats. The histopathologic changes of intestinal lymphangiectasis and lipidosis in this study share similarities with intestinal lymphangiectasia as observed in humans and dogs. However, the resultant clinical spectrum of protein-losing enteropathy was not present.

  3. Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR

    International Nuclear Information System (INIS)

    Elcombe, Clifford R.; Elcombe, Barbara M.; Foster, John R.; Chang, Shu-Ching; Ehresman, David J.; Butenhoff, John L.

    2012-01-01

    Highlights: ► The mechanism of K + PFOS-induced hepatic hypertrophy and tumors was studied in rats. ► Plasma ALT and AST values and histology indicated a lack of overt hepatotoxicity. ► Plasma cholesterol and triglycerides were lowered by K + PFOS treatment. ► K + PFOS increased proliferation index and decreased apoptotic index in liver. ► Liver effects of K + PFOS result from increased expression of PPARα and CAR/PXR. -- Abstract: The present study investigated the potential role for activation of PPARα and CAR/PXR by potassium PFOS (K + PFOS) with respect to the etiology of hepatic hypertrophy and hepatocellular adenoma in rats. Male Sprague–Dawley rats were fed K + PFOS (20 or 100 ppm) for either 1, 7, or 28 days. Wyeth 14,643 (Wy 14,643, 50 ppm) and phenobarbital (PB, 500 ppm) were the controls for PPARα and CAR/PXR activation, respectively. Measurements included: plasma ALT, AST, cholesterol, triglycerides, and glucose; liver protein and DNA content; liver activities of palmitoyl CoA oxidase (ACOX), Cyp4A, CYP2B, and CYP3A; induction of liver CYP4A1, CYP2E1, CYP2B1/2, and CYP3A1 proteins (SDS-PAGE and Western blots); liver and thyroid microscopic histopathology, apoptotic index, and cell proliferation index. Terminal body weight was decreased by K + PFOS (100 ppm) and Wy 14,643. All test-compound treatments increased liver weight. Plasma lipids were decreased by both PFOS and Wy 14,643. After treatment for 1 day, K + PFOS (100 ppm), PB, and Wy 14,643 increased mean hepatic DNA concentration and total hepatic DNA, and total DNA remained elevated after treatment for 7 days and 28 days (PB and Wy 14,643 only). Hepatic P450 concentration was elevated after 7 and 28 days by K + PFOS and by PB. K + PFOS and Wy 14,643 increased liver activities of ACOX and CYP4A as well as increased liver CYP4A1 protein. By 28 days of treatment, K + PFOS and PB increased liver activities of CYP2B and CYP3A as well as increased liver CYP2B1/2 and CYP3A1 proteins, and Wy

  4. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  5. Investigating the CYP2E1 Potential Role in the Mechanisms Behind INH/LPS-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hozeifa M. Hassan

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression

  6. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae.

    Science.gov (United States)

    Mao, Yunrui; Zhang, Yonghua; Xu, Chuan; Qiu, Yingxiong

    2016-01-01

    Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa. © 2015 John Wiley & Sons Ltd.

  7. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    International Nuclear Information System (INIS)

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus; Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-01-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2

  8. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Backes, Wayne L., E-mail: wbacke@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM

  9. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  10. Protection by Nigella sativa against carbon tetrachloride-induced downregulation of hepatic cytochrome P450 isozymes in rats.

    Science.gov (United States)

    Ibrahim, Zein S; Ishizuka, Mayumi; Soliman, Mohamed; ElBohi, Khlood; Sobhy, Wageh; Muzandu, Kaampwe; Elkattawy, Azza M; Sakamoto, Kentaro Q; Fujita, Shoichi

    2008-11-01

    Nigella sativa (family Ranunculaceae) is an annual plant that has been traditionally used on the Indian subcontinent and in Middle Eastern countries. In this study, we investigated the effect of N. sativa oil on the drug-metabolizing cytochrome P450 (CYP) enzymes and whether it has a protective effect against the acute hepatotoxicity of CCl4. Intraperitoneal injection of rats with CCl4 drastically decreased CYP2E1, CYP2B, CYP3A2, CYP2C11, and CYP1A2 mRNA and protein expressions. Oral administration of 1 ml/kg N. sativa oil every day for one week prior to CCl4 injection alleviated CCl4-induced suppression of CYP2B, CYP3A2, CYP2C11, and CYP1A2. Moreover, CCl4 increased iNOS and TNFalpha mRNA, while N. sativa oil administration for one week prior to CCl4 injection downregulated the CCl4-induced iNOS mRNA and up-regulated IL-10 mRNA. These results indicate that N. sativa oil administration has a protective effect against the CCl4-mediated suppression of hepatic CYPs and that this protective effect is partly due to the downregulation of NO production and up-regulation of the anti-inflammatory IL-10.

  11. No influence of the polymorphisms CYP2C19 and CYP2D6 on the efficacy of cyclophosphamide, thalidomide, and bortezomib in patients with Multiple Myeloma

    DEFF Research Database (Denmark)

    Vangsted, A. J.; Soeby, K.; Klausen, T.W.

    2010-01-01

    . We found no association between the number of functional CYP2C19 and CYP2D6 alleles and outcome of treatment with cyclophosphamide or thalidomide. Neither was the number of functional CYP2C19 and CYP2D6 alleles associated with neurological adverse reactions to thalidomide and bortezomib. Conclusion...

  12. Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Scott [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom); Edin, Matthew L.; Lih, Fred B. [Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709 (United States); Davies, Michael [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom); Yaqoob, Muhammad M. [Barts and the London, Queen Mary University, Charterhouse Square, London EC1M 6BQ (United Kingdom); Hammock, Bruce D. [Department of Entomology and Comprehensive Cancer Center, University of California, Davies, CA 95616-8584 (United States); Gilroy, Derek [University College London, University Street, London (United Kingdom); Zeldin, Darryl C. [Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709 (United States); Bishop-Bailey, David, E-mail: dbishopbailey@rvc.ac.uk [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom)

    2015-08-07

    Vascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors. - Highlights: • We examined oxylipin production in different

  13. Physiologically-based pharmacokinetic modeling of tamoxifen and its metabolites in women of different CYP2D6 phenotypes provides new insight into the tamoxifen mass balance

    Directory of Open Access Journals (Sweden)

    Kristin eDickschen

    2012-05-01

    Full Text Available Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+ mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6. It is widely accepted that CYP2D6 poor metabolizers (PM exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers (EM. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved.In this context, physiologically-based pharmacokinetic (PBPK-modeling provides a useful tool to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy.It has long been thought that only a minor percentage of endoxifen is formed via 4-hydroxytamoxifen. However, the current investigation supports very recently published data that postulates a contribution of 4-hydroxytamoxifen above 20 % to total endoxifen formation. The developed PBPK-model describes tamoxifen PK in rats and humans. Moreover, tamoxifen metabolism in dependence of CYP2D6 phenotype in populations of European female individuals is well described, thus providing a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity or co-treatment with CYP2D6 inhibitors.

  14. A Metabolism-Based Synergy for Total Coumarin Extract of Radix Angelicae Dahuricae and Ligustrazine on Migraine Treatment in Rats

    Directory of Open Access Journals (Sweden)

    Shan Feng

    2018-04-01

    Full Text Available Radix Angelicae dahuricae, containing coumarins, which might affect cytochrome P450 enzyme (CYP450 activity, has been co-administered with ligustrazine, a substrate of CYP450s, for the clinical treatment of migraine. However, whether a pharmacokinetic-based synergy exists between Radix Angelicae dahuricae and ligustrazine is still unknown. In this study, the total coumarin extract (TCE of Radix Angelicae dahuricae (50 mg/kg, orally reinforced the anti-migraine activity of ligustrazine by declining head scratching, plasma calcitonin gene-related peptide, and serum nitric oxide, as well as increasing plasma endothelin levels in rats (p < 0.05. Moreover, the pharmacokinetic study reflected that TCE potentiated the area under the concentration–time curve of ligustrazine and prolonged its mean retention time in rats (p < 0.05. Besides, the IC50 for TCE, imperatorin and isoimperatorin inhibiting ligustrazine metabolism were 5.0 ± 1.02, 1.35 ± 0.46, 4.81 ± 1.14 µg/mL in human liver microsomes, and 13.69 ± 1.11, 1.19 ± 1.09, 1.69 ± 1.17 µg/mL in rat liver microsomes, respectively. Moreover, imperatorin and isoimperatorin were CYP450s inhibitors with IC50 < 10 µM for CYP1A2, 2C9, 2D6, and 3A4. Therefore, this study concluded that Radix Angelicae dahuricae could increase ligustrazine plasma concentration and then reinforce its pharmacological effect by inhibiting its metabolism through interference with CYP450s. This could be one mechanism for the synergy between Radix Angelicae dahuricae and ligustrazine on migraine treatment.

  15. Effect of Garden Cress Seeds Powder and Its Alcoholic Extract on the Metabolic Activity of CYP2D6 and CYP3A4

    Directory of Open Access Journals (Sweden)

    Fahad I. Al-Jenoobi

    2014-01-01

    Full Text Available The powder and alcoholic extract of dried seeds of garden cress were investigated for their effect on metabolic activity of CYP2D6 and CYP3A4 enzymes. In vitro and clinical studies were conducted on human liver microsomes and healthy human subjects, respectively. Dextromethorphan was used as a common marker for measuring metabolic activity of CYP2D6 and CYP3A4 enzymes. In in vitro studies, microsomes were incubated with NADPH in presence and absence of different concentrations of seeds extract. Clinical investigations were performed in two phases. In phase I, six healthy female volunteers were administered a single dose of dextromethorphan and in phase II volunteers were treated with seeds powder for seven days and dextromethorphan was administered with last dose. The O-demethylated and N-demethylated metabolites of dextromethorphan were measured as dextrorphan (DOR and 3-methoxymorphinan (3-MM, respectively. Observations suggested that garden cress inhibits the formation of DOR and 3-MM metabolites. This inhibition of metabolite level was attributed to the inhibition of CYP2D6 and CYP3A4 activity. Garden cress decreases the level of DOR and 3-MM in urine and significantly increases the urinary metabolic ratio of DEX/DOR and DEX/3-MM. The findings suggested that garden cress seeds powder and ethanolic extract have the potential to interact with CYP2D6 and CYP3A4 substrates.

  16. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    Science.gov (United States)

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including K m , V max , and CL int were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  17. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    Science.gov (United States)

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  18. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    Science.gov (United States)

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Systemic uptake of miconazole during vaginal suppository use and effect on CYP1A2 and CYP3A4 associated enzyme activities in women

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Nielsen, Flemming; Nøhr-Jensen, Lene

    2010-01-01

    To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes.......To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes....

  20. Genetic Polymorphism of CYP2C9 Among Sistani Ethnic Group in Gorgan.

    Science.gov (United States)

    Marjani, Abdoljalal; Gharanjik, Aman Mohammad

    2018-04-01

    Cytochrome P450 2C9 (CYP2C9) is involved in metabolism of many important drugs and its genotype variations is thought to affect drug efficacy and the treatment process. The aim of this study was to assess the distribution of CYP2C9 allele and genotypic variants in Sistani ethnic group, living in Gorgan, South East of Caspian Sea and North East of Iran. This study included 140 Sistani, referred to the health center of Gorgan. CYP2C9 genotyping was carried out by polymerase chain reaction-restriction fragment length polymorphism technique. The allele frequency of CYP2C9*1, CYP2C9*2 and CYP2C9*3 was 76.1, 16.1 and 7.8%, respectively. The frequency of CYP2C9*1/*1, CYP2C9*1/*2, CYP2C9*1/*3, CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes was 53.9, 22.1, 11.4, 2.9, 4.3% and nil, respectively. In this study the genotypic variations of the CYP2C9 allele among the Sistani ethnic group was investigated and great differences were observed in comparison to other populations. Our findings suggest that different genotypes of CYP2C9 may influence the pharmacokinetics of some drugs. More studies on the pharmacokinetic effects of CYP2C9 genotypes may help physicians choose optimal dosage of some drugs for treatment and prevention of their side effects. Since different ethnic groups from all over the world use medications, it suggests to investigate the pharmacokinetic effects of CYP2C9 genotypes in different populations.

  1. StAR protein and steroidogenic enzyme expressions in the rat Harderian gland.

    Science.gov (United States)

    Falvo, Sara; Chieffi Baccaria, Gabriella; Spaziano, Giuseppe; Rosati, Luigi; Venditti, Massimo; Di Fiore, Maria Maddalena; Santillo, Alessandra

    2018-03-01

    The Harderian gland (HG) of the rat (Rattus norvegicus) secretes copious amounts of lipids, such as cholesterol. Here we report a study of the expressions of the StAR protein and key steroidogenic enzymes in the HG of male and female rats. The objective of the present investigation was to ascertain (a) whether the rat HG is involved in steroid production starting with cholesterol, and (b) whether the pattern of gene and protein expressions together with the enzymatic activities display sexual dimorphism. The results demonstrate, for the first time, the expression of StAR gene and protein, and Cyp11a1, Hsd3b1, Hsd17b3, Srd5a1, Srd5a2 and Cyp19a1 genes in the rat HG. StAR mRNA and protein expressions were much greater in males than in females. Immunohistochemical analysis demonstrated a non-homogeneous StAR distribution among glandular cells. Hsd17b3 and Cyp19a1 mRNA levels were higher in males than in females, whereas Srd5a1 mRNA levels were higher in females than in males. No significant differences were observed in mRNA levels of Cyp11a1, Hsd3b1 and Srd5a2 between sexes. Furthermore, the in vitro experiments demonstrated a higher 5α-reductase activity in the female as compared to the male HG vice versa a higher P450 aro activity in males as compared to females. These results suggest that the Harderian gland can be classified as a steroidogenic tissue because it synthesizes cholesterol, expresses StAR and steroidogenic enzymes involved in both androgen and estrogen synthesis. The dimorphic expression and activity of the steroidogenic enzymes may suggest sex-specific hormonal effects into the HG physiology. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  2. CYP2D6 Phenotyping Using Urine, Plasma, and Saliva Metabolic Ratios to Assess the Impact of CYP2D6∗10 on Interindividual Variation in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Pei Hu

    2017-05-01

    Full Text Available Purpose: Asian populations have around 40–60% frequency of reduced function allele CYP2D6∗10 compared to 1–2% in Caucasian populations. The wide range of CYP2D6 enzyme activities in subjects with the CYP2D6∗10 variant is a big concern for clinical practice. The quantitative analysis measuring the impact of CYP2D6 enzyme activity as a result of one CYP2D6∗10 allele or two CYP2D6∗10 alleles has not been reported in large Asian populations.Methods: A total of 421 healthy Chinese subjects were genotyped for CYP2D6 by polymerase chain reaction and direct DNA sequencing. A total of 235 subjects with CYP2D6∗1/∗1 (n = 22, CYP2D6∗1/∗10 (n = 93, CYP2D6∗10/∗10 (n = 85, and CYP2D6∗5/∗10 (n = 35 were phenotyped for CYP2D6 using dextromethorphan as the probe drug. Metabolic ratios (MR were calculated as the ratio of parent drug to metabolite in 0–3 h urine, 3 h plasma, and 3 h saliva for each sample type.Results: The urinary, plasma, or salivary MRs increased successively in subjects with CYP2D6∗1/∗1, ∗1/∗10, ∗10/∗10, and ∗5/∗10 (all P < 0.001. In the normal metabolizer group, homozygous CYP2D6∗10/∗10 decreased the CYP2D6 enzyme activity further than heterozygous CYP2D6∗1/∗10. Urinary, plasma, and salivary MRs were highly correlated.Conclusion: The normal metabolizer group calls for a more detailed classification. The activity score system could more accurately predict enzyme activity than by grouping a number of genotypes into a single phenotype group. Single-point plasma samples and saliva samples could be used as alternative phenotyping methods for clinical convenience.

  3. Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2009-01-01

    The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.

  4. Curcumin and Quercetin Ameliorated Cypermethrin and Deltamethrin-Induced Reproductive System Impairment in Male Wistar Rats by Upregulating The Activity of Pituitary-Gonadal Hormones and Steroidogenic Enzymes

    Directory of Open Access Journals (Sweden)

    Poonam Sharma

    2018-01-01

    Full Text Available Background Dietary antioxidants protect tissues and organs against insecticides/xenobiotic-induced damage. In the present study, we evaluated the results of exposure to synthetic pyrethroid insecticides, cypermethrin (Cyp and deltamethrin (Del and possible protective effects of curcumin and quercetin on reproductive system in male Wistar rats. Materials and Methods In this controlled experimental study, 42 male Wistar rats were randomly divided into 7 groups of 6 animals. Group A served as control, group B was exposed to Cyp (2 mg/kg.bw, group C was exposed to Del (2 mg/kg.bw, group D was exposed to Cyp+Del (2 mg/kg.bw each, group E was exposed to Cyp+Del and treated with curcumin (100 mg/kg.bw, group F was exposed to Cyp+Del and treated with quercetin (100 mg/kg.bw and group G was exposed to Cyp+Del and treated with quercetin+curcumin for 45 days. Results Exposure to Cyp and Del caused decreases in reproductive organs weight, sperm count, sperm motility, level of sex hormones viz. testosterone (T, follicle stimulating hormone (FSH and luteinizing hormone (LH, steroidogenic enzymes viz. 3β-hydroxyl steroid dehydrogenase (3β-HSD and 17β-HSD, non-enzymatic antioxi- dant glutathione (GSH and enzymatic antioxidants viz. superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST and glutathione reductase (GR activity and increases in sperm abnormalities and lipid peroxidation (LPO. The exposure also adversely affected the histo-achitecture of testes. Single and combined treatment with curcumin and quercetin significantly ameliorated Cyp and Del-induced damage in reproductive system. Conclusion Curcumin and quercetin protected against Cyp and Del-induced reproductive system toxicity and oxidative damage in rats. The increases in activities of 3β-HSD and 17β-HSD with concomitant increases in testosterone were mainly responsible for ameliorating effects of curcumin and quercetin. Curcumin showed slightly

  5. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-01-01

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  6. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  7. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  8. Genotyping and phenotyping of CYP2D6 and CYP3A isoenzymes in patients with alcohol use disorder: correlation with haloperidol plasma concentration.

    Science.gov (United States)

    Sychev, Dmitry A; Zastrozhin, Mikhail S; Miroshnichenko, Igor I; Baymeeva, Natalia V; Smirnov, Valery V; Grishina, Elena A; Ryzhikova, Kristina A; Mirzaev, Karin B; Markov, Dmitry D; Skryabin, Valentin Y; Snalina, Nataliya E; Nosikova, Polina G; Savchenko, Ludmila M; Bryun, Evgeny A

    2017-09-26

    Haloperidol is used for the treatment of alcohol use disorders in patients with signs of alcohol-related psychosis. Haloperidol therapy poses a high risk of adverse drug reactions (ADR). Contradictory data, which include the effects of genetic polymorphisms in genes encoding the elements of haloperidol biotransformation system on haloperidol metabolism rate and plasma drug concentration ratio, are described in patients with different genotypes. The primary objective of this study was to investigate the effects of CYP2D6 and CYP3A5 genetic polymorphisms on haloperidol equilibrium concentration in patients with alcohol use disorder. The study included 69 male patients with alcohol use disorder. Genotyping was performed using the allele-specific real-time PCR. CYP2D6 and CYP3A were phenotyped with HPLC-MS using the concentration of endogenous substrate of the enzyme and its urinary metabolites [6-hydroxy-1,2,3,4-tetrahydro-β-carboline(6-HO-THBC) to pinoline ratio for CYP2D6 and 6-β-hydroxycortisol to cortisol ratio for CYP3A]. The equilibrium plasma concentration was determined using LC-MS-MS. Results indicated that both C/D indexes and equilibrium concentration levels depend on CYP2D6 genetic polymorphism, but only in patients receiving haloperidol intramuscular injections [0.26 (0.09; 0.48) vs. 0.54 (0.44; 0.74), p=0.037]. The study demonstrates that CYP2D6 genetic polymorphism (1846G>A) can affect haloperidol concentration levels in patients with alcohol use disorder.

  9. Effects of Saw Palmetto Extract on Urodynamic Parameters, Bladder Muscarinic and Purinergic Receptors and Urinary Cytokines in Rats with Cyclophosphamide-Induced Cystitis.

    Science.gov (United States)

    Nasrin, Sweety; Masuda, Eiji; Kugaya, Haruna; Osano, Ayaka; Ito, Yoshihiko; Yamada, Shizuo

    2014-01-01

    To clarify the effect of saw palmetto extract (SPE), a phytotherapeutic agent, on urodynamic parameters, bladder muscarinic and purinergic receptors, and urinary cytokines in rats with cystitis induced by cyclophosphamide (CYP). Saw palmetto extract (60 mg/kg per day) was administered orally twice a day for 7 days to rats. The urodynamic parameters in CYP (150 mg/kg i.p.)-treated rats were monitored by a cystometric method under anesthesia. The muscarinic and purinergic receptors in the bladder and submaxillary gland were measured by radioreceptor assays using [N-methyl-(3) H] scopolamine chloride([(3) H]NMS) and αβ-methylene-ATP [2,8-(3) H] tetrasodium salt ([(3) H]αβ-MeATP), respectively. Urinary cytokines (interleukin-1β [IL-1β], IL-6 and L-17) were measured with enzyme linked immunosorbent assay kits. Micturition interval and micturition volume were significantly decreased and the frequency of micturition and basal pressure were significantly increased in the CYP-treated rats compared with sham-operated rats. Orally administered SPE significantly increased the micturition interval and micturition volume and decreased the frequency of micturition and basal pressure. The maximal number of sites (Bmax ) for the specific binding of [(3) H]NMS and [(3) H]αβ-MeATP was significantly decreased in the bladder. The decrease in receptors was attenuated by repeated treatment with SPE. An elevation in urinary cytokine (IL-1β and IL-17) levels were seen, and this increase was effectively suppressed by SPE treatment. Saw palmetto extract attenuates the alteration of urodynamic parameters, pharmacologically relevant receptors, and urinary cytokines in CYP-treated rats. Therefore, SPE may be a potential therapeutic agent for improving the clinical symptoms of cystitis. © 2013 Wiley Publishing Asia Pty Ltd.

  10. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  11. Quantitative determination of albumin in microlitre amounts of rat serum: With a short note on serum albumin levels in ageing rats

    NARCIS (Netherlands)

    Leeuw-Israel, F.R. de; Arp-Neefjes, J.M.; Hollander, C.F.

    1967-01-01

    A simple dye binding method for determining rat serum albumin, which employs the anionic dye 2-(4′-hydroxybenzneeazo) benzoic acid (HBABA) is described. Albumin in 5μ1 of serum is determined colorimetrically. Purified rat albumin is used as a primary standard and rat serum as a reference sample.

  12. Association of genetic polymorphisms CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433 with tobacco-induced lung Cancer: case-control study in an Egyptian population.

    Science.gov (United States)

    Ezzeldin, Nada; El-Lebedy, Dalia; Darwish, Amira; El Bastawisy, Ahmed; Abd Elaziz, Shereen Hamdy; Hassan, Mirhane Mohamed; Saad-Hussein, Amal

    2018-05-03

    Several studies have reported the role of CYP2A6 genetic polymorphisms in smoking and lung cancer risk with some contradictory results in different populations. The purpose of the current study is to assess the contribution of the CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433 gene polymorphisms and tobacco smoking in the risk of lung cancer in an Egyptian population. A case-control study was conducted on 150 lung cancer cases and 150 controls. All subjects were subjected to blood sampling for Extraction of genomic DNA and Genotyping of the CYP2A6 gene SNPs (CYP2A6*2 (1799 T > A) rs1801272 and CYP2A6*9 (- 48 T > G) rs28399433 by Real time PCR. AC and CC genotypes were detected in CYP2A6*9; and AT genotype in CYP2A6*2. The frequency of CYP2A6*2 and CYP2A6*9 were 0.7% and 3.7% respectively in the studied Egyptian population. All cancer cases with slow metabolizer variants were NSCLC. Non-smokers represented 71.4% of the CYP2A6 variants. There was no statistical significant association between risk of lung cancer, smoking habits, heaviness of smoking and the different polymorphisms of CYP2A6 genotypes. The frequency of slow metabolizers CYP2A6*2 and CYP2A6*9 are poor in the studied Egyptian population. Our findings did not suggest any association between CYP2A6 genotypes and risk of lung cancer.

  13. Andrographis paniculata Extract and Andrographolide Modulate the Hepatic Drug Metabolism System and Plasma Tolbutamide Concentrations in Rats

    Directory of Open Access Journals (Sweden)

    Haw-Wen Chen

    2013-01-01

    Full Text Available Andrographolide is the most abundant terpenoid of A. paniculata which is used in the treatment of diabetes. In this study, we investigated the effects of A. paniculata extract (APE and andrographolide on the expression of drug-metabolizing enzymes in rat liver and determined whether modulation of these enzymes changed the pharmacokinetics of tolbutamide. Rats were intragastrically dosed with 2 g/kg/day APE or 50 mg/kg/day andrographolide for 5 days before a dose of 20 mg/kg tolbutamide was given. APE and andrographolide reduced the AUC0–12 h of tolbutamide by 37% and 18%, respectively, compared with that in controls. The protein and mRNA levels and enzyme activities of CYP2C6/11, CYP1A1/2, and CYP3A1/2 were increased by APE and andrographolide. To evaluate whether APE or andrographolide affected the hypoglycemic action of tolbutamide, high-fat diet-induced obese mice were used and treated in the same manner as the rats. APE and andrographolide increased CYP2C6/11 expression and decreased plasma tolbutamide levels. In a glucose tolerance test, however, the hypoglycemic effect of tolbutamide was not changed by APE or andrographolide. These results suggest that APE and andrographolide accelerate the metabolism rate of tolbutamide through increased expression and activity of drug-metabolizing enzymes. APE and andrographolide, however, do not impair the hypoglycemic effect of tolbutamide.

  14. High expression of liver histone deacetylase 3 contributes to high-fat-diet-induced metabolic syndrome by suppressing the PPAR-γ and LXR-α-pathways in E3 rats.

    Science.gov (United States)

    Li, Dongmin; Wang, Xuan; Ren, Wuchao; Ren, Juan; Lan, Xi; Wang, Feimiao; Li, Hongmin; Zhang, Fujun; Han, Yan; Song, Tianbao; Holmdahl, Rikard; Lu, Shemin

    2011-09-15

    In the previous experiment, we found that there was a different response between E3 rats and DA.1U rats to high-fat-diet-induced metabolic syndrome (HFD-MetS). The aim of this study was to explore the cause and molecular mechanism of the genetic difference in susceptibility to metabolic syndrome in E3 rats as compared with DA.1U rats. Firstly, a 12-week HFD-MetS model in E3 and DA.1U rats was carried out and assessed. Then, the expression of key insulin signaling molecules, metabolic nuclear receptors, metabolic key enzymes and histone deacetylases (Hdacs) was determined by different methods. Finally, the effects of overexpression and disruption of Hdac3 on metabolic nuclear receptors were analyzed in CBRH-7919 cells and primarily-hepatic cells from DA.1U and E3 rats. We found that E3 rats were susceptible, while DA.1U rats were resisted to HFD-MetS. The expression of liver X receptor α,β (LXR-α,β), farnesoid X receptor (FXR), peroxisome proliferator activated receptor γ (PPAR-γ) and cholesterol 7α-hydroxylase (CYP7A1) increased markedly in DA.1U rat liver, whereas they decreased significantly in E3 rats. The expression of Hdac3 increased by HFD treatment in both E3 and DA.1U rat livers, but the constitutive Hdac3 expression was lower in DA.IU rat liver than in E3 rat liver. Importantly, overexpression of Hdac3 could downregulate the expression of LXR-α, PPAR-γ and CYP7A1 in both CBRH-7919 cells and primarily cultured hepatic cells from DA.IU rats. On the contrary, disruption of Hdac3 by shRNA upregulated the expression of LXR-α, PPAR-γ and CYP7A1 in both CBRH-7919 cells and primarily cultured hepatic cells from E3 rats. The results suggested that a high constitutive expression of Hdac3 inhibiting the expression of PPAR-γ, LXR-α and CYP7A1 in liver contributes to HFD-MetS in E3 rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Hemodialysis does not alter in vitro hepatic CYP3A4 and CYP2D6 metabolic activity in uremic serum

    Directory of Open Access Journals (Sweden)

    Decker BS

    2013-12-01

    Full Text Available Brian S Decker,1,2 Kalisha D O'Neill,1,2 Mary A Chambers,1,2 James E Slaven,3 Zhangsheng Yu,3 David R Jones,2,4 Sharon M Moe1,21Division of Nephrology, 2Department of Medicine, 3Department of Biostatistics, 4Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, USAAbstract: There is a paucity of studies evaluating the change in liver metabolism in subjects receiving hemodialysis. The purpose of this study was to compare the effect of uremic toxins on hepatic cytochrome P450 (CYP3A4 and CYP2D6 metabolism before and after a 4-hour hemodialysis session. Midazolam and dextromethorphan were incubated with uremic serum collected from subjects before and after the 4-hour hemodialysis session. Analysis and quantification of the 1'-OH-midazolam and 4-OH-midazolam and dextrorphan metabolites were performed by high-pressure liquid chromatography/mass spectrometry. Statistical analysis using the Student's t-test (paired was used to compare the amount of metabolite formed. The mean amount of 1'-OH-midazolam, 4-OH-midazolam, and dextrorphan metabolites formed before and after hemodialysis did not significantly differ. There was no significant difference in CYP3A4 and CYP2D6 metabolic activity in uremic serum before and after hemodialysis.Keywords: hemodialysis, uremia, CYP3A4, CYP2D6, metabolism

  16. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat.

    Science.gov (United States)

    Han, Su Young; Bouwer, Gregory T; Seymour, Alexander J; Korpal, Aaron K; Schwenke, Daryl O; Brown, Colin H

    2015-11-01

    Vasopressin secretion from the posterior pituitary gland is determined by action potential discharge of hypothalamic magnocellular neurosecretory cells. Vasopressin is a potent vasoconstrictor, but vasopressin levels are paradoxically elevated in some patients with established hypertension. To determine whether vasopressin neurons are excited in hypertension, extracellular single-unit recordings of vasopressin neurons from urethane-anaesthetized Cyp1a1-Ren2 rats with inducible angiotensin-dependent hypertension were made. The basal firing rate of vasopressin neurons was higher in hypertensive Cyp1a1-Ren2 rats than in non-hypertensive Cyp1a1-Ren2 rats. The increase in firing rate was specific to vasopressin neurons because oxytocin neuron firing rate was unaffected by the induction of hypertension. Intravenous injection of the α1-adrenoreceptor agonist, phenylephrine (2.5 μg/kg), transiently increased mean arterial blood pressure to cause a baroreflex-induced inhibition of heart rate and vasopressin neuron firing rate (by 52 ± 9%) in non-hypertensive rats. By contrast, intravenous phenylephrine did not inhibit vasopressin neurons in hypertensive rats, despite a similar increase in mean arterial blood pressure and inhibition of heart rate. Circulating angiotensin II can excite vasopressin neurons via activation of afferent inputs from the subfornical organ. However, the increase in vasopressin neuron firing rate and the loss of inhibition by intravenous phenylephrine were not blocked by intra-subfornical organ infusion of the angiotensin AT1 receptor antagonist, losartan. It can be concluded that increased vasopressin neuron activity at the onset of hypertension is driven, at least in part, by reduced baroreflex inhibition of vasopressin neurons and that this might exacerbate the increase in blood pressure at the onset of hypertension. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    Science.gov (United States)

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH. PMID:28328948

  18. Polymorphisms in CYP1A1 and CYP3A5 Genes Contribute to the Variability in Granisetron Clearance and Exposure in Pregnant Women with Nausea and Vomiting.

    Science.gov (United States)

    Bustos, Martha L; Zhao, Yang; Chen, Huijun; Caritis, Steve N; Venkataramanan, Raman

    2016-12-01

    Nausea and vomiting affect up to 90% of pregnant women. Granisetron is a potent and highly selective serotonin receptor antagonist and is an effective antiemetic. Findings from a prior study in pregnant women demonstrated a large interindividual variability in granisetron exposure. Granisetron is primarily metabolized by the cytochrome P450 (CYP) enzymes CYP1A1 and CYP3A and is likely a substrate of the ABCB1 transporter. Single-nucleotide polymorphisms (SNPs) in CYP3A, CYP1A1, and ABCB1 can alter drug metabolism. This study evaluated the influence of polymorphisms in CYP3A4, CYP3A5, CYP1A1, and ABCB1 on the pharmacokinetic properties of granisetron in pregnant women. The study enrolled 16 pregnant women (gestational age of 12-19 wks). All patients had nausea and vomiting and were treated with granisetron 1 mg. Granisetron plasma concentrations were determined using liquid chromatography tandem-mass spectrometry. The patients' genotype was determined using TaqMan SNP Genotyping Assays. The Hardy-Weinberg equilibrium was assessed by comparing observed and expected genotype frequencies, using the exact test. Intravenous granisetron clearance was used as the dependent variable for analysis of associations. Of 16 patients, 25% were homozygous for the allele variant CYP3A5*3 and had a significantly lower granisetron clearance and increased area under the plasma concentration-versus-time curve (AUC) compared with nonhomozygous patients. Approximately one-third of patients (n=5) were carriers for the allele variant CYP1A1*2A and had a significantly higher granisetron clearance and decreased AUC. We did not find significant differences in the AUC or clearance for any SNPs in CYP3A4 and ABCB1 genes. Polymorphisms in CYP3A5 and CYP1A1 account for some of the variability in systemic clearance and exposure of granisetron in pregnant women. © 2016 Pharmacotherapy Publications, Inc.

  19. A study on CYP1A inhibitory action of E-2-(4'-methoxybenzylidene)-1-benzosuberone and some related chalcones and cyclic chalcone analogues

    International Nuclear Information System (INIS)

    Monostory, Katalin; Tamasi, Viola; Vereczkey, Laszlo; Perjesi, Pal

    2003-01-01

    In vivo investigation of E-2-(4'-methoxybenzylidene)-1-benzosuberone (4a) on the 7,12-dimethylbenz[a]anthracene (DMBA)-induced onco/tumor suppressor gene expressions suggested that inhibition of metabolic activation of DMBA might play a role in the observed activity of the compound. In order to explore this possible biological action we have investigated whether 4a and some of its structurally related analogues had inhibitory effects on the CYP1A enzymes. During our study 7-ethoxyresorufin O-dealkylation activity of CYP1A isoenzymes was measured in liver microsomes prepared from 3-methylcholanthrene treated male rats. Inhibition constants (K i values) were determined by using different concentrations of 7-ethoxyresorufin and the investigated chalcones (1), E-2-benzylidene-1-indanones (2), -tetralones (3) and -benzosuberones (4). Each compound was found to be a strong competitive inhibitor of the CYP1A enzymes. Their inhibitory activity was comparable with or even higher than that of 7,8-benzoflavone, the known strong CYP1A inhibitor used as reference substance. By proper selection of the substituents on the benzylidene moiety we investigated how the inhibitory activity (K i value) of 1-4 varied as a function of the ring size (n=0, 5, 6, 7) carbon atoms, and the nature as well as the position of the substituents. To test applicability of the previously set structural requirements for binding of xenobiotics to the CYP1A enzymes we compared some topological, physico-chemical and quantum mechanical parameters of 1-4 with 7-ethoxyresorufin and 7,8-benzoflavone, the investigated CYP1A substrate and inhibitor, respectively

  20. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    Science.gov (United States)

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  1. A Family-Based Association Study of CYP11A1 and CYP11B1 Gene Polymorphisms With Autism in Chinese Trios.

    Science.gov (United States)

    Deng, Hong-Zhu; You, Cong; Xing, Yu; Chen, Kai-Yun; Zou, Xiao-Bing

    2016-05-01

    Autism spectrum disorder is a group of neurodevelopmental disorders with the higher prevalence in males. Our previous studies have indicated lower progesterone levels in the children with autism spectrum disorder, suggesting involvement of the cytochrome P-450scc gene (CYP11A1) and cytochrome P-45011beta gene (CYP11B1) as candidate genes in autism spectrum disorder. The aim of this study was to investigate the family-based genetic association between single-nucleotide polymorphisms, rs2279357 in the CYP11A1 gene and rs4534 and rs4541 in the CYP11B1 gene and autism spectrum disorder in Chinese children, which were selected according to the location in the coding region and 5' and 3' regions and minor allele frequencies of greater than 0.05 in the Chinese populations. The transmission disequilibrium test and case-control association analyses were performed in 100 Chinese Han autism spectrum disorder family trios. The genotype and allele frequency of the 3 single-nucleotide polymorphisms had no statistical difference between the children with autism spectrum disorder and their parents (P> .05). Transmission disequilibrium test analysis showed transmission disequilibrium of CYP11A1 gene rs2279357 single-nucleotide polymorphisms (χ(2)= 5.038,Pautism spectrum disorder exists within or near the CYP11A1 gene in the Han Chinese population. © The Author(s) 2015.

  2. Gender-based reciprocal expression of transforming growth factor-β1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis

    Directory of Open Access Journals (Sweden)

    Loughran Patricia A

    2009-08-01

    Full Text Available Abstract Background The pluripotent cytokine transforming growth factor-β1 (TGF-β1 is the central regulator of inducible Nitric Oxide Synthase (iNOS that is responsible for nitric oxide (NO production in inflammatory settings. Previous studies have implicated a role for NO, presumably derived from iNOS, in cyclophosphamide (CYP-induced cystitis in the bladder. TGF-β1 is produced in latent form and requires dissociation from the latency-associated peptide (LAP to act as primary anti-inflammatory and pro-healing modulator following tissue injury in the upper urinary tract. Since the role of TGF-β1 in lower urinary tract inflammation is currently unknown, and since gender-based differences exist in the setting of interstitial cystitis (IC, the present study examined the relationship between TGF-β1 and iNOS/NO in the pathogenesis of CYP-induced cystitis in both male and female rats. Methods Sprague-Dawley rats, 4 months of age, of either gender were given 150 mg/kg CYP intraperitoneally. Urinary and bladder tissue TGF-β1 and NO reaction products (NO2-/NO3- were quantified as a function of time following CYP. Expression of active and latent TGF-β1 as well as iNOS in harvested bladder tissue was assessed by immunohistochemistry. Results Female rats had significantly higher levels of NO2-/NO3- in urine even at baseline as compared to male rats (p 2-/NO3- and TGF-β1. Male rats responded to CYP with significantly lower levels of NO2-/NO3- and significantly higher levels of TGF-β1 in urine (p 2-/NO3- after CYP were inversely correlated to latent and active TGF-β1 (Pearson coefficient of -0.72 and -0.69 in females and -0.89 and -0.76 in males, respectively; p Conclusion The results of this study suggest that there exists an inverse relationship between the expression of TGF-β1 and iNOS/NO2-/NO3- in CYP-inflamed bladder. The gender of the animal appears to magnify the differences in urine levels of TGF-β1 and NO2-/NO3- in this inflammatory

  3. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers : indications for oral contraceptive-related gender differences

    NARCIS (Netherlands)

    Tamminga, WJ; Wemer, J; Oosterhuis, B; Wieling, J; Wilffert, B; de Leij, LFMH; de Zeeuw, RA; Jonkman, JHG

    Objective: We examined a large database containing results on CYP2D6 and CYP2C19 activity of 4301 Dutch volunteers phenotyped in the context of various clinical pharmacology studies. Methods: The subjects were given 22 mg dextromethorphan, 100 mg mephenytoin and 200 mg caffeine. For CYP2D6, the

  4. Lessons from Cuba for Global Precision Medicine: CYP2D6 Genotype Is Not a Robust Predictor of CYP2D6 Ultrarapid Metabolism.

    Science.gov (United States)

    Dorado, Pedro; González, Idilio; Naranjo, María Eugenia G; de Andrés, Fernando; Peñas-Lledó, Eva María; Calzadilla, Luis Ramón; LLerena, Adrián

    2017-01-01

    A long-standing question and dilemma in precision medicine is whether and to what extent genotyping or phenotyping drug metabolizing enzymes such as CYP2D6 can be used in real-life global clinical and societal settings. Although in an ideal world using both genotype and phenotype biomarkers are desirable, this is not always feasible for economic and practical reasons. Moreover, an additional barrier for clinical implementation of precision medicine is the lack of correlation between genotype and phenotype, considering that most of the current methods include only genotyping. Thus, the present study evaluated, using dextromethorphan as a phenotyping probe, the relationship between CYP2D6 phenotype and CYP2D6 genotype, especially for the ultrarapid metabolizer (UM) phenotype. We report in this study, to the best of our knowledge, the first comparative clinical pharmacogenomics study in a Cuban population sample (N = 174 healthy volunteers) and show that the CYP2D6 genotype is not a robust predictor of the CYP2D6 ultrarapid metabolizer (mUM) status in Cubans. Importantly, the ultrarapid CYP2D6 phenotype can result in a host of health outcomes, such as drug resistance associated with subtherapeutic drug concentrations, overexposure to active drug metabolites, and altered sensitivity to certain human diseases by virtue of altered metabolism of endogenous substrates of CYP2D6. Hence, phenotyping tests for CYP2D6 UMs appear to be a particular necessity for precision medicine in the Cuban population. Finally, in consideration of ethical and inclusive representation in global science, we recommend further precision medicine biomarker research and funding in support of neglected or understudied populations worldwide.

  5. Changes in cardiac aldosterone and its synthase in rats with chronic heart failure: an intervention study of long-term treatment with recombinant human brain natriuretic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.Q. [Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei (China); Hong, H.S. [Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Lin, X.H. [Department of Emergency Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Chen, L.L. [Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Li, Y.H. [Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei (China)

    2014-07-11

    The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.

  6. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    Science.gov (United States)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  7. Preserved learning and memory following 5-fluorouracil and cyclophosphamide treatment in rats.

    Science.gov (United States)

    Long, Jeffrey M; Lee, Garrick D; Kelley-Bell, Bennett; Spangler, Edward L; Perez, Evelyn J; Longo, Dan L; de Cabo, Rafael; Zou, Sige; Rapp, Peter R

    2011-11-01

    Some patients experience enduring cognitive impairment after cancer treatment, a condition termed "chemofog". Animal models allow assessment of chemotherapy effects on learning and memory per se, independent of changes due to cancer itself or associated health consequences such as depression. The present study examined the long-term learning and memory effects of a chemotherapy cocktail used widely in the treatment of breast cancer, consisting of 5-fluorouracil (5FU) and cyclophosphamide (CYP). Eighty 5-month old male F344 rats received contextual and cued fear conditioning before treatment with saline, or a low or high dose drug cocktail (50mg/kg CYP and 75 mg/kg 5FU, or 75 mg/kg CYP and 120 mg/kg 5FU, i.p., respectively) every 30 days for 2 months. After a 2-month, no-drug recovery, both long-term retention and new task acquisition in the water maze and 14-unit T-maze were assessed. Neither dose of the CYP/5FU cocktail impaired retrograde fear memory despite marked toxicity documented by enduring weight loss and 50% mortality at the higher dose. Acquisition in the water maze and Stone maze was also normal relative to controls in rats treated with CYP/5FU. The results contribute to a growing literature suggesting that learning and memory mediated by the hippocampus can be relatively resistant to chemotherapy. Future investigation may need to focus on assessments of processing speed, executive function and attention, and the possible interactive contribution of cancer itself and aging to the post-treatment development of cognitive impairment. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The impact of CYP2D6 and CYP2C19 polymorphisms on suicidal behavior and substance abuse disorder among patients with schizophrenia: a retrospective study

    DEFF Research Database (Denmark)

    Kobylecki, Camilla J; Hansen, Thomas Folkmann; Timm, Sally

    2008-01-01

    Suicidal behavior and substance abuse are frequent phenomena among patients with schizophrenia and may be attributable in part to antipsychotic treatment failure. Individuals who carry functional variants of the CYP2D6 and CYP2C19 genes, shown to cause altered drug metabolism of psychoactive drugs......, are at risk of toxic accumulation or rapid elimination of these drugs, leading to treatment failure. We tested whether substance abuse disorder and suicidal behavior were associated with the CYP2D6 and CYP2C19 genotypes among patients with schizophrenia. Three hundred sixty-two patients with schizophrenia...... spectrum disorders (International Classification of Diseases, 10th Revision) were genotyped for functional CYP2D6 and CYP2C19 polymorphisms. Based on available medical records and clinical interviews, their suicidal behavior and substance abuse disorder were evaluated. No significant associations between...

  9. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li-Chuan; Li, Lih-Ann, E-mail: lihann@nhri.org.tw

    2012-02-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. The Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1

  10. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    International Nuclear Information System (INIS)

    Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. The Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1

  11. Interactions between CYP3A4 and Dietary Polyphenols

    Directory of Open Access Journals (Sweden)

    Loai Basheer

    2015-01-01

    Full Text Available The human cytochrome P450 enzymes (P450s catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols.

  12. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  13. CYP1B1 expression, a potential risk factor for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Goth-Goldstein, Regine; Erdmann, Christine A.; Russell, Marion

    2001-05-31

    CYP1B1 expression in non-tumor breast tissue from breast cancer patients and cancer-free individuals was determined to test the hypothesis that high CYP1B1 expression is a risk factor for breast cancer. Large interindividual variations in CYP1B1 expression were found with CYP1B1 levels notably higher in breast cancer patients than cancer-free individuals. The results indicate that CYP1B1 might play a role in breast cancer either through increased PAH activation or through metabolism of endogenous estrogen to a carcinogenic derivative.

  14. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  15. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; LeCluyse, Edward L.; Budinsky, Robert A.; Rowlands, J. Craig; Thomas, Russell S.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  16. In Vitro Evaluation of Reversible and Time-Dependent Inhibitory Effects of Kalanchoe crenata on CYP2C19 and CYP3A4 Activities.

    Science.gov (United States)

    Awortwe, Charles; Manda, Vamshi K; Avonto, Cristina; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Bouic, Patrick J; Rosenkranz, Bernd

    2015-01-01

    Kalanchoe crenata popularly known as "dog's liver" is used in most African countries for the treatment of chronic diseases such as diabetes, asthma and HIV/AIDS related infections. The evaluation of K. crenata for herb-drug interactions has not been reported. This study therefore aims to evaluate the risk of K. crenata for herb-drug interaction in vitro. Crude methanol and fractions of K. crenata were incubated and preincubated with recombinant human CYP2C19 and CYP3A4. Comparative studies were conducted in both human liver microsomes and recombinant human CYP to ascertain the inhibition profile of the crude extract and the various fractions. The cocktail approach of recombinant human CYPs was conducted to confirm the inhibition potential of the fractions in the presence of other CYPs. The results showed significant time-dependent inhibition of tested samples on CYP3A4 with crude methanol (39KC), fractions 45A, 45B and 45D given IC50 fold decrease of 3.29, 2.26, 1.91 and 1.49, respective. Time dependent kinetic assessment of 39KC and 45D showed KI and kinact values for 39KC as 1.77 µg/mL and 0.091 min(-1) while that of 45D were 6.45 µg/mL and 0.024 min(-1), respectively. Determination of kinact based on IC50 calculations yielded 0.015 and 0.04 min(-1) for 39KC and 45D, respectively. Cocktail approach exhibited fold decreases in IC50 for all test fractions on CYP3A4 within the ranges of 2.10 - 4.10. At least one phytoconstituent in the crude methanol extract of Kalanchoe crenata is a reversible and time-dependent inhibitor of CYP3A4.

  17. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2

    DEFF Research Database (Denmark)

    Mikkelsen, M.D.; Fuller, V.L.; Hansen, Bjarne Gram

    2009-01-01

    Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze......OH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising...

  18. CYP7B1

    DEFF Research Database (Denmark)

    Roos, P; Svenstrup, K; Danielsen, E R

    2014-01-01

    UNLABELLED: The SPG5A subtype of Hereditary Spastic Paraplegia (HSP) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the CYP7B1 gene, which encodes a steroid cytochrome P450 7α-hydroxylase. This enzyme provides the primary metabolic route for neurosteroids. Clinica......UNLABELLED: The SPG5A subtype of Hereditary Spastic Paraplegia (HSP) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the CYP7B1 gene, which encodes a steroid cytochrome P450 7α-hydroxylase. This enzyme provides the primary metabolic route for neurosteroids.......945_947 dupGGC p.A316AA). CONCLUSION: SPG5A could be characterized as a predominantly pure HSP. MRS showing elevated mI/Cr ratio in the white matter may be indicative of SPG5A....

  19. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus.

    Science.gov (United States)

    Miah, Mohammad Asaduzzaman; Elzaki, Mohammed Esmail Abdalla; Han, Zhaojun

    2017-07-01

    Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p -nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min -1  mg protein -1 , respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

  20. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  1. Structural analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modeling techniques

    DEFF Research Database (Denmark)

    Afzelius, Lovisa; Raubacher, Florian; Karlén, Anders

    2004-01-01

    , newly built homology models, and repeated molecular dynamics simulations. The CPCA was based on molecular interaction fields focused on the active site regions of the proteins and include detailed amino acid analysis. The comparison of the CYP2C9 and CYP2C5 crystal structures revealed differences...... improved the similarity to the crystal target in some cases and could be recommended even though it requires a careful manual alignment process. The application of molecular dynamics simulations to highly flexible proteins such as cytochromes P450 is also explored and the information is extracted...... in the flexible regions such as the B-C and F-G loop and the N and C termini. Cross homology models of CYP2C9 and CYP2C5, using their respective crystal structures as templates, indicated that such models were more similar to their templates than to their target proteins. Inclusion of multiple templates slightly...

  2. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    International Nuclear Information System (INIS)

    Lo, Sheng-Nan; Chang, Yu-Ping; Tsai, Keng-Chang; Chang, Chia-Yu; Wu, Tian-Shung; Ueng, Yune-Fang

    2013-01-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K i value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC 50 values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP1B1 was an

  3. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Sheng-Nan [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Chang, Yu-Ping; Tsai, Keng-Chang [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Chang, Chia-Yu [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China); Wu, Tian-Shung [Department of Chemistry, National Chung-Kung University, Tainan 701, Taiwan, ROC (China); Ueng, Yune-Fang, E-mail: ueng@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei 112, Taiwan, ROC (China); Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC (China); Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan, ROC (China)

    2013-11-01

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selective inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn228 in CYP

  4. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Hagiwara, Akihiro; Imai, Norio [DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113 (Japan); Nagano, Kasuke [Nagano Toxicologic-Pathology Consulting, Ochiai, Hadano, Kanagawa 257-0025 (Japan); Nishimaki, Fukumi [Biofuel Assessment Group, New Fuels Dept., Japan Petroleum Energy Center (JPEC), 4-3-9 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Banton, Marcy [Toxicology and Risk Assessment, LyondellBasell Industries, LyondellBasell Corporate HSE/Product Safety, One Houston Center, Suite 700, 1221 McKinney Street, Houston, TX 770 10 (United States); Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0011 (Japan); Wanibuchi, Hideki [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2013-12-01

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulation of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.

  5. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  6. CYP1A1, CYP2E1 Y RIESGO A CÁNCER GÁSTRICO EN UNA POBLACIÓN COLOMBIANA DE ALTA INCIDENCIA

    Directory of Open Access Journals (Sweden)

    Eduardo Castaño

    2009-09-01

    Full Text Available El objetivo fue probar la hipótesis de que en casos y controles, de una población colombiana con alta incidencia de cáncer gástrico, muestran diferencias significativas entre las frecuencias de los polimorfismos genéticos CYP1A1-m2 y CYP2E1-c2; y a la vez, probar si hay diferencias entre el hábito del tabaquismo, el consumo de licor y el estrato socioeconómico; así como también sus posibles interacciones. Ochenta y siete pacientes afectados por cáncer gástrico e igual número de controles, del mismo grupo poblacional, genéticamente aislado, pertenecientes a la comunidad “paisa” del departamento de Caldas, fueron genotipíficados por medio de PCR-RFLPs para los polimorfismos CYP1A1-m2 y CYP2E1-c2. Además, se tuvo en cuenta las variables socioeconómicas y el estilo de vida, con respecto al tabaquismo y al consumo de alcohol. Los resultados encontrados sugieren que los portadores del polimorfismo CYP2E1-c2, asociado con mayor actividad metabólica, tienen mayor riesgo a desarrollar cáncer gástrico (OR=3.6, CI95% 1.6-8.1/p=0,002. En contraste, la frecuencia del polimorfismo CYP1A1*2A (MspI, también asociado con mayor actividad enzimática, mostró similar frecuencia entre los dos grupos. El tabaquismo y el estrato socioeconómico bajo, también mostraron diferencias significativas. En conclusión, se evidencia interacción significativa entre gen-ambiente, particularmente entre el tabaquismo y los alelos bioactiavantes CYP2E1- c2 y CYP1A1-m2, que pueden alterar la susceptibilidad a cáncer de estómago en esta región Andina del noroeste de Sur América.

  7. In vitro study of modulatory effects of extracts of Strobilanthes Crispus on human cDNA-expressed cytochrome P450 2A6 (CYP2A6) and CYP3A4

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Hsu, C.J.; Koh, R.I.; Ong, C.E.; Chieng, J.Y.

    2016-07-01

    Aim: Cytochrome P450 (CYP) 2A6 and CYP3A4 play important roles in biotransformation of endogenous substances as well as xenobiotics. Strobilanthes crispus (L.) Blume (S. crispus) has been found to have anti-cancer activities and this was suggested to be due to inhibition of enzymes involved in metabolic activation of procarcinogens. The purpose of this study was to look into the potential inhibitory effects of various extracts (aqueous, hexane, chloroform, ethyl acetate, and methanol) of S. crispus from leaf and stem on human cDNA-expressed CYP2A6 and CYP3A4 activities. Methods: The activity of CYP2A6 was examined via a fluorescence-based 7-hydroxylase coumarin assay. Meanwhile, high performance liquid chromatography (HPLC)-based testosterone 6β-hydroxylase assay was established to assess CYP3A4 activity. Results: It was shown that none of the extracts from both leaf and stem potently inhibited CYP2A6 and CYP3A4 activities with IC50values above 100μg/ml. Conclusion: The anticancer potency of S. crispus is unlikely due to the modulation of CYP2A6 and CYP3A4 activities, while other mechanisms might be involved and merits further investigation. On the other hand, potential drug-herb interactions occurring between CYP2A6 and CYP3A4 substrates and S. crispus preparations is relatively low, which requires further investigations via in vivo animal as well as clinical studies.

  8. Protein engineering of CYP105s for their industrial uses.

    Science.gov (United States)

    Yasuda, Kaori; Sugimoto, Hiroshi; Hayashi, Keiko; Takita, Teisuke; Yasukawa, Kiyoshi; Ohta, Miho; Kamakura, Masaki; Ikushiro, Shinichi; Shiro, Yoshitsugu; Sakaki, Toshiyuki

    2018-01-01

    Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D 3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Metabolism of Separase Inhibitor Sepin-1 in Human, Mouse, and Rat Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-05-01

    Full Text Available Separase, a known oncogene, is widely overexpressed in numerous human tumors of breast, bone, brain, blood, and prostate. Separase is an emerging target for cancer therapy, and separase enzymatic inhibitors such as sepin-1 are currently being developed to treat separase-overexpressed tumors. Drug metabolism plays a critical role in the efficacy and safety of drug development, as well as possible drug–drug interactions. In this study, we investigated the in vitro metabolism of sepin-1 in human, mouse, and rat liver microsomes (RLM using metabolomic approaches. In human liver microsomes (HLM, we identified seven metabolites including one cysteine–sepin-1 adduct and one glutathione–sepin-1 adduct. All the sepin-1 metabolites in HLM were also found in both mouse and RLM. Using recombinant CYP450 isoenzymes, we demonstrated that multiple enzymes contributed to the metabolism of sepin-1, including CYP2D6 and CYP3A4 as the major metabolizing enzymes. Inhibitory effects of sepin-1 on seven major CYP450s were also evaluated using the corresponding substrates recommended by the US Food and Drug Administration. Our studies indicated that sepin-1 moderately inhibits CYP1A2, CYP2C19, and CYP3A4 with IC50 < 10 μM but weakly inhibits CYP2B6, CYP2C8/9, and CYP2D6 with IC50 > 10 μM. This information can be used to optimize the structures of sepin-1 for more suitable pharmacological properties and to predict the possible sepin-1 interactions with other chemotherapeutic drugs.

  10. Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen

    Directory of Open Access Journals (Sweden)

    Chamnanphon M

    2013-05-01

    Full Text Available Montri Chamnanphon,1 Khunthong Pechatanan,2 Ekapob Sirachainan,3 Narumol Trachu,4 Wasun Chantratita,5 Ekawat Pasomsub,5 Wilai Noonpakdee,6 Insee Sensorn,1,7 Chonlaphat Sukasem11Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 2Department of Medicine, Phramongkutklao College of Medicine, 3Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 4Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 5Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 6Department of Biochemistry, Faculty of Science, Mahidol University, 7Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, ThailandPurpose: To investigate the impact of CYP2D6 and CYP2C19 polymorphisms in predicting tamoxifen efficacy and clinical outcomes in Thai breast cancer patients.Methods: Polymorphisms of CYP2D6 and CYP2C19 were genotyped by the AmpliChip™ CYP450 Test (Roche Molecular Diagnostics, Branchburg, NJ, USA for 57 patients, who were matched as recurrent versus nonrecurrent breast cancers (n = 33 versus n = 24, respectively, with a 5-year follow-up.Results: Based on the genotype data, five CYP2D6 predicted phenotype groups were identified in this study including homozygous extensive metabolizer (13 of 57, 22.80%, extensive/intermediate metabolizer (23 of 57, 40.40%, extensive/poor metabolizer (3 of 57, 5.30%, homozygous intermediate metabolizer (14 of 57, 24.50%, and intermediate/poor metabolizer (4 of 57, 7.00%, and three CYP2C19 genotype groups including homozygous extensive metabolizer (27 of 57, 47.40%, extensive/intermediate metabolizer (27 of 57, 47.40%, and homozygous poor metabolizer (3 of 57, 5.30%. The CYP2D6 variant alleles were *10 (52 of 114, 45.60%, *5 (5 of 114, 4.40%, *41 (2 of 114, 1.80%, *4 (1 of 114, 0

  11. The Obesogenic Potency of Various High-Caloric Diet Compositions in Male Rats, and Their Effects on Expression of Liver and Kidney Proteins Involved in Drug Elimination.

    Science.gov (United States)

    Abdussalam, Ali; Elshenawy, Osama H; Bin Jardan, Yousef A; El-Kadi, Ayman O S; Brocks, Dion R

    2017-06-01

    Obesity is caused by a number of factors including heredity, lack of exercise, and poor diet. Diets rich in fats and carbohydrates are the common culprits leading to obesity. Here we studied the effects of these components on proteins involved in drug disposition. Male rats were given a normal diet (lean controls) or one rich in fats, carbohydrates (as high-fructose corn syrup equivalent) or in combination. After 14 weeks, plasma biochemistry, liver and kidney mRNA and protein for selected cytochrome P450 (CYP) and transporters were determined. Significant increases in body and perinephric fat weight were noted in each of the high-calorie diet-fed groups, with increases being higher in those given high-fat diets. Increases in the protein of CYP3A1/2 and CYP2C11 were seen in liver in high-fat-fed rats. No changes were seen for CYP1A1 at the level of mRNA or protein. For transporters, decreases in expressions of Oct1/2 and Mate1 were seen, with no change in Mdr1. The results showed similarity to earlier assessments of genetically prone rats and suggested that diet-induced obesity has the potential to lead to decreases in the clearance of drugs acting as substrates for CYP 3A, 2C11, and organic cation transport. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse.

    Science.gov (United States)

    Saldaña-Ruíz, Sandra; Soler-Martín, Carla; Llorens, Jordi

    2012-01-25

    Allylnitrile, cis-crotononitrile, and 3,3'-iminodipropionitrile are known to cause vestibular toxicity in rodents, and evidence is available indicating that cis-2-pentenenitrile shares this effect. We evaluated nineteen nitriles for vestibular toxicity in wild type (129S1) and CYP2E1-null mice, including all the above, several neurotoxic nitriles, and structurally similar nitriles. A new acute toxicity test protocol was developed to facilitate evaluation of the vestibular toxicity by a specific behavioral test battery at doses up to sub-lethal levels while using a limited number of animals. A mean number of 8.5±0.3 animals per nitrile, strain and sex was necessary to obtain evidence of vestibular toxicity and optionally an estimation of the lethal dose. For several but not all nitriles, lethal doses significantly increased in CYP2E1-null mice. The protocol revealed the vestibular toxicity of five nitriles, including previously identified ototoxic compounds and one nitrile (trans-crotononitrile) known to have a different profile of neurotoxic effects in the rat. In all five cases, both sexes were affected and no decrease in susceptibility was apparent in CYP2E1-null mice respect to 129S1 mice. Fourteen nitriles caused no vestibular toxicity, including six nitriles tested in CYP2E1-null mice at doses significantly larger than the maximal doses that can be tested in wild type animals. We conclude that only a subset of low molecular weight nitriles is toxic to the vestibular system, that species-dependent differences exist in this vestibular toxicity, and that CYP2E1-mediated metabolism is not involved in this effect of nitriles although it has a role in the acute lethality of some of these compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Pharmacokinetic study of isocorynoxeine metabolites mediated by cytochrome P450 enzymes in rat and human liver microsomes.

    Science.gov (United States)

    Zhao, Lizhu; Zang, Bin; Qi, Wen; Chen, Fangfang; Wang, Haibo; Kano, Yoshihiro; Yuan, Dan

    2016-06-01

    Isocorynoxeine (ICN) is one of the major bioactive tetracyclic oxindole alkaloids found in Uncaria rhynchophylla (Miq.) Jacks. that is widely used for the treatment of hypertension, vascular dementia, and stroke. The present study was undertaken to assess the plasma pharmacokinetic characteristics of major ICN metabolites, and the role of simulated gastric and intestinal fluid (SGF and SIF), human and rat liver microsomes (HLMs and RLMs), and seven recombinant human CYP enzymes in the major metabolic pathway of ICN. A rapid, sensitive and accurate UHPLC/Q-TOF MS method was validated for the simultaneous determination of ICN and its seven metabolites in rat plasma after oral administration of ICN at 40mg/kg. It was found that 18.19-dehydrocorynoxinic acid (DCA) and 5-oxoisocorynoxeinic acid (5-O-ICA) were both key and predominant metabolites, rather than ICN itself, due to the rapid and extensive metabolism of ICN in vivo. The further study indicated that ICN was mainly metabolized in human or rat liver, and CYPs 2C19, 3A4 and 2D6 were the major enzymes responsible for the biotransformation of ICN to DCA and 5-O-ICA in human. These findings are of significance in understanding of the pharmacokinetic nature of tetracyclic oxindole alkaloids, and provide helpful information for the clinical co-administration of the herbal preparations containing U. rhynchophylla with antihypertensive drugs that are mainly metabolized by CYP3A4 and CYP2C19. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysis of CYP3A4 genetic polymorphisms in Han Chinese.

    Science.gov (United States)

    Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian

    2011-06-01

    Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.

  15. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Manna Jose

    2014-01-01

    Full Text Available Aim: Pregnancy in women with epilepsy (WWE who are on anti-epileptic drugs (AEDs has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M and 123 WWE who had normal offsprings (WWE-N. Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032 whereas the poor metabolizer allele FNx012 and FNx012 FNx012 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively. All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations. Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE.

  16. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine.

    Science.gov (United States)

    El Rouby, Nihal; Lima, John J; Johnson, Julie A

    2018-04-01

    Proton Pump inhibitors (PPIs) are commonly used for a variety of acid related disorders. Despite the overall effectiveness and safety profile of PPIs, some patients do not respond adequately or develop treatment related adverse events. This variable response among patients is in part due to genotype variability of CYP2C19, the gene encoding the CYP450 (CYP2C19) isoenzyme responsible for PPIs metabolism. Areas covered: This article provides an overview of the pharmacokinetics and mechanism of action of the currently available PPIs, including the magnitude of CYPC19 contribution to their metabolism. Additionally, the role of CYP2C19 genetic variability in the therapeutic effectiveness or outcomes of PPI therapy is highlighted in details, to provide supporting evidence for the potential value of CYP2C19 genotype-guided approaches to PPI drug therapy. Expert opinion: There is a large body of evidence describing the impact of CYP2C19 variability on PPIs and its potential role in individualizing PPI therapy, yet, CYP2C19 pharmacogenetics has not been widely implemented into clinical practice. More data are needed but CYP2C19 genotype-guided dosing of PPIs is likely to become increasingly common and is expected to improve clinical outcomes, and minimize side effects related to PPIs.

  17. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    Directory of Open Access Journals (Sweden)

    Saori Tsuji

    Full Text Available Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  18. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    Science.gov (United States)

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  19. Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity

    International Nuclear Information System (INIS)

    Boutros, Paul C.; Yao, Cindy Q.; Watson, John D.; Wu, Alexander H.; Moffat, Ivy D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo

    2011-01-01

    The dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a wide range of toxic effects in rodent species, all of which are mediated by a ligand-dependent transcription-factor, the aryl hydrocarbon receptor (AHR). The Han/Wistar (Kuopio) (H/W) strain shows exceptional resistance to many TCDD-induced toxicities; the LD 50 of > 9600 μg/kg for H/W rats is higher than for any other wild-type mammal known. We previously showed that this resistance primarily results from H/W rats expressing a variant AHR isoform that has a substantial portion of the AHR transactivation domain deleted. Despite this large deletion, H/W rats are not entirely refractory to the effects of TCDD; the variant AHR in these animals remains fully competent to up-regulate well-known dioxin-inducible genes. TCDD-sensitive (Long-Evans, L-E) and resistant (H/W) rats were treated with either corn-oil (with or without feed-restriction) or 100 μg/kg TCDD for either four or ten days. Hepatic transcriptional profiling was done using microarrays, and was validated by RT-PCR analysis of 41 genes. A core set of genes was altered in both strains at all time points tested, including CYP1A1, CYP1A2, CYP1B1, Nqo1, Aldh3a1, Tiparp, Exoc3, and Inmt. Outside this core, the strains differed significantly in the breadth of response: three-fold more genes were altered in L-E than H/W rats. At ten days almost all expressed genes were dysregulated in L-E rats, likely reflecting emerging toxic responses. Far fewer genes were affected by feed-restriction, suggesting that only a minority of the TCDD-induced changes are secondary to the wasting syndrome.

  20. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats.

    Directory of Open Access Journals (Sweden)

    Yinghua Shi

    Full Text Available To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC and total bile acids (TBA levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1 The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group (P<0.05. (2 Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05. TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05. (3 mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05, as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05. The activities of these enzymes also paralleled the observed changes in mRNA levels. (4 There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1 the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2 the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.

  1. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women.

    Science.gov (United States)

    Floyd, Michael D; Gervasini, Guillermo; Masica, Andrew L; Mayo, Gail; George, Alfred L; Bhat, Kolari; Kim, Richard B; Wilkinson, Grant R

    2003-10-01

    CYP3A activity in adults varies between individuals and it has been suggested that this has a genetic basis, possibly related to variant alleles in CYP3A4 and CYP3A5 genes. Accordingly, genotype-phenotype associations were investigated under constitutive and induced conditions. Midazolam's systemic and oral clearances, and the erythromycin breath test (ERBT) were determined in 57 healthy subjects: 23 (11 men, 12 women) European- and 34 (14 men, 20 women) African-Americans. Studies were undertaken in the basal state and after 14-15 days pretreatment with rifampin. DNA was characterized for the common polymorphisms CYP3A4*1B, CYP3A5*3, CYP3A5*6 and CYP3A5*7 by direct sequencing, and for exon 21 and exon 26 variants of MDR1 by allele-specific, real-time polymerase chain reaction. In 95% of subjects, the basal systemic clearance of midazolam was unimodally distributed and variability was less than four-fold whereas, in 98% of the study population, oral clearance varied five-fold. No population or sex-related differences were apparent. Similar findings were observed with the ERBT. Rifampin pretreatment markedly increased the systemic (two-fold) and oral clearance (16-fold) of midazolam, and the ERBT (two-fold) but the variabilities were unchanged. No associations were noted between these phenotypic measures and any of the studied genotypes, except for oral clearance and its fold-increase after rifampin. These were related to the presence of CYP3A4*1B and the inversely linked CYP3A5*3 polymorphism, with the extent of induction being approximately 50% greater in CYP3A5*3 homozygotes compared to wild-type subjects. In most healthy subjects, variability in intestinal and hepatic CYP3A activity, using midazolam as an in-vivo probe, is modest and common polymorphisms in CYP3A4 and CYP3A5 do not appear to have important functional significance.

  2. Comparison of CYP2C9, CYP2C19, CYP2D6, ABCB1, and SLCO1B1 gene-polymorphism frequency in Russian and Nanai populations

    Directory of Open Access Journals (Sweden)

    Sychev DA

    2017-03-01

    Full Text Available Dmitrij Alekseevitch Sychev,1 Grigorij Nikolaevich Shuev,1 Salavat Shejhovich Suleymanov,2 Kristina Anatol’evna Ryzhikova,3 Karin Badavievich Mirzaev,3 Elena Anatol’evna Grishina,3 Natalia Evgenievna Snalina,3 Zhannet Alimovna Sozaeva,3 Anton Mikhailovich Grabuzdov,4 Irina Andreevna Matsneva4 1Department of Internal Medicine and Clinical Pharmacology, Russian Medical Academy of Continuing Professional Education, Ministry of Healthcare, Moscow, 2Saiko Russian–Japanese Medical Center, Khabarovsk, 3Research Centre, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, 4Department of General Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation Background: The efficiency and safety of drug therapy depends on the peculiarities of functioning of the P450 cytochrome group and transporting proteins. There are significant differences for single-nucleotide polymorphism (SNP frequency. Materials and methods: We studied the peculiarities of P450 cytochrome polymorphisms, SLCO1B1 transporting protein, and P-glycoprotein carriage in healthy volunteers in the Nanai ethnic group living in Russia, and compared them to the carriage of SNPs in the Russian population according to literature data. Results: After performing the real-time polymerase chain reactions on the samples from 70 healthy volunteers from the Nanai group, for the CYP2C9*2C430T polymorphism we determined 70 CC-genotype carriers. As for the CYP2C9*3A1075C polymorphism, we found 62 AA-genotype carriers and eight AC-genotype carriers. For the CYP2C19*2G681A polymorphism, we determined 39 GG-genotype carriers and 28 GA-genotype carriers, for the CYP2C19*3G636A polymorphism 58 GG-genotype carriers and 12 GA-genotype carriers, and for the CYP2C19*17C806T polymorphism 67 CC-genotype carriers and three CT-genotype carriers. For the CYP2D6*4G1846A polymorphism, the GG genotype had 68 carriers, and the GA genotype two carriers. For the

  3. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    Science.gov (United States)

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with K s values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute -1 ) than CYP2A13 (∼0.02 minute -1 ) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute -1 ) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute -1 ) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute -1 ). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  5. The impact of CYP2D6 and CYP2C19 polymorphisms on suicidal behavior and substance abuse disorder among patients with schizophrenia: a retrospective study

    DEFF Research Database (Denmark)

    Kobylecki, C.J.; Hansen, T.; Timm, S.

    2008-01-01

    Suicidal behavior and substance abuse are frequent phenomena among patients with schizophrenia and may be attributable in part to antipsychotic treatment failure. Individuals who carry functional variants of the CYP2D6 and CYP2C19 genes, shown to cause altered drug metabolism of psychoactive drugs......, are at risk of toxic accumulation or rapid elimination of these drugs, leading to treatment failure. We tested whether substance abuse disorder and suicidal behavior were associated with the CYP2D6 and CYP2C19 genotypes among patients with schizophrenia. Three hundred sixty-two patients with schizophrenia...

  6. An overview on the allelic variant of CYP2D6 genotype

    African Journals Online (AJOL)

    Yomi

    plants, fungi, slime molds, bacteria and archaea. More than 7700 distinct CYP sequences are known. ... SIGNIFICANCE OF CYTOCHROME P450 IN HUMANS. Human CYPs are primarily membrane-associated proteins, ..... Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics.

  7. Characterization of drug-metabolizing enzymes CYP2C9, CYP2C19 ...

    Indian Academy of Sciences (India)

    on ethnic groups can alter CYP activity and then affect the .... A higher frequency of EM was observed in Tunisian (0.837) popula- tion than in Kuwaiti (0.5) and Bahraini (0.425) ..... excessive serum phenytoin concentration with central nervous.

  8. CYP2R1 mutations causing vitamin D-deficiency rickets.

    Science.gov (United States)

    Thacher, Tom D; Levine, Michael A

    2017-10-01

    CYP2R1 is the principal hepatic 25-hydroxylase responsible for the hydroxylation of parent vitamin D to 25-hydroxyvitamin D [25(OH)D]. Serum concentrations of 25(OH)D reflect vitamin D status, because 25(OH)D is the major circulating metabolite of vitamin D. The 1α-hydroxylation of 25(OH)D in the kidney by CYP27B1 generates the fully active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25(OH) 2 D). The human CYP2R1 gene, located at 11p15.2, has five exons, coding for an enzyme with 501 amino acids. In Cyp2r1-/- knockout mice, serum 25(OH)D levels were reduced by more than 50% compared wild-type mice. Genetic polymorphisms of CYP2R1 account for some of the individual variability of circulating 25(OH)D values in the population. We review the evidence that inactivating mutations in CYP2R1 can lead to a novel form of vitamin D-deficiency rickets resulting from impaired 25-hydroxylation of vitamin D. We sequenced the promoter, exons and intron-exon flanking regions of the CYP2R1 gene in members of 12 Nigerian families with rickets in more than one family member. We found missense mutations (L99P and K242N) in affected members of 2 of 12 families. The L99P mutation had previously been reported as a homozygous defect in an unrelated child of Nigerian origin with rickets. In silico analyses predicted impaired CYP2R1 folding or reduced interaction with substrate vitamin D by L99P and K242N mutations, respectively. In vitro studies of the mutant CYP2R1 proteins in HEK293 cells confirmed normal expression levels but completely absent or markedly reduced 25-hydroxylase activity by the L99P and K242N mutations, respectively. Heterozygous subjects had more moderate biochemical and clinical features of vitamin D deficiency than homozygous subjects. After an oral bolus dose of 50,000 IU of vitamin D 2 or vitamin D 3 , heterozygous subjects had lower increases in serum 25(OH)D than control subjects, and homozygous subjects had minimal increases, supporting a semidominant

  9. Epigenetic silencing of CYP24 in the tumor microenvironment

    Science.gov (United States)

    Johnson, Candace S.; Chung, Ivy; Trump, Donald L.

    2010-01-01

    Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059

  10. The impact of Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes on suicide attempt and suicide risk-a European multicentre study on treatment-resistant major depressive disorder.

    Science.gov (United States)

    Höfer, Peter; Schosser, Alexandra; Calati, Raffaella; Serretti, Alessandro; Massat, Isabelle; Kocabas, Neslihan Aygun; Konstantinidis, Anastasios; Linotte, Sylvie; Mendlewicz, Julien; Souery, Daniel; Zohar, Joseph; Juven-Wetzler, Alzbeta; Montgomery, Stuart; Kasper, Siegfried

    2013-08-01

    Recently published data have reported associations between cytochrome P450 metabolizer status and suicidality. The aim of our study was to investigate the role of genetic polymorphisms of the cytochrome P450 genes on suicide risk and/or a personal history of suicide attempts. Two hundred forty-three major depressive disorder patients were collected in the context of a European multicentre resistant depression study and treated with antidepressants at adequate doses for at least 4 weeks. Suicidality was assessed using the Mini International Neuropsychiatric Interview and the Hamilton Rating Scale for Depression (HAM-D). Treatment response was defined as HAM-D ≤ 17 and remission as HAM-D ≤ 7 after 4 weeks of treatment with antidepressants at adequate dose. Genotyping was performed for all relevant variations of the CYP1A2 gene (*1A, *1F, *1C, *1 J, *1 K), the CYP2C9 gene (*2, *3), the CYP2C19 gene (*2, *17) and the CYP2D6 gene (*3, *4, *5, *6, *9, *19, *XN). No association between both suicide risk and personal history of suicide attempts, and the above mentioned metabolic profiles were found after multiple testing corrections. In conclusion, the investigated cytochrome gene polymorphisms do not seem to be associated with suicide risk and/or a personal history of suicide attempts, though methodological and sample size limitations do not allow definitive conclusions.

  11. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  12. Antimutagenic properties of Mangifera indica L. stem bark extract and evaluation of its effects on hepatic CYP1A1.

    Science.gov (United States)

    Morffi, Janet; Rodeiro, Idania; Hernández, Sandra Luz; González, Leonora; Herrera, Jose; Espinosa-Aguirre, J Javier

    2012-09-01

    Mangifera indica stem bark extract (MSBE) is a Cuban natural product which has shown strong antioxidant properties. In this work, the antimutagenic effect of MSBE was tested against 10 well-known mutagens/carcinogens in the Ames test in the absence or presence of metabolic fraction (S9). The chemical mutagens tested included: cyclophosphamide, mitomycin C, bleomycin, cisplatin, dimethylnitrosamine (DMNA), benzo[a]pyrene (BP), 2-acetylaminofluorene (2-AAF), sodium azide, 1-nitropyrene (1-NP) and picrolonic acid. Protective effects of the extract were also evaluated by comparing the efficiency of S9 fraction obtained from rats treated during 28 days with oral doses of MSBE (50-500 mg/kg) with that obtained from rats treated with vehicle (control) to activate bleomycin and cyclophosphamide in the Ames test. MSBE concentrations between 50 and 500 μg/plate significantly reduced the mutagenicity mediated by all the chemicals tested with the exception of sodium azide. Higher mutagenicity was found when bleomycin and cyclophosphamide (CP) were activated by control S9 than by MSBE S9. In addition, inhibition of CYP1A1 microsomal activity was observed in the presence of MSBE (10-20 μg/ml). We can conclude that besides its potent antioxidant activity previously reported, MSBE may also exert a chemoprotective effect due to its capacity to inhibit CYP activity.

  13. Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats

    International Nuclear Information System (INIS)

    Tissandie, E.; Gueguen, Y.; Lobaccaro, J.M.A.; Aigueperse, J.; Gourmelon, P.; Paquet, F.; Souidi, M.

    2006-01-01

    Twenty years after Chernobyl disaster, many people are still chronically exposed to low dose of 137 Cs, mainly through the food consumption. A large variety of diseases have been described in highly exposed people with 137 Cs, which include bone disorders. The aim of this work was to investigate the biological effects of a chronic exposure to 137 Cs on Vitamin D 3 metabolism, a hormone essential in bone homeostasis. Rats were exposed to 137 Cs in their drinking water for 3 months at a dose of 6500 Bq/l (approximately 150 Bq/rat/day), a similar concentration ingested by the population living in contaminated territories in the former USSR countries. Cytochromes P450 enzymes involved in Vitamin D 3 metabolism, related nuclear receptors and Vitamin D 3 target genes were assessed by real time PCR in liver, kidney and brain. Vitamin D, PTH, calcium and phosphate levels were measured in plasma. An increase in the expression level of cyp2r1 (40%, p 137 Cs-exposed rats. However a significant decrease of Vitamin D (1,25(OH)D 3 ) plasma level (53%, p = 0.02) was observed. In brain, cyp2r1 mRNA level was decreased by 20% (p 137 Cs contamination. In conclusion, this study showed for the first time that chronic exposure with post-accidental doses of 137 Cs affects Vitamin D 3 active form level and induces molecular modifications of CYPs enzymes involved its metabolism in liver and brain, without leading to mineral homeostasis disorders

  14. CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients

    DEFF Research Database (Denmark)

    Olivieri, Eloisa Helena Ribeiro; da Silva, Sabrina Daniela; Mendonça, Fernando Fernandes

    2009-01-01

    is performed by glutathione S-transferases (GSTs). It has been suggested that genetic alterations, such as polymorphisms, play an important role in tumorigenesis and HNSCC progression. The aim of this study was to investigate CYP1A1, CYP1A2, CYP2E1, GSTM1, and GSTT1 polymorphisms as risk factors in HNSCC...... and their association with clinicopathologic data. The patients comprised 153 individuals with HNSCC (cases) and 145 with no current or previous diagnosis of cancer (controls). Genotyping of the single nucleotide polymorphisms (SNPs) of the CYP1A1, CYP1A2, and CYP2E1 genes was performed by PCR-RFLP and the GSTM1...... for determining the parameters associated with tumor progression and poor outcomes in HNSCC....

  15. CYP2D6 genotype dependent oxycodone metabolism in postoperative patients.

    Science.gov (United States)

    Stamer, Ulrike M; Zhang, Lan; Book, Malte; Lehmann, Lutz E; Stuber, Frank; Musshoff, Frank

    2013-01-01

    The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone's metabolism and clinical efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and impacts analgesic consumption. Patients received oxycodone 0.05 mg/kg before emerging from anesthesia and patient-controlled analgesia (PCA) for the subsequent 48 postoperative hours. Blood samples were drawn at 30, 90 and 180 minutes after the initial oxycodone dose. Plasma concentrations of oxycodone and its metabolites oxymorphone, noroxycodone and noroxymorphone were analyzed by liquid chromatography-mass spectrometry with electrospray ionization. CYP2D6 genotyping was performed and 121 patients were allocated to the following genotype groups: PM (poor metabolizer: no functionally active CYP2D6 allele), HZ/IM (heterozygous subjects, intermediate metabolizers with decreased CYP2D6 activity), EM (extensive metabolizers, normal CYP2D6 activity) and UM (ultrarapid metabolizers, increased CYP2D6 activity). Primary endpoint was the genotype dependent metabolite ratio of plasma concentrations oxymorphone/oxycodone. Secondary endpoint was the genotype dependent analgesic consumption with calculation of equianalgesic doses compared to the standard non-CYP dependent opioid piritramide. Metabolism differed between CYP2D6 genotypes. Mean (95%-CI) oxymophone/oxycodone ratios were 0.10 (0.02/0.19), 0.13 (0.11/0.16), 0.18 (0.16/0.20) and 0.28 (0.07/0.49) in PM, HZ/IM, EM and UM, respectively (p = 0.005). Oxycodone consumption up to the 12(th) hour was highest in PM (p = 0.005), resulting in lowest equianalgesic doses of piritramide versus oxycodone for PM (1.6 (1.4/1.8); EM and UM 2.2 (2.1/2.3); p<0.001). Pain scores did not differ between genotypes. In this postoperative setting, the number of functionally active CYP2D6 alleles had an impact

  16. CYP2D6 genotype dependent oxycodone metabolism in postoperative patients.

    Directory of Open Access Journals (Sweden)

    Ulrike M Stamer

    Full Text Available BACKGROUND: The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone's metabolism and clinical efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and impacts analgesic consumption. METHODS: Patients received oxycodone 0.05 mg/kg before emerging from anesthesia and patient-controlled analgesia (PCA for the subsequent 48 postoperative hours. Blood samples were drawn at 30, 90 and 180 minutes after the initial oxycodone dose. Plasma concentrations of oxycodone and its metabolites oxymorphone, noroxycodone and noroxymorphone were analyzed by liquid chromatography-mass spectrometry with electrospray ionization. CYP2D6 genotyping was performed and 121 patients were allocated to the following genotype groups: PM (poor metabolizer: no functionally active CYP2D6 allele, HZ/IM (heterozygous subjects, intermediate metabolizers with decreased CYP2D6 activity, EM (extensive metabolizers, normal CYP2D6 activity and UM (ultrarapid metabolizers, increased CYP2D6 activity. Primary endpoint was the genotype dependent metabolite ratio of plasma concentrations oxymorphone/oxycodone. Secondary endpoint was the genotype dependent analgesic consumption with calculation of equianalgesic doses compared to the standard non-CYP dependent opioid piritramide. RESULTS: Metabolism differed between CYP2D6 genotypes. Mean (95%-CI oxymophone/oxycodone ratios were 0.10 (0.02/0.19, 0.13 (0.11/0.16, 0.18 (0.16/0.20 and 0.28 (0.07/0.49 in PM, HZ/IM, EM and UM, respectively (p = 0.005. Oxycodone consumption up to the 12(th hour was highest in PM (p = 0.005, resulting in lowest equianalgesic doses of piritramide versus oxycodone for PM (1.6 (1.4/1.8; EM and UM 2.2 (2.1/2.3; p<0.001. Pain scores did not differ between genotypes. CONCLUSIONS: In this postoperative setting, the number of

  17. CYP2D6 polymorphisms and their influence on risperidone treatment

    Directory of Open Access Journals (Sweden)

    Puangpetch A

    2016-12-01

    Full Text Available Apichaya Puangpetch,1 Natchaya Vanwong,1 Nopphadol Nuntamool,2 Yaowaluck Hongkaew,1 Monpat Chamnanphon,1 Chonlaphat Sukasem1 1Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, 2Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand Abstract: Cytochrome P450 enzyme especially CYP2D6 plays a major role in biotransformation. The interindividual variations of treatment response and toxicity are influenced by the polymorphisms of this enzyme. This review emphasizes the effect of CYP2D6 polymorphisms in risperidone treatment in terms of basic knowledge, pharmacogenetics, effectiveness, adverse events, and clinical practice. Although the previous studies showed different results, the effective responses in risperidone treatment depend on the CYP2D6 polymorphisms. Several studies suggested that CYP2D6 polymorphisms were associated with plasma concentration of risperidone, 9-hydroxyrisperidone, and active moiety but did not impact on clinical outcomes. In addition, CYP2D6 poor metabolizer showed more serious adverse events such as weight gain and prolactin than other predicted phenotype groups. The knowledge of pharmacogenomics of CYP2D6 in risperidone treatment is increasing, and it can be used for the development of personalized medication in term of genetic-based dose recommendation. Moreover, the effects of many factors in risperidone treatment are still being investigated. Both the CYP2D6 genotyping and therapeutic drug monitoring are the important steps to complement the genetic-based risperidone treatment. Keywords: CYP2D6, risperidone, polymorphisms, adverse drug reaction, pharmacogenetics, pharmacokinetics, pharmacodynamics

  18. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

    Science.gov (United States)

    Surichan, Somchaiya; Androutsopoulos, Vasilis P; Sifakis, Stavros; Koutala, Eleni; Tsatsakis, Aristidis; Arroo, Randolph R J; Boarder, Michael R

    2012-09-01

    Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. CYP2C9 polymorphism in non-steroidal anti-inflammatory drugs-induced gastropathy.

    Science.gov (United States)

    Ma, Juan; Yang, Xiu Yan; Qiao, Liang; Liang, Liu Qin; Chen, Min Hu

    2008-05-01

    Non-steroidal anti-inflammatory drugs (NSAID) induce gastroduodenal mucosal injury and are metabolized by cytochrome P450 2C9 (CYP2C9). It is postulated that CYP2C9 genotype is associated with NSAID-induced gastropathy. This study aims to determine whether individuals with a CYP2C9 allele mutation are susceptible to NSAID-induced gastropathy. A total of 109 patients diagnosed as having rheumatic diseases and taking NSAID were appraised as having gastropathy by endoscopy, stool occult blood test and questionnaire two weeks after entering the study. Their peripheral blood was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A total of 47.7% gastropathy (33% erosions, 14.7% ulcers, 2.75% ulcer bleeding) and 56% dyspeptic symptoms were presented. Only one CYP2C9*2 heterozygote (*1/*2) was found in the group with gastropathy and two variant alleles (CYP2C9*2 and CYP2C9* 3) could not be found in the group without gastropathy. There was no significant difference in both CYP2C9 genotype (0.96%vs 0%) and CYP2C9 variant allele frequency (1.92%vs 0%) between patients with and without gastropathy. These results confirm the high prevalence of NSAID-induced gastropathy but do not support the postulation that CYP2C9*2 and CYP2C9*3 contribute to the development of NSAID-induced gastropathy. This may be due to the low frequency of the two alleles in the population studied.

  20. Acetaldehyde and parkinsonism: role of CYP450 2E1

    Directory of Open Access Journals (Sweden)

    Francesca eVaglini

    2013-06-01

    Full Text Available The present review update the relationship between acetaldehyde and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly.We have indicated that acetaldehyde is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine neurons of rodent Substantia Nigra, but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the Substantia Nigra induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. Acetaldehyde is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson’s Disease patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and

  1. Ekspresi Gen CYP19 Aromatase, Estrogen, Androgen pada penderita Periodontitis Agresif

    Directory of Open Access Journals (Sweden)

    Dahlia Herawati

    2016-11-01

    Full Text Available Kepadatan tulang tubuh ditentukan oleh gen CYP19 aromatase, hormon estrogen dan androgen. Pada periodontitis agresif terjadi perkembangan cepat kerusakan tulang alveolar, dan kerusakan tulang alveoler tersebut tidak diimbangioleh regenerasi tulang. Tujuan penelitian ini adalah menunjukkan ekspresi gen CYP19 aromatase, estrogen, androgen pada penderita periodontitis agresif agar dapat untuk menjadi pertimbangan pada saat melakukan perawatan periodontal. Metode penelitian, pemeriksaan ekspresi gen aromatse CYP19 berasal dari spesimen tulang alveolar menggunakan imunohistokimia, pengukuran hormon estrogen dan androgen dari serum menggunakan Vidas: Elfa. Hasil penelitian ekspresi gene CYP19 aromatase pada periodontitis agresif menunjukkan gambaran lebih rendah densitasnya dibandingkan pada nonperiodontitis. Estrogen dan androgen pad aperiodontitis agresif ada kecenderungan lebih rendah dibandingkan pada nonperiodontitis. Kesimpulan regenerasi tulang alveoler pad a periodontitis agresif terhambat karena sedikitnya gen CYP19 aromatase dan hormon estrogen dan androgen yang berperan pada pembentukan tulang alveoler kurang memadai.

  2. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    International Nuclear Information System (INIS)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa

    2013-01-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  3. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  4. Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells

    Energy Technology Data Exchange (ETDEWEB)

    Kovalova, Natalia, E-mail: kovalova@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Manzan, Maria, E-mail: ale.manzan@gmail.com [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Crawford, Robert, E-mail: crawfo28@msu.edu [Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States); Kaminski, Norbert, E-mail: kamins11@msu.edu [Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, Lansing, MI 48824 (United States)

    2016-10-15

    Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I + P517S, R554K + V570I and P517S + R554K + V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR{sup +} (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S + R554K + V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I. - Highlights: • Mouse, rat and SKW-AHR{sup +} B cells have a similar window of sensitivity to TCDD. • R554K AhR SNP alters B cell sensitivity to TCDD-mediated Cyp1B1 and Cyp1A2 induction. • Combination of P517S, R554K, and V570I SNPs attenuates TCDD-induced IgM suppression.

  5. CYP2C8 activity recovers within 96 hours after gemfibrozil dosing: estimation of CYP2C8 half-life using repaglinide as an in vivo probe.

    Science.gov (United States)

    Backman, Janne T; Honkalammi, Johanna; Neuvonen, Mikko; Kurkinen, Kaisa J; Tornio, Aleksi; Niemi, Mikko; Neuvonen, Pertti J

    2009-12-01

    Gemfibrozil 1-O-beta-glucuronide is a mechanism-based inhibitor of cytochrome P450 2C8. We studied the recovery of CYP2C8 activity after discontinuation of gemfibrozil treatment using repaglinide as a probe drug, to estimate the in vivo turnover half-life of CYP2C8. In a randomized five-phase crossover study, nine healthy volunteers ingested 0.25 mg of repaglinide alone or after different time intervals after a 3-day treatment with 600 mg of gemfibrozil twice daily. The area under the plasma concentration-time curve (AUC) from time 0 to infinity of repaglinide was 7.6-, 2.9-, 1.4- and 1.0-fold compared with the control phase when it was administered 1, 24, 48, or 96 h after the last gemfibrozil dose, respectively (P gemfibrozil). Thus, a strong CYP2C8 inhibitory effect persisted even after gemfibrozil and gemfibrozil 1-O-beta-glucuronide concentrations had decreased to less than 1% of their maximum (24-h dosing interval). In addition, the metabolite to repaglinide AUC ratios indicated that significant (P gemfibrozil administration. Based on the recovery of repaglinide oral clearance, the in vivo turnover half-life of CYP2C8 was estimated to average 22 +/- 6 h (mean +/- S.D.). In summary, CYP2C8 activity is recovered gradually during days 1 to 4 after gemfibrozil discontinuation, which should be considered when CYP2C8 substrate dosing is planned. The estimated CYP2C8 half-life will be useful for in vitro-in vivo extrapolations of drug-drug interactions involving induction or mechanism-based inhibition of CYP2C8.

  6. Effect of pomegranate juice pre-treatment on the transport of carbamazepine across rat intestine

    Directory of Open Access Journals (Sweden)

    D Adukondalu

    2010-12-01

    Full Text Available "n  "nBackground and the purpose of the study: Many drug substances along with a variety of naturally occurring dietary or herbal components interact with the CYP enzyme system.The present study was aimed to investigate the effect of pomegranate juice pre-treatment on the transport of carbamazepine across the rat intestine "nMethods: The transport of carbamazepine across different parts of rat intestine was studied by everted and non-everted sac methods. The control and pomegranate juice (10 ml Kg-1 for 7 days pre-treated rats were sacrificed and isolated the intestine. The sacs of intestine were prepared, treated with carbamazepine solution and then placed in dulbeccos buffer. Samples were collected periodically and the drug content was estimated using HPLC. Results and conclusion: The results show that there was a significant (p<0.05 difference in the transport of carbamazepine from the intestinal sacs of pretreated with pomegranate juice and control. It seems that pomegranatejuice might have induced CYP3A4enzymes and hence drug is extensively metabolized.

  7. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  8. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Dongping Tu

    2016-10-01

    Full Text Available CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii. However, little is known about the SgCYP450-4 gene in S. grosvenorii. Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid-amplification of cDNA ends (RACE strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1 and contains a complete open reading frame (ORF of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of SgCYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii. Hormonal treatment could significantly induce the expression of SgCYP450-4. These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  9. Human CYP2E1 mediates the formation of glycidamide from acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Settels, Eva; Appel, Klaus E. [Federal Institute for Risk Assessment, Center for Experimental Toxicology, Berlin (Germany); Bernauer, Ulrike; Gundert-Remy, Ursula [Federal Institute for Risk Assessment, Department of Safety of Substances and Preparations, Berlin (Germany); Palavinskas, Richard; Klaffke, Horst S. [Federal Institute for Risk Assessment, Center for Analytical Chemistry, Berlin (Germany)

    2008-10-15

    Regarding the cancer risk assessment of acrylamide (AA) it is of basic interest to know, as to what amount of the absorbed AA is metabolized to glycidamide (GA) in humans, compared to what has been observed in laboratory animals. GA is suspected of being the ultimate carcinogenic metabolite of AA. From experiments with CYP2E1-deficient mice it can be concluded that AA is metabolized to GA primarily by CYP2E1. We therefore examined whether CYP2E1 is involved in GA formation in non-rodent species with the focus on humans by using human CYP2E1 supersomes trademark, marmoset and human liver microsomes and in addition, genetically engineered V79 cells expressing human CYP2E1 (V79h2E1 cells). Special emphasis was placed on the analytical detection of GA, which was performed by gas chromatography/mass spectrometry. The results show that AA is metabolized to GA in human CYP2E1 supersomes trademark, in marmoset and human liver microsomes as well as in V79h2E1 cells. The activity of GA formation is highest in supersomes trademark; in human liver it is somewhat higher than in marmoset liver. A monoclonal CYP2E1 human selective antibody (MAB-2E1) and diethyldithiocarbamate (DDC) were used as specific inhibitors of CYP2E1. The generation of GA could be inhibited by MAB-2E1 to about 80% in V79h2E1 cells and to about 90% in human and marmoset liver microsomes. Also DDC led to an inhibition of about 95%. In conclusion, AA is metabolized to GA by human CYP2E1. Overall, the present work describes (1) the application and refinement of a sensitive methodology in order to determine low amounts of GA, (2) the applicability of genetically modified V79 cell lines in order to investigate specific questions concerning metabolism and (3) the involvement, for the first time, of human CYP2E1 in the formation of GA from AA. Further studies will compare the activities of GA formation in genetically engineered V79 cells expressing CYP2E1 from different species. (orig.)

  10. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    Science.gov (United States)

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  11. Induction of biotransformation enzymes by the carcinogenic air-pollutant 3-nitrobenzanthrone in liver, kidney and lung, after intra-tracheal instillation in rats.

    Science.gov (United States)

    Mizerovská, Jana; Dračínská, Helena; Frei, Eva; Schmeiser, Heinz H; Arlt, Volker M; Stiborová, Marie

    2011-02-28

    3-Nitrobenzanthrone (3-NBA), a carcinogenic air pollutant, was investigated for its ability to induce cytochrome P450 (CYP) 1A1/2 and NAD(P)H:quinone oxidoreductase (NQO1) in liver, kidney and lung of rats treated by intra-tracheal instillation. The organs used were from a previous study performed to determine the persistence of 3-NBA-derived DNA adducts in target and non-target tissues (Bieler et al., Carcinogenesis 28 (2007) 1117-1121, [22]). NQO1 is the enzyme reducing 3-NBA to N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) and CYP1A enzymes oxidize a human metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), to yield the same reactive intermediate. 3-NBA and 3-ABA are both activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and from liver and kidney. Each compound generated the same five DNA adducts detectable by (32)P-postlabelling. When hepatic cytosols from rats treated with 0.2 or 2mg/kg body weight of 3-NBA were incubated with 3-NBA, DNA adduct formation was 3.2- and 8.6-fold higher, respectively, than in incubations with cytosols from control animals. Likewise, cytosols isolated from lungs and kidneys of rats exposed to 3-NBA more efficiently activated 3-NBA than those of control rats. This increase corresponded to an increase in protein levels and enzymatic activities of NQO1. Incubations of hepatic, pulmonary or renal microsomes of 3-NBA-treated rats with 3-ABA led to an 9.6-fold increase in DNA-adduct formation relative to controls. The highest induction in DNA-adduct levels was found in lung. The stimulation of DNA-adduct formation correlated with expression of CYP1A1/2 induced by the intra-tracheal instillation of 3-NBA. The results demonstrate that 3-NBA induces NQO1 and CYP1A1/2 in livers, lungs and kidneys of rats after intra-tracheal instillation, thereby enhancing its own genotoxic and carcinogenic potential. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    International Nuclear Information System (INIS)

    Liu, Shun-Wei; Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien; Lin, Chun-Feng

    2013-01-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm 2 /V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm 2 /V s. • The discontinuity of grain boundary may cause the shift of threshold voltage

  13. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shun-Wei, E-mail: swliu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan, ROC (China); Lin, Chun-Feng [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China)

    2013-05-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm{sup 2}/V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm{sup 2}/V s. • The discontinuity of grain boundary may cause the shift of threshold voltage.

  14. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?

    Directory of Open Access Journals (Sweden)

    Rafael eDe La Torre

    2012-11-01

    Full Text Available In vitro human studies show that the metabolism of most amphetamine-like psychostimulants is regulated by the polymorphic cytochrome P450 isozyme CYP2D6. Two compounds, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA, were selected as archetypes to discuss the translation and clinical significance of in vitro to in vivo findings. Both compounds were chosen based on their differential interaction with CYP2D6 and their high abuse prevalence in society. Methamphetamine behaves as both a weak substrate and competitive inhibitor of CYP2D6, while MDMA acts as a high affinity substrate and potent mechanism-based inhibitor (MBI of the enzyme. The MBI behavior of MDMA on CYP2D6 implies that subjects, irrespective of their genotype/phenotype, are phenocopied to the poor metabolizer phenotype. The fraction of metabolic clearance regulated by CYP2D6 for both drugs is substantially lower than expected from in vitro studies. Other isoenzymes of cytochrome P450 and a relevant contribution of renal excretion play a part in their clearance. These facts tune down the potential contribution of CYP2D6 polymorphism in the clinical outcomes of both substances. Globally, the clinical relevance of CYP2D6 polymorphism is lower than that predicted by in vitro studies.

  15. Frequencies of two CYP2C19 defective alleles (CYP2C19*2, and *3 among Iranian population in Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Naghi Shahabi-Majd

    2013-02-01

    Conclusion: The result of the present study showed that the two inactive alleles of CYP2C19 accounted for 9.0% of CYP2C19 alleles in our sample versus 8.8 - 40.1% reported in other populations. The frequencies of the studied alleles resulted significant differences between our sample and African and Eastern Asian populations.

  16. Effects of Nicotine Exposure on In Vitro Metabolism of Chlorpyrifos in Male Sprague-Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Busby, Andrea L.; Timchalk, Charles; Poet, Torka S.

    2009-01-30

    Chlorpyrifos (CPF) is a common organophosphate (OP) insecticide which is metabolized by CYP450s to the neurotoxic metabolite, chlorpyrifos-oxon (CPF-oxon) and a non-toxic metabolite, 3,5,6-trichloro-2-pyridinol (TCP). The objective of this study was to quantify the effect of repeated in vivo nicotine exposures on CPF in vitro metabolism and marker substrate activities in rats. Male Sprague-Dawley rats were dosed subcutaneously with 1 mg nicotine/kg/, for up to 10 days. Animals showed signs of cholinergic crisis after the initial nicotine doses, but exhibited adaptation after a couple days of treatment. Rats were sacrificed on selected days 4 or 24 hr after the last nicotine-treatment. While CYP450 reduced CO spectra were not different across the treatments, the single nicotine dose group showed a 2-fold increase in CYP2E1 marker substrate (p-nitrophenol) activity 24 hr after a single nicotine treatment compared to saline controls. Conversely, repeated nicotine treatments resulted in decreased EROD marker substrate activity 4 hr after the 7th day of treatment. CPF-oxon Vmax and Km did not show significant changes across the different nicotine treatment groups. The Vmax describing the metabolism of CPF to TCP was increased on all groups (days 1, 7, and 10) 24 hr after nicotine treatment but were unchanged 4 hr after nicotine treatment. Results of this in vitro study suggest that repeated nicotine exposure (i.e., from smoking) may result in altered metabolism of CPF. Future in vivo experiments based on these results will be conducted to ascertain the impact of in vivo nicotine exposures on CPF metabolism in rats.

  17. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Elzaki, M E A; Zhang, W; Han, Z

    2015-06-01

    Laodelphax striatellus Fallén (Hemiptera: Delphacidae), a destructive pest of rice, has developed high resistance to multiple insecticides, threatening the success of pest management programmes. The present study investigated ethiprole resistance mechanisms in a field population that is highly resistant to ethiprole. That population was used to establish a laboratory population that was subjected to further selection to produce a resistant strain. Target genes were cloned and compared between the resistant and the susceptible strains, the role of detoxification enzymes was examined, and the relative expression levels of 71 detoxification enzyme genes were tested using quantitative real time (RT)-PCR. The laboratory selection enhanced the resistance from 107-fold to 180-fold. The Rdl-type target site mutation seldom occurred in the resistant strain and is unlikely to represent the major mechanism underlying the observed resistance. Of the three important detoxification enzymes, only P450 monooxygenase was found to be associated with ethiprole resistance. Moreover, two genes, CYP4DE1 and CYP6CW3v2, were found to be overexpressed in the resistant strain. Furthermore, gene-silencing via a double-stranded RNA feeding test was carried out, and the results showed that the mRNA levels of CYP4DE1 and CYP6CW3v2 were reduced in the resistant strain, whereas ethiprole susceptibility was increased. These results suggest that CYP4DE1 and CYP6CW3v2 play an important role in ethiprole resistance in L. striatellus. © 2015 The Royal Entomological Society.

  18. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450.

    Science.gov (United States)

    Domanski, T L; Finta, C; Halpert, J R; Zaphiropoulos, P G

    2001-02-01

    The RACE amplification technology was used on a novel CYP3A-like exon 1 sequence detected during the reverse transcriptase/polymerase chain reaction analysis of human CYP3A gene expression. This resulted in the identification of cDNAs encompassing the complete coding sequence of a new member of the CYP3A gene subfamily, CYP3A43. Interestingly, the majority of the cDNAs identified were characterized by alternative splicing events such as exon skipping and complete or partial intron inclusion. CYP3A43 expression was detected in liver, kidney, pancreas, and prostate. The amino acid sequence is 75% identical to that of CYP3A4 and CYP3A5 and 71% identical to CYP3A7. CYP3A43 differs from CYP3A4 at six amino acid residues, found within the putative substrate recognition sites of CYP3A4, that are known to be determinants of substrate selectivity. The N terminus of CYP3A43 was modified for efficient expression of the protein in Escherichia coli, and a 6X histidine tag was added at the C terminus to facilitate purification. CYP3A43 gave a reduced carbon monoxide difference spectra with an absorbance maximum at 450 nm. The level of heterologous expression was significantly lower than that observed for CYP3A4 and CYP3A5. Immunoblot analyses revealed that CYP3A43 comigrates with CYP3A4 in polyacrylamide gel electrophoresis but does separate from CYP3A5. Monooxygenase assays were performed under a variety of conditions, several of which yielded reproducible, albeit low, testosterone hydroxylase activity. The findings from this study demonstrate that there is a novel CYP3A member expressed in human tissues, although its relative contribution to drug metabolism has yet to be ascertained.

  19. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    Energy Technology Data Exchange (ETDEWEB)

    Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

    2012-12-15

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  20. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    International Nuclear Information System (INIS)

    Levova, Katerina; Moserova, Michaela; Nebert, Daniel W.; Phillips, David H.; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Stiborova, Marie

    2012-01-01

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  1. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    Science.gov (United States)

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  2. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2 among Emiratis.

    Directory of Open Access Journals (Sweden)

    Mohammad M Al-Ahmad

    Full Text Available Cytochrome P450 1A2 (CYP1A2 is one of the CYP450 mixed-function oxidase system that is of clinical importance due to the large number of drug interactions associated with its induction and inhibition. In addition, significant inter-individual differences in the elimination of drugs metabolized by CYP1A2 enzyme have been observed which are largely due to the highly polymorphic nature of CYP1A2 gene. However, there are limited studies on CYP1A2 phenotypes and CYP1A2 genotypes among Emiratis and thus this study was carried out to fill this gap. Five hundred and seventy six non-smoker Emirati subjects were asked to consume a soft drink containing caffeine (a non-toxic and reliable probe for predicting CYP1A2 phenotype and then provide a buccal swab along with a spot urine sample. Taq-Man Real Time PCR was used to determine the CYP1A2 genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using High Performance Liquid Chromatography (HPLC analysis. We found that 1.4%, 16.3% and 82.3% of the Emirati subjects were slow, intermediate and rapid CYP1A2 metabolizers, respectively. In addition, we found that 1.4% of the subjects were homozygote for derived alleles while 16.1% were heterozygote and 82.5% were homozygote for the ancestral allele. The genotype frequency of the ancestral allele, CYP1A2*1A/*1A, is the highest in this population, followed by CYP1A2 *1A/*1C and CYP1A2 *1A/*1K genotypes, with frequencies of 0.825, 0.102 and 0.058, respectively. The degree of phenotype/genotype concordance was equal to 81.6%. The CYP1A2*1C/*1C and CYP1A2*3/*3 genotypes showed significantly the lowest enzyme phenotypic activity. The frequency of slow activity CYP1A2 enzyme alleles is very low among Emiratis which correlates with the presence of low frequencies of derived alleles in CYP1A2 gene.

  3. Global pharmacogenomics: distribution of CYP3A5 polymorphisms and phenotypes in the Brazilian population.

    Directory of Open Access Journals (Sweden)

    Guilherme Suarez-Kurtz

    Full Text Available The influence of self-reported "race/color", geographical origin and genetic ancestry on the distribution of three functional CYP3A5 polymorphisms, their imputed haplotypes and inferred phenotypes was examined in 909 healthy, adult Brazilians, self-identified as White, Brown or Black ("race/color" categories of the Brazilian census. The cohort was genotyped for CYP3A5*3 (rs776746, CYP3A5*6 (rs10264272 and CYP3A5*7 (rs41303343, CYP3A5 haplotypes were imputed and CYP3A5 metabolizer phenotypes were inferred according to the number of defective CYP3A5 alleles. Estimates of the individual proportions of Amerindian, African and European ancestry were available for the entire cohort. Multinomial log-linear regression models were applied to infer the statistical association between the distribution of CYP3A5 alleles, haplotypes and phenotypes (response variables, and self-reported Color, geographical region and ancestry (explanatory variables. We found that Color per se or in combination with geographical region associates significantly with the distribution of CYP3A5 variant alleles and CYP3A5 metabolizer phenotypes, whereas geographical region per se influences the frequency distribution of CYP3A5 variant alleles. The odds of having the default CYP3A5*3 allele and the poor metabolizer phenotype increases continuously with the increase of European ancestry and decrease of African ancestry. The opposite trend is observed in relation to CYP3A5*6, CYP3A5*7, the default CYP3A5*1 allele, and both the extensive and intermediate phenotypes. No significant effect of Amerindian ancestry on the distribution of CYP3A5 alleles or phenotypes was observed. In conclusion, this study strongly supports the notion that the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of pharmacogenomic studies, and dealt with as a continuous variable, rather than proportioned in arbitrary categories that do not capture the

  4. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats

    Science.gov (United States)

    Lotan, Dafna; Benhar, Itai; Alvarez, Kathy; Mascaro-Blanco, Adita; Brimberg, Lior; Frenkel, Dan; Cunningham, Madeleine W.; Joel, Daphna

    2014-01-01

    Group A β-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naïve rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naïve rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naïve rats infused with IgG purified from adjuvant-exposed rats as well as of naïve rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naïve rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders. PMID:24561489

  5. Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide

    Science.gov (United States)

    Niemi, Mikko; Backman, Janne T; Juntti-Patinen, Laura; Neuvonen, Mikko; Neuvonen, Pertti J

    2005-01-01

    Background and aims Gemfibrozil, and particularly its combination with itraconazole, greatly increases the area under the plasma concentration-time curve [AUC(0, ∞)] and response to the cytochrome P450 (CYP) 2C8 and 3A4 substrate repaglinide. In vitro, gemfibrozil is a more potent inhibitor of CYP2C9 than of CYP2C8. Our aim was to investigate the effects of the gemfibrozil-itraconazole combination on the pharmacokinetics and pharmacodynamics of another meglitinide analogue, nateglinide, which is metabolized by CYP2C9 and CYP3A4. Methods In a randomized crossover study with two phases, nine healthy subjects took 600 mg gemfibrozil and 100 mg itraconazole (first dose 200 mg) twice daily or placebo for 3 days. On day 3, they ingested a single 30-mg dose of nateglinide. Plasma nateglinide and blood glucose concentrations were measured for up to 12 h. Results During the gemfibrozil-itraconazole phase, the AUC(0, ∞) and Cmax of nateglinide were 47% (range 23–74%; P gemfibrozil and itraconazole had no effect on the formation of the M7 metabolite of nateglinide but impaired its elimination. The blood glucose response to nateglinide was not significantly changed by coadministration of gemfibrozil and itraconazole. Conclusions The combination of gemfibrozil and itraconazole has only a limited influence on the pharmacokinetics of nateglinide. This is in marked contrast to the substantial effect of this combination on the pharmacokinetics of repaglinide. The findings suggest that in vivo gemfibrozil, probably due to its metabolites, is a much more potent inhibitor of CYP2C8 than of CYP2C9. PMID:16042675

  6. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment

    Directory of Open Access Journals (Sweden)

    Chen L

    2018-03-01

    Full Text Available Lucy Chen,1 G V Ramesh Prasad2 1Kidney Transplant Program, St Michael’s Hospital, Toronto, ON, Canada; 2Division of Nephrology, St Michael’s Hospital, Toronto, ON, Canada Abstract: Tacrolimus is a commonly used immunosuppressant after kidney transplantation. It has a narrow therapeutic range and demonstrates wide interindividual variability in pharmacokinetics, leading to potential underimmunosuppression or toxicity. Genetic polymorphism in CYP3A5 enzyme expression contributes to differences in tacrolimus bioavailability between individuals. Individuals carrying one or more copies of the wild-type allele *1 express CYP3A5, which increases tacrolimus clearance. CYP3A5 expressers require 1.5 to 2-fold higher tacrolimus doses compared to usual dosing to achieve therapeutic blood concentrations. Individuals with homozygous *3/*3 genotype are CYP3A5 nonexpressers. CYP3A5 nonexpression is the most frequent phenotype in most ethnic populations, except blacks. Differences between CYP3A5 genotypes in tacrolimus disposition have not translated into differences in clinical outcomes, such as acute rejection and graft survival. Therefore, although genotype-based dosing may improve achievement of therapeutic drug concentrations with empiric dosing, its role in clinical practice is unclear. CYP3A5 genotype may predict differences in absorption of extended-release and immediate-release oral formulations of tacrolimus. Two studies found that CYP3A5 expressers require higher doses of tacrolimus in the extended-release formulation compared to immediate release. CYP3A5 genotype plays a role in determining the impact of interacting drugs, such as fluconazole, on tacrolimus pharmacokinetics. Evidence conflicts regarding the impact of CYP3A5 genotype on risk of nephrotoxicity associated with tacrolimus. Further study is required. Keywords: calcineurin inhibitor, graft, pharmacogenomics, kidney, genotype

  7. An observational study of Venlafaxine and CYP2D6 in clinical practice.

    Science.gov (United States)

    Rolla, R; Gramaglia, Carla; Dalò, Valentina; Ressico, Francesca; Prosperini, Pierluigi; Vidali, Matteo; Meola, Silvia; Pollarolo, Paola; Bellomo, Giorgio; Torre, Eugenio; Zeppegno, Patrizia

    2014-01-01

    Venlafaxine (V) is a serotonin-norepinephrine selective reuptake inhibitor, mainly metabolized by cytochrome P4502D6 (CYP2D6). CYP2D6 polymorphisms result in a variety of phenotypes: poor (PMs), intermediate (IMs), extensive (EMs), and ultrarapid metabolizers (UMs). PMs usually show poor tolerance to drugs metabolized by CYP2D6, while UMs need greater doses. The aim of this study was to evaluate the impact of CYP2D6 genotype on V dosage, therapeutic response, and side effects in a clinical outpatient setting. 47 patients with Major Depressive Disorder, treated with V 75 - 300 mg/day, underwent CYP2D6 genotyping using the INFINITI-CYP2D6 assay. Duration of treatment and clinical outcome (Clinical Global Impression [CGI] effectiveness index) were assessed. CGI assessment was performed after 6 weeks, 6 months, and 1 year of treatment with a V median dose of 150 mg/day. CYP2D6 genotyping resulted in 1 PM, 3 IMs, 42 EMs, and 1 UM. The UM took the greatest V dose (375 mg) without side effects; IMs/PMs took moderate/high doses of V (150 - 300 mg) without adverse effects; EMs displayed high response variability. PM/IM patients responded to V differently than expected according to genotype. However, the UM patient responded to a dosage higher than the usual therapeutic range and without developing side effects, suggesting an association between CYP2D6 gene duplication and the therapeutic efficacy of venlafaxine. The CYP2D6 genotyping may thus provide clinicians with a potential explanation for those patients requiring greater doses of CYP2D6 substrates in order to obtain the same therapeutic efficacy.

  8. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms.

    Science.gov (United States)

    Dorado, P; López-Torres, E; Peñas-Lledó, E M; Martínez-Antón, J; Llerena, A

    2013-08-01

    Pharmacogenetic studies have shown that genetic defects in drug-metabolizing enzymes encoded by CYP2C9, CYP2C19 genes and by the transporter ABCB1 gene can influence phenytoin (PTH) plasma levels and toxicity. The patient reported here is a 2-year-old girl with a medical history of cryptogenic (probably symptomatic) epilepsy, who had her first focal seizure with secondary generalization at 13 months of age. She initially received oral valproate treatment and three months later, she was prescribed an oral oxcarbazepine treatment. At 20 months of age, she was admitted to the Emergency Department because of generalized convulsive Status Epilepticus needing to be immediately treated with rectal diazepam (0.5 mg kg(-1)), intravenous diazepam (0.3 mg kg(-1)), and intravenous phenytoin with an initial-loading dose of 15 mg kg(-1). However, two hours after the initial-loading dose of PTH, the patient developed dizziness, nystagmus, ataxia and excessive sedation. Other potential causes of PTH toxicity were excluded such as drug interactions, decreased albumin or lab error. Therefore, to explain the neurological toxicity, PTH plasma levels and CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms were analyzed. Initial plasma PTH levels were higher than expected (69 mg l(-1); normal range: 10-20 mg l(-1)), and the patient was homozygous for the CYP2C9*2 allele, heterozygous for the CYP2C19*4 allele and homozygous for the 3435C and 1236C ABCB1 alleles. Present findings support the previously established relationship between CYP2C9 and CYP2C19 genetic polymorphisms and the increased risk to develop PTH toxicity owing to high plasma concentrations. Nevertheless, although the association of these genes with PTH-induced adverse effects has been well-documented in adult populations, this is the first report examining the influence of these genetic polymorphisms on PTH plasma levels and toxicity in a pediatric patient.

  9. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM.

    Science.gov (United States)

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-11-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10(-11) and 2.7 × 10(-11)), which were also in strong linkage disequilibrium (r(2)=0.7) with each other, lie in the 23-kb long commonly shared 5' flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10(-09)) near NRCAM-a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10(-09))-an SNP associated with blood pressure-in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10(-05)) and Parkinson's disease pathways (P-value=3.6 × 10(-05)).

  10. Curcumin Implants, not Curcumin Diet Inhibits Estrogen-Induced Mammary Carcinogenesis in ACI Rats

    Science.gov (United States)

    Bansal, Shyam S.; kausar, Hina; Vadhanam, Manicka V.; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N.; Gupta, Ramesh C.

    2014-01-01

    Curcumin is widely known for its anti-oxidant, anti-inflammatory and anti-proliferative activities in cell culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvents oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female ACI rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2-cm; 200 mg each; 20% drug load) 4 days prior to grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Implants were changed after 4½ months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2±1 vs 5±3; p=0.001) and tumor volume (184±198 mm3 vs 280±141 mm3; p=0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in presence of E2. Since CYP1A and 3A4 metabolize most of the E2 to its non-carcinogenic 2-OH metabolite and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by HPLC showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered. PMID:24501322

  11. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-01-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA III induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA III increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA III induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  12. Polimorfismos en los genes CYP11α y CYP17 y etiología del hiperandrogenismo en pacientes con poliquistosis ovárica Polymorphism in CYP11alpha and CYP17 genes and the etiology of hyperandrogenism in patients with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    María S. Pérez

    2008-04-01

    Full Text Available El síndrome de poliquistosis ovárica (PCOS es un desorden endocrino-metabólico de naturaleza multifactorial, con una marcada predisposición genética, que afecta al 6% de las mujeres en edad reproductiva. Se caracteriza por la presencia de hiperandrogenismo, oligo-anovulación y ovarios poliquísticos. Entre los genes candidatos se encuentran aquellos que codifican para enzimas que actúan en la síntesis de andrógenos. Dos de los genes candidatos son el CYP17 y el CYP11alfa que codifican para la 17alfa hidroxilasa (P45017alfa y para el P450scc (colesterol side chain cleavage respectivamente. Los polimorfismos en estos genes están asociados al desarrollo del fenotipo hiperandrogénico. Nuestro objetivo fue analizar las frecuencias alélicas de los polimorfismos de los dos genes mencionados en población con PCOS, compararla con población normal y analizar la relación de cada variante alélica con el fenotipo hiperandrogénico correspondiente. Se analizaron 65 pacientes y 58 controles sanos en los que se determinaron niveles de testosterona y frecuencia de polimorfismos en los genes mencionados. Se observó una diferencia estadísticamente significativa cuando se asoció el grupo de mayor nivel de androgenemia con la presencia del genotipo A2/A2 del gen CYP17, y se hallaron mayores niveles de andrógenos circulantes en las pacientes con PCOS portadoras del alelo 216- del gen CYP11alfa. Nuestros resultados sugieren que ambos alelos juegan un rol menor en el desarrollo de PCOS y podrían ser considerados como potenciales marcadores de riesgo genético para el desarrollo del fenotipo hiperandrogénico.The polycystic ovary syndrome (PCOS is a heterogeneous multifactorial endocrine metabolic disorder with genetic predisposition affecting 6% of women in the reproductive age. This syndrome is characterized by the presence of oligo-anovulation, hyperandrogenism and polycystic ovaries. Several genes have been postulated as responsible for the

  13. Isolation and characterization of cyp19a1a and cyp19a1b promoters in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Zhang, Weimin; Lu, Huijie; Jiang, Haiyan; Li, Mu; Zhang, Shen; Liu, Qiongyou; Zhang, Lihong

    2012-02-01

    Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. CypA, a gene downstream of HIF-1α, promotes the development of PDAC.

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α is a highly important transcription factor involved in cell metabolism. HIF-1α promotes glycolysis and inhibits of mitochondrial respiration in pancreatic ductal adenocarcinoma (PDAC. In response to tumor hypoxia, cyclophilin A (CypA is over-expressed in various cancer types, and is associated with cell apoptosis, tumor invasion, metastasis, and chemoresistance in PDAC. In this study, we showed that both HIF-1α and CypA expression were significantly associated with lymph node metastasis and tumor stage. The expression of CypA was correlated with HIF-1α. Moreover, the mRNA and protein expression of CypA markedly decreased or increased following the suppression or over-expression of HIF-1α in vitro. Chromatin immunoprecipitation analysis showed that HIF-1α could directly bind to the hypoxia response element (HRE in the CypA promoter regions and regulated CypA expression. Consistent with other studies, HIF-1α and CypA promoted PDAC cell proliferation and invasion, and suppressed apoptosis in vitro. Furthermore, we proved the combination effect of 2-methoxyestradiol and cyclosporin A both in vitro and in vivo. These results suggested that,CypA, a gene downstream of HIF-1α, could promote the development of PDAC. Thus, CypA might serve as a potential therapeutic target for PDAC.

  15. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  16. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  17. Dose-response relationships of propranolol in Chinese subjects with different CYP2D6 genotypes.

    Science.gov (United States)

    Huang, Chin-Wei; Lai, Ming-Liang; Lin, Min-Shung; Lee, Hwei-Ling; Huang, Jin-Ding

    2003-01-01

    For clinical treatment, a smaller dosage of propranolol is often used among Chinese people. Propranolol is metabolized by polymorphic CYP2D6. We postulate that the lower propranolol dosage in Chinese is due to a slower CYP2D6 metabolism. A majority of the Chinese population has the nucleotide T188 in the CYP2D6 gene (CYP2D6*10) instead of C188 (CYP2D6*1), which most white subjects have. Chinese subjects of different CYP2D6*1/CYP2D6*10 genotypes have been shown to have different propranolol pharmacokinetic characteristics. In this study, we compared the beta-blockade effects of propranolol in Chinese subjects of the two different CYP2D6 genotypes. Based on the nucleotide 188 genotypes, two groups of 10 healthy subjects each were selected. Each subject was given a 10-, 20-, or 40-mg rac-propranolol tablet three times a day for 3 days in 3 different phases. Heart rate and blood pressure were measured in both supine and upright positions. The heart rate was also determined during treadmill exercise test. Plasma concentration of S-propranolol at 2 hrs after the last-dose administration was measured. Despite therebeing higher S-propranolol plasma concentration in CYP2D6*10 subjects than in CYP2D6*1 subjects at 10- and 20-mg dosage, the dose-response relationship was not significantly different in these subjects. Our results do not support the hypothesis that CYP2D6*1/CYP2D6*10 polymorphism may affect the beta-blockade effect of propranolol in Chinese subjects.

  18. Methods for Purifying Enzymes for Mycoremediation

    Science.gov (United States)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  19. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction

    Directory of Open Access Journals (Sweden)

    Arthur I. Cederbaum

    2014-01-01

    Full Text Available The cytochrome P450 mixed function oxidase enzymes are the major catalysts involved in drug metabolism. There are many forms of P450. CYP2E1 metabolizes many toxicologically important compounds including ethanol and is active in generating reactive oxygen species. Since several of the contributions in the common theme series “Role of CYP2E1 and Oxidative/Nitrosative Stress in the Hepatotoxic Actions of Alcohol” discuss CYP2E1, this methodology review describes assays on how CYP2E1 catalytic activity and its induction by ethanol and other inducers can be measured using substrate probes such as the oxidation of para-nitrophenol to para-nitrocatechol and the oxidation of ethanol to acetaldehyde. Approaches to validate that a particular reaction e.g. oxidation of a drug or toxin is catalyzed by CYP2E1 or that induction of that reaction is due to induction of CYP2E1 are important and specific examples using inhibitors of CYP2E1, anti-CYP2E1 IgG or CYP2E1 knockout and knockin mice will be discussed.

  20. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in Tibetan populations.

    Science.gov (United States)

    Liu, Lijun; Chang, Yu; Du, Shuli; Shi, Xugang; Yang, Hua; Kang, Longli; Jin, Tianbo; Yuan, Dongya; He, Yongjun

    2017-06-01

    The enzymatic activity of CYP3A4 results in broad interindividual variability in response to certain pharmacotherapies. The present study aimed to screen Tibetan volunteers for CYP3A4 genetic polymorphisms. Previous research has focussed on Han Chinese patients, while little is known about the genetic variation of CYP3A4 in the Tibetan populations. Here, we adopted DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A4 gene in 96 unrelated healthy Tibetan individuals.We identified 20 different CYP3A4 polymorphisms in the Tibetan population, including two novel variants (21824 A>G and 15580 G>C). In addition, we also determined the allele frequencies of CYP3A4*1A and CYP3A4*1H were 82.29% and 28.13%, respectively. CYP3A4*1P and *1G were relatively rare with frequencies of only 1.04% and 0.52%, respectively. Our results provide information on CYP3A4 polymorphisms in Tibetan individuals which may help to optimize pharmacotherapy effectiveness by providing personalized medicine to this ethnic group.

  1. CYP3A4*18: it is not rare allele in Japanese population.

    Science.gov (United States)

    Yamamoto, Takehito; Nagafuchi, Nobue; Ozeki, Takeshi; Kubota, Takahiro; Ishikawa, Hiroshi; Ogawa, Seishi; Yamada, Yasuhiko; Hirai, Hisamaru; Iga, Tatsuji

    2003-01-01

    We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.

  2. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  3. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes.

    Science.gov (United States)

    Granvil, C P; Madan, A; Sharkawi, M; Parkinson, A; Wainer, I W

    1999-04-01

    The central nervous system toxicity of ifosfamide (IFF), a chiral antineoplastic agent, is thought to be dependent on its N-dechloroethylation by hepatic cytochrome P-450 (CYP) enzymes. The purpose of this study was to identify the human CYPs responsible for IFF-N-dechloroethylation and their corresponding regio- and enantioselectivities. IFF exists in two enantiomeric forms, (R) - and (S)-IFF, which can be dechloroethylated at either the N2 or N3 positions, producing the corresponding (R,S)-2-dechloroethyl-IFF [(R, S)-2-DCE-IFF] and (R,S)-3-dechloroethyl-IFF [(R,S)-3-DCE-IFF]. The results of the present study suggest that the production of (R)-2-DCE-IFF and (S)-3-DCE-IFF from (R)-IFF is catalyzed by different CYPs as is the production of (S)-2-DCE-IFF and (R)-3-DCE-IFF from (S)-IFF. In vitro studies with a bank of human liver microsomes revealed that the sample-to-sample variation in the production of (S)-3-DCE-IFF from (R)-IFF and (S)-2-DCE-IFF from (S)-IFF was highly correlated with the levels of (S)-mephenytoin N-demethylation (CYP2B6), whereas (R)-2-DCE-IFF production from (R)-IFF and (R)-3-DCE-IFF production from (S)-IFF were both correlated with the activity of testosterone 6beta-hydroxylation (CYP3A4/5). Experiments with cDNA-expressed P-450 and antibody and chemical inhibition studies supported the conclusion that the formation of (S)-3-DCE-IFF and (S)-2-DCE-IFF is catalyzed primarily by CYP2B6, whereas (R)-2-DCE-IFF and (R)-3-DCE-IFF are primarily the result of CYP3A4/5 activity.

  4. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Rajaraman, Ganesh; Chen, Jie; Chang, Thomas K.H.

    2006-01-01

    The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations ≥ 75 μg/ml and ≥ 750 μg/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 μg/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [ 14 C]-leucine incorporation. At the level present in a modulating concentration (50 μg/ml) of the extract, ginkgolide A (0.55 μg/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A

  5. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  6. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats.

    Science.gov (United States)

    Martínez, María-Aránzazu; Ares, Irma; Rodríguez, José-Luis; Martínez, Marta; Roura-Martínez, David; Castellano, Victor; Lopez-Torres, Bernardo; Martínez-Larrañaga, María-Rosa; Anadón, Arturo

    2018-08-01

    This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury. Copyright © 2018. Published by Elsevier B.V.

  7. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    Science.gov (United States)

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  8. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  9. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    Science.gov (United States)

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  10. Impact of CYP2C8*3 polymorphism on in vitro metabolism of imatinib to N-desmethyl imatinib.

    Science.gov (United States)

    Khan, Muhammad Suleman; Barratt, Daniel T; Somogyi, Andrew A

    2016-01-01

    1. Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown. 2. We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined. 3. A single-enzyme Michaelis-Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n = 5) and recombinant CYP2C8 kinetic data (median ± SD Ki = 139 ± 61 µM and 149 µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median ± SD Km = 6 ± 2 versus 11 ± 2 µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km = 4 µM) and single-enzyme weak autoinhibition (Ki = 449 µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47-75%, compared to 0-30% for CYP3A4 inhibitors. 4. In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.

  11. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function.

    Science.gov (United States)

    Fan, Jieru; Urban, Martin; Parker, Josie E; Brewer, Helen C; Kelly, Steven L; Hammond-Kosack, Kim E; Fraaije, Bart A; Liu, Xili; Cools, Hans J

    2013-05-01

    CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. In Fusarium species, including pathogens of humans and plants, three CYP51 paralogues have been identified with one unique to the genus. Currently, the functions of these three genes and the rationale for their conservation within the genus Fusarium are unknown. Three Fusarium graminearum CYP51s (FgCYP51s) were heterologously expressed in Saccharomyces cerevisiae. Single and double FgCYP51 deletion mutants were generated and the functions of the FgCYP51s were characterized in vitro and in planta. FgCYP51A and FgCYP51B can complement yeast CYP51 function, whereas FgCYP51C cannot. FgCYP51A deletion increases the sensitivity of F. graminearum to the tested azoles. In ΔFgCYP51B and ΔFgCYP51BC mutants, ascospore formation is blocked, and eburicol and two additional 14-methylated sterols accumulate. FgCYP51C deletion reduces virulence on host wheat ears. FgCYP51B encodes the enzyme primarily responsible for sterol 14α-demethylation, and plays an essential role in ascospore formation. FgCYP51A encodes an additional sterol 14α-demethylase, induced on ergosterol depletion and responsible for the intrinsic variation in azole sensitivity. FgCYP51C does not encode a sterol 14α-demethylase, but is required for full virulence on host wheat ears. This is the first example of the functional diversification of a fungal CYP51. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Stereoselective Inhibition of CYP2C19 and CYP3A4 by Fluoxetine and Its Metabolite: Implications for Risk Assessment of Multiple Time-Dependent Inhibitor Systems

    Science.gov (United States)

    Lutz, Justin D.; VandenBrink, Brooke M.; Babu, Katipudi N.; Nelson, Wendel L.; Kunze, Kent L.

    2013-01-01

    Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction because it is a TDI of both CYP3A4 and CYP2C19 with a circulating N-dealkylated inhibitory metabolite, norfluoxetine. In pooled human liver microsomes, both enantiomers of fluoxetine and norfluoxetine were TDIs of CYP2C19, (S)-norfluoxetine was the most potent inhibitor with time-dependent inhibition affinity constant (KI) of 7 μM, and apparent maximum time-dependent inhibition rate (kinact,app) of 0.059 min−1. Only (S)-fluoxetine and (R)-norfluoxetine were TDIs of CYP3A4, with (R)-norfluoxetine being the most potent (KI = 8 μM, and kinact,app = 0.011 min−1). Based on in-vitro-to-in-vivo predictions, (S)-norfluoxetine plays the most important role in in vivo CYP2C19 DDIs, whereas (R)-norfluoxetine is most important in CYP3A4 DDIs. Comparison of two multiple TDI prediction models demonstrated significant differences between them in in-vitro-to-in-vitro predictions but not in in-vitro-to-in-vivo predictions. Inclusion of all four inhibitors predicted an in vivo decrease in CYP2C19 (95%) and CYP3A4 (60–62%) activity. The results of this study suggest that adequate worst-case risk assessment for in vivo DDIs by multiple TDI systems can be achieved by incorporating time-dependent inhibition by both parent and metabolite via simple addition of the in vivo time-dependent inhibition rate/cytochrome P450 degradation rate constant (λ/kdeg) values, but quantitative DDI predictions will require a more thorough understanding of TDI mechanisms. PMID:23785064

  13. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing® technology

    Directory of Open Access Journals (Sweden)

    Gallagher Margaret L

    2009-08-01

    Full Text Available Abstract Background Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1–2 are derived from CYP2A7, and exons 3–9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. Methods A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Results Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. Conclusion This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  14. Selective Inhibition of Steroidogenic Enzymes by Ketoconazole in Rat Ovary Cells

    Directory of Open Access Journals (Sweden)

    Michael Gal

    2014-01-01

    Full Text Available Objective Ketoconazole (KCZ is an anti-fungal agent extensively used for clinical applications related to its inhibitory effects on adrenal and testicular steroidogenesis. Much less information is available on the effects of KCZ on synthesis of steroid hormones in the ovary. The present study aimed to characterize the in situ effects of KCZ on steroidogenic enzymes in primary rat ovary cells. Methods Following the induction of folliculogenesis in gonadotropin treated rats, freshly prepared ovarian cells were incubated in suspension for up to four hours while radiolabeled steroid substrates were added and time dependent generation of their metabolic products was analyzed by thin layer chromatography (TLC. Results KCZ inhibits the P450 steroidogenic enzymes in a selective and dose dependent manner, including cholesterol side-chain cleavage cytochrome P450 (CYP11A1/P450scc, the 17α-hydroxylase activity of CYP17A1/P450c17, and CYP19A1/P450arom, with IC 50 values of 0.3, 1.8, and 0.3 μg/mL (0.56, 3.36, and 0.56 μM, respectively. Unaffected by KCZ, at 10 μg/mL, were the 17,20 lyase activity of CYP17A1, as well as five non-cytochrome steroidogenic enzymes including 3β-hydroxysteroid dehydrogenase-δ 5-4 isomerase type 1 (3βHSD1, 5α-reductase, 20α-hydroxysteroid dehydrogenase (20α-HSD, 3α-hydroxysteroid dehydrogenase (3α-HSD, and 17β-hydroxysteroid dehydrogenase type 1 (17HSD1. Conclusion These findings map the effects of KCZ on the ovarian pathways of progestin, androgen, and estrogen synthesis. Hence, the drug may have a potential use as an acute and reversible modulator of ovarian steroidogenesis in pathological circumstances.

  15. Induction of liver monooxygenases by annatto and bixin in female rats

    Directory of Open Access Journals (Sweden)

    A.C.A.X. De-Oliveira

    2003-01-01

    Full Text Available Annatto or urucum is an orange-yellow dye obtained from Bixa orellana seeds. It has been used as a natural dye in a variety of food products, drugs and cosmetics, and also in Brazilian cuisine as a condiment ('colorau'. Bixin, a carotenoid devoid of provitamin A activity, is the main pigment found in annatto. Some carotenoids (canthaxanthin, astaxanthin and ß-Apo-8'-carotenal are known to be potent inducers of CYP1A1, a property not shared by others (ß-carotene, lycopene and lutein. Little is known, however, about the CYP1A1-inducing properties of bixin and annatto. The present study was performed to determine the effects of an annatto extract (28% bixin and bixin (95% pure on rat liver monooxygenases. Adult female Wistar rats were treated by gavage with daily doses of annatto (250 mg/kg body weight, which contains approximately 70 mg bixin/kg body weight, bixin (250 mg/kg body weight or the vehicle only (corn oil, 3.75 g/kg body weight for 5 consecutive days, or were not treated (untreated control. The activities of aniline-4-hydroxylase (A4H, ethoxycoumarin-O-deethylase (ECOD, ethoxy- (EROD, methoxy- (MROD, pentoxy- (PROD and benzyloxy- (BROD resorufin-O-dealkylases were measured in liver microsomes. Annatto (250 mg/kg containing 70 mg bixin/kg induced EROD (3.8x, MROD (4.2x, BROD (3.3x and PROD (2.4x. Bixin (250 mg/kg was a weaker inducer of EROD (2.7x, MROD (2.3x and BROD (1.9x and did not alter PROD, A4H or ECOD activities. These results suggest that constituents of the extract other than bixin play an important role in the induction of CYP1A and CYP2B observed with annatto food colorings.

  16. Evaluation of the human relevance of the constitutive androstane receptor-mediated mode of action for rat hepatocellular tumor formation by the synthetic pyrethroid momfluorothrin.

    Science.gov (United States)

    Okuda, Yu; Kushida, Masahiko; Kikumoto, Hiroko; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Cohen, Samuel M; Lake, Brian G; Yamada, Tomoya

    2017-01-01

    High dietary levels of the non-genotoxic synthetic pyrethroid momfluorothrin increased the incidence of hepatocellular tumors in male and female Wistar rats. Mechanistic studies have demonstrated that the mode of action (MOA) for momfluorothrin-induced hepatocellular tumors is constitutive androstane receptor (CAR)-mediated. In the present study, to evaluate the potential human carcinogenic risk of momfluorothrin, the effects of momfluorothrin (1-1,000 µM) and a major metabolite Z-CMCA (5-1,000 µM) on hepatocyte replicative DNA synthesis and CYP2B mRNA expression were examined in cultured rat and human hepatocyte preparations. The effect of sodium phenobarbital (NaPB), a prototypic rodent hepatocarcinogen with a CAR-mediated MOA, was also investigated. Human hepatocyte growth factor (hHGF) produced a concentration-dependent increase in replicative DNA synthesis in rat and human hepatocytes. However, while NaPB and momfluorothrin increased replicative DNA synthesis in rat hepatocytes, NaPB, momfluorothrin and Z-CMCA did not increase replicative DNA synthesis in human hepatocytes. NaPB, momfluorothrin and Z-CMCA increased CYP2B1/2 mRNA levels in rat hepatocytes. NaPB and momfluorothrin also increased CYP2B6 mRNA levels in human hepatocytes. Overall, while momfluorothrin and NaPB activated CAR in cultured human hepatocytes, neither chemical increased replicative DNA synthesis. Furthermore, to confirm whether the findings observed in vitro were also observed in vivo, a humanized chimeric mouse study was conducted. Replicative DNA synthesis was not increased in human hepatocytes of chimeric mice treated with momfluorothrin or its close structural analogue metofluthrin. As human hepatocytes are refractory to the mitogenic effects of momfluorothrin, in contrast to rat hepatocytes, the data support the hypothesis that the MOA for momfluorothrin-induced rat liver tumor formation is not relevant for humans.

  17. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans.

    Science.gov (United States)

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2013-01-01

    The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene-environment interactions in relation to health risks is needed. The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies.

  18. Population pharmacokinetic modelling to assess the impact of CYP2D6 and CYP3A metabolic phenotypes on the pharmacokinetics of tamoxifen and endoxifen

    NARCIS (Netherlands)

    ter Heine, Rob; Binkhorst, Lisette; de Graan, Anne Joy M; de Bruijn, Peter; Beijnen, Jos H; Mathijssen, Ron H J; Huitema, Alwin D R

    AIMS: Tamoxifen is considered a pro-drug of its active metabolite endoxifen. The major metabolic enzymes involved in endoxifen formation are CYP2D6 and CYP3A. There is considerable evidence that variability in activity of these enzymes influences endoxifen exposure and thereby may influence the

  19. Inflammatory conditions induce IRES-dependent translation of cyp24a1.

    Directory of Open Access Journals (Sweden)

    Daniela Rübsamen

    Full Text Available Rapid alterations in protein expression are commonly regulated by adjusting translation. In addition to cap-dependent translation, which is e.g. induced by pro-proliferative signaling via the mammalian target of rapamycin (mTOR-kinase, alternative modes of translation, such as internal ribosome entry site (IRES-dependent translation, are often enhanced under stress conditions, even if cap-dependent translation is attenuated. Common stress stimuli comprise nutrient deprivation, hypoxia, but also inflammatory signals supplied by infiltrating immune cells. Yet, the impact of inflammatory microenvironments on translation in tumor cells still remains largely elusive. In the present study, we aimed at identifying translationally deregulated targets in tumor cells under inflammatory conditions. Using polysome profiling and microarray analysis, we identified cyp24a1 (1,25-dihydroxyvitamin D3 24-hydroxylase to be translationally upregulated in breast tumor cells co-cultured with conditioned medium of activated monocyte-derived macrophages (CM. Using bicistronic reporter assays, we identified and validated an IRES within the 5' untranslated region (5'UTR of cyp24a1, which enhances translation of cyp24a1 upon CM treatment. Furthermore, IRES-dependent translation of cyp24a1 by CM was sensitive to phosphatidyl-inositol-3-kinase (PI3K inhibition, while constitutive activation of Akt sufficed to induce its IRES activity. Our data provide evidence that cyp24a1 expression is translationally regulated via an IRES element, which is responsive to an inflammatory environment. Considering the negative feedback impact of cyp24a1 on the vitamin D responses, the identification of a novel, translational mechanism of cyp24a1 regulation might open new possibilities to overcome the current limitations of vitamin D as tumor therapeutic option.

  20. CYP2D6 Genetic Variation and Beta-Blocker Maintenance Dose in Patients with Heart Failure.

    Science.gov (United States)

    Luzum, Jasmine A; Sweet, Kevin M; Binkley, Philip F; Schmidlen, Tara J; Jarvis, Joseph P; Christman, Michael F; Sadee, Wolfgang; Kitzmiller, Joseph P

    2017-08-01

    This study examined whether a CYP2D6 polymorphism (CYP2D6*4) was related to beta-blocker maintenance dose in patients with heart failure. Logistic regression modeling was utilized in a retrospective chart-review analysis of heart-failure patients (60% Male, 90% of European descent) to assess whether CYP2D6*4 (non-functional CYP2D6 allele present in 1 of 5 individuals of European descent) is associated with maintenance dose of carvedilol (n = 65) or metoprolol (n = 33). CYP2D6*4 was associated with lower maintenance dose of metoprolol (OR 0.13 [95% CI 0.02-0.75] p = 0.023), and a trend was observed between CYP2D6*4 and higher maintenance dose of carvedilol (OR 2.94 [95% CI 0.84-10.30] p = 0.093). None of the patients that carried CYP2D6*4 achieved the recommended target dose of metoprolol (200 mg/day). Consistent with the role of CYP2D6 in the metabolism of metoprolol, the tolerated maintenance dose of metoprolol was lower in CYP2D6*4 carriers compared to non-carriers. Consistent with the role of CYP2D6 in activation of carvedilol, tolerated maintenance dose of carvedilol was higher in CYP2D6*4 carriers compared to non-carriers. Further investigation is warranted to ascertain the potential of CYP2D6 as a potential predictive biomarker of beta-blocker maintenance dose in heart failure patients.

  1. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    International Nuclear Information System (INIS)

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  2. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  3. Association of vdr, cyp27b1, cyp24a1 and mthfr gene polymorphisms with oral lichen planus risk.

    Science.gov (United States)

    Kujundzic, Bojan; Zeljic, Katarina; Supic, Gordana; Magic, Marko; Stanimirovic, Dragan; Ilic, Vesna; Jovanovic, Barbara; Magic, Zvonko

    2016-05-01

    The current study investigated the association between VDR EcoRV (rs4516035), FokI (rs2228570), ApaI (rs7975232) and TaqI (rs731236), CYP27B1 (rs4646536), CYP24A1 (rs2296241), and MTHFR (rs1801133) gene polymorphisms and risk of oral lichen planus (OLP) occurrence. The study group consisted of 65 oral lichen planus patients and 100 healthy blood donors in the control group. Single nucleotide polymorphisms were genotyped by real time PCR or PCR-restriction fragment length polymorphism (RFLP) method. Heterozygous as well as mutated genotype of vitamin D receptor (VDR) FokI (rs2228570) polymorphism was associated with increased oral lichen planus risk in comparison with wild type genotype (odds ratio (OR) = 3.877, p = 0.017, OR = 38.153, p = 0.001, respectively). A significantly decreased OLP risk was observed for heterozygous genotype of rs2296241 polymorphism in CYP24A1 gene compared with the wild type form (OR = 0.314, p = 0.012). VDR gene polymorphisms ApaI and TaqI were in linkage disequilibrium (D' = 0.71, r(2) = 0.22). Identified haplotype AT was associated with decreased OLP risk (OR = 0.592, p = 0.047). Our results highlight the possible important role of VDR FokI (rs2228570) and CYP24A1 rs2296241 gene polymorphisms for oral lichen planus susceptibility. Identification of new molecular biomarkers could potentially contribute to determination of individuals with OLP predisposition.

  4. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  5. Effects of resveratrol on P-glycoprotein and cytochrome P450 3A in vitro and on pharmacokinetics of oral saquinavir in rats

    Directory of Open Access Journals (Sweden)

    Li JP

    2016-11-01

    Full Text Available Jiapeng Li,1,2 Yang Liu,2 Jingru Zhang,1,2 Xiaotong Yu,1,2 Xiaoling Wang,1 Libo Zhao11Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, 2Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China Background: The intestinal cytochrome P450 3A (CYP 3A and P-glycoprotein (P-gp present a barrier to the oral absorption of saquinavir (SQV. Resveratrol (RESV has been indicated to have modulatory effects on P-gp and CYP 3A. Therefore, this study was to investigate the effects of RESV on P-gp and CYP 3A activities in vitro and in vivo on oral SQV pharmacokinetics in rats.Methods: In vitro, intestinal microsomes were used to evaluate RESV effect on CYP 3A-mediated metabolism of SQV; MDR1-expressing Madin–Darby canine kidney (MDCKII-MDR1 cells were employed to assess the impact of RESV on P-gp-mediated efflux of SQV. In vivo effects were studied using 10 rats randomly assigned to receive oral SQV (30 mg/kg with or without RESV (20 mg/kg. Serial blood samples were obtained over the following 24 h. Concentrations of SQV in samples were ascertained using high-performance liquid chromatography-tandem mass spectrometry analysis.Results: RESV (1–100 µM enhanced residual SQV (% of control in a dose-dependent manner after incubation with intestinal microsomes. RESV (1–100 µM reduced the accumulation of SQV in MDCKII-MDR1 cells in a concentration-dependent manner. A double peaking phenomenon was observed in the plasma SQV profiles in rats. The first peak of plasma SQV concentration was increased, but the second peak was reduced by coadministration with RESV. The mean AUC0–∞ of SQV was slightly decreased, with no statistical significance probably due to the high individual variation.Conclusion: RESV can alter the plasma SQV concentration profiles, shorten the Tmax of SQV. RESV might also cause a slight decrease tendency in the

  6. Cost/CYP: a bottom line that helps keep CSM projects cost-efficient.

    Science.gov (United States)

    1985-01-01

    In contraceptive social marketing (CSM), the objective is social good, but project managers also need to run a tight ship, trimming costs, allocating scarce funds, and monitoring their program's progress. 1 way CSM managers remain cost-conscious is through the concept of couple-years-of-protection (CYP). Devised 2 decades ago as an administrative tool to compare the effects of different contraceptive methods, CYP's uses have multiplied to include assessing program output and cost effectiveness. Some of the factors affecting cost/CYP are a project's age, sales volume, management efficiency, and product prices and line. These factors are interconnected. The cost/CYP figures given here do not include outlays for commodities. While the Agency for International Development's commodity costs alter slightly with each new purchase contrast, the agency reports that a condom costs about 4 cents (US), an oral contraceptive (OC) cycle about 12 cents, and a spermicidal tablet about 7 cents. CSM projects have relatively high start-up costs. Within a project's first 2 years, expenses must cover such marketing activities as research, packaging, warehousing, and heavy promotion. As a project ages, sales should grow, producing revenues that gradually amortize these initial costs. The Nepal CSM project provides an example of how cost/CYP can improve as a program ages. In 1978, the year sales began, the project's cost/CYP was about $84. For some time the project struggled to get its products to its target market and gradually overcome several major hurdles. The acquisition of jeeps eased distribution and, by adding another condom brand, sales were increased still more, bringing the cost/CYP down to $8.30 in 1981. With further sales increases and resulting revenues, the cost/CYP dropped to just over $7 in 1983. When the sales volume becomes large enough, CSM projects can achieve economies of scale, which greatly improves cost-efficiency. Fixed costs shrink as a proportion of total

  7. Follitropin receptors in rat testis. Characterization with enzymatically 125I-labeled human follitropin.

    Science.gov (United States)

    Ketelslegers, J M; Catt, K J

    1978-07-03

    The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.

  8. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  9. Effects of Paracetamol on NOS, COX, and CYP Activity and on Oxidative Stress in Healthy Male Subjects, Rat Hepatocytes, and Recombinant NOS

    Science.gov (United States)

    Trettin, Arne; Böhmer, Anke; Suchy, Maria-Theresia; Probst, Irmelin; Staerk, Ulrich; Stichtenoth, Dirk O.; Frölich, Jürgen C.

    2014-01-01

    Paracetamol (acetaminophen) is a widely used analgesic drug. It interacts with various enzyme families including cytochrome P450 (CYP), cyclooxygenase (COX), and nitric oxide synthase (NOS), and this interplay may produce reactive oxygen species (ROS). We investigated the effects of paracetamol on prostacyclin, thromboxane, nitric oxide (NO), and oxidative stress in four male subjects who received a single 3 g oral dose of paracetamol. Thromboxane and prostacyclin synthesis was assessed by measuring their major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-ketoprostaglandin F1α, respectively. Endothelial NO synthesis was assessed by measuring nitrite in plasma. Urinary 15(S)-8-iso-prostaglanding F2α was measured to assess oxidative stress. Plasma oleic acid oxide (cis-EpOA) was measured as a marker of cytochrome P450 activity. Upon paracetamol administration, prostacyclin synthesis was strongly inhibited, while NO synthesis increased and thromboxane synthesis remained almost unchanged. Paracetamol may shift the COX-dependent vasodilatation/vasoconstriction balance at the cost of vasodilatation. This effect may be antagonized by increasing endothelial NO synthesis. High-dosed paracetamol did not increase oxidative stress. At pharmacologically relevant concentrations, paracetamol did not affect NO synthesis/bioavailability by recombinant human endothelial NOS or inducible NOS in rat hepatocytes. We conclude that paracetamol does not increase oxidative stress in humans. PMID:24799980

  10. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    Science.gov (United States)

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we ...

  11. Rat liver contains a limited number of binding sites for hepatic lipase

    NARCIS (Netherlands)

    G.C. Schoonderwoerd (Kees); A.J.M. Verhoeven (Adrie); H. Jansen (Hans)

    1994-01-01

    textabstractThe binding of hepatic lipase to rat liver was studied in an ex vivo perfusion model. The livers were perfused with media containing partially purified rat hepatic lipase or bovine milk lipoprotein lipase. The activity of the enzymes was determined in the

  12. CYP2C8 Genotype Significantly Alters Imatinib Metabolism in Chronic Myeloid Leukaemia Patients.

    Science.gov (United States)

    Barratt, Daniel T; Cox, Hannah K; Menelaou, Andrew; Yeung, David T; White, Deborah L; Hughes, Timothy P; Somogyi, Andrew A

    2017-08-01

    The aims of this study were to determine the effects of the CYP2C8*3 and *4 polymorphisms on imatinib metabolism and plasma imatinib concentrations in chronic myeloid leukaemia (CML) patients. We genotyped 210 CML patients from the TIDELII trial receiving imatinib 400-800 mg/day for CYP2C8*3 (rs11572080, rs10509681) and *4 (rs1058930). Steady-state trough total plasma N-desmethyl imatinib (major metabolite):imatinib concentration ratios (metabolic ratios) and trough total plasma imatinib concentrations were compared between genotypes (one-way ANOVA with Tukey post hoc). CYP2C8*3 (n = 34) and *4 (n = 15) carriers had significantly higher (P  50% higher for CYP2C8*1/*4 than for CYP2C8*1/*1 and CYP2C8*3 carriers (2.18 ± 0.66 vs. 1.45 ± 0.74 [P < 0.05] and 1.36 ± 0.98 μg/mL [P < 0.05], respectively). CYP2C8 genotype significantly alters imatinib metabolism in patients through gain- and loss-of-function mechanisms.

  13. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48.

    Science.gov (United States)

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-09-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents.

  14. Effect of fumonisin B1 on rat hepatic P450 system

    NARCIS (Netherlands)

    Spotti, M.; Maas, R.F.M.; Nijs, C.M. de; Fink-Gremmels, J.

    2000-01-01

    The effects of the mycotoxin fumonisin B1 (FB1) on the hepatic cytochrome P450 system were investigated in male rats dosed daily by oral gavage with 3 mg FB1 per kg body weight for 9 consecutive days. FB1 treatment resulted in a reduced weight gain. At the same time, CYP2E activity was increased,

  15. Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.

    Science.gov (United States)

    Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi

    2007-05-01

    Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.

  16. Cyp1a reporter zebrafish reveals target tissues for dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun-Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Park, Hye-Jeong [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Suhyun [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Williams, Darren R. [New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Myeong-Kyu [Department of Neurology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Jung, Young Do [Department of Biochemistry, Chonnam National University Medical School, Gwangju (Korea, Republic of); Teraoka, Hiroki [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Park, Hae-Chul [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Choy, Hyon E., E-mail: hyonchoy@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Shin, Boo Ahn, E-mail: bashin@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Choi, Seok-Yong, E-mail: zebrafish@chonnam.ac.kr [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); School of Biological Sciences and Technology, Chonnam National University, Gwangju (Korea, Republic of)

    2013-06-15

    Highlights: •2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic anthropogenic substance ever identified. •Transgenic cyp1a reporter zebrafish reveals target tissues for TCDD. •The retinal bipolar cells, otic vesicle, lateral line, pancreas, cloaca and pectoral fin bud are novel targets in zebrafish for TCDD. •Our findings will further understanding of human health risks by TCDD. -- Abstract: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  17. CYP2D6 genotype and phenotype relationship in South Indians

    Directory of Open Access Journals (Sweden)

    Naveen A

    2006-01-01

    Full Text Available Background : Genotypes of the drug-metabolizing enzyme CYP2D6 influence plasma levels of 25% of commonlyprescribed drugs. This is the first study in India to investigate the genotype-phenotype relationship of CYP2D6. Aim : To study the influence of some CYP2D6 genotypes on the metabolism of its substrate dextromethorphanin healthy South Indian volunteers and to assess the contribution of the CYP2D6FNx0110 and CYP2D6FNx014 alleles. Materials and Methods : Twenty-six subjects from a previous CYP2D6 genotyping study of healthy volunteerswere included for phenotyping in this study. Selected volunteers belonged to any one of three genotype groups:Group I - two normal activity alleles, Group II - one reduced activity allele and one normal activity allele andGroup III - one loss of function allele along with either a wild type or reduced activity allele. Volunteers werephenotyped for the CYP2D6 enzyme using dextromethorphan as probe drug. Concentrations of the parent drugand metabolite dextrorphan were estimated using high performance liquid chromatography. Metabolic ratioswere calculated as the ratio of parent drug to metabolite in 0-8h urine samples. Statistical Analysis : Metabolic ratios from each genotype group were compared using the Mann-Whitney testat 5% significance, to observe their difference between genotype groups. Results : The mean metabolic ratios±SD in Groups I, II and III were 0.0039±0.0031, 0.0032±0.0017 and0.0391±0.0331 respectively. The mean metabolic ratio of Group III was significantly higher when comparedwith Groups I or II. In heterozygous individuals, the FNx011 or FNx012 alleles compensated for the reduced enzymeactivity due to the FNx0110 allele. However, if a heterozygous individual had a FNx014 allele, the reduced enzyme activitycould not be compensated by the FNx011 or FNx012 alleles. Conclusions : The CYP2D6 enzyme activity was found to be decreased in individuals carrying FNx014 or FNx015 alleles.The FNx011 or FNx

  18. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    International Nuclear Information System (INIS)

    Roelofs, Maarke J.E.; Piersma, Aldert H.; Berg, Martin van den; Duursen, Majorie B.M. van

    2013-01-01

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2 nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  19. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Maarke J.E., E-mail: m.j.e.roelofs@uu.nl [Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht (Netherlands); Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht (Netherlands); Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Berg, Martin van den; Duursen, Majorie B.M. van [Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht (Netherlands)

    2013-05-01

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2 nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  20. The effect of amino-acid substitutions I112P, D147E and K152N in CYP11B2 on the catalytic activities of the enzyme.

    Science.gov (United States)

    Bechtel, Stephanie; Belkina, Natalya; Bernhardt, Rita

    2002-02-01

    By replacing specific amino acids at positions 112, 147 and 152 of the human aldosterone synthase (CYP11B2) with the corresponding residues from human, mouse or rat 11beta-hydroxylase (CYP11B1), we have been able to investigate whether these residues belong to structural determinants of individual enzymatic activities. When incubated with 11-deoxycorticosterone (DOC), the 11beta-hydroxylation activity of the mutants was most effectively increased by combining D147E and I112P (sixfold increase). The two substitutions displayed an additive effect. The same tendency can be observed when using 11-deoxycortisol as a substrate, although the effect is less pronounced. The second step of the CYP11B2-dependent DOC conversion, the 18-hydroxylation activity, was not as strongly increased as the 11beta-hydroxylation potential. Activity was unaffected by D147E, whereas the single mutant I112P displayed the most pronounced activation (70% enhancement), thus causing different increasing effects on the first two enzymatic reaction steps. A slightly enhanced aldosterone synthesis from DOC could be measured due to increased levels of the intermediates. However, the 18-oxidation activity of all the mutants, except for I112S and D147E, was slightly reduced. The strongly enhanced 18-hydroxycorticosterone and aldosterone formation observed in the mutants provides important information on a possible role of such amino-acid replacements in the development of essential hypertension. Furthermore, the results indicate the possibility of a differential as well as independent modification of CYP11B2 reaction steps. The combination of functional data and computer modelling of CYP11B2 suggests an indirect involvement of residue 147 in the regulation of CYP11B isoform specific substrate conversion due to its location on the protein surface. In addition, the results indicate the functional significance of amino-acid 112 in the putative substrate access channel of human CYP11B2. Thus, we present

  1. Biological studies on albino rats fed with Sorghum bicolor starch ...

    African Journals Online (AJOL)

    Partially purified amylase was extracted from the culture medium of Rhizopus sp. grown in potato dextrose broth for 48 h at room temperature by precipitation with 96.9% ethanol. The enzyme was used to hydrolyze sorghum starch. The hydrolyzed product was afterwards formulated into rat feed, which was fed to albino rats ...

  2. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population.

    Science.gov (United States)

    Hu, Guo-Xin; Dai, Da-Peng; Wang, Hao; Huang, Xiang-Xin; Zhou, Xiao-Yang; Cai, Jie; Chen, Hao; Cai, Jian-Ping

    2017-03-01

    To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28-*34. This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.

  3. Thyroid function and deiodinase activities in rats with marginal iodine deficiency

    NARCIS (Netherlands)

    K.P.L.T.M.K. Janssen (Karin); D. van der Heide (Daan); T.J. Visser (Theo); E. Kaptein (Ellen); A.C. Beynen (Anton)

    1994-01-01

    textabstractThe hypothesis tested was whether marginal iodine deficiency for a period of 6 wk affects iodothyronine deiodinase activities in liver and brain of rats. Male rats were fed purified diets either deficient or sufficient in iodine; the diets were fed on a restricted basis (60% of ad

  4. Evaluation of 89 compounds for identification of substrates for cynomolgus monkey CYP2C76, a new bupropion/nifedipine oxidase.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Shimizu, Makiko; Uehara, Shotaro; Fujino, Hideki; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-01-01

    Cynomolgus monkeys are widely used in preclinical studies during drug development because of their evolutionary closeness to humans, including their cytochrome P450s (P450s). Most cynomolgus monkey P450s are almost identical (≥90%) to human P450s; however, CYP2C76 has low sequence identity (approximately 80%) to any human CYP2Cs. Although CYP2C76 has no ortholog in humans and is partly responsible for species differences in drug metabolism between cynomolgus monkeys and humans, a broad evaluation of potential substrates for CYP2C76 has not yet been conducted. In this study, a screening of 89 marketed compounds, including human CYP2C and non-CYP2C substrates or inhibitors, was conducted to find potential CYP2C76 substrates. Among the compounds screened, 19 chemicals were identified as substrates for CYP2C76, including substrates for human CYP1A2 (7-ethoxyresorufin), CYP2B6 (bupropion), CYP2D6 (dextromethorphan), and CYP3A4/5 (dextromethorphan and nifedipine), and inhibitors for CYP2B6 (sertraline, clopidogrel, and ticlopidine), CYP2C8 (quercetin), CYP2C19 (ticlopidine and nootkatone), and CYP3A4/5 (troleandomycin). CYP2C76 metabolized a wide variety of the compounds with diverse structures. Among them, bupropion and nifedipine showed high selectivity to CYP2C76. As for nifedipine, CYP2C76 formed methylhydroxylated nifedipine, which was not produced by monkey CYP2C9, CYP2C19, or CYP3A4, as identified by mass spectrometry and estimated by a molecular docking simulation. This unique oxidative metabolite formation of nifedipine could be one of the selective marker reactions of CYP2C76 among the major CYP2Cs and CYP3As tested. These results suggest that monkey CYP2C76 contributes to bupropion hydroxylation and formation of different nifedipine oxidative metabolites as a result of its relatively large substrate cavity. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis

    OpenAIRE

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracol...

  6. Drug–drug Interaction between Pravastatin and Gemfibrozil (Antihyperlipidemic) with Gliclazide (Antidiabetic) in Rats

    Science.gov (United States)

    Sultanpur, CM; Satyanarayana, S; Reddy, NS; Kumar, KE; Kumar, S

    2010-01-01

    Diabetes mellitus is a condition of increased blood glucose level in the body. Antihyperlipidemic drugs like statins and fibrates are widely used for prophylactic treatment in dyslipideamia and atherosclerosis. Diabetic dislipidemia exists with increased triglycerides, low HDL and high LDL levels. Hence, with oral hypoglycemic drugs, the addition of a lipid-lowering drug is necessary for controlling dislipidemia. In such a situation, there may be chances of drug–drug interactions between antidiabetic and antihyperlipidemic drugs. The present study is planned to evaluate the safety of gliclazide (antidiabetic) in the presence of pravastatin and gemfibrozil (antihyperlpidemic) in rats. Studies in normal and alloxan-induced diabetic rats were conducted with oral doses of gliclazide and their combination with pravastatin and gemfibrozil, with an adequate washout period in between the treatments. Blood samples were collected in rats by retroorbital puncture at 0, 1, 2, 3, 4, 6, 8, 10 and 12 h. All the blood samples were analyzed for glucose by GOD –POD. Gliclazide (½ TD) produced hypoglycemic activity in normal and diabetic rats, with peak activity at 2 and 8 h. Pravastatin (TD) + gemfibrozil (TD) combination treatment increased the hypoglycemic effect of gliclazide in normal rats or diabetic rats when administered together. The interaction observed due to inhibition of both the enzymes (CYP 450 2C9 and CYP 450 3A4) responsible for the metabolism of gliclazide showed increased half-life, which was seen in the present study. Because concomitant administration of gliclazide with provastatin and gemfibrozil in diabetes is associated with atherosclerosis, it should be contraindicated or used with caution. PMID:21264118

  7. Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons.

    Science.gov (United States)

    Dang, Khoa; Bielefeldt, Klaus; Gebhart, G F

    2013-07-01

    Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6-S2) or thoracolumbar (TL, T13-L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis.

  8. Chronic restraint stress induces sperm acrosome reaction and changes in testicular tyrosine phosphorylated proteins in rats

    Directory of Open Access Journals (Sweden)

    Supatcharee Arun

    2016-07-01

    Full Text Available Background: Stress is a cause of male infertility. Although sex hormones and sperm quality have been shown to be low in stress, sperm physiology and testicular functional proteins, such as phosphotyrosine proteins, have not been documented. Objective: To investigate the acrosome status and alterations of testicular proteins involved in spermatogenesis and testosterone synthesis in chronic stress in rats. Materials and Methods: In this experimental study, male rats were divided into 2 groups (control and chronic stress (CS, n=7. CS rats were immobilized (4 hr/day for 42 consecutive days. The blood glucose level (BGL, corticosterone, testosterone, acrosome status, and histopathology were examined. The expressions of testicular steroidogenic acute regulatory (StAR, cytochrome P450 side chain cleavage (CYP11A1, and phosphorylated proteins were analyzed. Results: Results showed that BGL (71.25±2.22 vs. 95.60±3.36 mg/dl, corticosterone level (24.33±4.23 vs. 36.9±2.01 ng/ml, acrosome reacted sperm (3.25±1.55 vs. 17.71±5.03%, and sperm head abnormality (3.29±0.71 vs. 6.21±1.18% were significantly higher in CS group in comparison with control. In contrast, seminal vesicle (0.41±0.05 vs. 0.24±0.07 g/100g, testosterone level (3.37±0.79 vs. 0.61±0.29 ng/ml, and sperm concentration (115.33±7.70 vs. 79.13±3.65×106 cells/ml of CS were significantly lower (p<0.05 than controls. Some atrophic seminiferous tubules and low sperm mass were apparent in CS rats. The expression of CYP11A1 except StAR protein was markedly decreased in CS rats. In contrast, a 55 kDa phosphorylated protein was higher in CS testes. Conclusion: CS decreased the expression of CYP11A, resulting in decreased testosterone, and increased acrosome-reacted sperm, assumed to be the result of an increase of 55 kDa phosphorylated protein.

  9. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  10. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    Directory of Open Access Journals (Sweden)

    Rachel Vaivoda

    2015-01-01

    Full Text Available CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4. CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01. This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  11. CYP3A5 Polymorphism In Serbian Paediatric Epileptic Patients On Carbamazepine Treatment

    Directory of Open Access Journals (Sweden)

    Milovanovic Dragana Dragas

    2015-06-01

    Full Text Available Carbamazepine exhibits significant inter-individual variability in its efficacy and safety, which leads to unpredictable therapy outcomes for the majority of patients. Although its complex biotransformation depends on CYP3A5 activity, evidence of association between carbamazepine treatment outcomes and CYP3A5 functional variations remains inconclusive. The aim of the present study was to investigate the distribution of two of the functionally important CYP3A5 variants *2 and *3 as well as their effects on carbamazepine dose requirements, plasma concentrations and clearance in a Serbian population. The study involved 40 paediatric epileptic patients on steady-state carbamazepine treatment. Genotyping was conducted using the PCR-RFLP method, and carbamazepine plasma concentrations were determined using the HPLC method. CYP3A5*2 and *3 polymorphisms were found at frequencies of 0.0% and 97.5%, respectively, which corresponds well to previously published data for Caucasians. No differences in CYP3A5*3 allele frequencies were detected among epileptic patients in comparison to healthy volunteers within similar ethnic populations (p>0.08, indicating that CYP3A5 polymorphism does not represent a risk factor for epilepsy development. There was an observed tendency towards lower dosage requirements (mean±SD: 15.06±4.45 mg/kg vs. 18.74±5.55 mg/kg; p=0.26, higher plasma concentrations (mean±SD: 0.45±0.13 mg/kg vs. 0.38±0.03 mg/kg; p=0.47 and lower clearance (mean±SD: 0.14±0.05 mg/kg vs. 0.15±0.01 mg/kg; p=0.79 of carbamazepine in homozygous carriers of CYP3A5*3/*3 compared to heterozygous CYP3A5*1A/*3 Serbians. Because these genotype groups did not differ significantly in terms of their carbamazepine pharmacokinetics parameters, the proposed effects of CYP3A5*3 on carbamazepine metabolism could not be confirmed.

  12. CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity.

    Science.gov (United States)

    Viaggi, C; Vaglini, F; Pardini, C; Sgadò, P; Caramelli, A; Corsini, G U

    2007-01-01

    In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role.

  13. Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites.

    Science.gov (United States)

    Byeon, Ji-Yeong; Kim, Young-Hoon; Na, Han-Sung; Jang, Jong-Hwa; Kim, Se-Hyung; Lee, Yun-Jeong; Bae, Jung-Woo; Kim, In Su; Jang, Choon-Gon; Chung, Myeon-Woo; Lee, Seok-Yong

    2015-11-01

    To investigate the effect of the variant CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites, 4-hydroxyatomoxetine (4-HAT) and N-desmethylatomoxetine (NAT), in healthy subjects, a single oral dose of atomoxetine was administered to 62 subjects with a CYP2D6*wt/*wt (*wt = *1 or *2, n = 22), CYP2D6*wt/*10 (n = 22) or CYP2D6*10/*10 (n = 18) genotype. Plasma samples were then collected for 24 h after atomoxetine administration. The concentrations of atomoxetine and its metabolites were assayed using LC-MS/MS. For atomoxetine, the Cmax, AUC0-∞, t1/2 and CL/F showed genotype-dependent differences. The CYP2D6*10/*10 and CYP2D6*wt/*10 groups showed 1.74- and 1.15-fold higher Cmax, 3.40- and 1.33-fold higher AUC0-∞, and 69.7 and 24.6 % lower CL/F, compared to those of the CYP2D6*wt/*wt group, respectively. The Cmax and t1/2 for 4-HAT were lower and longer in the CYP2D6*10/*10 group than those in the CYP2D6*wt/*wt group, but the AUC0-∞ was not different between these groups. The Cmax, AUC0-∞ and t1/2 for NAT were profoundly greater in the CYP2D6*10/*10 group than they were in the CYP2D6*wt/*wt group. The concentration of active moieties of atomoxetine (atomoxetine + 4-HAT) in the CYP2D6*10/*10 group was 3.32-fold higher than that in the CYP2D6*wt/*wt group. The mean exposure to active moieties of atomoxetine was markedly higher in subjects with the CYP2D6*10/*10 genotype compared to that in those with the CYP2D6*wt/*wt genotype. The higher systemic exposure of the active atomoxetine moieties in CYP2D6*10/*10 individuals may increase the risk of concentration-related adverse events of atomoxetine, although this has not yet been clinically confirmed.

  14. ANTIBODIES TO BENZO[A]PYRENE AND POLYMORPHISMS OF CYP1A1*2A, CYP1A2*1F, GSTT1, AND GSTM1 GENES IN HEALTHY MEN AND LUNG CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    A. N. Glushkov

    2016-01-01

    Full Text Available Some genetic polymorphisms of CYP and GST enzymes metabolizing low-molecular weight xenobiotics may represent endogenous risk factors for carcinogenesis. However, possible relationships between the enzyme activities, amounts of carcinogen adducts and synthesis of anticarcinogen antibodies in humans (including cancer patients are still poorly studied. The purpose of this study was to identify possible associations between occurrence of antibodies against benzo[a]pyrene, and frequency of genetic polymorphisms of CYP1A1*2A, CYP1A2*1F, GSTT1, GSTM1 in healthy men and in lung cancer patients. Materials and methods. We have examined 203 men with non-small cell lung cancer and 267 apparently healthy donors without respiratory diseases. A non-competitive solid phase immunoassay of antibodies to benzo[a]pyrene was performed. Analysis of polymorphic loci within CYP1A1 (rs4646903, CYP1A2 (rs762551, GSTP1 (rs1695, rs1138272 was performed by means of real-time PCR using TaqMan technology. Null-alleles of GSTM1 (del, GSTT1 (del genes were detected by multiplex PCR with real-time fluorescent assay. Results. Among the lung cancer patients, the proportion of cases with a high level of IgG antibodies to benzo[a]pyrene in carriers of GSTT1+ and GSTM1+ in conjunction with the CYP1A2*1F C allele was significantly greater than in AA homozygotes CYP1A2*1F. The risk of lung cancer was increased to 5.5 in carriers of CYP1A2*1F C allele combined with GSTT1+ and GSTM1+ at high levels of IgG antibodies to benzo [a] pyrene. In healthy male donors, we have not found differences between the incidence of low and high levels of IgG anti-benzo[a]pyrene antibodies in the carriers of certain CYP1A1*2A, CYP1A2*1F, GSTT1 and GSTM1 genotypes. Conclusions. We have first reported a relationship between CYP1 and GST gene polymorphisms and specific immune response to chemical carcinogens in lung cancer patients. Immunoassays of IgG antibodies to benzo[a]pyrene combined with molecular

  15. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    Science.gov (United States)

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  16. Epistatic Interaction of CYP1A1 and COMT Polymorphisms in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Andreia Matos

    2016-01-01

    Full Text Available There is a clear association between the excessive and cumulative exposure to estrogens and the development of cancer in hormone-sensitive tissues, such as the cervix. We studied the association of CYP1A1 M1 (rs4646903 and COMT (rs4680 polymorphisms in 130 cervical cancer cases (c-cancer and 179 controls. The CYP1A1 TT genotype was associated with a lower risk for c-cancer (OR = 0.39, p=0.002. The allele C of CYP1A1 was a risk for c-cancer (OR = 2.29, p=0.002. Women with COMT LL genotype had a higher risk of developing c-cancer (OR = 4.83, p<0.001. For the interaction of the CYP1A1&COMT, we observed that TC&HL genotypes had a greater risk for c-cancer (OR = 6.07, p=0.006 and TT&HL genotypes had a protection effect (OR = 0.24, p<0.001. The CYP1A1 TT and COMT LL genotypes had higher estradiol levels in c-cancer (p<0.001 and p=0.037, resp.. C-cancer is associated with less production of 2-methoxy-estradiol resultant of functional polymorphisms of CYP1A1 and COMT, separately. CYP1A1 and COMT work in a metabolic sequence and their interaction could lead to an alternative pathway of estrogen metabolism with production of 16-OH-estrone that is more proliferative.

  17. PSA and androgen-related gene (AR, CYP17, and CYP19) polymorphisms and the risk of adenocarcinoma at prostate biopsy

    DEFF Research Database (Denmark)

    dos Santos, Rodrigo Mattos; de Jesus, Carlos Márcio Nóbrega; Trindade Filho, José Carlos Souza

    2008-01-01

    The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained......=0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker...

  18. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  19. Effect of CYP2C9*3 gene polymorphism on lipid-lowering efficacy of ...

    African Journals Online (AJOL)

    Purpose: To investigate the frequency of gene CYP2C9*3 in Chinese populations, and to analyze the impact of CYP2C9*3 genetic polymorphism on the cholesterol-lowering effect of fluvastatin in a Chinese hyperlipidemic population. Methods: CYP2C9 genotype was determined by polymerase chain reaction - restriction ...

  20. Bile Salt Homeostasis in Normal and Bsep Gene Knockout Rats with Single and Repeated Doses of Troglitazone.

    Science.gov (United States)

    Cheng, Yaofeng; Chen, Shenjue; Freeden, Chris; Chen, Weiqi; Zhang, Yueping; Abraham, Pamela; Nelson, David M; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2017-09-01

    The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    Science.gov (United States)

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The genes of all seven CYP3A isoenzymes identified in the equine genome are expressed in the airways of horses.

    Science.gov (United States)

    Tydén, E; Löfgren, M; Hakhverdyan, M; Tjälve, H; Larsson, P

    2013-08-01

    In the present study, we examined the gene expression of cytochrome P450 3A (CYP3A) isoenzymes in the tracheal and bronchial mucosa and in the lung of equines using TaqMan probes. The results show that all seven CYP3A isoforms identified in the equine genome, that is, CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129, are expressed in the airways of the investigated horses. Though in previous studies, CYP3A129 was found to be absent in equine intestinal mucosa and liver, this CYP3A isoform is expressed in the airways of horses. The gene expression of the CYP3A isoenzymes varied considerably between the individual horses studied. However, in most of the horses CYP3A89, CYP3A93, CYP3A96, CYP3A97 and CYP3A129 were expressed to a high extent, while CYP3A94 and CYP3A95 were expressed to a low extent in the different parts of the airways. The CYP3A isoenzymes present in the airways may play a role in the metabolic degradation of inhaled xenobiotics. In some instances, the metabolism may, however, result in bioactivation of the xenobiotics and subsequent tissue injury. © 2012 John Wiley & Sons Ltd.

  3. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P.; Ruparelia, Ketan; Arroo, Randolph R.J.; Tsatsakis, Aristidis M.; Spandidos, Demetrios A.

    2009-01-01

    Among the different mechanisms proposed to explain the cancer-protecting effect of dietary flavonoids, substrate-like interactions with cytochrome P450 CYP1 enzymes have recently been explored. In the present study, the metabolism of the flavonoids chrysin, baicalein, scutellarein, sinensetin and genkwanin by recombinant CYP1A1, CYP1B1 and CYP1A2 enzymes, as well as their antiproliferative activity in MDA-MB-468 human breast adenocarcinoma and MCF-10A normal breast cell lines, were investigated. Baicalein and 6-hydroxyluteolin were the only conversion products of chrysin and scutellarein metabolism by CYP1 family enzymes, respectively, while baicalein itself was not metabolized further. Sinensetin and genkwanin produced a greater number of metabolites and were shown to inhibit strongly in vitro proliferation of MDA-MB-468 cells at submicromolar and micromolar concentrations, respectively, without essentially affecting the viability of MCF-10A cells. Cotreatment of the CYP1 family inhibitor acacetin reversed the antiproliferative activity noticed for the two flavones in MDA-MB-468 cells to 13 and 14 μM respectively. In contrast chrysin, baicalein and scutellarein inhibited proliferation of MDA-MB-468 cells to a lesser extent than sinensetin and genkwanin. The metabolism of genkwanin to apigenin and of chrysin to baicalein was favored by CYP1B1 and CYP1A1, respectively. Taken together the data suggests that CYP1 family enzymes enhance the antiproliferative activity of dietary flavonoids in breast cancer cells, through bioconversion to more active products.

  4. Water pipe (Shisha, Hookah, Arghile) Smoking and Secondhand Tobacco Smoke Effects on CYP1A2 and CYP2A6 Phenotypes as Measured by Caffeine Urine Test.

    Science.gov (United States)

    Yılmaz, Şenay Görücü; Llerena, Adrián; De Andrés, Fernando; Karakaş, Ümit; Gündoğar, Hasan; Erciyas, Kamile; Kimyon, Sabit; Mete, Alper; Güngör, Kıvanç; Özdemir, Vural

    2017-03-01

    Public policies to stop or reduce cigarette smoking and exposure to secondhand smoke and associated diseases have yielded successful results over the past decade. Yet, the growing worldwide popularity of another form of tobacco consumption, water pipe smoking, has received relatively less attention. To the best of our knowledge, no study to date has evaluated the effects of water pipe smoking on cytochrome P450 (CYP450) activities and drug interaction potential in humans, whereas only limited information is available on the impact of secondhand smoke on drug metabolism. In a sample of 99 healthy volunteers (28 water pipe smokers, 30 secondhand tobacco smoke exposed persons, and 41 controls), we systematically compared CYP1A2 and CYP2A6 enzyme activities in vivo using caffeine urine test. The median self-reported duration of water pipe smoking was 7.5 h/week and 3 years of exposure in total. The secondhand smoke group had a median of 14 h of self-reported weekly exposure to tobacco smoke indoor where a minimum of five cigarettes were smoked/hour for a total of 3.5 years (median). Analysis of variance did not find a significant difference in CYP1A2 and CYP2A6 activities among the three study groups (p > 0.05). Nor was there a significant association between the extent of water pipe or secondhand smoke exposure and the CYP1A2 and CYP2A6 activities (p > 0.05). Further analysis in a subsample with smoke exposure more than the median values also did not reveal a significant difference from the controls. Although we do not rule out an appreciable possible impact of water pipe smoke and secondhand smoke on in vivo activities of these two drug metabolism pathways, variability in smoke constituents from different tobacco consumption methods (e.g., water pipe) might affect drug metabolism in ways that might differ from that of cigarette smoke. Further studies in larger prospective samples are recommended to evaluate water pipe and secondhand tobacco smoke effects

  5. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2.

    Science.gov (United States)

    Wang, R; Zhu, Y; Deng, L; Zhang, H; Wang, Q; Yin, M; Song, P; Elzaki, M E A; Han, Z; Wu, M

    2017-10-01

    Laodelphax striatellus (Fallén) is one of the most destructive pests of rice, and has developed high resistance to imidacloprid. Our previous work indicated a strong association between imidacloprid resistance and the overexpression of a cytochrome P450 gene CYP6AY3v2 in a L. striatellus imidacloprid resistant strain (Imid-R). In this study, a transgenic Drosophila melanogaster line that overexpressed the L. striatellus CYP6AY3v2 gene was established and was found to confer increased levels of imidacloprid resistance. Furthermore, CYP6AY3v2 was co-expressed with D. melanogaster cytochrome P450 reductase (CPR) in Spodoptera frugiperda 9 (SF9) cells. A carbon monoxide difference spectra analysis indicated that CYP6AY3v2 was expressed predominately in its cytochrome P450 (P450) form, which is indicative of a good-quality functional enzyme. The recombinant CYP6AY3v2 protein efficiently catalysed the model substrate P-nitroanisole to p-nitrophenol with a maximum velocity (V max ) of 60.78 ± 3.93 optical density (mOD)/min/mg protein. In addition, imidacloprid itself was metabolized by the recombinant CYP6AY3v2/nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) CPR microsomes in in vitro assays (catalytic constant (K cat ) = 0.34 pmol/min/pmol P450, michaelis constant (K m ) = 41.98 μM), and imidacloprid depletion and metabolite peak formation were with a time dependence. The data provided direct evidence that CYP6AY3v2 is capable of hydroxylation of imidacloprid and conferring metabolic resistance in L. striatellus. © 2017 The Royal Entomological Society.

  6. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    Science.gov (United States)

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (pCKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Passive smoking, Cyp1A1 gene polymorphism and dysmenorrhea

    Science.gov (United States)

    Liu, Hong; Yang, Fan; Li, Zhiping; Chen, Changzhong; Fang, Zhian; Wang, Lihua; Hu, Yonghua; Chen, Dafang

    2007-01-01

    Objective This study investigated whether the association between passive smoking exposure and dysmenorrhea is modified by two susceptibility genes, CYP1A1MspI and CYP1A1HincII. Methods This report includes 1645 (1124 no dysmenorrhea, 521 dysmenorrhea) nonsmoking and nondrinking newly wed female workers at Anqing, China between June 1997 and June 2000. Multiple logistic regression models were used to estimate the associations of passive smoking exposure and genetic susceptibility with dysmenorrhea, adjusting for perceived stress. Results When stratified by women genotype, the adjusted OR of dysmenorrhea was 1.6 (95%CI=1.3-2.1) for passive smoking group with Ile/Ile462 genotype, and 1.5 (95%CI=1.1-2.1) with C/C6235 genotype, compared to non passive smoking group, respectively. The data further showed that there was a significant combined effect between passive smoking and the CYP1A1 Msp1 C/C6235 and HincII Ile/Ile462 genotype (OR=2.6, 95%CI=1.3-5.2). Conclusion CYP1A1 MspI and HincII genotypes modified the association between passive smoking and dysmenorrhea. PMID:17566695

  8. Three new shRNA expression vectors targeting the CYP3A4 coding sequence to inhibit its expression

    Directory of Open Access Journals (Sweden)

    Siyun Xu

    2014-10-01

    Full Text Available RNA interference (RNAi is useful for selective gene silencing. Cytochrome P450 3A4 (CYP3A4, which metabolizes approximately 50% of drugs in clinical use, plays an important role in drug metabolism. In this study, we aimed to develop a short hairpin RNA (shRNA to modulate CYP3A4 expression. Three new shRNAs (S1, S2 and S3 were designed to target the coding sequence (CDS of CYP3A4, cloned into a shRNA expression vector, and tested in different cells. The mixture of three shRNAs produced optimal reduction (55% in CYP3A4 CDS-luciferase activity in both CHL and HEK293 cells. Endogenous CYP3A4 expression in HepG2 cells was decreased about 50% at both mRNA and protein level after transfection of the mixture of three shRNAs. In contrast, CYP3A5 gene expression was not altered by the shRNAs, supporting the selectivity of CYP3A4 shRNAs. In addition, HepG2 cells transfected with CYP3A4 shRNAs were less sensitive to Ginkgolic acids, whose toxic metabolites are produced by CYP3A4. These results demonstrate that vector-based shRNAs could modulate CYP3A4 expression in cells through their actions on CYP3A4 CDS, and CYP3A4 shRNAs may be utilized to define the role of CYP3A4 in drug metabolism and toxicity.

  9. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants.

    Science.gov (United States)

    de Jong, Jan; Skee, Donna; Murphy, Joe; Sukbuntherng, Juthamas; Hellemans, Peter; Smit, Johan; de Vries, Ronald; Jiao, Juhui James; Snoeys, Jan; Mannaert, Erik

    2015-08-01

    Ibrutinib (PCI-32765), a potent covalent inhibitor of Bruton's tyrosine kinase, has shown efficacy against a variety of B-cell malignancies. Given the prominent role of CYP3A in ibrutinib metabolism, effect of coadministration of CYP3A perpetrators with ibrutinib was evaluated in healthy adults. Ibrutinib (120 mg [Study 1, fasted], 560 mg [studies 2 (fasted), and 3 (nonfasted)]) was given alone and with ketoconazole [Study 1; 400 mg q.d.], rifampin [Study 2; 600 mg q.d.], and grapefruit juice [GFJ, Study 3]. Lower doses of ibrutinib were used together with CYP3A inhibitors [Study 1: 40 mg; Study 3: 140 mg], as safety precaution. Under fasted condition, ketoconazole increased ibrutinib dose-normalized (DN) exposure [DN-AUClast: 24-fold; DN-C max: 29-fold], rifampin decreased ibrutinib exposure [C max: 13-fold; AUClast: 10-fold]. Under nonfasted condition, GFJ caused a moderate increase [DN-C max: 3.5-fold; DN-AUC: 2.2-fold], most likely through inhibition of intestinal CYP3A. Half-life was not affected by CYP perpetrators indicating the interaction was mainly on first-pass extraction. All treatments were well-tolerated.

  10. Effects of CYP2C9*1/*3 genotype on the pharmacokinetics of flurbiprofen in Korean subjects.

    Science.gov (United States)

    Lee, Yun-Jeong; Byeon, Ji-Yeong; Kim, Young-Hoon; Kim, Se-Hyung; Choi, Chang-Ik; Bae, Jung-Woo; Sohn, Uy-Dong; Jang, Choon-Gon; Lee, Jeongmi; Lee, Seok-Yong

    2015-06-01

    The aim of this study was to investigate the impact of CYP2C9*1/*3 genotype on the pharmacokinetics of flurbiprofen and its metabolite. The CYP2C9 genotypes were determined with the use of polymerase chain reaction and restriction fragment and DNA sequencing analysis in 358 healthy Koreans. Among them, twenty individuals with CYP2C9*1/*1 (n = 12) or CYP2C9*1/*3 (n = 8) genotypes received a single 40 mg oral dose of flurbiprofen. The plasma concentrations of flurbiprofen and its metabolite, 4'-hydroxyflurbiprofen were measured by HPLC. AUCinf of flurbiprofen was significantly higher and its clearance was significantly lower in the CYP2C9*1/*3 individuals than in those with CYP2C9*1/*1. The AUC ratio of 4'-hydroxyflurbiprofen to flurbiprofen was significantly lower in the CYP2C9*1/*3 individuals than in those with CYP2C9*1/*1. These results indicate that the individuals carrying of CYP2C9*3 have significant reduction in flurbiprofen metabolism. The clinical use of this information may allow for more efficient personalized pharmacotherapy.

  11. CYP2C9 polymorphism in patients with epilepsy: genotypic frequency analyzes andphenytoin adverse reactions correlation

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Twardowschy

    2011-04-01

    Full Text Available OBJECTIVE: CYP2C9 is a major enzyme in human drug metabolism and the polymorphism observed in the corresponding gene may affect therapeutic outcome during treatment. The distribution of variant CYP2C9 alleles and prevalence of phenytoin adverse reactions were hereby investigated in a population of patients diagnosed with epilepsy. METHOD: Allele-specific PCR analysis was carried out in order to determine frequencies of the two most common variant alleles, CYP2C9*2 and CYP2C9*3 in genomic DNA isolated from 100 epileptic patients. We also analyzed the frequency of phenytoin adverse reactions among those different genotypes groups. The data was presented as mean±standard deviation. RESULTS: The mean age at enrollment was 39.6±10.3 years (range, 17-72 years and duration of epilepsy was 26.5±11.9 years (range 3-48 years. The mean age at epilepsy onset was 13.1±12.4 years (range, 1 month-62 years. Frequencies of CYP2C9*1 (84%, CYP2C9*2 (9% and CYP2C9*3 (7% were similar to other published reports. Phenytoin adverse reactions were usually mild and occurred in 15% patients, without correlation with the CYP2C9 polymorphism (p=0.34. CONCLUSION: Our findings indicate an overall similar distribution of the CYP2C9 alleles in a population of patients diagnosed with epilepsy in the South of Brazil, compared to other samples. This sample of phenytoin users showed no drug related adverse reactions and CYP2C9 allele type correlation. The role of CYP2C9 polymorphism influence on phenytoin adverse reaction remains to be determined since some literature evidence and our data found negative results.

  12. Genomic variation in CYP3A4: type, frequencies and potential implications for pharmacogenetic understanding.

    OpenAIRE

    Creemer, O.

    2012-01-01

    The human cytochrome P450 3A subfamily metabolises endogenous substances and approximately half of all currently available drugs. There is marked inter-individual variation in hepatic expression of the major adult isoform, CYP3A4; the genetic component of this variability is estimated at 60-90% and, as yet, remains largely uncharacterised. Elucidation of genetic factors determining CYP3A4 activity would permit personalised dose-adjustment in therapies with CYP3A4 drug substrates. CYP3A4 genom...

  13. Effect of CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating a new pharmacogenetic algorithm in South Indian population.

    Science.gov (United States)

    Krishna Kumar, Dhakchinamoorthi; Shewade, Deepak Gopal; Loriot, Marie-Anne; Beaune, Philippe; Balachander, Jayaraman; Sai Chandran, B V; Adithan, Chandrasekaran

    2014-01-01

    To determine the influence of genetic polymorphisms on warfarin maintenance dose and to explicate an algorithm using the pharmacogenetic and clinical factors to determine the maintenance and/or starting dose of warfarin in South Indian patients receiving warfarin therapy. Patients receiving stabilized warfarin therapy (n=257) were included in the study. Single nucleotide polymorphisms (SNPs) of CYP2C9 (rs1799853 and rs1057910), VKORC1 (rs9923231, rs7196161, rs2884737, rs9934438, rs8050894, rs2359612 and rs7294), CYP4F2 (rs2108622) and GGCX (rs11676382) were genotyped by the quantitative real time-PCR method. The mean daily maintenance dose of warfarin was found to be 4.7 ± 2.1 mg/day. Patients with the CYP2C9*1/*2, *1/*3 and *2/*3 variant genotypes required a 51.0 (2.8 mg), 60.9 (2.3 mg) and 62.2 % (2.2 mg) lower daily maintenance dose of warfarin, respectively, than those patients with the CYP2C9*1/*1 wild-type genotype (5.2 mg) (pmaintenance dose. Genetic polymorphisms of CYP2C9, VKORC1, CYP4F2 and GGCX are important predictive factors of warfarin maintenance dose, and the developed algorithm will be useful to predict the required maintenance and/or starting warfarin dose in South Indian populations.

  14. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation.

    Science.gov (United States)

    Zia, Hamid; Murray, Graeme I; Vyhlidal, Carrie A; Leeder, J Steven; Anwar, Ahmed E; Bui, Marilyn M; Ahmed, Atif A

    2015-04-01

    Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  15. Genetic epidemiology of pharmacogenetic variations in CYP2C9, CYP4F2 and VKORC1 genes associated with warfarin dosage in the Indian population.

    Science.gov (United States)

    Giri, Anil K; Khan, Nazir M; Grover, Sandeep; Kaur, Ismeet; Basu, Analabha; Tandon, Nikhil; Scaria, Vinod; Kukreti, Ritushree; Brahmachari, Samir K; Bharadwaj, Dwaipayan

    2014-07-01

    Warfarin, a widely used anticoagulant, exhibits large interindividual variability in dose requirements. CYP2C9 and VKORC1 polymorphisms in various ethnic groups have been extensively studied as genetic markers associated with variable drug response. However, allele frequencies of these variants have not been assessed in major ethnic groups in the Indian population. To study the functional variants known to affect warfarin dosing, we reanalyzed genotype microarray datasets generated as a part of genome-wide association studies as well as data from the Indian Genome Variation database. We examined data from 2680 individuals across 24 ethnically diverse Indian subpopulations. Allelic distribution of VKORC1 (-1639G>A) showed a greater degree of variation across Indian subpopulations, with frequencies as low as 6.5% in an out-group subpopulation to >70% in Tibeto-Burmans. Risk allele frequency of CYP4F2*3 (V433M) was higher in north Indians (0.30-0.44), as compared with other world populations, such as African-American (0.12), Caucasian (0.34) and Hispanic (0.23). TheVKORC1 variant (-1639A) was shown to be prevalent amongst Tibeto-Burmans, whereas CYP2C9 (R144C, I359L) and CYP4F2 (V433M) variants were observed in considerable variability amongst Indo-Europeans. The frequency of CYP2C9*3 (I359L) in north Indians was found to be higher than in most Asian populations. Furthermore, geographical distribution patterns of these variants in north India showed an increased trend of warfarin extensive metabolizers from the Himalayan to Gangetic region. Combined allele frequency (CYP2C9*3 and CYP4F2*3) data suggest that poor metabolizers varied in the range of 0.38-1.85% in Indo-Europeans. Based on genotypic distribution, the majority of the Indian subpopulation might require higher doses for stable anticoagulation, whereas careful assessment is required for Tibeto-Burmans who are expected to have intermediate dose requirement. This is the largest global genetic epidemiological

  16. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens.

    Science.gov (United States)

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-10-10

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism.

  17. β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats

    International Nuclear Information System (INIS)

    Dewa, Yasuaki; Nishimura, Jihei; Muguruma, Masako; Jin, Meilan; Saegusa, Yukie; Okamura, Toshiya; Tasaki, Masako; Umemura, Takashi; Mitsumori, Kunitoshi

    2008-01-01

    The tumour-promoting effects of β-naphthoflavone (BNF), a novel aryl hydrocarbon receptor (AhR) agonist, were investigated using a medium-term hepatocarcinogenesis model in rats. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) at a dose of 200 mg/kg body weight and were fed a diet containing 0% (basal diet), 0.5% or 1% BNF for 6 weeks from 2 weeks after DEN treatment. All animals were subjected to two-thirds partial hepatectomy 1 week after the BNF treatment. The number and area of glutathione S-transferase placental form (GST-P) positive foci significantly increased in the livers of rats treated with BNF with concomitantly increased cell proliferation compared to those in the livers of the DEN alone group. Global gene expression analysis and subsequent quantitative real-time reverse transcription-polymerase chain reaction revealed that BNF induced not only the 'AhR gene battery'Cyp1a1, Cyp1a2, Cyp1b1, Nqo1, Aldh3a1 and Ugt1a6 but also the transcription factor NF-E2-related factor 2 (Nrf2)-regulated genes such as Gstm1, Gpx2, Akr7a3 and Yc2 (and also Nqo1), presumably due to the adaptive response against BNF-triggered oxidative stress responses. Reactive oxygen species production increased in microsomes isolated from the livers of BNF-treated rats, and this enhancement was suppressed by the P450 inhibitor SKF-525A. Furthermore, BNF enhanced oxidative DNA damage and lipid peroxidation, estimated by the levels of 8-hydroxydeoxyguanosine (8-OHdG) and thiobarbituric acid-reactive substances. These results suggest that the administration of BNF at a high dose and over a long-term enhance oxidative stress responses which may contribute to its hepatocarcinogenic potential in rats

  18. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    International Nuclear Information System (INIS)

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Gerhard, Glenn S.; Smith, Andrew G.; Sinclair, Peter R.

    2007-01-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb 1 ), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential

  19. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides.

    Science.gov (United States)

    Buratti, Franca M; Leoni, Claudia; Testai, Emanuela

    2006-12-15

    In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>3A7>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.

  20. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  1. Retinoids repress Ah receptor CYP1A1 induction pathway through the SMRT corepressor

    International Nuclear Information System (INIS)

    Fallone, Frederique; Villard, Pierre-Henri; Seree, Eric; Rimet, Odile; Nguyen, Quock Binh; Bourgarel-Rey, Veronique; Fouchier, Francis; Barra, Yves; Durand, Alain; Lacarelle, Bruno

    2004-01-01

    CYP1A1 isoform is mainly regulated by the transcription factor AhR and to a lesser extent by the nuclear receptor RAR. The effect of a coexposure with 3MC, a AhR ligand, and RA, a RAR ligand, which are, respectively, strong and weak CYP1A1 inducers, is poorly known. We showed in Caco-2 cells that addition of RA significantly decreased 3MC-induced CYP1A1 expression by -55% for mRNA level and -30% for promoter and enzymatic activities. We further showed that RA decreased AhR protein level. Moreover, a physical interaction between AhR and the RAR-corepressor SMRT has been described in vitro. Using the corepressor inhibitor TSA, transfected-cells with SMRT cDNA, and coimmunoprecipitation experiments, we demonstrated that RA addition repressed AhR function through a marked AhR/SMRT physical interaction. This interaction explains the decrease of 3MC-induced CYP1A1 expression. This new mechanism involving the repression of AhR-induced CYP1A1 expression by retinoids allows better knowledge of the CYP1A1 regulation

  2. Involvement of CYP 2E1 enzyme in ovotoxicity caused by 4-vinylcyclohexene and its metabolites

    International Nuclear Information System (INIS)

    Rajapaksa, Kathila S.; Cannady, Ellen A.; Sipes, I. Glenn; Hoyer, Patricia B.

    2007-01-01

    4-Vinylcyclohexene (VCH) is bioactivated by hepatic CYP 2A and 2B to a monoepoxide (VCM) and subsequently to an ovotoxic diepoxide metabolite (VCD). Studies suggest that the ovary can directly bioactivate VCH via CYP 2E1. The current study was designed to evaluate the role of ovarian CYP 2E1 in VCM-induced ovotoxicity. Postnatal day 4 B6C3F 1 and CYP 2E1 wild-type (+/+) and null (-/-) mouse ovaries were cultured (15 days) with VCD (30 μM), 1,2-VCM (125-1000 μM), or vehicle. Twenty-eight days female CYP 2E1 +/+ and -/- mice were dosed daily (15 days; ip) with VCH, 1,2-VCM, VCD or vehicle. Following culture or in vivo dosing, ovaries were histologically evaluated. In culture, VCD decreased (p 1 and CYP 2E1 +/+ ovaries, but not in CYP 2E1 -/- ovaries in culture. 1,2-VCM did not affect primary follicles in any group of mouse ovaries. Conversely, following in vivo dosing, primordial and primary follicles were reduced (p < 0.05) by VCD and VCM in CYP2E1 +/+ and -/-, and by VCH in +/+ mice. The data demonstrate that, whereas in vitro ovarian bioactivation of VCM requires CYP 2E1 enzyme, in vivo CYP 2E1 plays a minimal role. Thus, the findings support that hepatic metabolism dominates the contribution made by the ovary in bioactivation of VCM to its ovotoxic metabolite, VCD. This study also demonstrates the use of a novel ovarian culture system to evaluate ovary-specific metabolism of xenobiotics

  3. Expression of cyp1a protein in the freshwater clam Corbicula fluminea (Müller

    Directory of Open Access Journals (Sweden)

    Vranković Jelena

    2011-01-01

    Full Text Available We investigated the expression of CYP1A in the foot, gill and visceral mass of the freshwater clam Corbicula fluminea in relation to polychlorinated biphenyls (PCBs exposure. Different PCBs congeners were found in the foot and visceral mass, while the expression of CYP1A was observed only in the visceral mass. However the level of CYP1A expression in the visceral mass was not related to the level of PCBs present in the tissue. Our results indicate a higher rate of biotransformation and lower threshold of CYP1A induction in the visceral mass compared with other tissues.

  4. Avian cytochrome P450 (CYP 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    Directory of Open Access Journals (Sweden)

    Kensuke P Watanabe

    Full Text Available Cytochrome P450 (CYP of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.

  5. Impact of the CYP2C8 *3 polymorphism on the drug-drug interaction between gemfibrozil and pioglitazone.

    Science.gov (United States)

    Aquilante, Christina L; Kosmiski, Lisa A; Bourne, David W A; Bushman, Lane R; Daily, Elizabeth B; Hammond, Kyle P; Hopley, Charles W; Kadam, Rajendra S; Kanack, Alexander T; Kompella, Uday B; Le, Merry; Predhomme, Julie A; Rower, Joseph E; Sidhom, Maha S

    2013-01-01

    The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug-drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate). In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period. Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P = 0.02). CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil-pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug-drug interactions. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  6. Impact of the CYP2C8 *3 polymorphism on the drug–drug interaction between gemfibrozil and pioglitazone

    Science.gov (United States)

    Aquilante, Christina L; Kosmiski, Lisa A; Bourne, David W A; Bushman, Lane R; Daily, Elizabeth B; Hammond, Kyle P; Hopley, Charles W; Kadam, Rajendra S; Kanack, Alexander T; Kompella, Uday B; Le, Merry; Predhomme, Julie A; Rower, Joseph E; Sidhom, Maha S

    2013-01-01

    AIM The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug–drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate). METHODS In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period. RESULTS Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P= 0.02). CONCLUSION CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil–pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug–drug interactions. PMID:22625877

  7. P38/TRHr-Dependent Regulation of TPO in Thyroid Cells Contributes to the Hypothyroidism of Triclosan-Treated Rats

    Directory of Open Access Journals (Sweden)

    Pei Zhang

    2018-02-01

    Full Text Available Background/Aims: Triclosan, as an antimicrobial agent and a potential endocrine disruptor, has been used extensively in diverse products, resulting in widespread human exposure. In recent years, studies suggest that triclosan could disturb thyroid functions and decline thyroid hormones (THs. Methods: To verify our hypothesis that the MAPK pathway may function significantly in triclosan-induced hypothyroidism, Sprague-Dawley rats were gavaged with triclosan for 31 consecutive days; Nthy-ori 3-1 cells were treated with triclosan in the presence/absence of NAC, inhibitors (SB203580 and SB202474, or TRHr siRNA. Tissues and/or cells were analyzed by several techniques including transmission electron microscopy, confocal laser scanning microscopy, gene silencing, western blot, and real-time PCR. Results: Triclosan led to histopathologic changes in the thyroid and decreases in triiodothyronine (T3 and thyroxine (T4. Triclosan stimulated ROS production and oxidative stress occurrence, thereby activating the p38 pathway in vivo and in vitro. Thyrotropin releasing hormone receptor (TRHr was induced when the p38 pathway was activated, and was suppressed when that pathway was inhibited. Moreover, thyroid peroxidase (TPO was restrained and modulated by the p38/TRHr pathway after triclosan treatment. Furthermore, deiodinase 3 (D3 and hepatic enzymes (Ugt2b1, CYP1a1, CYP1a2, CYP2b1, CYP3a1, and Sult1e1 were also induced by triclosan. Conclusion: Taken together, p38/TRHr-dependent regulation of TPO in thyroid cells contributes to the hypothyroidism of triclosan-treated rats.

  8. Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro.

    Science.gov (United States)

    Hou, De-Fu; Wang, Shui-Liang; He, Zhi-Min; Yang, Fang; Chen, Zhu-Chu

    2007-04-01

    It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 microg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 +/- 0.034 nmol/10(6) cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N'-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 microg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.

  9. Isolation of CYP3A5P cDNA from human liver: a reflection of a novel cytochrome P-450 pseudogene.

    Science.gov (United States)

    Schuetz, J D; Guzelian, P S

    1995-03-14

    We have isolated, from a human liver cDNA library, a 1627 bp CYP3A5 cDNA variant (CYP3A5P) that contains several large insertions, deletions, and in-frame termination codons. By comparison with the genomic structure of other CYP3A genes, the major insertions in CYP3A5P cDNA demarcate the inferred sites of several CYP3A5 exons. The segments inserted in CYP3A5P have no homology with splice donor acceptor sites. It is unlikely that CYP3A5P cDNA represents an artifact of the cloning procedures since Southern blot analysis of human genomic DNA disclosed that CYP3A5P cDNA hybridized with a DNA fragment distinct from fragments that hybridized with either CYP3A5, CYP3A3 or CYP3A4. Moreover, analysis of adult human liver RNA on Northern blots hybridized with a CYP3A5P cDNA fragment revealed the presence of an mRNA with the predicted size of CYP3A5P. We conclude that CYP3A5P cDNA was derived from a separate gene, CYP3A5P, most likely a pseudogene evolved from CYP3A5.

  10. The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model.

    Science.gov (United States)

    Ansari, Mushtaq A; Maayah, Zaid H; Bakheet, Saleh A; El-Kadi, Ayman O; Korashy, Hesham M

    2013-04-05

    Lead (Pb(2+)) is a naturally occurring systemic toxicant heavy metal that affects several organs in the body including the kidneys, liver, and central nervous system. However, Pb(2+)-induced cardiotoxicity has never been investigated yet and the exact mechanism of Pb(2+) associated cardiotoxicity has not been studied. The current study was designed to investigate the potential effect of Pb(2+) to induce cardiotoxicity in vivo and in vitro rat model and to explore the molecular mechanisms and the role of aryl hydrocarbon receptor (AhR) and regulated gene, cytochrome P4501A1 (CYP1A1), in Pb(2+)-mediated cardiotoxicity. For these purposes, Wistar albino rats were treated with Pb(2+) (25, 50 and 100mg/kg, i.p.) for three days and the effects on physiological and histopathological parameters of cardiotoxicity were determined. At the in vitro level, rat cardiomyocyte H9c2 cell lines were incubated with increasing concentration of Pb(2+) (25, 50, and 100 μM) and the expression of hypertrophic genes, α- and β-myosin heavy chain (α-MHC and β-MHC), brain Natriuretic Peptide (BNP), and CYP1A1 were determined at the mRNA and protein levels using real-time PCR and Western blot analysis, respectively. The results showed that Pb(2+) significantly induced cardiotoxicity and heart failure as evidenced by increase cardiac enzymes, lactate dehydrogenase and creatine kinase and changes in histopathology in vivo. In addition, Pb(2+) treatment induced β-MHC and BNP whereas inhibited α-MHC mRNA and protein levels in vivo in a dose-dependent manner. In contrast, at the in vitro level, Pb(2+) treatment induced both β-MHC and α-MHC mRNA levels in time- and dose-dependent manner. Importantly, these changes were accompanied with a proportional increase in the expression of CYP1A1 mRNA and protein expression levels, suggesting a role for the CYP1A1 in cardiotoxicity. The direct evidence for the involvement of CYP1A1 in the induction of cardiotoxicity by Pb(2+) was evidenced by the

  11. An Age-Dependent Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for the Organophosphorus Insecticide Chlorpyrifos in the Preweanling Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.

    2007-08-01

    Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometrically scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.

  12. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  13. A new herb–drug interaction of Polygonum cuspidatum, a resveratrol‐rich nutraceutical, with carbamazepine in rats

    International Nuclear Information System (INIS)

    Chi, Ying-Chang; Lin, Shiuan-Pey; Hou, Yu-Chi

    2012-01-01

    Carbamazepine (CBZ), an antiepileptic with narrow therapeutic window, is a substrate of CYP 3A which metabolizes CBZ to carbamazepine-10,11-epoxide (CBZE), an active metabolite. This study investigated the acute and chronic effects of Polygonum cuspidatum (PC), a resveratrol‐rich nutraceutical, on the pharmacokinetics of CBZ in rats and the underlying mechanisms. Rats were orally administered CBZ (200 mg/kg) alone and coadministered with a single dose and the 7th dose of PC (2 g/kg) in a crossover design. The concentrations of CBZ and CBZE in serum and various tissues were determined by HPLC method. The results showed that PC significantly increased the AUC 0-t of CBZ and CBZE, whereas the formation rate of CBZE was decreased. Tissue analysis showed that the concentrations of CBZ and CBZE in brain, liver and kidney were significantly increased by PC. Cell studies indicated that the efflux function of MRP 2 was inhibited by the serum metabolites of PC. In conclusion, PC markedly increased the systemic exposure and brain concentration of CBZ and CBZE through inhibiting the activities of CYP 3A and MRP 2. Highlights: ► Polygonum cuspidatum elevated brain carbamazepine (CBZ) levels. ► Polygonum cuspidatum inhibited the activities of CYP 3A and MRP 2. ► Coadministration of PC with CBZ may enhance efficacy or toxicity.

  14. A new herb–drug interaction of Polygonum cuspidatum, a resveratrol‐rich nutraceutical, with carbamazepine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Ying-Chang [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, 40402, Taiwan (China); Lin, Shiuan-Pey [School of Pharmacy, China Medical University, Taichung, 40402, Taiwan (China); Hou, Yu-Chi, E-mail: hou5133@gmail.com [School of Pharmacy, China Medical University, Taichung, 40402, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan (China)

    2012-09-15

    Carbamazepine (CBZ), an antiepileptic with narrow therapeutic window, is a substrate of CYP 3A which metabolizes CBZ to carbamazepine-10,11-epoxide (CBZE), an active metabolite. This study investigated the acute and chronic effects of Polygonum cuspidatum (PC), a resveratrol‐rich nutraceutical, on the pharmacokinetics of CBZ in rats and the underlying mechanisms. Rats were orally administered CBZ (200 mg/kg) alone and coadministered with a single dose and the 7th dose of PC (2 g/kg) in a crossover design. The concentrations of CBZ and CBZE in serum and various tissues were determined by HPLC method. The results showed that PC significantly increased the AUC{sub 0-t} of CBZ and CBZE, whereas the formation rate of CBZE was decreased. Tissue analysis showed that the concentrations of CBZ and CBZE in brain, liver and kidney were significantly increased by PC. Cell studies indicated that the efflux function of MRP 2 was inhibited by the serum metabolites of PC. In conclusion, PC markedly increased the systemic exposure and brain concentration of CBZ and CBZE through inhibiting the activities of CYP 3A and MRP 2. Highlights: ► Polygonum cuspidatum elevated brain carbamazepine (CBZ) levels. ► Polygonum cuspidatum inhibited the activities of CYP 3A and MRP 2. ► Coadministration of PC with CBZ may enhance efficacy or toxicity.

  15. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients.

    Science.gov (United States)

    Tavira, Beatriz; Coto, Eliecer; Diaz-Corte, Carmen; Alvarez, Victoria; López-Larrea, Carlos; Ortega, Francisco

    2013-08-01

    The CYP3A5*3 and CYP3A4*1B alleles have been related with tacrolimus (Tac) dose requirements. The rare CYP3A4*22 variant has also been associated with a significantly lower Tac dose. We genotyped the three single-nucleotide polymorphisms in 206 kidney-transplanted patients who received Tac as the primary immunosuppressor. CYP3A5*1 and CYP3A4*1B allele carriers received a significantly higher Tac dose (PCYP3A4*22 genotypes, either nominally or according to the CYP3A5 genotype (expressers vs. nonexpressers). Sequencing of CYP3A4 coding exons in a total of 15 patients revealed only one nonreported missense change (p.P227>T) in one patient. We concluded that CYP3A5*3 and CYP3A4*1B were the main determinants of the Tac dose-adjusted blood concentration in our cohort of renal-transplanted patients.

  16. Exposure to p,p'-DDE or dieldrin during the reproductive season alters hepatic CYP expression in largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Barber, David S; McNally, Alex J; Garcia-Reyero, Natàlia; Denslow, Nancy D

    2007-02-15

    Largemouth bass (LMB) in Central Florida living on sites with high levels of organochlorine pesticides (OCPs) have exhibited poor reproductive success and altered steroid profiles. The mechanism underlying these changes is unknown, however changes in the rate of steroid metabolism could alter steroid homeostasis. Members of the CYP2 and CYP3A families play a significant role in the metabolism of many xenobiotics and endogenous compounds, including sex steroids. Therefore, the goal of this study was to identify members of the CYP2 and CYP3A families in LMB and characterize the effects of OCP exposure on their expression. Full-length clones of two CYP3A isoforms were obtained from LMB liver, CYP3A68 and 3A69, which exhibited significant sequence divergence. Full-length clones for CYP2N14 and CYP2P11 were also obtained from LMB liver. Steady-state mRNA levels of each of these CYPs increased in both sexes between early reproductive phase (December) and peak reproductive phase (March). Expression of CYP3A68 and CYP2P11 was sexually dimorphic during peak reproductive phase with 2-fold higher expression in females and males, respectively. Foodborne exposure to 46 ppm p,p'-DDE or 0.8 ppm dieldrin for 30 days did not have a significant effect on expression of CYPs. However, 4 months exposure to p,p'-DDE induced CYP3A68 and 3A69 expression in both sexes, while dieldrin produced weak induction of CYP3A68 and suppressed CYP3A69 expression in females, but had no effect on males. Neither p,p'-DDE nor dieldrin significantly altered the expression of CYP2P11 or CYP2N14. This work demonstrates that there are significant changes in CYP expression that occur during LMB reproduction which can be modified by exposure to OCPs.

  17. Exposure to p,p′-DDE or dieldrin during the reproductive season alters hepatic CYP expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Barber, David S.; McNally, Alex J.; Garcia-Reyero, Natàlia; Denslow, Nancy D.

    2007-01-01

    Largemouth bass (LMB) in Central Florida living on sites with high levels of organochlorine pesticides (OCPs) have exhibited poor reproductive success and altered steroid profiles. The mechanism underlying these changes is unknown, however changes in the rate of steroid metabolism could alter steroid homeostasis. Members of the CYP2 and CYP3A families play a significant role in the metabolism of many xenobiotics and endogenous compounds, including sex steroids. Therefore, the goal of this study was to identify members of the CYP2 and CYP3A families in LMB and characterize the effects of OCP exposure on their expression. Full-length clones of two CYP3A isoforms were obtained from LMB liver, CYP3A68 and 3A69, which exhibited significant sequence divergence. Full-length clones for CYP2N14 and CYP2P11 were also obtained from LMB liver. Steady-state mRNA levels of each of these CYPs increased in both sexes between early reproductive phase (December) and peak reproductive phase (March). Expression of CYP3A68 and CYP2P11 was sexually dimorphic during peak reproductive phase with 2-fold higher expression in females and males, respectively. Foodborne exposure to 46 ppm p,p′-DDE or 0.8 ppm dieldrin for 30 days did not have a significant effect on expression of CYPs. However, 4 months exposure to p,p′-DDE induced CYP3A68 and 3A69 expression in both sexes, while dieldrin produced weak induction of CYP3A68 and suppressed CYP3A69 expression in females, but had no effect on males. Neither p,p′-DDE nor dieldrin significantly altered the expression of CYP2P11 or CYP2N14. This work demonstrates that there are significant changes in CYP expression that occur during LMB reproduction which can be modified by exposure to OCPs. PMID:17145087

  18. The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity

    International Nuclear Information System (INIS)

    Stiborova, Marie; Dracinska, Helena; Mizerovska, Jana; Frei, Eva; Schmeiser, Heinz H.; Hudecek, Jiri; Hodek, Petr; Phillips, David H.; Arlt, Volker M.

    2008-01-01

    3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the 32 P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40 mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential

  19. Wnt/RANKL-mediated bone growth promoting effects of blueberries in weanling rats

    Science.gov (United States)

    We studied the effects of dietary blueberry supplementation on bone growth in weanling rats. Weanling male and female rats were fed AIN-93G semi-purified diets supplemented with 10% whole blueberry powder for 14 and 30 days beginning on PND 21. In both sexes tibial bone mineral density and content a...

  20. Purification and characterization of the V1 vasopressin receptor from rat liver

    International Nuclear Information System (INIS)

    Fishman, J.B.; Dickey, B.F.; Attisano, C.; Fine, R.E.

    1987-01-01

    The rat liver V1 vasopressin receptor was purified approximately 21,000-fold from rat liver microsomes. The receptor was solubilized from membranes using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate). Since the V1 receptor loses its ability to bind ligand when solubilized, the authors devised a liposome reconstitution system to assay vasopressin binding activity during purification. The purified receptor exhibits a K/sub d/ of 6 nm, when, prior to solubilization, the membranes were exposed to 1 μm vasopressin. This resulted in the association of a pertussis-toxin insensitive guanine-nucleotide binding protein with the receptor during most of the purification procedure. The authors are further characterizing the V1-associated G-proteins. In the absence of this association, the receptor has a K/sub d/ of 30 nM. Crosslinking of 125 I-vasopressin to a partially purified preparation of receptor demonstrated that the receptor had a molecular weight of approximately 68,000 under reducing conditions, and 58,000 under non-reducing conditions. The purification procedure may prove useful in purifying a number of small peptide hormone receptors (e.g., bradykinin, angiotensin II) and perhaps their associated G-proteins as well

  1. CYP2C19 and PON1 polymorphisms regulating clopidogrel bioactivation in Chinese, Malay and Indian subjects.

    Science.gov (United States)

    Chan, Mark Y; Tan, Karen; Tan, Huay-Cheem; Huan, Pei-Tee; Li, Bei; Phua, Qian-Hui; Lee, Hong-Kai; Lee, Chi-Hang; Low, Adrian; Becker, Richard C; Ong, Wen-Chong; Richards, Mark A; Salim, Agus; Tai, E-Shyong; Koay, Evelyn

    2012-04-01

    AIM, MATERIALS & METHODS: We investigated the functional significance of CYP2C19*2, *3, *17 and PON1 Q192R SNPs in 89 consecutive Asian patients on clopidogrel treatment and the prevalence of functionally significant polymorphisms among 300 Chinese, Malays and Asian Indians. Both CYP2C19 loss-of-function alleles (*2 or *3) were associated with higher platelet reactivity while the CYP2C19 gain-of-function allele (*17) had lower platelet reactivity. For PON1, the median PRI was not significantly different between the QQ, QR and RR groups. The allele frequencies of CYP2C19*2, CYP2C19*3 and CYP2C19*17 were 0.280, 0.065 and 0.010 (rare) for Chinese, 0.310, 0.050 and 0.025 for Malays, and 0.375, 0.010 (rare) and 0.165 for Indians, respectively. Our data suggest that genotyping studies to investigate clopidogrel response should include CYP2C19*2 and *3 but not *17 polymorphisms in Chinese, and CYP2C19*2 and *17 polymorphisms but not *3 in Indians. All three polymorphisms should preferably be genotyped in Malays.

  2. Relative Copy Number Variations of CYP2C19 in South Indian Population

    OpenAIRE

    Devendran, Anichavezhi; Uppugunduri, Chakradhara Rao Satyanarayana; Sundaram, Rajan; Shewade, Deepak Gopal; Rajagopal, Krishnamoorthy; Chandrasekaran, Adithan

    2012-01-01

    CYP2C19 is a polymorphic enzyme involved in the metabolism of clinically important drugs. Genotype-phenotype association studies of CYP2C19 have reported wide ranges in the metabolic ratios of its substrates. These discrepancies could be attributed to the variations in the promoter region and this aspect has been reported recently. The observations in the recent reports on the influence of promoter region variants on the metabolism of CYP2C19 substrates might also have been influenced by the ...

  3. Activation and detoxification metabolism of urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone by rat and mouse hepatic microsomes.

    Science.gov (United States)

    Stiborova, Marie; Cechova, Tereza; Borek-Dohalska, Lucie; Moserova, Michaela; Frei, Eva; Schmeiser, Heinz H; Paca, Jan; Arlt, Volker M

    2012-01-01

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, β-naphthoflavone (β-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite

  4. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Johansen, H K; Hougen, H P; Cryz, S J

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O-polysacc......In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O......-polysaccharide toxin A conjugate, or sterile saline. After challenge none of the rats immunized with D-ALG toxin A died, in contrast to the other two vaccine groups combined (p = 0.03). A significant reduction in the severity of the macroscopic lung inflammation was seen in rats immunized with D-ALG toxin A, compared...... predominantly PMNs (TH2-like) to a chronic-type inflammation dominated by mononuclear leukocytes (TH1-like). In accordance, the antibody titers induced by the D-ALG toxin A vaccine were not different from those of the control rats after challenge. This study identifies a possible new way of modifying...

  5. Crystalline silica is a negative modifier of pulmonary cytochrome P-4501A1 induction

    Energy Technology Data Exchange (ETDEWEB)

    Battelli, L.A.; Ghanem, M.M.; Kashon, M.L.; Barger, M.; Ma, J.Y.C.; Simoskevitz, R.L.; Miles, P.R.; Hubbs, A.F. [NIOSH, Morgantown, WV (United States). Health Effects Laboratory Division

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion that are commonly inhaled by workers in the dusty trades. Many PAHs are metabolized by cytochrome P-4501A1 (CYP1A1), which may facilitate excretion but may activate pulmonary carcinogens. PAHs also stimulate their own metabolism by inducing CYP1A1. Recent studies suggest that respirable coal dust exposure inhibits induction of pulmonary CYP1A1 using the model PAH {beta}-naphthoflavone. The effect of the occupational particulate respirable crystalline silica was investigated on PAH-dependent pulmonary CYP1A1 induction. Male Sprague-Dawley rats were exposed to intratracheal silica or vehicle and then intraperitoneal {beta}-naphthoflavone, a CYP1A1 inducer, and/or phenobarbital, an inducer of hepatic CYP2B1, or vehicle. {beta}-Naphthoflavone induced pulmonary CYP1A1, but silica attenuated this {beta}-naphthoflavone-induced CYP1A1 activity and also suppressed the activity of CYP2B1, the major constituitive CYP in rat lung. The magnitude of CYP activity suppression was similar regardless of silica exposure dose within a range of 5 to 20 mg/rat. Phenobarbital and beta-naphthoflavone had no effect on pulmonary CYP2B1 activity. Both enzymatic immunohistochemistry and immunofluorescent staining for CYP1A1 indicated that sites of CYP1A1 induction were nonciliated airway epithelial cells, endothelial cells, and the alveolar septum. Our findings suggest that in PAH-exposed rat lung, silica is a negative modifier of CYP1A1 induction and CYP2B1 activity.

  6. The CYP2C8 inhibitor gemfibrozil does not affect the pharmacokinetics of zafirlukast.

    Science.gov (United States)

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2011-02-01

    Gemfibrozil, a strong inhibitor of cytochrome P450 (CYP) 2C8 in vivo, was recently found to markedly increase the plasma concentrations of montelukast in humans. Like montelukast, zafirlukast is a substrate of CYP2C9 and CYP3A4 and a potent inhibitor of CYP2C8 in vitro. To investigate the contribution of CYP2C8 to the metabolism of zafirlukast in vivo, we studied the effect of gemfibrozil on the pharmacokinetics of zafirlukast. Ten healthy subjects in a randomized cross-over study took gemfibrozil 600 mg or placebo twice daily for 5 days, and on day 3, a single oral dose of 20 mg zafirlukast. The plasma concentrations of zafirlukast were measured for 72 h postdose. The mean total area under the plasma concentration-time curve of zafirlukast during the gemfibrozil phase was 102% (geometric mean ratio; 95% confidence interval 89-116%) of that during the placebo phase. Furthermore, there were no statistically significant differences in the peak plasma concentration, time of peak concentration, or elimination half-life of zafirlukast between the phases. Gemfibrozil has no effect on the pharmacokinetics of zafirlukast, indicating that CYP2C8 does not play a significant role in the elimination of zafirlukast.

  7. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  8. CYP epoxygenase-derived H2O2 is involved in the endothelium-derived hyperpolarization (EDH) and relaxation of intrarenal arteries.

    Science.gov (United States)

    Muñoz, Mercedes; López-Oliva, Maria Elvira; Pinilla, Estéfano; Martínez, María Pilar; Sánchez, Ana; Rodríguez, Claudia; García-Sacristán, Albino; Hernández, Medardo; Rivera, Luis; Prieto, Dolores

    2017-05-01

    Reactive oxygen species (ROS) like hydrogen peroxide (H 2 O 2 ) are involved in the in endothelium-derived hyperpolarization (EDH)-type relaxant responses of coronary and mesenteric arterioles. The role of ROS in kidney vascular function has mainly been investigated in the context of harmful ROS generation associated to kidney disease. The present study was sought to investigate whether H 2 O 2 is involved in the endothelium-dependent relaxations of intrarenal arteries as well the possible endothelial sources of ROS generation involved in these responses. Under conditions of cyclooxygenase (COX) and nitric oxide (NO) synthase inhibition, acetylcholine (ACh) induced relaxations and stimulated H 2 O 2 release that were reduced by catalase and by the glutathione peroxidase (GPx) mimetic ebselen in rat renal interlobar arteries, suggesting the involvement of H 2 O 2 in the endothelium-dependent responses. ACh relaxations were also blunted by the CYP2C inhibitor sulfaphenazole and by the NADPH oxidase inhibitor apocynin. Acetylcholine stimulated both superoxide (O 2 •- ) and H 2 O 2 production that were reduced by sulfaphenazole and apocynin. Expression of the antioxidant enzyme CuZnSOD and of the H 2 O 2 reducing enzymes catalase and GPx-1 was found in both intrarenal arteries and renal cortex. On the other hand, exogenous H 2 O 2 relaxed renal arteries by decreasing vascular smooth muscle (VSM) intracellular calcium concentration [Ca 2+ ] i and markedly enhanced endothelial K Ca currents in freshly isolated renal endothelial cells. CYP2C11 and CYP2C23 epoxygenases were highly expressed in interlobar renal arteries and renal cortex, respectively, and were co-localized with eNOS in renal endothelial cells. These results demonstrate that H 2 O 2 is involved in the EDH-type relaxant responses of renal arteries and that CYP 2C epoxygenases are physiologically relevant endothelial sources of vasodilator H 2 O 2 in the kidney. Copyright © 2017 Elsevier Inc. All rights

  9. Identification of epoxybergamottin as a CYP3A4 inhibitor in grapefruit peel.

    Science.gov (United States)

    Wangensteen, H; Molden, E; Christensen, H; Malterud, K E

    2003-02-01

    The oral availability of many drugs metabolised by the enzyme cytochrome P(450) 3A4 (CYP3A4) is increased if co-administered with grapefruit juice. Extracts from grapefruit peel have also demonstrated inhibitory activity and, during commercial manufacturing of grapefruit juice, inhibitory components might be squeezed into the juice from the peel. Thus, the aim of this in vitro study was to identify CYP3A4 inhibitors in grapefruit peel. Grapefruit peel was extracted with diethyl ether, and the extract was further fractionated by normal-phase chromatography. Fractions demonstrating significant CYP3A4 inhibitory activity, as measured by the relative reduction in N-demethylation of diltiazem in transfected human liver epithelial cells, were subsequently separated by preparative thin-layer chromatography. Constituents of the fractions and isolated compounds were identified by nuclear magnetic resonance spectroscopy. Analysis of diltiazem and N-demethyl-diltiazem was performed using high-performance liquid chromatography. Of the identified components in grapefruit peel, only epoxybergamottin demonstrated a concentration-dependent inhibition of the CYP3A4-mediated N-demethylation of diltiazem. The IC(50) value was calculated to be 4.2+/-1.1 micro M. Coumarins without the furan ring and flavonoids isolated from grapefruit peel did not interfere with the metabolism of diltiazem. The results indicated the presence of other CYP3A4 inhibitors in grapefruit peel, but these agents were lost during the purification process excluding their identification. The furanocoumarin epoxybergamottin, present in grapefruit peel, is an inhibitor of CYP3A4. In commercial manufacturing of grapefruit juice, epoxybergamottin is possibly distributed into the juice. During manufacturing, however, epoxybergamottin may be hydrolysed to 6',7'-dihydroxybergamottin, which has been suggested as an important CYP3A4 inhibitor in grapefruit juice.

  10. Pharmacological evaluation of the role of cyclooxygenase isoenzymes on the micturition reflex following experimental cystitis in rats

    Science.gov (United States)

    Lecci, Alessandro; Birder, Lori A; Meini, Stefania; Catalioto, Rose-Marie; Tramontana, Manuela; Giuliani, Sandro; Criscuoli, Marco; Maggi, Carlo A

    2000-01-01

    Prostanoids, generated from cyclooxygenase (COX) isoenzymes, play a role in the physiological function of the lower urinary tract and are important mediators of inflammatory hyperalgesia. The present work evaluates the effects of the COX-1/COX-2 inhibitor dexketoprofen as well as of a selective COX-2 inhibitor, NS-398, on urodynamic function following endotoxin (LPS) or cyclophosphamide (CYP)-induced inflammation of the urinary bladder. The application of arachidonic acid (330 μg rat−1) onto the serosal surface of the urinary bladder in control rats elicited bladder contractions which could be blocked in a dose-dependent manner by dexketoprofen (0.1–3 mg kg−1, i.v.) but not by NS-398 (0.2–6 mg kg−1, i.v.). Dexketoprofen (3 mg kg−1, i.v.) decreased the micturition frequency and increased the pressure threshold for triggering the micturition either when administered within 15 min or 3 h following surgery in control animals. NS-398 (6 mg kg−1, i.v.) decreased the micturition frequency and increased the pressure threshold when administered 3 h but not 15 min following surgery. Administration of LPS (2 mg kg−1, i.v., 90–120 min) increased both the micturition frequency and the pressure threshold for triggering the micturition reflex. Changes in urodynamic parameters induced by LPS were prevented by doses of either dexketoprofen (1 mg kg−1, i.v.) or NS-398 (2 mg kg−1, i.v.) which were ineffective in control animals. Pretreatment with CYP (150 mg kg−1, i.p., 48 h) increased the micturition frequency, pressure threshold, and the minimal intravesical pressure but decreased the mean amplitude of micturition contractions. In CYP-treated rats, dexketoprofen (1 mg kg−1, i.v.) or NS-398 (2 mg kg−1, i.v.) blocked the CYP-induced urodynamic changes with exception of the micturition contraction amplitude. These results indicate that COX-1 may be involved in modulating the threshold for activating the

  11. Relationship between proguanil metabolic ratio and CYP2C19 genotype in a Caucasian population.

    Science.gov (United States)

    Hoskins, J M; Shenfield, G M; Gross, A S

    1998-11-01

    To investigate the relationship between proguanil metabolic ratio (MR, proguanil/cycloguanil) and CYP2C19 genotype in a Caucasian population. Ninety-nine Caucasians (age range: 18-55 years, 54 female, 45 male) were genotyped for CYP2C19 and phenotyped for proguanil oxidation by collecting urine for 8 h after taking 100 mg proguanil hydrochloride. Proguanil and cycloguanil concentrations were measured by h.p.l.c. PCR was employed for CYP2C19 genotyping. The three (3%) individuals who were homozygous for CYP2C19*2 (*2/*2) had the highest proguanil MRs (range: 8.0-134.6). Seventy-three (74%) individuals were homozygous for the wild-type allele (*1/*1) and 23 (23%) were heterozygous (*1/*2). The *1/*1 individuals had lower MRs (median=1.4, range: 0.23-5.9, P=0.003, Mann-Whitney U-test) than the *1/*2 subjects (median=2.5, range: 0.88-7.3). A CYP2C19 gene-dose effect for proguanil oxidation to cycloguanil was observed, confirming a role for CYP2C19 in cycloguanil formation in vivo. However, there was substantial overlap of proguanil MRs in subjects of different CYP2C19 genotypes, due possibly to variability in the activity of other enzymes contributing to the formation of cycloguanil.

  12. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  13. Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

    Science.gov (United States)

    Pascussi, Jean Marc; Robert, Agnes; Nguyen, Minh; Walrant-Debray, Odile; Garabedian, Michèle; Martin, Pascal; Pineau, Thierry; Saric, Jean; Navarro, Fréderic; Maurel, Patrick; Vilarem, Marie Josè

    2005-01-01

    Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16α-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16α-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D3. Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D3 hormonal activity and calcium homeostasis through the activation of PXR. PMID:15630458

  14. PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.

    Directory of Open Access Journals (Sweden)

    Xiliang Qi

    2017-12-01

    Full Text Available Sweet cherry (Prunus avium L. is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium.

  15. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.

  16. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    Science.gov (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Sun, Zhen-Cang; Kong, Fan-Jing; Li, Bei; Zhang, Hong-Xia

    2017-10-01

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d x mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast-growing trees with improved wood production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Abnormal regulation for progesterone production in placenta with prenatal cocaine exposure in rats.

    Science.gov (United States)

    Wu, L; Yan, J; Qu, S C; Feng, Y Q; Jiang, X L

    2012-12-01

    Cocaine abuse in pregnant women is currently a significant public hygiene problem and is tightly associated with elevated risk for preterm delivery. Placental steroidogenesis especially progesterone production was essential for success and maintenance of pregnancy in humans and rodents. In the present study, we determined the impact of prenatal cocaine exposure on pathways of placental progesterone synthesis in rats. Pregnant rats were treated cocaine twice daily (15 mg/kg/day) during the third trimester, and the maternal and fetal plasma progesterone and pregnenolone concentrations were detected. We also examined both the protein and mRNA expression of some key enzymes and regulators for progesterone production in placenta. Results showed that, after maternal cocaine use during pregnancy, progesterone and pregnenolone concentrations in both maternal and fetal rats were significantly decreased. Although prenatal cocaine exposure had no effects on placental 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1) expression, protein and mRNA expression of the cholesterol side-chain cleavage enzyme (P450scc/CYP11a) in placenta was significantly inhibited. Moreover, protein and mRNA expressions of MLN64 that regulating cholesterol transport and activating protein 2γ (AP2γ/Tfap2c) that controlling P450scc/CYP11a gene expression in placenta were both decreased following maternal cocaine use in pregnancy. Collectively, this study suggested that prenatal cocaine exposure could insult the placental progesterone production in rats possibly associated with the high risk for preterm delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum and Psidium guajav on hepatic and intestinal drug metabolizing enzymes in rats

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2016-12-01

    Full Text Available Aims/Background: Present study investigated the synergistic effect of polyherbal formulations (PHF of Allium sativum L Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn and Psidium guajava L. in the inhibition/induction of hepatic and intestinal CYPs and Phase-II conjugated drug metabolizing enzymes. Consumption of these herbal remedy has been extensively documented for diabetes treatment in Auyureda. Methodology: PHF of these five herbs was prepared and different doses were orally administered to Sprague Dawley rats of different groups except control group. Expression of mRNA and activity of drug metabolizing enzymes were examined by RT-PCR and HPLC in isolated liver and intestine microsomes in PHF pretreated rats. Results: Activities of hepatic and intestinal Phase-II enzyme levels increased along with mRNA levels except CYP3A mRNA level. PHF administration increases the activity of hepatic and intestinal UDPGT and GST in response to dose and time; however, activity of hepatic SULT increased at higher doses. Conclusions: CYPs and Phase-II conjugated enzymes levels can be modulated in dose and time dependent manner. Observations suggest that poly herbal formulation might be a possible cause of herb-drug interaction, due to changes in pharmacokinetic of crucial CYPs and Phase-II substrate drug. [J Complement Med Res 2016; 5(4.000: 372-382

  19. Methods for purifying carbon materials

    Science.gov (United States)

    Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  20. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Lars [Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala (Sweden); Penell, Johanna [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden); Syvänen, Anne-Christine; Axelsson, Tomas [Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Ingelsson, Erik [Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Morris, Andrew P.; Lindgren, Cecilia [Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Salihovic, Samira; Bavel, Bert van [MTM Research Centre, School of Science and Technology, Örebro University, Örebro (Sweden); Lind, P. Monica, E-mail: monica.lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden)

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.