WorldWideScience

Sample records for pure cu subjected

  1. Experimental research on microhardness and wear resistances of pure Cu subjected to surface dynamic plastic deformation by ultrasonic impact

    Science.gov (United States)

    Chen, Zhaoxia; He, Yangming

    2018-04-01

    Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.

  2. Structural and magnetic properties of pure and Cu doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam –603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu-603104 (India)

    2015-06-24

    Pure and Cu (7 at.%) doped In{sub 2}O{sub 3} thin films were prepared using an electron beam evaporation technique. A systematic study was carried out on the structural, chemical and magnetic properties of the thin films. X-ray diffraction analysis revealed that all the films were cubic in structure. The pure and Cu doped In{sub 2}O{sub 3} thin films showed ferromagnetism at room temperature. The Cu doped In{sub 2}O{sub 3} thin films showed the saturation magnetization, coercivity and retentivity of 38.71 emu/cm{sup 3}, 245 G and 5.54 emu/cm{sup 3}, respectively.

  3. Synthesis and characterization of pure and Tb/Cu doped Alq3 nanostructures

    International Nuclear Information System (INIS)

    Salah, Numan; Habib, Sami S.; Khan, Zishan H.; Alharbi, Najlaa D.

    2013-01-01

    Tris (8-hydroxyquinoline) aluminum (Alq 3 ) is an organic semiconductor molecule, widely used in optoelectronic devices. In this work we report on fabricating different nanostructures of Alq 3 and characterize them using different techniques. Nanostructured films of Alq 3 were grown using the physical vapor condensation and thermal-vapor transport methods. The as synthesized films were characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy and absorption spectra. Nanoparticles and nanorods/nanowires are observed in the synthesized films. Tb and Cu doped Alq 3 films were also produced and studied for their photoluminescence (PL) properties. When the original powder sample of Alq 3 was excited by 378 nm, one broad PL emission band is observed at around 515 nm. The pure nanoparticles film shows similar band with a drastic increase in the intensity by a factor of 2. This has been attributed to the large specific surface area, which might has increased the absorption and then the quantum yields. The Tb and Cu doped films show also similar band with a slight shift in the peak position to the blue region, but with further enhancement in the peak intensity, particularly that of Cu. The PL intensity of Cu doped sample is around 1.5 times stronger than that of the pure Alq 3 nanoparticles. This remarkable result on obtaining highly luminescent nanomaterial based on Cu doped Alq 3 nanoparticles film might be useful for future organic light emitting diode display devices. -- Highlights: • Films of Alq 3 nanostructures were grown using different methods. • The PL intensity of Alq 3 in its nanostructure form is enhanced by a factor of 2. • This enhancement is attributed to the large specific surface area of the nanostructures. • Films of Alq 3 nanoparticles doped with Tb and Cu showed further PL enhancement. • The Tb and Cu ions could contribute to the PL intensity of the green band of Alq3

  4. Transport properties of microwave sintered pure and glass added MgCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, W., E-mail: madhuriw12@gmail.com [School of Advanced Sciences, VIT University, Vellore 632 014 (India); Penchal Reddy, M.; Kim, Il Gon [Department of Physics, Changwon National University, Changwon 641 773 (Korea, Republic of); Rama Manohar Reddy, N. [Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa 516 227 (India); Siva Kumar, K.V. [Ceramic Composites Materials Laboratory, Sri Krishnadevaraya University, Anantapur 515 055 (India); Murthy, V.R.K. [Microwave Laboratory, IIT Madras, Chennai 600 036 (India)

    2013-07-01

    Highlights: • MgCuZn ferrite was successfully prepared by novel microwave sintering (MS) method. • The sintering temperature was notably reduced from 1150 °C to 950 °C for MS. • Temperature dependence of DC conductivity and AC conductivity are studied. • 1 wt% PBS glass added MS MgCuZn ferrite samples are suitable for core materials in multilayer chip inductors (MLCI). -- Abstract: A series of pure stoichiometric and 1 wt% lead borosilicate (PBS) glass added MgCuZn ferrite with the general formula Mg{sub 0.5}Cu{sub x}Zn{sub 0.5−x}Fe{sub 2}O{sub 4} with x = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 were synthesized by microwave sintering technique. Single phase spinel structure is exhibited by the XRD patterns of these ferrites. DC and AC conductivity were investigated as a function of composition, temperature and frequency. DC conductivities were also estimated using the impedance spectroscopy analysis of Cole–Cole plots. The DC conductivities thus obtained are in good agreement with the experimental results. All the investigated samples exhibited two regions of conductivity one in the low temperature and the second in the high temperature region. It is observed that PBS glass added samples have lower conductivities than pure samples. Due to their lower conductivities and sintering temperatures the 1 wt% PBS glass added samples are suitable for multilayer chip inductor (MLCI) and high definition TV deflection yoke material application.

  5. Synthesis and characterization of pure and Tb/Cu doped Alq{sub 3} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: nsalah@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Habib, Sami S. [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Khan, Zishan H. [Department of Applied Sciences, Faculty of Engineering and Technology, Jamia Millia, Islamia (Central University), New Delhi 110025 (India); Alharbi, Najlaa D. [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Sciences Faculty for Girls, King Abdulaziz University, Jeddah-21589 (Saudi Arabia)

    2013-11-15

    Tris (8-hydroxyquinoline) aluminum (Alq{sub 3}) is an organic semiconductor molecule, widely used in optoelectronic devices. In this work we report on fabricating different nanostructures of Alq{sub 3} and characterize them using different techniques. Nanostructured films of Alq{sub 3} were grown using the physical vapor condensation and thermal-vapor transport methods. The as synthesized films were characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy and absorption spectra. Nanoparticles and nanorods/nanowires are observed in the synthesized films. Tb and Cu doped Alq{sub 3} films were also produced and studied for their photoluminescence (PL) properties. When the original powder sample of Alq{sub 3} was excited by 378 nm, one broad PL emission band is observed at around 515 nm. The pure nanoparticles film shows similar band with a drastic increase in the intensity by a factor of 2. This has been attributed to the large specific surface area, which might has increased the absorption and then the quantum yields. The Tb and Cu doped films show also similar band with a slight shift in the peak position to the blue region, but with further enhancement in the peak intensity, particularly that of Cu. The PL intensity of Cu doped sample is around 1.5 times stronger than that of the pure Alq{sub 3} nanoparticles. This remarkable result on obtaining highly luminescent nanomaterial based on Cu doped Alq{sub 3} nanoparticles film might be useful for future organic light emitting diode display devices. -- Highlights: • Films of Alq{sub 3} nanostructures were grown using different methods. • The PL intensity of Alq{sub 3} in its nanostructure form is enhanced by a factor of 2. • This enhancement is attributed to the large specific surface area of the nanostructures. • Films of Alq{sub 3} nanoparticles doped with Tb and Cu showed further PL enhancement. • The Tb and Cu ions could contribute to the PL intensity of the green

  6. Social phobia, panic disorder and suicidality in subjects with pure and depressive mania.

    Science.gov (United States)

    Dilsaver, Steven C; Chen, Yuan-Who

    2003-11-01

    The objective of this study is to ascertain the rates of social phobia, panic disorder and suicidality in the midst of the manic state among subjects with pure and depressive mania. Subjects received evaluations entailing the use of serial standard clinical interviews, the Schedule for Affective Disorders and Schizophrenia (SADS) and a structured interview to determine whether they met the criteria for intra-episode social phobia (IESP) and panic disorder (IEPD). The diagnoses of major depressive disorder and mania were rendered using the Research Diagnostic Criteria. The diagnoses of IESP and IEPD were rendered using DSM-III-R criteria. Categorization as being suicidal was based on the SADS suicide subscale score. Twenty-five (56.8%) subjects had pure and 19 (43.2%) subjects had depressive mania. None of the subjects with pure and 13 (68.4%) with depressive mania had IESP (Pdepressive mania had IEPD (Pdepressive were suicidal. Twelve of 13 (92.3%) subjects with depressive mania met the criteria for IESP and IEPD concurrently (Pdepressive but not pure mania exhibited high rates of both IESP and IEPD. Concurrence of the disorders is the rule. The findings suggest that databases disclosing a relationship between panic disorder and suicidality merit, where possible, reanalysis directed at controlling for the effect of social phobia.

  7. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  8. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides

    International Nuclear Information System (INIS)

    Hsiao, Chun-Lung; Qi, Xiaoding

    2016-01-01

    Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted

  9. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  10. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  11. Effect of grain refinement by ECAP on creep of pure Cu

    Czech Academy of Sciences Publication Activity Database

    Blum, W.; Dvořák, Jiří; Král, Petr; Eisenlohr, P.; Sklenička, Václav

    2014-01-01

    Roč. 590, JAN (2014), s. 423-432 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP108/11/2260; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Cu * ECAP * Static recrystallization * Creep * Ductility * High- angle boundaries Subject RIV: JJ - Other Materials Impact factor: 2.567, year: 2014

  12. Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation.

    Science.gov (United States)

    Hong, J-Y; Naliboff, B; Labus, J S; Gupta, A; Kilpatrick, L A; Ashe-McNalley, C; Stains, J; Heendeniya, N; Smith, S R; Tillisch, K; Mayer, E A

    2016-01-01

    A majority of the subjects with irritable bowel syndrome (IBS) show increased behavioral and brain responses to expected and delivered aversive visceral stimuli during controlled rectal balloon distension, and during palpation of the sigmoid colon. We aimed to determine if altered brain responses to cued and uncued pain expectation are also seen in the context of a noxious somatic pain stimulus applied to the same dermatome as the sigmoid colon. A task-dependent functional magnetic resonance imaging technique was used to investigate the brain activity of 37 healthy controls (18 females) and 37 IBS subjects (21 females) during: (i) a cued expectation of an electric shock to the abdomen vs a cued safe condition; and (ii) an uncued cross-hair condition in which the threat is primarily based on context vs a cued safe condition. Regions within the salience, attention, default mode, and emotional arousal networks were more activated by the cued abdominal threat condition and the uncued condition than in the cued safe condition. During the uncued condition contrasted to the cued safe condition, IBS subjects (compared to healthy control subjects) showed greater brain activations in the affective (amygdala, anterior insula) and attentional (middle frontal gyrus) regions, and in the thalamus and precuneus. These disease-related differences were primarily seen in female subjects. The observed greater engagement of cognitive and emotional brain networks in IBS subjects during contextual threat may reflect the propensity of IBS subjects to overestimate the likelihood and severity of future abdominal pain. © 2015 John Wiley & Sons Ltd.

  13. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, Tamanna [Amity University, Uttar Pradesh, Amity Institute of Microbial Technology (India); Khanuja, Manika, E-mail: manikakhanuja@gmail.com; Sharma, R.; Patel, S.; Reddy, M. R.; Anand, S. [Amity University, Uttar Pradesh, Amity Institute of Nanotechnology (India); Varma, A. [Amity University, Uttar Pradesh, Amity Institute of Microbial Technology (India)

    2015-07-15

    The present study reports the synthesis of pure and Cu-doped ZnO nanorods for antibacterial and photocatalytic applications. The samples were synthesized by simple, low cost mechanical-assisted thermal decomposition process. The synthesized materials were characterized by scanning electron microscopy, UV–Visible spectroscopy, and photoluminescence studies. The antibacterial activity of characterized samples was determined against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes and Gram-negative bacteria such as Escherichia coli using shake flask method with respect to time. The significant antibacterial activity was perceived from scanning electron micrographs that clearly revealed bacterial cell lysis resulting in the release of cytoplasmic content followed by cell death. The degradation of methylene blue was used as a model organic dye for photocatalytic activity. The present study demonstrates the superior photocatalytic and antibacterial activity of Cu-doped ZnO nanorods with respect to pure ZnO nanorods.

  14. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    Science.gov (United States)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  15. A facile arrested precipitation method for synthesis of pure wurtzite Cu2ZnSnS4 nanocrystals using thiourea as a sulfur source

    International Nuclear Information System (INIS)

    Li, Chunya; Ha, Enna; Wong, Wing-Leung; Li, Cuiling; Ho, Kam-Piu; Wong, Kwok-Yin

    2012-01-01

    Graphical abstract: High-resolution TEM image of wurtzite Cu 2 ZnSnS 4 nanocrystals. Highlights: ► Wurtzite Cu 2 ZnSnS 4 nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu 2 ZnSnS 4 (CZTS) nanocrystals was developed by an arrested precipitation method at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.

  16. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    Science.gov (United States)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  17. Effects of temperature, pressure and pure copper added to source material on the CuGaTe{sub 2} deposition using close spaced vapor transport technique

    Energy Technology Data Exchange (ETDEWEB)

    Abounachit, O. [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Chehouani, H., E-mail: chehouani@hotmail.fr [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Djessas, K. [CNRS-PROMES Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan (France)

    2013-07-01

    The quality of CuGaTe{sub 2} (CGT) thin films elaborated by close spaced vapor transport technique has been studied as a function of the source temperature (T{sub S}), iodine pressure (P{sub I2}) and the amount (X{sub Cu}) of pure copper added to the stoichiometric starting material. A thermodynamic model was developed for the Cu–Ga–Te–I system to describe the CGT deposition. The model predicts the solid phase composition with possible impurities for the operating conditions previously mentioned. The conditions of stoichiometric and near-stoichiometric deposition were determined. The value of T{sub S} must range from 450 to 550 °C for P{sub I2} varying between 0.2 and 7 kPa. Adding an amount up to 10% of pure copper to the starting material improves the quality of the deposit layers and lowers the operating interval temperature to 325–550 °C. These optimal conditions were tested experimentally at 480 °C and 500 °C. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy have proved that the addition of pure copper to the stoichiometric source material can be considered as a supplementary operating parameter to improve the quality of CGT thin films. - Highlights: • The stoichiometric CuGaTe{sub 2} (CGT) has been deposited by close spaced vapor transport. • The Cu–Ga–Te–I system has been studied theoretically by minimizing the Gibbs energy. • The quality of thin films has been improved by pure copper added to the source CGT. • The temperature, pressure and the amount of copper added to grow CGT are determined. • The thermodynamic predictions are in good agreement with experimental results.

  18. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sgobba, S. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Kuenzi, H.U. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Ilschner, B. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1993-11-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.).

  19. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    International Nuclear Information System (INIS)

    Sgobba, S.; Kuenzi, H.U.; Ilschner, B.

    1993-01-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.)

  20. Doping mechanism in pure CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.; Colombara, D.; Melchiorre, M.; Spindler, C.; Siebentritt, S. [Physics and Materials Science Research Unit, University of Luxembourg, Rue du Brill 41, L-4422 Belvaux (Luxembourg); Valle, N.; El Adib, B. [Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422 Belvaux (Luxembourg)

    2016-05-07

    We investigate the dopant concentration and majority carrier mobility in epitaxial CuInSe{sub 2} thin films for different copper-to-indium ratios and selenium excess during growth. We find that all copper-poor samples are n-type, and that hopping conduction in a shallow donor state plays a significant role for carrier transport. Annealing in sodium ambient enhances gallium in-diffusion from the substrate wafer and changes the net doping of the previously n-type samples to p-type. We suggest that sodium incorporation from the glass might be responsible for the observed p-type doping in polycrystalline Cu-poor CuInSe{sub 2} solar cell absorbers.

  1. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  2. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  3. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy

    DEFF Research Database (Denmark)

    Singh, B.N; Edwards, D.J.; Bilde-Sørensen, Jørgen

    2004-01-01

    The phenomenon of plastic flow localization in the form of "cleared" channels has been frequently observed in neutron irradiated metals and alloys for more than 40 years. So far, however, no experimental evidence as to how and where these channels areinitiated during post-irradiation deformation...... has emerged. Recently we have studied the problem of initiation and propagation of cleared channels during post-irradiation tensile tests of pure copper and a copper alloy irradiated with fission neutrons.Tensile specimens of pure copper and a precipitation hardened copper alloy (CuCrZr) were neutron...... irradiated at 323 and 373K to displacement doses in the range of 0.01 to 0.3 dpa (displacement per atom) and tensile tested at the irradiation temperature.The stress-strain curves clearly indicated the occurrence of a yield drop. The post-deformation microstructural examinations revealed that the channels...

  4. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  5. Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr

    International Nuclear Information System (INIS)

    Muolo, M.L.; Ferrera, E.; Novakovic, R.; Passerone, A.

    2003-01-01

    Sintered ZrB 2 ceramics, pure and with 4 wt.% Ni as sintering aid, have been tested in contact with liquid Ag, Cu, Ag-Cu and Ag-Cu-Zr. ''Pure'' ZrB 2 ceramics are wetted by Ag-Zr alloys, and ZrB 2 /Ni ceramics also by pure Cu. The wetting behaviour is briefly discussed in terms of existing wetting theories

  6. Dissimilar friction stir welding of 6061 Al to T2 pure Cu adopting tooth-shaped joint configuration: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Shen, Yifu, E-mail: yfshen_nuaa@hotmail.com; Yan, Yinfei; Guo, Rui

    2017-04-06

    In this paper, dissimilar 6061aluminum alloy and commercial pure copper were friction stir butt welded adopting tooth-shaped joint configuration to investigate the influence of Al/Cu content in welding bead (WB) on the microstructure and mechanical properties of the joint. At preliminary tests, optimal welding parameters were determined to guarantee proper heat input. Welding experiments were performed with the dimensions of the tooth as variables, which is a special technique to tailor Al/Cu content in WB. Macro and microstructure of the cross section of the joints were characterized via optical microscopy (OM) and Scanning Electron Microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Special band structure(BS) showing lamellar-like flow characteristic is worthy of noticing. Additionally, dispersive Cu particles (DP), forming composite-like structure, were captured. High Cu concentration, however, yielded a harsh material flow due to its high plasticized temperature and poor flowability and can not produce reliable metallurgical bonding. Microhardness of the joint was investigated and the high hardness was caused mainly by the hard intermetallic compounds (IMCs). Besides, tensile tests were conducted to evaluate the joint performance. Based on the result analysis, this joint form has special advantage in tailoring Al/Cu content in WB and controlling the microstructure that imposes significant influence on mechanical properties of the joints.

  7. Dissimilar friction stir welding of 6061 Al to T2 pure Cu adopting tooth-shaped joint configuration: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Zhang, Wei; Shen, Yifu; Yan, Yinfei; Guo, Rui

    2017-01-01

    In this paper, dissimilar 6061aluminum alloy and commercial pure copper were friction stir butt welded adopting tooth-shaped joint configuration to investigate the influence of Al/Cu content in welding bead (WB) on the microstructure and mechanical properties of the joint. At preliminary tests, optimal welding parameters were determined to guarantee proper heat input. Welding experiments were performed with the dimensions of the tooth as variables, which is a special technique to tailor Al/Cu content in WB. Macro and microstructure of the cross section of the joints were characterized via optical microscopy (OM) and Scanning Electron Microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Special band structure(BS) showing lamellar-like flow characteristic is worthy of noticing. Additionally, dispersive Cu particles (DP), forming composite-like structure, were captured. High Cu concentration, however, yielded a harsh material flow due to its high plasticized temperature and poor flowability and can not produce reliable metallurgical bonding. Microhardness of the joint was investigated and the high hardness was caused mainly by the hard intermetallic compounds (IMCs). Besides, tensile tests were conducted to evaluate the joint performance. Based on the result analysis, this joint form has special advantage in tailoring Al/Cu content in WB and controlling the microstructure that imposes significant influence on mechanical properties of the joints.

  8. Virtual thermal expansion coefficient of Cu precipitated in the Fe95Cu5 alloy

    International Nuclear Information System (INIS)

    Koeszegi, L.; Somogyvari, Z.

    1999-01-01

    Complete text of publication follows. Precipitations on grain boundaries play very important role in the formation of material's characteristics like embrittlement, durability etc. It was already shown [1] that Cu precipitations are under different stress conditions than the bulk material. The situation is more complicated in the case when a construction is exposed to temperature changes as well. In that case not only the residual stresses during the fabrication but the different thermal expansion coefficients can produce additional problems. This situation was modelled using Fe 95 Cu 5 alloy where Cu precipitates on the grain boundaries. The alloy was produced by high-frequency melting and an extra heat treatment was used to produce a quasi-equilibrium state. Pure Cu was also measured to compare the behaviours. Cu(111) Bragg peak was measured at different temperatures by high resolution neutron diffraction. The measurements were carried out on the G5-2 spectrometer at LLB in Saclay. Measurements show that not only residual stress can be recognised on the Cu precipitates but the thermal expansion coefficient of these precipitates definitly differ from the ones of pure Cu. (author)

  9. Microstructure, impurity and metal cap effects on Cu electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Hu, C.-K.; Gignac, L. G.; Ohm, J.; Breslin, C. M.; Huang, E.; Bonilla, G.; Liniger, E.; Rosenberg, R. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Choi, S.; Simon, A. H. [IBM Microelectronic Division, Hopewell Junction, NY 12533 (United States)

    2014-06-19

    Electromigration (EM) lifetimes and void growth of pure Cu, Cu(Mn) alloy, and pure Cu damascene lines with a CoWP cap were measured as a function of grain structure (bamboo, near bamboo, and polycrystalline) and sample temperature. The bamboo grains in a bamboo-polycrystalline grained line play the key role in reducing Cu mass flow. The variation in Cu grain size distribution among the wafers was achieved by varying the metal line height and wafer annealing process step after electroplating Cu and before or after chemical mechanical polishing. The Cu grain size was found to have a large impact on Cu EM lifetime and activation energy, especially for the lines capped with CoWP. The EM activation energy for pure Cu with a CoWP cap from near-bamboo, bamboo-polycrystalline, mostly polycrystalline to polycrystalline only line grain structures was reduced from 2.2 ± 0.2 eV, to 1.7 ± 0.1 eV, to 1.5 ± 0.1 eV, to 0.72 ± 0.05 eV, respectively. The effect of Mn in Cu grain boundary diffusion was found to be dependent on Mn concentration in Cu. The depletion of Cu at the cathode end of the Cu(Mn) line is preceded by an incubation period. Unlike pure Cu lines with void growth at the cathode end and hillocks at the anode end of the line, the hillocks grew at a starting position roughly equal to the Blech critical length from the cathode end of the Cu(Mn) polycrystalline line. The effectiveness of Mn on Cu grain boundary migration can also be qualitatively accounted for by a simple trapping model. The free migration of Cu atoms at grain boundaries is reduced by the presence of Mn due to Cu-solute binding. A large binding energy of 0.5 ± 0.1 eV was observed.

  10. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    Science.gov (United States)

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  11. Structural and optical properties of pure and copper doped zinc oxide nanoparticles

    Science.gov (United States)

    Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef

    2018-06-01

    Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

  12. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    Science.gov (United States)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  13. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    International Nuclear Information System (INIS)

    Prasanyaa, T; Haris, M; Amgalan, M; Mathivanan, V; Jayaramakrishnan, V

    2013-01-01

    Optically transparent Cu 2+ and Cd 2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet–visible–near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu 2+ and Cd 2+ . The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu 2+ doped LATF is 2.8 times greater and Cd 2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus. (paper)

  14. Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles

    Science.gov (United States)

    2010-01-01

    Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics. PMID:20671775

  15. Effect of web openings on the structural behavior of RC beams subjected to pure torsion

    Directory of Open Access Journals (Sweden)

    Abdo Taha

    2017-01-01

    Full Text Available In the construction of modern buildings, the presence of openings became a necessity nowadays in order to accommodate the many pipes and ducts required for the different services. On the other hand, the presence of these openings in RC beams affects their structural behavior. One important behavior that needs further study would be torsion. Currently, there are no guide lines available to analyze or design RC beams with web openings under pure torsion. Thus, the main objective of this research is to investigate the behavior of simply supported RC beams with openings subjected to pure torsion. In the first part of this paper, an experimental study is conducted on seven beams subjected to pure torsion loading in order to investigate the effect of the number of openings, the spacing between stirrups, and beam depth. All beams have a constant clear span length of 1800 mm and a constant beam width of 150 mm. The beams have varying opening number and stirrups arrangement as well as varying beam depth in order to investigate the effect of these parameters on the behavior of the beams. Systematic measurements such as the cracking torque, the ultimate torque, the angle of rotation of the beam at cracking, and the angle of rotation of the beam at the ultimate load are conducted for further understanding of the beam behavior under torsion. In the second part of the paper, the experimental results are compared with the numerical results obtained using the non-linear finite element analysis program, ANSYS. Good agreement between the experimental and numerical results is found.

  16. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  17. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Muhsan, Ali Samer, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Ahmad, Faiz, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt, E-mail: puteris@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS (UTP) (Malaysia); Mohamed, Norani M., E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia); Raza, M. Rafi, E-mail: rafirazamalik@gmail.com [Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor (Malaysia)

    2014-10-24

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050°C for 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.

  18. In situ study of thermally activated flow and dynamic restoration of ultrafine-grained pure Cu at 373 K

    Czech Academy of Sciences Publication Activity Database

    Blum, W.; Král, Petr; Dvořák, Jiří; Petrenec, M.; Eisenlohr, P.; Sklenička, Václav

    2017-01-01

    Roč. 32, č. 24 (2017), s. 4514-4521 ISSN 0884-2914 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Cu * dynamic grain coarsening * dynamic recovery * ECAP * in situ * stress relaxation * UFG Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 1.673, year: 2016

  19. High-temperature stability of Au/Pd/Cu and Au/Pd(P)/Cu surface finishes

    Science.gov (United States)

    Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang, Y. H.; Kuo, T. T.

    2018-03-01

    Thermal reliability of Au/Pd/Cu and Au/Pd(4-6 wt.% P)/Cu trilayers in the isothermal annealing at 180 °C were investigated by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and transmission electron microscopy (TEM). The pure Pd film possessed a nanocrystalline structure with numerous grain boundaries, thereby facilitating the interdiffusion between Au and Cu. Out-diffusion of Cu through Pd and Au grain boundaries yielded a significant amount of Cu oxides (CuO and Cu2O) over the Au surface and gave rise to void formation in the Cu film. By contrast, the Pd(P) film was amorphous and served as a good diffusion barrier against Cu diffusion. The results of this study indicated that amorphous Pd(P) possessed better oxidation resistance and thermal reliability than crystalline Pd.

  20. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  1. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  2. Highly efficient capture of iodine by Cu/MIL-101

    Science.gov (United States)

    Qi, Bingbing; Liu, Ying; Zheng, Tao; Gao, Qianhong; Yan, Xuewu; Jiao, Yan; Yang, Yi

    2018-02-01

    In order to improve the uptake capacity of MIL-101 for iodine, Cu nanoparticles doped MIL-101 were successfully synthesized through a facile method. The obtained Cu/MIL-101 was characterized by SEM, XRD, EDS, TEM, IR, TGA and BET to examine the chemical and thermal stabilities. The capture experiments for the adsorbents showed that the capture capacity of Cu/MIL-101 for volatile iodine is 342 wt%, which is higher than that of pure MIL-101. An I2 uptake of 342 wt% is the highest value reported among metal-organic frameworks. Furthermore, Cu/MIL-101 has a cycle ratio of 95% after three cycles and exhibits a better cyclicity than pure MIL-101. Meanwhile, Cu/MIL-101 shows an excellent reversible adsorption of iodine in solution.

  3. Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films

    International Nuclear Information System (INIS)

    Chiang, Ming-Hung; Fu, Yaw-Shyan; Shih, Cheng-Hung; Kuo, Chun-Cheng; Guo, Tzung-Fang; Lin, Wen-Tai

    2013-01-01

    The effects of hydrazine on the synthesis of Cu 2 ZnSnSe 4 (CZTSe) and Cu 2 CdSnSe 4 (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu 2 Se, and Cu 2 SnSe 3 , and Cu 2 SnSe 3 and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu 2 ZnSnSe 4 and Cu 2 CdSnSe 4 nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices

  4. Preparation of conductive Cu patterns by directly writing using nano-Cu ink

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Wenjiang; Wei, Jun [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Tan, Junjun [School of Chemical and Materials and Engineering, Hubei University of Technology, Hubei 435003 (China); Chen, Minfang, E-mail: mfchentj@126.com [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-07-01

    Conductive and air-stable Cu patterns were directly made on ordinary photo paper using a roller pen filled with nano-Cu ink, which was mainly composed of metallic Cu nanoparticles (NPs) capped with poly(N-vinylpyrrolidone) (PVP). The nano-Cu NPs were obtained via the reduction of Cu{sup 2+} ions by using an excess of hydrazine and PVP. The low sintering temperature (160 °C) in Ar atmosphere played an important role for the preparation of air-stable Cu patterns. The conductivity of a radio-frequency identification antenna made from nano-Cu ink was tested by a lamp, and its resistivity achieved 13.4 ± 0.4 μΩ cm. The Cu NPs were confirmed by means of X-ray powder diffraction and X-ray photoelectron spectra, and the Cu patterns were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. A mechanism for the high conductivity of the Cu pattern made from Cu NPs is proposed. - Highlights: • The synthesis of pure Cu is related to the reducing agent and capping agent. • The sintering under Ar atmosphere prevents Cu pattern's rapid oxidation. • The formation of the bulk Cu decreases the resistivity of the Cu pattern.

  5. Microstructure and tribological properties of Ti–Cu intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo, Chun; Zhou, Jiansong; Yu, Youjun; Wang, Lingqian; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    Highlights: ► Ti–Cu coating has been synthesized on pure Ti substrate by laser cladding. ► Microstructure and tribological properties of Ti–Cu coating were analyzed. ► The prepared Ti–Cu intermetallic compound coating has excellent wear resistance. -- Abstract: Ti–Cu intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using copper powder as the precursor. It has been found that the prepared coating mainly contains of TiCu, TiCu 3 , Ti 3 Cu, and Ti phases. The transmission electron microscopy results conform further the existence of Ti–Cu intermetallic compound in the fabricated coating. Tribological properties of the prepared Ti–Cu intermetallic compound coating were systematically evaluated. It was found that normal loads and sliding speeds have a strong influence on the friction coefficient and wear rate of Ti–Cu intermetallic compound coating. Namely, the friction coefficient of the Ti–Cu intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the Ti–Cu intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  6. Sixth form pure mathematics

    CERN Document Server

    Plumpton, C

    1968-01-01

    Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t

  7. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  8. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  9. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 'C for 3 hours. As the annealing temperature was raised from 300 to 900 'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  10. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.

    2013-08-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 \\'C for 3 hours. As the annealing temperature was raised from 300 to 900 \\'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  11. Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30 using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    Elfar O. M. R.

    2016-01-01

    Full Text Available In this research, the friction stir welding of dissimilar commercial pure aluminium and brass (CuZn30 plates was investigated and the process parameters were optimized using Taguchi L9 orthogonal array. The considered process parameters were the rotational speed, traverse speed and pin offset. The optimum setting was determined with reference to ultimate tensile strength of the joint. The predicted optimum value of ultimate tensile strength was confirmed by experimental run using optimum parameters. Analysis of variance revealed that traverse speed is the most significant factor in controlling the joint tensile strength and pin offset also plays a significant role. In this investigation, the optimum tensile strength is 50% of aluminium base metal. Metallographic examination revealed that intermetallic compounds were formed in the interface of the optimum joint where the tensile failure was observed to take place.

  12. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid

    Science.gov (United States)

    Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim

    Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.

  13. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  14. ESR studies of heat denaturation in Cu myoglobin complexes

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Ribeiro, S.C.; Bemski, G.

    1975-01-01

    An investigation is made on the behaviour of Cu2 + and Fe3 + in copper doped myoglobin, subjected to heat treatment. ESR is observed at X-band. The amplitude of the g = 5.9 line of the high spin F 3 + in met-myoglobin is studied as a function of the temperature of the heat treatment, the pH and the length of time of exposure to the heat treatment. These experiments are performed for both the pure protein and for the copper-myoglobin complex, at pH between 5 and 8.5. Results concerning the decrease of the amplitude of Fe 3+ high spin signal are discussed in comparison with Hollocher's results in hemoglobin. The Cu spectra obtained are interpreted, with the aid of a computer program, Kivelson and Neiman's results being used to analyse the authors data

  15. General and Facile Route to Isomerically Pure Tricyclic Peptides Based on Templated Tandem CLIPS/CuAAC Cyclizations.

    Science.gov (United States)

    Richelle, Gaston J J; Ori, Sumeet; Hiemstra, Henk; van Maarseveen, Jan H; Timmerman, Peter

    2018-01-08

    We report a one-pot ligation/cyclization technology for the rapid and clean conversion of linear peptides into tricyclic peptides that is based on using tetravalent scaffolds containing two benzyl bromide and two alkyne moieties. These react via CLIPS/CuAAC reactions with cysteines and azides in the peptide. Flexibility in the scaffolds is key to the formation of isomerically pure products as the flexible scaffolds T4 1 and T4 2 mostly promote the formation of single isomeric tricycles while the rigid scaffolds T4 3 and T4 4 do not yield clean products. There seems to be no limitation to the number and types of amino acids present as 18 canonical amino acids were successfully implemented. We also observed that azides at the peptide termini and cysteine residues in the center gave better results than compounds with the functional groups placed the other way round. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    Science.gov (United States)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  17. Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Malcho, Phillip; Andersen, Jonas

    2014-01-01

    , it directed the growth of Cu2(OH)3Cl to provide pure clinoatacamite without the presence of related poly- morphs. The products were characterized by transmission electron microscopy, infrared spectroscopy, ultraviolet–visible light spectroscopy, X-ray powder diffraction (XRD), scanning transmission X......-ray microscopy and atomic force microscopy. Infrared spectroscopy was essential for characterization of closely related polymorphs of Cu2(OH)3Cl indistinguishable by XRD. A plausible mechanism has been proposed and discussed for the formation of the CuO and Cu2(OH)3Cl nanostructures....

  18. Deformation behavior of Cu bicrystals with the Σ9(110)(221) symmetric tilt grain boundary under pure shear studied by atomistic simulation method

    International Nuclear Information System (INIS)

    Wan Liang; Wang Shaoqing

    2010-01-01

    The deformation behavior of Cu bicrystals with the symmetric tilt grain boundary (STGB) under pure shear has been studied by atomistic simulation method with the embedded atom method (EAM) interatomic potentials. By using an energy minimization method, it shows that there are two optimized structures of this grain boundary (GB) which correspond to two local energy minima on the potential energy surface of the GB. The structure with lower energy is the stable one while the other is a metastable structure. The pure shear process of the bicrystals at ambient temperature has been studied by molecular dynamics (MD) simulation method. The simulated results indicate that there are three structure transformation modes of this GB depending on the shear direction: (1) pure GB sliding; (2) GB atomic shuffling accompanied by dislocation emission from GB; (3) GB migration coupled GB sliding, namely, GB coupling motion. In addition, an analysis of the structure evolution of the GB shows that, there are two mechanisms for GB coupling motion depending on the shear direction. One is the collective motion of GB atoms and the other is structure transformation realized by uncorrelated atomic shuffling processes. The former mechanism can induce structure transition of GB between the stable one and the metastable one, while the latter introduces faceting of the GB. (authors)

  19. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  20. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  1. Synthesis and Characterization of Pure Copper Nanostructures Using Wood Inherent Architecture as a Natural Template

    Science.gov (United States)

    Dong, Youming; Wang, Kaili; Tan, Yi; Wang, Qingchun; Li, Jianzhang; Mark, Hughes; Zhang, Shifeng

    2018-04-01

    The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH- concentration. With an increase in OH- concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.

  2. Effects of hydrazine on the solvothermal synthesis of Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals for particle-based deposition of films

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ming-Hung [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Fu, Yaw-Shyan, E-mail: ysfu@mail.nutn.edu.tw [Department of Greenergy, National University of Tainan, Tainan, Taiwan 700 (China); Shih, Cheng-Hung; Kuo, Chun-Cheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan 701 (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2013-10-01

    The effects of hydrazine on the synthesis of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) and Cu{sub 2}CdSnSe{sub 4} (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu{sub 2}Se, and Cu{sub 2}SnSe{sub 3}, and Cu{sub 2}SnSe{sub 3} and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices.

  3. Phase 1 Evaluation of [(64)Cu]DOTA-Patritumab to Assess Dosimetry, Apparent Receptor Occupancy, and Safety in Subjects with Advanced Solid Tumors.

    Science.gov (United States)

    Lockhart, A Craig; Liu, Yongjian; Dehdashti, Farrokh; Laforest, Richard; Picus, Joel; Frye, Jennifer; Trull, Lauren; Belanger, Stefanie; Desai, Madhuri; Mahmood, Syed; Mendell, Jeanne; Welch, Michael J; Siegel, Barry A

    2016-06-01

    The purpose of this study was to evaluate the safety, dosimetry, and apparent receptor occupancy (RO) of [(64)Cu]DOTA-patritumab, a radiolabeled monoclonal antibody directed against HER3/ERBB3 in subjects with advanced solid tumors. Dosimetry subjects (n = 5) received [(64)Cu]DOTA-patritumab and underwent positron emission tomography (PET)/X-ray computed tomography (CT) at 3, 24, and 48 h. Evaluable RO subjects (n = 3 out of 6) received [(64)Cu]DOTA-patritumab at day 1 and day 8 (after 9.0 mg/kg patritumab) followed by PET/CT at 24 h post-injection. Endpoints included safety, tumor uptake, and efficacy. The tumor SUVmax (± SD) was 5.6 ± 4.5, 3.3 ± 1.7, and 3.0 ± 1.1 at 3, 24, and 48 h in dosimetry subjects. The effective dose and critical organ dose (liver) averaged 0.044 ± 0.008 mSv/MBq and 0.46 ± 0.086 mGy/MBq, respectively. In RO subjects, tumor-to-blood ratio decreased from 1.00 ± 0.32 at baseline to 0.57 ± 0.17 after stable patritumab, corresponding to a RO of 42.1 ± 3. [(64)Cu]DOTA-patritumab was safe. These limited results suggest that this PET-based method can be used to determine tumor-apparent RO.

  4. 14N nuclear quadrupole interaction in Cu(II) doped L-alanine

    International Nuclear Information System (INIS)

    Murgich, J.; Calvo, R.; Oseroff, S.B.; Instituto Venezolano de Investigaciones Cientificas, Caracas. Dept. de Quimica)

    1980-01-01

    The 14 N nuclear quadrupole interaction tensor Psub(N) measured by ENDOR in Cu(II) doped L-alanine is analyzed in terms of the Townes and Daily theory assuming a tetra-hedrally bonded N atom. The results of this analysis are compared with those for the 14 N in pure L-alanine and it is found that the principal directions of the Psub(N) tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped L-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom. (orig.)

  5. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell

    International Nuclear Information System (INIS)

    Dhonde, Mahesh; Sahu, Kirti; Murty, V.V.S.; Nemala, Siva Sankar; Bhargava, Parag

    2017-01-01

    Highlights: •Pure and Cu-doped TiO 2 Nanoparticles are synthesized and incorporated in DSSCs. •Addition of Cu provided high surface area and reduced charge recombination due to LSPR effect. •The highest photo conversion efficiency achieved is 8.65% with J sc of 18.8 mA cm −2 . •This efficiency is 26% higher than that of pure TiO 2 DSSC. -- Abstract: Pure and copper doped titanium dioxide nanoparticles (TiO 2 NPs) for Dye Sensitized Solar Cell (DSSC) photo anodes with different doping amounts of copper (Cu) 0.1, 0.3 and 0.5 mole% are synthesized using modified sol-gel route. Addition of Cu in TiO 2 matrix can enhance absorption towards visible spectrum and can reduce the charge carrier recombination due to Localized Surface Plasmon Resonance (LSPR). The samples are characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV–vis spectroscopy (UV-VIS), X-ray Photoelectron Spectroscopy (XPS), Electro Chemical Impedance Spectroscopy (EIS). The crystallite size is measured by XRD and surface morphology of the samples is analyzed using SEM. UV–vis measurement shows that the influence of Cu in TiO 2 lattice altered its optical properties and extended absorption in the visible region. The resistances between different junctions of the cell are measured by EIS. The J-V measurement of the cell prepared using pure and Cu-doped TiO 2 NPs is carried out by solar simulator. The optimized Cu doped DSSC with 0.3 mole% Cu in TiO 2 shows the best power conversion efficiency of 8.65% which is approximately 26% greater than the efficiency of undoped DSSC (6.41%).

  6. Analysis of precipitation in a Cu-Cr-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Zhao Mei; Lin Guobiao; Wang Zidong; Zhang Maokui

    2008-01-01

    Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  7. Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    Science.gov (United States)

    Ferrante, J.; Pepper, S. V.

    1983-01-01

    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy.

  8. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  9. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    International Nuclear Information System (INIS)

    Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2013-01-01

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  10. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin; Zhang, Junwei; Zhang, Hong; Lan, Qianqian; Guan, Chaoshuai; Zhang, Qiang; Bai, Feiming; Peng, Yong; Zhang, Xixiang

    2016-01-01

    to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed

  11. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method

    International Nuclear Information System (INIS)

    Mageshwari, K.; Nataraj, D.; Pal, Tarasankar; Sathyamoorthy, R.; Park, Jinsub

    2015-01-01

    Highlights: • CuO–ZnO nanocomposites were synthesized by reflux condensation method. • Photodegradation of methyl orange and methylene blue dyes was investigated. • Morphological studies show 3D flower-like CuO microspheres adorned with ZnO nanorods. • Optical analysis showed characteristic absorption bands of CuO and ZnO. • CuO–ZnO nanocomposites exhibited superior photocatalytic activity than CuO. - Abstract: Nanostructured CuO–ZnO nanocomposites were successfully synthesized for different Zn 2+ concentrations by reflux condensation method without using any surfactant, and their photocatalytic activity was evaluated using methyl orange and methylene blue dyes under UV light irradiation. XRD revealed the formation of CuO–ZnO nanocomposites, composing of monoclinic CuO and hexagonal ZnO. XPS analysis revealed that CuO–ZnO nanocomposites are made up of Cu(II), Zn(II) and O. FESEM and TEM images showed that pure CuO exhibit 3D flower-like microstructure, while the CuO–ZnO nanocomposites prepared for different Zn 2+ concentrations have 3D flower-like CuO, microstructure adorned with rod-like ZnO particles. UV–Vis DRS showed absorption bands corresponding to CuO and ZnO around 960 nm and 395 nm, respectively. PL spectra of CuO–ZnO nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. Photodegradation assay revealed that catalytic activity of CuO–ZnO nanocomposites increased with Zn 2+ concentration, and also effectively degrade methyl orange and methylene blue dyes when compared to pure CuO. The enhanced photocatalytic activity of CuO–ZnO nanocomposites were mainly ascribed to the reduced recombination and efficient separation of photogenerated charge carriers. The possible mechanism for the improved photocatalytic activity of CuO–ZnO nanocomposites was proposed

  12. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  13. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  14. ECAE-processed Cu-Nb and Cu-Ag nanocomposite wires for pulse magnet applications

    International Nuclear Information System (INIS)

    Edgecumbe Summers, T.S.; Walsh, R.P.; Pernambuco-Wise, P.

    1997-01-01

    Cu-Nb and Cu-Ag nanocomposites have recently become of interest to pulse magnet designers because of their unusual combination of high strength with reasonable conductivity. In the as-cast condition, these conductors consist of two phases, one of almost pure Nb (or Ag) and the other almost pure Cu. When these castings are cold worked as in a wire-drawing operation for example, the two phases are drawn into very fine filaments which produce considerable strengthening without an unacceptable decrease in conductivity. Unfortunately, any increase in strength with operations such as wire drawing is accompanied by a reduction in the cross section of the billet, and thus far, no wires with strengths on the order of 1.5 GPa or more have been produced with cross sections large enough to be useful in magnet applications. Equal Channel Angular Extrusion (ECAE) is an innovative technique which allows for the refinement of the as-cast ingot structure without a reduction in the cross sectional dimensions. Samples processed by the ECAE technique prior to wire drawing should be stronger at a given wire diameter than those processed by wire drawing alone. The tensile properties of wire-drawn Cu-18%Nb and Cu-25%Ag both with and without prior ECAE processing were tested and compared at both room temperature and 77K. All samples were found to have resistivities consistent with their strengths, and the strengths of the ECAE-processed wires were significantly higher than their as-cast and drawn counterparts. Therefore, with ECAE processing prior to wire drawing, it appears to be possible to make high-strength conductors with adequately large cross sections for pulse magnets

  15. The activation energy for loop growth in Cu and Cu-Ni alloys

    International Nuclear Information System (INIS)

    Barlow, P.; Leffers, T.; Singh, B.N.

    1978-08-01

    The apparent activation energy for the growth of interstitial dislocation loops in copper, Cu-1%Ni, Cu-2%Ni, and Cu-5%Ni during high voltage electron microscope irradiation was determined. The apparent activation energy for loop growth in all these materials can be taken to be 0.34eV+-0.02eV. This value together with the corresponding value of 0.44eV+-0.02eV determined earlier for Cu-10%Ni is discussed with reference to the void growth rates observed in these materials. The apparent activation energy for loop growth in copper (and in Cu-1%Ni that has a void growth rate similar to that in pure copper) is interpreted as twice the vacancy migration energy (indicating that divacancies do not play any significant role). For the materials with higher Ni content (in which the void growth rate is much lower than that in Cu and Cu-1%Ni) the measured apparent activation energy is interpreted to be characteristic of loops positioned fairly close to the foil surface and not of loops in ''bulk material''. From the present results in combination with the earlier results for Cu-10%Ni it is concluded that interstitial trapping is the most likely explanation of the reduced void growth rate in Cu-Ni alloys. (author)

  16. Sunlight-enhanced catalytic degradation over Ag–CuO ...

    Indian Academy of Sciences (India)

    Herein, we report sunlight-activated photo-catalysis response of direct current radio frequency (DC/RF)-sputtered Ag–CuO nanoparticles thin films.We have adopted this approach for facile removal and easy recovery of thin filmsafter use. Ag was incorporated at 2.5 and 5.4 wt% with reference to pure CuO. Structural ...

  17. Compositional ratio effect on the surface characteristics of CuZn thin films

    Science.gov (United States)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  18. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  19. Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier

    International Nuclear Information System (INIS)

    Hsu, Kuo-Chung; Perng, Dung-Ching; Wang, Yi-Chun

    2012-01-01

    Highlights: ► A 5 nm-thick Mo added Ru film has been investigated as a Cu diffusion barrier layer. ► RuMo film provides over 175 °C improvement in thermal stability than that of pure Ru layer. ► The 5 nm-thick RuMo film shows excellent barrier performance against Cu diffusion upon 725 °C. - Abstract: This study investigated the properties of 5 nm-thick RuMo film as a Cu diffusion barrier. The sheet resistance variation and X-ray diffraction patterns show that the RuMo alloy film has excellent barrier performance and that it is stable upon annealing at 725 °C against Cu. The transmission electron microscopy micrograph and diffraction patterns show that the RuMo film is an amorphous-like structure, whereas pure Ru film is a nano-crystalline structure. The elements’ depth profiles, analyzed by X-ray photoelectron spectroscopy, indicate no inter-diffusion behavior between the Cu and Si layer, even annealing at 700 °C. Lower leakage current has been achieved from the Cu/barrier/insulator/Si test structure using RuMo film as the barrier layer. A 5 nm ultrathin RuMo film provided two orders of magnitude improvement in leakage current and also exhibited a 175 °C improvement in thermal stability than that of the pure Ru film. It is a potential candidate as a seedless Cu diffusion barrier for advanced Cu interconnects.

  20. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    Science.gov (United States)

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  1. Cu-capped surface alloys of Pt/Cu left brace 100 right brace

    CERN Document Server

    Alshamaileh, E; Wander, A

    2003-01-01

    The room-temperature deposition of 0.5 monolayer (ML) Pt on Cu left brace 100 right brace followed by annealing to 525 K results in a sharp c(2 x 2) low-energy electron diffraction (LEED) pattern. The structure of this surface alloy is investigated by means of symmetrized automated tensor low-energy electron diffraction (SATLEED) analysis and ab initio plane wave density functional calculations. The results are then compared with those for the similar system 0.5 ML Pd/Cu left brace 100 right brace. SATLEED results for the Pt/Cu left brace 100 right brace show that it consists of an ordered c(2 x 2) Cu-Pt second layer alloy capped with a pure Cu first layer. The first and second interlayer spacings are found to be expanded by +5.1 +- 1.7 and +3.5 +- 1.7% respectively (relative to the bulk Cu interlayer spacing of 1.807 A) due to the insertion of the 8% larger Pt atoms into the second layer. The ordered mixed layer is found to be rippled by 0.08 +- 0.06 A with Pt atoms rippled outwards towards the solid-vacuum ...

  2. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Jiamusi University, Jiamusi 154007 (China); Zheng, Lanlan [Jiamusi University, Jiamusi 154007 (China); Liu, Jie [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Dept. of Prosthodontics, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003 (China); Bai, Bing [Dept. of Prosthodontics, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang 110001 (China); Liu, Cong [Jiamusi University, Jiamusi 154007 (China)

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation.

  3. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Zheng, Lanlan; Liu, Jie; Bai, Bing; Liu, Cong

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation

  4. /Cu-Al System

    Science.gov (United States)

    Kish, Orel; Froumin, Natalya; Aizenshtein, Michael; Frage, Nachum

    2014-05-01

    Wettability and interfacial interaction of the Ta2O5/Cu-Al system were studied. Pure Cu does not wet the Ta2O5 substrate, and improved spreading is achieved when relatively a high fraction of the active element (~40 at.% Al) was added. The Al2O3 and AlTaO4 phases were observed at the Ta2O5/Cu-Al interface. A thermodynamic evaluation allowed us to suggest that the lack of wetting bellow 40 at.% Al is due to the presence of a native oxide, which covers the drop. The conditions of the native oxide decomposition and the formation of the volatile Al2O suboxide strongly depend on the vacuum level during sessile drop experiments and the composition of the Cu-Al alloy. In our case, Al contents greater than 40% provides thermodynamic conditions for the formation of Al2O (as a result of Al reaction with Al2O3) and the drop spreading. It was suggested that the final contact angle in the Ta2O5/Cu-Al system (50°) is determined by Ta adsorption on the newly formed alumina interlayer.

  5. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing

    International Nuclear Information System (INIS)

    Akramifard, H.R.; Shamanian, M.; Sabbaghian, M.; Esmailzadeh, M.

    2014-01-01

    Highlights: • Designing a net hole was effective to achieve uniform distribution SiC particles and prevent agglomeration of them. • SZ has fine and equiaxed grains and distribution of SiC particles in the matrix is almost uniform. • No intermetallic compound was formed after FSP. • In comparison to pure Cu, Cu/SiC composite shows higher hardness and better wear behavior. - Abstract: In the present investigation, pure Cu sheets were reinforced with 25 μm SiC particles to fabricate a composite surface layer by friction stir processing (FSP). In order to improve distribution of reinforcing SiC particles, a net of holes were designed by drill on the surface of pure Cu sheet. For evaluation of microstructure, Optical Microscope (OM) and Scanning Electron Microscope (SEM) were used. Microstructural observation confirmed fine and equiaxed grains in the stir zone (SZ) and showed that SiC particles act as heterogeneous nucleation sites in the dynamic recrystallization of Cu grains. Moreover, agglomeration of particles was not observed and fine particles had a good distribution in SZ. In the SEM micrographs, porosities were detected as microstructure defects. Microhardness measurements showed that surface hardness was two times as high as that of substrate. The rotational wear tests demonstrated that use of SiC particles enhanced wear resistance and increased average friction coefficient of pure Cu. No intermetallic compound was found in Cu/SiC composite as revealed by XRD analysis

  6. Effect of Heat Treatment on the Microstructure and Wear Properties of Al-Zn-Mg-Cu/In-Situ Al-9Si-SiCp/Pure Al Composite by Powder Metallurgy

    Science.gov (United States)

    Yu, Byung Chul; Bae, Ki-Chang; Jung, Je Ki; Kim, Yong-Hwan; Park, Yong Ho

    2018-03-01

    This study examined the effects of heat treatment on the microstructure and wear properties of Al-Zn-Mg-Cu/in-situ Al-9Si-SiCp/pure Al composites. Pure Al powder was used to increase densification but it resulted in heterogeneous precipitation as well as differences in hardness among the grains. Heat treatment was conducted to solve this problem. The heat treatment process consisted of three stages: solution treatment, quenching, and aging treatment. After the solution treatment, the main dissolved phases were η'(Mg4Zn7), η(MgZn2), and Al2Cu phase. An aging treatment was conducted over the temperature range, 100-240 °C, for various times. The GP zone and η'(Mg4Zn7) phase precipitated at a low aging temperature of 100-160 °C, whereas the η(MgZn2) phase precipitated at a high aging temperature of 200-240 °C. The hardness of the sample aged at 100-160 °C was higher than that aged at 200-240 °C. The wear test was conducted under various linear speeds with a load of 100 N. The aged composite showed a lower wear rate than that of the as-sintered composite under all conditions. As the linear speed was increased to 1.0 m/s, the predominant wear behavior changed from abrasive to adhesive wear in all composites.

  7. Effect of Heat Treatment on the Microstructure and Wear Properties of Al-Zn-Mg-Cu/In-Situ Al-9Si-SiCp/Pure Al Composite by Powder Metallurgy

    Science.gov (United States)

    Yu, Byung Chul; Bae, Ki-Chang; Jung, Je Ki; Kim, Yong-Hwan; Park, Yong Ho

    2018-05-01

    This study examined the effects of heat treatment on the microstructure and wear properties of Al-Zn-Mg-Cu/in-situ Al-9Si-SiCp/pure Al composites. Pure Al powder was used to increase densification but it resulted in heterogeneous precipitation as well as differences in hardness among the grains. Heat treatment was conducted to solve this problem. The heat treatment process consisted of three stages: solution treatment, quenching, and aging treatment. After the solution treatment, the main dissolved phases were η'(Mg4Zn7), η(MgZn2), and Al2Cu phase. An aging treatment was conducted over the temperature range, 100-240 °C, for various times. The GP zone and η'(Mg4Zn7) phase precipitated at a low aging temperature of 100-160 °C, whereas the η(MgZn2) phase precipitated at a high aging temperature of 200-240 °C. The hardness of the sample aged at 100-160 °C was higher than that aged at 200-240 °C. The wear test was conducted under various linear speeds with a load of 100 N. The aged composite showed a lower wear rate than that of the as-sintered composite under all conditions. As the linear speed was increased to 1.0 m/s, the predominant wear behavior changed from abrasive to adhesive wear in all composites.

  8. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals

    Science.gov (United States)

    Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.

    2013-03-01

    In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.

  9. Laser Photolytic Approach to Cu/polymer Sols and Cu/polymer Nanocomposites with Amorphous Cu Phase.

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Ouchi, A.; Bakardjieva, Snejana; Urbanová, Markéta; Boháček, Jaroslav; Šubrt, Jan

    2007-01-01

    Roč. 192, 2-3 (2007) , s. 84-92 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : Cu-polymer nanocomposite * laser solution photolysis * amorphous Cu phase Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.911, year: 2007

  10. CH{sub 4} dehydrogenation on Cu(1 1 1), Cu@Cu(1 1 1), Rh@Cu(1 1 1) and RhCu(1 1 1) surfaces: A comparison studies of catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Riguang; Duan, Tian [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ling, Lixia [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Wang, Baojun, E-mail: wangbaojun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2015-06-30

    Highlights: • Adsorbed Rh atom on Cu catalyst exhibits better catalytic activity for CH{sub 4} dehydrogenation. • The adsorbed Rh atom is the reaction active center for CH{sub 4} dehydrogenation. • The morphology of Cu substrate has negligible effect on CH{sub 4} dehydrogenation. - Abstract: In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH{sub 4} dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH{sub 4} dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol{sup −1} on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol{sup −1} on RhCu(1 1 1) surface, and to 180.0 kJ mol{sup −1} on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH{sub 4} complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH{sub 4}, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH{sub 4} dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the

  11. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution CuCu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  12. Role of aluminium concentration on the structure behaviour of Cu-Al alloys

    International Nuclear Information System (INIS)

    Nassar, A.M.; Taha, A.S.; Ragab, K.A.; El-Mossalamy, S.

    1988-06-01

    Effect of Al(5, 10, 15 and 20)% on the structure behaviour of Cu-Al alloys was investigated by both microhardness measurements and optical microscopic investigations. Pure Cu was used for comparison. The analysis of the hardness-temperature curve shows a type of dependence which obeys an empirical exponential law, but consists of several distinguishable regions. For Cu 20% Al, one region is observed, and two regions for pure Cu, while for alloys of 5 and 10% Al concentration three regions were observed. The activation energy varies between 0.03 and 0.9 ev. for these regions, depending on the Al-concentration as well as the annealing temperature. The recrystallization temperature was found to increase with increasing Al-concentration. It was also observed that Cu-20% Al alloy is very hard and brittle owing to the formation of γ2 phase, and also to phase separation as being detected from optical microscopic investigations. (author). 22 refs, 3 figs

  13. Multi-branched Cu2O nanowires for photocatalytic degradation of methyl orange

    Science.gov (United States)

    Yu, Chunxin; Shu, Yun; Zhou, Xiaowei; Ren, Yang; Liu, Zhu

    2018-03-01

    Multi-branched cuprous oxide nanowires (Cu2O NWs) were prepared by one-step hydrothermal method of a facile process. The architecture of these Cu2O NWs was examined by scanning electron microscopy, and the resulting crystal nanowire consists of the trunk growing along [100] plane and the branch growing along [110] plane. Photocatalytic degradation of methyl orange (MO) in the experiment indicates that pure Cu2O NWs prepared at 150 °C have a higher photocatalytic activity (90% MO were degraded within 20 min without the presence of H2O2) compared with the samples obtained at other temperatures. In the photoelectrochemical test, pure Cu2O NWs had outstanding photoelectric response, which corresponds to the catalytic performance. The superior photocatalytic performance can be attributed to the absence of grain boundaries between the small branches and the nanowire trunk, which is conducive to the transport of photo-generated carriers, and the reduction of Cu impurities to reduce the number of recombination centers.

  14. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    International Nuclear Information System (INIS)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-01-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO 2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO 2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu 2+ . The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO 2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  15. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO{sub 2} nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO{sub 2} NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu{sup 2+}. The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO{sub 2} NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  16. Catalytic properties of pure and K+-doped Cu O/Mg O system towards 2-propanol conversion

    International Nuclear Information System (INIS)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N.; El-Shobaky, G. A.

    2013-01-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K + species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N 2 at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu 2 O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K + -doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K + -doping increased the catalytic activity and catalytic durability. (Author)

  17. Novel CuCr_2O_4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    International Nuclear Information System (INIS)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-01-01

    Graphical abstract: - Highlights: • Novel CuO–CuCr_2O_4 nanocomposites synthesized by reflux condensation method. • Methyl orange and methylene blue dye degradation studied under UV light irradiation. • Nanocomposites characterized by XRD, FESEM, TEM, EDX, UV–vis DRS and PL. • CuCr_2O_4 loading effectively enhanced the catalytic activity of CuO. - Abstract: Novel photocatalyst based on CuO–CuCr_2O_4 nanocomposites was synthesized for different Cr"3"+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr_2O_4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr"3"+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO–CuCr_2O_4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr_2O_4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO–CuCr_2O_4 nanocomposites can be attributed to the presence of CuCr_2O_4 as an electron acceptor, which improves the effective charge separation in CuO.

  18. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    2016-12-01

    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  19. Characterization of pure and copper-doped iron tartrate crystals

    Indian Academy of Sciences (India)

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies ...

  20. Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Yang, Siyuan; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Fang, Yueping; Peng, Feng

    2015-01-01

    Graphical abstract: The corncob-like Ag–Cu 2 O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu 2 O nanocables and Cu 2 O nanowires. - Highlights: • Ag–Cu 2 O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu 2 O has been studied. • Ag–Cu 2 O exhibits noticeable improved photocurrent compared with the pure Cu 2 O NWs. • Ag–Cu 2 O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu 2 O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism has been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu 2 O nanocorncobs exhibited higher photocatalytic activity than both pure Cu 2 O nanowires and cable-like Ag@Cu 2 O nano-composites. It was concluded that Ag–Cu 2 O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation

  1. W-Cu composites subjected to heavy hot deformation

    International Nuclear Information System (INIS)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong

    2017-01-01

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  2. W-Cu composites subjected to heavy hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong [Harbin Institute of Technology-Weihai (China). School of Materials Science and Engineering

    2017-04-15

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  3. Controllable synthesis and enhanced photocatalytic properties of Cu2O/Cu31S16 composites

    International Nuclear Information System (INIS)

    Liu, Xueqin; Li, Zhen; Zhang, Qiang; Li, Fei

    2012-01-01

    Highlights: ► Facile sonochemical route. ► The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled. ► Structure and optical properties of Cu 2 O/Cu 31 S 16 were discussed. ► Enhanced photocatalytic property of Cu 2 O/Cu 31 S 16 . ► Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles. -- Abstract: The controlled synthesis of Cu 2 O/Cu 31 S 16 microcomposites with hierarchical structures had been prepared via a convenient sonochemical route. Ultrasonic irradiation of a mixture of Cu 2 O and (NH 2 ) 2 CS in an aqueous medium yielded Cu 2 O/Cu 31 S 16 composites. The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled by adjusting the synthesis time. The Cu 31 S 16 layer not only protected and stabilized Cu 2 O particles, but also prohibited the recombination of photogenerated electrons–holes pair between Cu 31 S 16 and Cu 2 O. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) spectra, ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize the products. Photocatalytic performance of the Cu 2 O/Cu 31 S 16 hierarchical structures was evaluated by measuring the decomposition rate of methyl orange solution under natural light. To the best of our knowledge, this is the first report on the preparation and photocatalytic activity of Cu 2 O/Cu 31 S 16 microcomposite. Additionally, the Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles during photocatalytic process since the photocatalytic activity of the second reused architecture sample was much higher than that of pure Cu 2 O. The Cu 2 O/Cu 31 S 16 microcomposites may be a good promising candidate for wastewater treatment.

  4. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  5. Adsorption and dehydrogenation of tetrahydroxybenzene on Cu(111)

    DEFF Research Database (Denmark)

    Bebensee, Fabian; Svane, K.; Bombis, Christian

    2013-01-01

    Adsorption of tetrahydroxybenzene (THB) on Cu(111) and Au(111) surfaces is studied using a combination of STM, XPS, and DFT. THB is deposited intact, but on Cu(111) it undergoes gradual dehydrogenation of the hydroxyl groups as a function of substrate temperature, yielding a pure dihydroxy......-benzoquinone phase at 370 K. Subtle changes to the adsorption structure upon dehydrogenation are explained from differences in molecule–surface bonding....

  6. Pure γ-families

    International Nuclear Information System (INIS)

    Dunaevskii, A.M.

    1977-01-01

    The subject of this work are pure gamma families consisting of the gamma quanta produced in the early stages of cosmic cascades. The criteria of selecting these families from the all measured families are presented. The characteristics of these families are given and some conclusions about the mechanism of the nuclear-electromagnetic cascades are extracted. (S.B.)

  7. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    International Nuclear Information System (INIS)

    Klinter, Andreas J.; Leon-Patino, Carlos A.; Drew, Robin A.L.

    2010-01-01

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions θ transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl 2 O 4 for Al-7Cu and Al 2 O 3 for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl 2 O 4 under CuAl 2 drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl 2 O 4 causes the reduced σ sl and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in θ with higher copper contents is the increasing σ lv of the alloy.

  8. Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects

    Science.gov (United States)

    Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun

    2012-07-01

    A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.

  9. Crystallization and electrical resistivity of Cu{sub 2}O and CuO obtained by thermal oxidation of Cu thin films on SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L., E-mail: ld301@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Salinas, D. Hurtado [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Dominguez, A. Bustamante [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Najarro, D. Acosta [Instituto de Fisica, Departamento de Materia Condensada, Universidad Nacional Autonoma de Mexico, Ap. Postal 20-364, CP 01000 (Mexico); Khondaker, S.I. [NanoScience Technology Centre and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Mitrelias, T.; Barnes, C.H.W. [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Majima, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); CREST, Japan Science and Technology Agency (JST), 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-08-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO{sub 2}/Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 Degree-Sign C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu {yields} Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO was detected. Pure Cu{sub 2}O films are obtained at 200 Degree-Sign C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300-550 Degree-Sign C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current-voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: Black-Right-Pointing-Pointer The crystallization and electrical resistivity of oxides in a Cu films are studied. Black-Right-Pointing-Pointer In annealing Cu films, the phase evolution Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO occurs. Black-Right-Pointing-Pointer A resistivity phase diagram, obtained from the current-voltage response, is presented. Black-Right-Pointing-Pointer Some decreases in the resistivity may be related to the crystallization.

  10. Thermodynamic analysis of the Cu2S-Cu2Te system using dissociation pressure data

    International Nuclear Information System (INIS)

    Glazov, V.M.; Pashinkin, A.S.; Burkhanov, A.S.; Saleeva, N.M.

    1978-01-01

    The Knudsen effusive method has been used for studying the dissociation pressure in the Cu 2 S-Cu 2 Te system, and on the basis of the experimental data obtained, the tellurium activity in the system and the mixing energy have been calculated. The dissociation pressure of pure components and alloys containing 10, 30, 50, 70, and 90 mol% of copper telluride within the temperature range of 750-1200 deg C has been studied. A smooth character of the concentration dependence of tellurium activity is observed, which points to the formation of a continuous series of solid solutions in the Cu 2 S-Cu 2 Te system within the temperature range studied. The data on the mixing energy in the system show a good agreement of the values obtained from the dissociation pressure with those determined from the fusibility diagram. The results indicate that the system in question is described well within the framework of the model of regular solutions

  11. Dielectric function and its predicted effect on localized plasmon resonances of equiatomic Au–Cu

    International Nuclear Information System (INIS)

    De Silva, K S B; Gentle, A; Arnold, M; Cortie, M B; Keast, V J

    2015-01-01

    Equiatomic (Au,Cu) solid solution orders below 658 K to form a tetragonal AuCu (I) phase with significant changes in physical properties and the crystal structure. The effect of ordering on the dielectric function of the material is controversial however, with inconsistent results reported in the literature. Since the nature of any localized surface plasmon resonance (LSPR) in the nanostructures is very sensitive to the dielectric function, this uncertainty hinders the use of AuCu in plasmonic devices or structures. Therefore, we re-examine the question using a combination of measurements and computations. We find that no significant change in the dielectric function occurs when this material becomes ordered, at least over the range of photon energies relevant to LSPRs. The likely properties of LSPRs in plasmonic devices made of AuCu are analyzed. Use of the alloy offers some advantages over pure Cu, however pure Au would still be the superior option in most situations. (paper)

  12. Catalytic properties of pure and K{sup +}-doped Cu O/Mg O system towards 2-propanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A.; Amin, N. H.; Hammed, M. N.; Sultan, S. N. [Ain Shams University, Faculty of Education, Chemistry Department, Roxy, Heliopolis, Cairo 11757 (Egypt); El-Shobaky, G. A., E-mail: saharelmolla@yahoo.com [National Research Center, Dokki, Cairo (Egypt)

    2013-08-01

    Cu O/Mg O system having different compositions was prepared by impregnation method followed by calcination at 400-900 C. The effect of Cu O content, calcination temperature and doping with small amounts of K{sup +} species (1-3 mol %) on physicochemical, surface and catalytic properties of the system were investigated using X-ray diffraction, adsorption of N{sub 2} at - 196 C, and conversion of isopropyl alcohol at 150-400 C using a flow technique. The results revealed that the solids having the formulae 0.2 and 0.3 Cu O/Mg O calcined at 400 C consisted of nano sized Mg O and Cu O as major phases together with Cu{sub 2}O as minor phase. The Bet-surface areas of different absorbents are decreased by increasing Cu O content, calcination temperature and K{sup +}-doping. Mg O-support material showed very small catalytic activity in 2-propanol conversion. The investigated system behaved as selective catalyst for dehydrogenation of 2-propanol with selectivity >80%. The catalytic activity increased by increasing Cu O content and decreased by increasing the calcination temperature within 400-900 C. K{sup +}-doping increased the catalytic activity and catalytic durability. (Author)

  13. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg.& Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  14. Cubic-to-Tetragonal Phase Transitions in Ag-Cu Nano rods

    International Nuclear Information System (INIS)

    Delogu, F.; Mascia, M.

    2012-01-01

    Molecular dynamics simulations have been used to investigate the structural behavior of nano rods with square cross section. The nano rods consist of pure Ag and Cu phases or of three Ag and Cu domains in the sequence Ag-Cu-Ag or Cu-Ag-Cu. Ag and Cu domains are separated by coherent interfaces. Depending on the side length and the size of individual domains, Ag and Cu can undergo a transition from the usual face-centered cubic structure to a body-centered tetragonal one. Such transition can involve the whole nano rod, or only the Ag domains. In the latter case, the transition is accompanied by a loss of coherency at the Ag-Cu interfaces, with a consequent release of elastic energy. The observed behaviors are connected with the stresses developed at the nano rod surfaces.

  15. Development of cold sprayed Cu coating for canister

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Kang, Yoon Ha

    2010-01-01

    Cold sprayed Cu deposition was studied for the application of outer part of canister for high level nuclear waste. Five commercially available pure Cu powders were analyzed and sprayed by high pressure cold spray system. Electrochemical corrosion test using potentiostat in 3.5% NaCl solution was conducted as well as microstructural analysis including hardness and oxygen content measurements. Overall evaluation of corrosion performance of cold sprayed Cu deposition is inferior to forged and extruded Cu plates, but some of Cu depositions are comparable to Cu plates. The simulated corrosion test in 200m underground cave is still in progress. The effect of cold spray process parameters was also studied and the results show that the type of nozzle is the most important other than powder feed rate, spray distance, and scan speed. 1/10 scale miniature of canister was manufactured confirming that the production of full scale canister is possible

  16. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  17. Effect of annealing process on the heterostructure CuO/Cu2O as a highly efficient photocathode for photoelectrochemical water reduction

    Science.gov (United States)

    Du, Fan; Chen, Qing-Yun; Wang, Yun-Hai

    2017-05-01

    CuO/Cu2O photocathodes were successfully prepared via simply annealing the electrodeposited Cu2O on fluoride doped tin oxide (FTO) substrate. They were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscope (TEM), UV-vis absorption spectra and X-ray photoelectron spectroscopy (XPS). The results showed that the heterojunction of CuO/Cu2O was formed during the annealing process and presented the nature of p-type semiconductor. The photocurrent density and photoelectrochemical (PEC) stability of the p-type heterostructure CuO/Cu2O photocathode was improved greatly compared with the pure Cu2O, which was greatly affected by annealing time and temperature. The highest photo current density of -0.451 mA/cm2 and highest stability was obtained via annealing at 650 °C for 15 min (at -0.3 V vs. Ag/AgCl), which gave a remarkable improvement than the as-deposited Cu2O (-0.08 mA/cm2). This suggested that the CuO/Cu2O heterojunction facilitated the electron-hole pair separation and improved the photocathode's current and stability.

  18. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  19. Simulations of stress evolution and the current density scaling of electromigration-induced failure times in pure and alloyed interconnects

    Science.gov (United States)

    Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.

    1999-04-01

    An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.

  20. Superconductivity in LaCu 6 and possible applications

    Science.gov (United States)

    Herrmannsdörfer, Thomas; Pobell, Frank; Sebek, Josef; Svoboda, Pavel

    2003-05-01

    We have measured the ac susceptibility and resistivity of highly pure samples of the intermetallic compound LaCu6 down to ultralow temperatures. We have prepared the samples by arc melting of stoichiometric amounts of 99.99% La and 99.9999% Cu in a water-cooled copper crucible under Ar protective atmosphere and analysed them by X-ray diffraction and SQUID magnetometry. At T⩽Tc=0.16 K we observe a superconducting transition. Due to the manifold physical properties of isostructural ReCu6 compounds (e.g. RE = Ce: heavy fermion system, RE=Pr: hyperfine enhanced nuclear spin system, RE = Nd: electronic antiferromagnet), numerous studies of interplay phenomena may become possible in the quasibinary compounds RE1-xLaxCu6, respectively.

  1. Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures

    International Nuclear Information System (INIS)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud; Ghanbari, Davood; Saberyan, Kamal; Hosseinpour-Mashkani, S. Mostafa

    2014-01-01

    Graphical abstract: - Highlights: • CuI nanostructures were prepared via a simple precipitation method. • Glucose as a green capping agent and reductant was applied. • The effect of glucose concentration on the morphology of CuI was investigated. • According to XRD results, pure cubic phase CuI have been formed by using glucose. - Abstract: In this work, CuI micro/nanostructures have been successfully prepared via a simple precipitation route at room temperature. By using glucose as a clean reducing agent with different concentrations, CuI micro/nanostructures with various morphologies were obtained. Besides glucose, Na 2 SO 3 , KBH 4 and N 2 H 4 ·H 2 O have been applied as reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy, X-ray energy dispersive spectroscopy (EDS) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the as-produced CuI micro/nanostructures. According to the XRD results, it was found that pure cubic phase CuI have been formed by using glucose

  2. Magnetic and structural study of Cu-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Torres, C.E. Rodriguez; Golmar, F.; Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H.; Duhalde, S.

    2007-01-01

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO 2 thin films were grown by pulsed laser deposition technique on LaAlO 3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO 2 . The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO 2

  3. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S

    2008-09-01

    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  4. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Klinter, Andreas J., E-mail: andreas.klinter@mail.mcgill.ca [Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 University Street, Montreal, QC, H3A 2B2 (Canada); Leon-Patino, Carlos A. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Apdo. Postal 888, CP 58000 Morelia, Michoacan (Mexico); Drew, Robin A.L. [Faculty of Engineering and Computer Science, Concordia University, 1455 Maisonneuve Blvd, EV 2.169, Montreal, QC, H3G 1M8 (Canada)

    2010-02-15

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions {theta} transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl{sub 2}O{sub 4} for Al-7Cu and Al{sub 2}O{sub 3} for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl{sub 2}O{sub 4} under CuAl{sub 2} drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl{sub 2}O{sub 4} causes the reduced {sigma}{sub sl} and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in {theta} with higher copper contents is the increasing {sigma}{sub lv} of the alloy.

  5. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  6. Study of Room Temperature H2S Gas Sensing Behavior of CuO-modified BSST Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    H. M. Baviskar

    2008-05-01

    Full Text Available Thick films of (Ba0.1Sr0.9(Sn0.5Ti0.5O3 referred as BSST, were prepared by screen-printing technique. The preparation, characterization and gas sensing properties of pure and CuO-BSST mixed oxide semiconductors have been investigated. The mixed oxides were obtained by dipping the pure BSST thick films into 0.01 M aqueous solution of CuCl2, for different intervals of time. Pure BSST was observed to be less sensitive to H2S gas. However, mixed oxides of CuO and BSST were observed to be highly sensitive to H2S gas. Upon exposure to H2S gas, the barrier height of CuO-BSST intergranular regions decreases markedly due to the chemical transformation of CuO into well conducting CuS leading to a drastic decrease in resistance. The crucial gas response was found to H2S gas at room temperature and no cross sensitivity was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of H2S gas were studied and discussed.

  7. Photon induced facile synthesis and growth of CuInS{sub 2} absorber thin film for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manjeet, E-mail: msitbhu@gmail.com [Department of Physics, Incheon National University, 12-1, Songdo-dong, Yeonsu-gu, Incheon 406-772 (Korea, Republic of); Jiu, Jinting; Suganuma, Katsuaki [Department of Advanced Interconnection Materials, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047 (Japan)

    2016-04-30

    Graphical abstract: The thin film containing CuS and In{sub 2}S{sub 3} can be converted into CuInS{sub 2} by irradiation of intense pulses of light. - Highlights: • Photonic sintering technique is demonstrated for CuInS{sub 2} (CIS) thin film preparation. • The binary sulfides CuS and In{sub 2}S{sub 3} are converted into CIS using intense light pulses. • The light energy of 706 mJ/cm{sup 2} is found best for phase pure CIS film formation. - Abstract: In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS{sub 2} (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In{sub 2}S{sub 3} to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm{sup 2} is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.

  8. Direct synthesis of RGO/Cu{sub 2}O composite films on Cu foil for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangmao; Wang, Kun [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Qian, Xiuzhen [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Shi [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhen, E-mail: zhenl@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Liu, Huakun; Dou, Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia)

    2014-02-15

    Graphical abstract: RGO/Cu{sub 2}O/Cu composites were synthesized by simple hydrothermal treatment of copper foils with graphene oxide, in which the reduction of graphene oxide and the formation of Cu{sub 2}O nanoparticles simultaneously happened in one-pot reaction. These composites can be directly used as electrodes of supercapacitors with the highest specific capacitance of 98.5 F/g at 1 A g{sup −1}, which is much better than that of CuO or Cu{sub 2}O electrodes. -- Highlights: • The RGO/Cu{sub 2}O/Cu composites were obtained by a friendly method in one step. • Improved capacitance performance is realized by the hydrothermal treatment of graphene oxides with Cu foils. • RGO/Cu{sub 2}O/Cu-200 composites exhibit the largest specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1}. -- Abstract: Reduced graphene oxide/cuprous oxide (RGO/Cu{sub 2}O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu{sub 2}O and reduction of GO, in which Cu{sub 2}O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu{sub 2}O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. A specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1} was obtained, which is much higher than that of pure Cu{sub 2}O prepared under the same conditions, due to the presence of RGO.

  9. CuGeO3 and CuO by respectively elastic and inelastic polarized neutrons

    International Nuclear Information System (INIS)

    Ain, M.; Regnault, L.P.; Lorenzo, J.; Dhalenne, G.; Revcolevschi, A.

    2005-01-01

    Polarization analysis permitted to verify very promptly that the plane of the helix in the incommensurate phase of CuO was not (a*,c*) as first proposed but another one containing without equivoque the b*-axis.Inelastic polarization analysis under applied magnetic field permitted to study the triplet magnon-like mode of spin-Peierls CuGeO 3 . This mode splits in three, as expected. Intensities of inelastic neutron scattering measurements with polarization analysis have been collected in both spin-flip and nonspin-flip channels. This Zeeman splitting revealed that two out of the three processes are purely spin-flip excitations, while the third undisplaced one is a nonspin-flip process in which the neutron conserves its spin orientation

  10. CuO nanoparticles and their antimicrobial activity against nosocomial strains

    Directory of Open Access Journals (Sweden)

    Mónica Marcela Gómez León

    2017-09-01

    Full Text Available Using a prototype reactor, CuO nanoparticles (NPs were synthetized through the precipitation method, starting from CuSO2·5H2O and Cu(CH3COO2·H2O. The obtained NPs were characterized by XDR, FT-IR, SEM, and TEM. The antimicrobial activity of the NPs was determined by the plate diffusion method, placing 20 mg of NPs onto four nosocomial strains obtained from north Lima national hospital Intensive-Care Unit (Staphylococcus epidermidis, Aerococcus viridans, Ochrobactrum anthropic, and Micrococcus lylae. NPs characterization revealed that those synthetized from acetate (CuO–Acet shown pure CuO phase, while those synthetized from sulphate CuO–Sulf shown two phases where CuO was the predominant one, having more than 84%. The crystal domains for CuO–Acet and CuO–Sulf were 15 and 19 nm, respectively. The inhibition halos for the studied strains were larger for CuO–Sulf NPs than CuO–Acet NPs, only Ochrobactrum anthropi displayed similar inhibition halos for both types of NPs.

  11. Preparation of carrier-free 67Cu by the 68Zn(γ,p) reaction

    International Nuclear Information System (INIS)

    Yagi, M.; Kondo, K.

    1978-01-01

    The preparation of pure, carrier-free 67 Cu using the 68 Zn(γ, p) reaction with an isotopically enriched 68 Zn(98.97%) target is described. The production rates of 67 Cu and contaminants were determined as a function of the maximum bremsstrahlung energies between 30 and 60 MeV. The chemical separation of the carrier-free 67 Cu and the recovery of the 68 Zn target were also studied. (author)

  12. Depth concentrations of deuterium ions implanted into some pure metals and alloys

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.; Kitowski, K.; Wilczynska, T.; Hofman, A.; Kulikauskas, V.; Shiryaev, A.A.; Zubavichyus, Ya.V.

    2011-01-01

    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25-keV deuterium ions at fluences in the range (1.2-2.3) x 10 22 D + /m 2 . The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation by using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed us to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions from V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium

  13. Thermal characteristic of sintered AgeCu nano-paste for high-temperature die-attach application

    International Nuclear Information System (INIS)

    Tan, Kim Seah; Cheong, Kuan Yew; Wong, Yew Hoong

    2015-01-01

    In this work, thermal characteristic of silver-copper (Ag-Cu) nano-paste that consists of a mixture of nano-sized Ag and Cu particles and organic compounds meant for high-temperature die-attach application is reported. The Ag-Cu nano-paste was sintered at 380 deg. C for 30 min without the need of applying external pressure and the effect of Cu loading (20-80 wt%) on the thermal properties was investigated in against of pure Ag nano-paste and pure Cu nano-paste. The results showed the specific heat of sintered Ag-Cu nano-paste was increased as the loading of Cu increased. For thermal conductivity and coefficient of thermal expansion (CTE) of sintered Ag-Cu nano-paste, a declining trend has been recorded with the increment of Cu loading. Overall, the sintered Ag-Cu nano-paste with 20 wt% of Cu loading has demonstrated the best combination of thermal conductivity (K) and CTE (α), which were 159 W/m K and 13 x 10 -6 /K, respectively. It has proven that there was a strong correlation between the amount of pores and thermal properties of the nano-paste. The ratio of K/α is a performance index (M), which has shown a higher value (12.2 x 10 6 W/m) than most of the commonly used die-attach systems. Finally, the Ag-Cu nano-paste has demonstrated a melting point of 955 deg. C, which can be proposed as an alternative high-temperature die-attach material

  14. Commensurability oscillations in NdBa2Cu3Oy single crystals

    Indian Academy of Sciences (India)

    gated by angular dependent magnetization in very pure twinned and twin-free NdBa2 Cu3 Oy single ... The layered structure and the c-axis coherence length, ξc ≈ 4 ˚A, smaller than the lattice ... The high quality of both crystals is demonstrated by ... Commensurability oscillations in NdBa2Cu3Oy single crystals. 2. 3. 4. 5. 6.

  15. Multifilamentar superconductor wires of Cu-Nb-Al and Cu-Nb3Sn obtained by a new method

    International Nuclear Information System (INIS)

    Lima, O.F. de

    1985-01-01

    A new method to prepare multifilamentar wires of Cu-Nb 3 Sn which is based on power metallurgy is developed. Wires of Cu+xw%Nb++2wt%Al (x =10,30) were tinned and heat treated for Sn diffusion and reaction (T = 700 0 C), leading to the Nb 3 Sn A 15 phase. Final wires showed microfilament density around 8 x 10 4 mm -2 . The superconducting properties (T sup(c), J sup(c) x H), mechanical properties (tau x epsilon) and eletrical resistivity for Cu-Nb-Al wires were as normally expected. The Cu-Nb 3 Sn wires showed high T sub(c) approx. 17.9 K, very near that for the pure A 15 phase. J sub(c) x H curves were approx. 4 times lower than typical published results for wires prepared by other methods. The experimental evidence shows that J sub(c) increases when decreases the initial Nb particle size. (Author) [pt

  16. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    International Nuclear Information System (INIS)

    Traldi, S. M.; Rossi, J. L.; Costa, I.

    2003-01-01

    Al-Si-Cu hypereutectic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. they the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties- mainly wear resistance at high temperatures. The corrosion s resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation hove been used to evaluate the corrosion resistance of a hyper eutectic Al-Si-Cu alloy in alcoholic environments. the EIS tests carried out in pure ethanol, and ethanol with small additions (1 mM) of acid an chloride to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium. (Author) 13 refs

  17. Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Weng, Shayuan; Zhao, Yinbo; Gao, Fengshan; Deng, Lijun; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of the indentation on pure Cu and Ni films and Cu/Ni multilayered films with a cylindrical indenter, aimed to investigate the effects of the cubic-on-cubic interface and hetero-twin interface on their mechanical properties. We also investigate systematically the formation of twin boundary in the pure metals and the effects of the cubic-on-cubic and hetero-twin interface on mechanical properties of the multilayers. We find that the slip of the horizontal stacking fault can release the internal stress, resulting in insignificant strengthening. The change in the crystal orientation by horizontal movement of the atoms in a layer-by-layer manner is found to initiate the movement of twin boundary, and the hetero-twin interface is beneficial to the hardening of multilayers. Moreover, we also find that increasing number of hetero-twin interfaces can harden the Cu/Ni multilayers.

  18. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    Science.gov (United States)

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  19. Role of BaO/SrO layers in deciding the electronic structure of Cu0.3Co0.7Ba2-xSrxYCu2O7+δ (CoCu-1212) x = 0, 1 and 2

    International Nuclear Information System (INIS)

    Singh, Shiva Kumar; Husain, M.; Kishan, H.; Awana, V.P.S.

    2011-01-01

    Highlights: → Decrease in lattice parameters confirms replacement by Sr ion at Ba ion site. → XPS measurement shows that mixed Cu 1+/2+ and Co 3+/4+ valence state. → With increasing x, Cu valence is non-monotonous whereas Co valence is increasing. → Resistivity reveals that holes in Cu/CoO x planes are taking part in charge transport. → Paramagnetic nature is due to the presence Cu ions in Cu/CoO x chains/planes. - Abstract: In this paper we report the change in electronic structure of Cu 0.3 Co 0.7 Ba 2-x Sr x YCu 2 O 7+δ with change in structural pressure. Rietveld refined X-ray diffraction (XRD) pattern shows that the samples are phase pure. Decrease in lattice parameters with increasing x, confirms replacement by Sr ion at Ba ion site. The calculated tolerance factor of the systems is in accord with lattice parameter changes. The X-ray photoelectron spectroscopy (XPS) is made to find out the variation in ionic state of Co and Cu with ionic size variation in BaO/SrO layers. Effect of the same on the electronic structure and transport properties is explored. The XPS measurement reveals that Cu is in mixed 1+/2+ state and variation in valence state is non-monotonous with increasing x. Whereas Co is in mixed 3+/4+ state and with increasing x its valence state is increasing. The observed changes in electronic structure are subject of structural changes. The resistivity measurement shows that normal state conductivity decreases with increasing x. Resistivity behaviour indicates about holes in Cu/CoO x planes taking part in charge transport. The magnetic measurement (M-T and M-H) shows that paramagnetic nature for all the compositions. The presence of Cu ions in Cu/CoO x chains/planes results in paramagnetic behaviour.

  20. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes

    International Nuclear Information System (INIS)

    Xu Chao; Cao Lixin; Su Ge; Liu Wei; Liu Hui; Yu Yaqin; Qu Xiaofei

    2010-01-01

    ZnO/Cu 2 O compound photocatalysts were prepared by 'soak-deoxidize-air oxidation' with different concentrations of Cu 2+ (0.125, 0.25, 0.5, 1, 1.5 and 2 mol/L). The prepared ZnO/Cu 2 O samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), UV-vis diffuse reflectance spectrometer, and photochemical reaction instrument. The results show that ZnO was hexagonal wurtzite structure and the crystallinity had no change with the increase of Cu 2+ concentration. Cu 2 O belonged to cubic structure and the crystallinity increased with the increase of Cu 2+ concentration. ZnO were rods and bulks which had diameter of about 300-400 nm, some small round Cu 2 O particles which had a diameter of about 50 nm adhered to these rods and bulks. In the compounds the mole ratio of Cu 2 O to ZnO was 0.017, 0.025, 0.076, 0.137, 0.138, and 0.136, respectively. An absorbance in the visible light region between 400 and 610 nm was seen and the reflection rate became less with the mole ratio of Cu 2 O to ZnO increasing. The photocatalytic activities of ZnO/Cu 2 O compound were evaluated using a basic organic dye, methyl orange (MO). It was found that, compared with pure ZnO, the photocatalytic properties of ZnO/Cu 2 O compound were improved greatly and some compounds were better than pure Cu 2 O.

  1. Pure type systems with subtyping

    NARCIS (Netherlands)

    Zwanenburg, J.; Girard, J.-Y.

    1999-01-01

    We extend the framework of Pure Type Systems with subtyping, as found in F = ¿ . This leads to a concise description of many existing systems with subtyping, and also to some new interesting systems. We develop the meta-theory for this framework, including Subject Reduction and Minimal Typing. The

  2. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pele, Vincent; Barreteau, Celine [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Berardan, David, E-mail: david.berardan@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Zhao, Lidong; Dragoe, Nita [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France)

    2013-07-15

    We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similar to that of samples synthesized by a classical path.

  3. Magnetic and structural study of Cu-doped TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Torres, C.E. Rodriguez [Dpto de Fisica-IFLP, Fac. Cs. Exactas, Universidad Nacional de La Plata-CONICET, CC 67, 1900 La Plata (Argentina)], E-mail: torres@fisica.unlp.edu.ar; Golmar, F. [Laboratorio de Ablacion Laser, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H. [Dpto de Fisica-IFLP, Fac. Cs. Exactas, Universidad Nacional de La Plata-CONICET, CC 67, 1900 La Plata (Argentina); Duhalde, S. [Laboratorio de Ablacion Laser, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

    2007-10-31

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO{sub 2} thin films were grown by pulsed laser deposition technique on LaAlO{sub 3} substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO{sub 2}. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO{sub 2}.

  4. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R.P.

    2016-01-01

    Highlights: • Cu_1_−_xCo_xS nanoparticles were synthesized via chemical co-precipitation method. • Structural, band gap, magnetization and photocatalysis studies were carried out. • All the doped samples exhibited intrinsic room temperature ferromagnetism. • Effect of magnetic properties on photocatalytic activity was analyzed. • CuS:Co nanoparticles may find applications in photocatalytic and spintronic devices. - Abstract: Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV–vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  5. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sreelekha, N.; Subramanyam, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Physics, Raghu Engineering College, Visakhapatnam, Andrapradesh 531162 (India); Amaranatha Reddy, D. [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609735 (Korea, Republic of); Murali, G. [Department of BIN Fusion Technology & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk (Korea, Republic of); Ramu, S. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Rahul Varma, K. [Department of Mechanical Engineering, University of California, Berkeley (United States); Vijayalakshmi, R.P., E-mail: vijayaraguru@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2016-08-15

    Highlights: • Cu{sub 1−x}Co{sub x}S nanoparticles were synthesized via chemical co-precipitation method. • Structural, band gap, magnetization and photocatalysis studies were carried out. • All the doped samples exhibited intrinsic room temperature ferromagnetism. • Effect of magnetic properties on photocatalytic activity was analyzed. • CuS:Co nanoparticles may find applications in photocatalytic and spintronic devices. - Abstract: Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV–vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  6. Testing effects in mixed- versus pure-list designs.

    Science.gov (United States)

    Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L

    2014-08-01

    In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.

  7. Superconductivity in LaCu{sub 6} and possible applications

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsdoerfer, Thomas; Pobell, Frank; Sebek, Josef; Svoboda, Pavel

    2003-05-15

    We have measured the ac susceptibility and resistivity of highly pure samples of the intermetallic compound LaCu{sub 6} down to ultralow temperatures. We have prepared the samples by arc melting of stoichiometric amounts of 99.99% La and 99.9999% Cu in a water-cooled copper crucible under Ar protective atmosphere and analysed them by X-ray diffraction and SQUID magnetometry. At T{<=}T{sub c}=0.16 K we observe a superconducting transition. Due to the manifold physical properties of isostructural ReCu{sub 6} compounds (e.g. RE = Ce: heavy fermion system, RE=Pr: hyperfine enhanced nuclear spin system, RE = Nd: electronic antiferromagnet), numerous studies of interplay phenomena may become possible in the quasibinary compounds RE{sub 1-x}La{sub x}Cu{sub 6}, respectively.

  8. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  9. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  10. Study on growth of highly pure uranium compounds

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Ochiai, Akira; Suzuki, Kenji.

    1992-01-01

    We developed the systems for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. Chemical analysis of the purified uranium was performed using the inductive coupled plasma emission spectrometry (ICP). The problem that emission spectra of the uranium conceal those of analyzed impurities was settled by extraction of the uranium using tri-n-butyl-phosphate (TBP). The result shows that some metallic impurities such as Pb, Mn, Cu etc. evaporated by the r.f. heating and other usual metallic impurities moved to the end of rod with molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained highly purified uranium metal of 99.99 % up with regard to metallic impurities. Using the purified uranium, we attempted to grow a highly pure uranium-titanium single crystals. (author)

  11. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Edwards, D.J.; Bilde-Soerensen, J.B

    2004-10-01

    The phenomenon of plastic flow localization in the form of 'cleared' channels has been frequently observed in neutron irradiated metals and alloys for more than 40 years. So far, however, no experimental evidence as to how and where these channels are initiated during post-irradiation deformation has emerged. Recently we have studied the problem of initiation and propagation of cleared channels during post-irradiation tensile tests of pure copper and a copper alloy irradiated with fission neutrons. Tensile specimens of pure copper and a precipitation hardened copper alloy (CuCrZr) were neutron irradiated at 323 and 373K to displacement doses in the range of 0.01 to 0.3 dpa (displacement per atom) and tensile tested at the irradiation temperature. The stress-strain curves clearly indicated the occurrence of a yield drop. The post-deformation microstructural examinations revealed that the channels are formed already in the elastic regime and their density increases with increasing plastic strain. The channels appear to have been initiated at grain boundaries, twin boundaries, at relatively large inclusions and even at the previously formed cleared channels. Even though the channels are produced throughout the whole tensile test, no clear evidence has been found for the operation of Frank-Read sources in the volume between the channels. Channels have been observed to penetrate through annealing twins, in some cases stopping at the opposite twin boundary and in other cases penetrating even through the opposite twin boundary and continuing further into the grain. In some cases channels have been found to penetrate through grain boundaries too. It is suggested that the high stress levels reached during deformation of the irradiated specimens activate dislocation sources at the sites of stress concentration at the boundaries and inclusions. The propagation of these newly generated dislocations in the matrix causes the formation of cleared channels. Implications

  12. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Bilde-Soerensen, J.B.

    2004-10-01

    The phenomenon of plastic flow localization in the form of 'cleared' channels has been frequently observed in neutron irradiated metals and alloys for more than 40 years. So far, however, no experimental evidence as to how and where these channels are initiated during post-irradiation deformation has emerged. Recently we have studied the problem of initiation and propagation of cleared channels during post-irradiation tensile tests of pure copper and a copper alloy irradiated with fission neutrons. Tensile specimens of pure copper and a precipitation hardened copper alloy (CuCrZr) were neutron irradiated at 323 and 373K to displacement doses in the range of 0.01 to 0.3 dpa (displacement per atom) and tensile tested at the irradiation temperature. The stress-strain curves clearly indicated the occurrence of a yield drop. The post-deformation microstructural examinations revealed that the channels are formed already in the elastic regime and their density increases with increasing plastic strain. The channels appear to have been initiated at grain boundaries, twin boundaries, at relatively large inclusions and even at the previously formed cleared channels. Even though the channels are produced throughout the whole tensile test, no clear evidence has been found for the operation of Frank-Read sources in the volume between the channels. Channels have been observed to penetrate through annealing twins, in some cases stopping at the opposite twin boundary and in other cases penetrating even through the opposite twin boundary and continuing further into the grain. In some cases channels have been found to penetrate through grain boundaries too. It is suggested that the high stress levels reached during deformation of the irradiated specimens activate dislocation sources at the sites of stress concentration at the boundaries and inclusions. The propagation of these newly generated dislocations in the matrix causes the formation of cleared channels. Implications of these

  13. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  14. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  15. Growth and antimicrobial studies of γ-glycine crystal grown using CuSO4

    Science.gov (United States)

    Vijayalakshmi, V.; Dhanasekaran, P.

    2018-05-01

    In the current work single crystals of pure and 1M of CuSO4-added glycine were grown by slow evaporation method and its optical and antimicrobial properties were studied. The Polymorph of glycine transforms from a-glycine to γ-glycine due to the incorporation of CuSO4 on glycine was affirmed by the PXRD and FTIR studies. The impact of CuSO4 on the antimicrobial action of the grown samples was deliberate by utilizing the agar diffusion method.

  16. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).

    Science.gov (United States)

    Chirizzi, Daniela; Guascito, Maria Rachele; Filippo, Emanuela; Tepore, Antonio

    2016-01-15

    A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5μm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  18. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  19. Superconducting and structural properties of plasma sprayed YBaCuO layers deposited on metallic substrates

    NARCIS (Netherlands)

    Hemmes, Herman K.; Jäger, D; Smithers, M.A.; Smithers, M.; van der Veer, J.; van der Veer, J.M.; Stover, D.; Rogalla, Horst

    1993-01-01

    The properties of plasma sprayed Y-Ba-Cu-O coatings deposited on metallic substrates are studied. Stainless steel, nickel steels and pure nickel are used as substrate. Y-Ba-Cu-O deposited on stainless steel and nickel steel reacts with the substrate. This interaction can be suppressed by using an

  20. Effects of advanced process approaches on electromigration degradation of Cu on-chip interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.A.

    2007-07-12

    This thesis provides a methodology for the investigation of electromigration (EM) in Cu-based interconnects. An experimental framework based on in-situ scanning electron microscopy (SEM) investigations was developed for that purpose. It is capable to visualize the EM-induced void formation and evolution in multi-level test structures in real time. Different types of interconnects were investigated. Furthermore, stressed and unstressed samples were studied applying advanced physical analysis techniques in order to obtain additional information about the microstructure of the interconnects as well as interfaces and grain boundaries. These data were correlated to the observed degradation phenomena. Correlations of the experimental results to recently established theoretical models were highlighted. Three types of Cu-based interconnects were studied. Pure Cu interconnects were compared to Al-alloyed (CuAl) and CoWP-coated interconnects. The latter two represent potential approaches that address EM-related reliability concerns. It was found that in such interconnects the dominant diffusion path is no longer the Cu/capping layer interface for interconnects as in pure Cu interconnects. Instead, void nucleation occurs at the bottom Cu/barrier interface with significant effects from grain boundaries. Moreover, the in-situ investigations revealed that the initial void nucleation does not occur at the cathode end of the lines but several micrometers away from it. The mean times-to-failure of CuAl and CoWP-coated interconnects were increased by at least one order of magnitude compared to Cu interconnects. The improvements were attributed to the presence of foreign metal atoms at the Cu/capping layer interface. Post-mortem EBSD investigations were used to reveal the microstructure of the tested samples. The data were correlated to the in-situ observations. (orig.)

  1. Phase stability of superconductive Y1Ba2Cu4O8

    International Nuclear Information System (INIS)

    Hegde, M.S.; Kumaraswamy, B.V.; Pandey, S.P.; Narlikar, A.V.

    1997-01-01

    The stability of the 124 superconductive phase YBa 2 Cu 4 O 8 upon exposure to air and saturated humidity at ambient temperature has been studied by thermogravimetry, X-ray diffraction, and ac susceptometry. Extent of phase conversion was monitored by TG and confirmed by XRD and ac susceptometry. 124 samples upon prolonged exposure to air were found to be no longer phase-pure, with partial conversion to 123 and CuO. On oxygen annealing, reconversion of 123 + GuO to 124 was observed. However, upon prolonged exposure to saturated humid conditions, phase-pure 124 dissociated irreversibly into 211, GuO, and a highly disordered 124-like structure with planar defects along many hkl indices and was found to be nonsuperconducting even up to 60 K

  2. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  3. Electron scattering rate in epitaxial YBa2Cu3O7 superconducting films

    Science.gov (United States)

    Flik, M. I.; Zhang, Z. M.; Goodson, K. E.; Siegal, M. P.; Phillips, Julia M.

    1992-09-01

    This work determines the electron scattering rate in the a-b plane of epitaxial YBa2Cu3O7 films using two techniques. Infrared spectroscopy yields the scattering rate at temperatures of 10, 78, and 300 K by fitting reflectance data using thin-film optics and a model for the free-carrier conductivity. The scattering rate is also obtained using kinetic theory and an extrapolation of normal-state electrical resistivity data to superconducting temperatures based on the Bloch theory for the phonon-limited electrical resistivity of metals. The scattering rates determined using both techniques are in agreement and show that the electron mean free path in the a-b plane of YBa2Cu3O7 superconducting films is three to four times the coherence length. Hence YBa2Cu3O7 is pure but not in the extreme pure limit. An average defect interaction range of 4 nm is obtained using the defect density resulting from flux-pinning considerations.

  4. Microstructure Evolution and Protrusion of Electroplated Cu-Filled Through-Silicon Vias Subjected to Thermal Cyclic Loading

    Science.gov (United States)

    Chen, Si; An, Tong; Qin, Fei; Chen, Pei

    2017-10-01

    Through-silicon vias (TSVs) have become an important technology for three-dimensional integrated circuit (3D IC) packaging. Protrusion of electroplated Cu-filled vias is a critical reliability issue for TSV technology. In this work, thermal cycling tests were carried out to identify how the microstructure affects protrusion during thermal cycling. Cu protrusion occurs when the loading temperature is higher than 149°C. During the first five thermal cycles, the grain size of Cu plays a dominant role in the protrusion behavior. Larger Cu grain size before thermal cycling results in greater Cu protrusion. With increasing thermal cycle number, the effect of the Cu grain size reduces and the microstrain begins to dominate the Cu protrusion behavior. Higher magnitude of microstrain within Cu results in greater protrusion increment during subsequent thermal cycles. When the thermal cycle number reaches 25, the protrusion rate of Cu slows down due to strain hardening. After 30 thermal cycles, the Cu protrusion stabilizes within the range of 1.92 μm to 2.09 μm.

  5. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  6. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    Science.gov (United States)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  7. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    OpenAIRE

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-01-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. ...

  8. Synthesis and optical resolution of a Cu(I) double-stranded helicate with ketimine-bridged tris(bipyridine) ligands.

    Science.gov (United States)

    Furusho, Yoshio; Goto, Hidetoshi; Itomi, Ken; Katagiri, Hiroshi; Miyagawa, Toyoharu; Yashima, Eiji

    2011-09-21

    A tetranuclear Cu(I) double-stranded helicate was synthesized from ketimine-bridged tris(bipyridine) ligands and Cu(I) ions, and the racemate was successfully resolved by diastereomeric salt formation using an optically pure phosphate anion followed by anion exchange with NaPF(6) without racemization.

  9. The effect of the sulfur concentration on the phase transformation from the mixed CuO-Bi{sub 2}O{sub 3} system to Cu{sub 3}BiS{sub 3} during the sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijian; Jin, Xin; Yuan, Chenchen; Jiang, Guoshun; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2016-12-15

    Highlights: • Cu{sub 3}BiS{sub 3} thin films were creatively fabricated by sulfurizing metal oxide precursor. • The phase transformation mechanism during the sulfurization process was studied. • The reason why the excess S restrained the formation of Cu{sub 3}BiS{sub 3} was discussed. • The effect of temperature on film morphology and bandgap was studied. - Abstract: The ternary semiconductor Cu{sub 3}BiS{sub 3}, as a promising light-absorber material for thin film solar cells, was creatively synthesized by sulfurizing the mixed metal oxides precursor film deposited by spin-coating chemical solution method. Two kinds of sulfurization techniques were introduced to study the effect of the sulfur concentration on the phase formation for the pure Cu{sub 3}BiS{sub 3}. It was found that Cu-poor S-rich phases such as Cu{sub 3}Bi{sub 3}S{sub 7} and Cu{sub 4}Bi{sub 4}S{sub 9} were easily generated at high S concentration and then can transform to Cu{sub 3}BiS{sub 3} phase by a simple desulphurization process, which means the sulfur concentration had a significant influence on the formation of Cu{sub 3}BiS{sub 3} during the sulfurization process. The probable transformation mechanism from the mixed metal oxides to the pure Cu{sub 3}BiS{sub 3} phase during the sulfurization process was studied in detail through the XRD analysis and thermodynamic calculation. In addition, the electrical properties were characterized by Hall measurement and the effects of sulfurization temperature on the phase transformation, morphology and optical band gap of the absorber layer were also studied in detail.

  10. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.

    Science.gov (United States)

    Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon

    2018-01-10

    In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

  11. Dislocation defect interaction in irradiated Cu

    International Nuclear Information System (INIS)

    Schaeublin, R.; Yao, Z.; Spaetig, P.; Victoria, M.

    2005-01-01

    Pure Cu single crystals irradiated at room temperature to low doses with 590 MeV protons have been deformed in situ in a transmission electron microscope in order to identify the basic mechanisms at the origin of hardening. Cu irradiated to 10 -4 dpa shows at room temperature a yield shear stress of 13.7 MPa to be compared to the 8.8 MPa of the unirradiated Cu. Irradiation induced damage consists at 90% of 2 nm stacking fault tetrahedra, the remaining being dislocation loops and unidentified defects. In-situ deformation reveals that dislocation-defect interaction can take several forms. Usually, dislocations pinned by defects bow out under the applied stress and escape without leaving any visible defect. From the escape angles obtained at 183 K, an average critical stress of 100 MPa is deduced. In some cases, the pinning of dislocations leads to debris that are about 20 nm long, which formation could be recorded during the in situ experiment

  12. The effects of element Cu on the electrochemical performances of Zinc-Aluminum-hydrotalcites in Zinc/Nickel secondary battery

    International Nuclear Information System (INIS)

    Wen, Xing; Yang, Zhanhong; Xie, Xiaoe; Feng, Zhaobin; Huang, Jianhang

    2015-01-01

    Zn-Cu-Al-CO_3 layered double hydroxides (LDHs) have been successfully synthesized by using the method of constant pH co-precipitation. And it also has been proposed as a novel anodic material in Zinc-Nickel secondary batteries. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the as-prepared sample exhibit that the samples are well crystallized and have hexagon structure. The electrochemical performances of Zn-Al-LDHs and Zn-Cu-Al-LDHs with different Zn/Cu/Al molar ratios are investigated by the measurements such as galvanostatic charge-discharge, cyclic voltammogram and electrochemical impedance spectroscopy (EIS). Comparing with the pure Zn-Al-LDHs, Zn-Cu-Al-LDHs show more stable cycling performance, exhibit better reversibility and display lower charge-transfer resistance. Especially, the Zn-Cu-Al-LDHs with the Zn/Cu/Al molar ratio being 2.8:0.2:1 exhibits the best electrochemical properties than other samples. After 800 cell cycles, the specific discharge capacity of Zn-Cu-Al-LDHs with the Zn/Cu/Al molar ratio of 2.8:0.2:1is 345 mA h g"−"1, while that of pure Zn-Al-LDHs is only 177 mA h g"−"1. Based on these observations, the prepared Zn-Cu-Al-LDHs may be a promising anode active material for Zinc/Nickel secondary batteries.

  13. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  14. Structural, thermal and optical properties of Cu 2 + doped ...

    Indian Academy of Sciences (India)

    Pure and Cu 2 + doped methacrylic acid–ethyl acrylate (MAA:EA) copolymer films were prepared using thesolution cast technique. The amorphous feature of the copolymer was depicted using X-ray diffraction scans and degreeof crystallinity was found to vary with increasing doping content. UV–Vis absorption spectra in ...

  15. Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Ahmed M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Abuzeid, Hanaa M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Narayanan, N. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Ehrenberg, Helmut [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 place Jussieu, 75005 Paris (France)

    2011-10-17

    Highlights: {yields} Al, Mg and Cu doped MnO{sub 2} as cathode in Li-ion batteries. {yields} Pure phase MnO{sub 2} for virgin and doped MnO{sub 2} were obtained. {yields} Doping elements improve the electrical conductivity of MnO{sub 2}. {yields} Electrochemical behaviour of MnO{sub 2} improved after doping by Al, Mg and Cu. - Abstract: Pure and doped manganese dioxides were prepared by wet-chemical method using fumaric acid and potassium permanganate as raw materials. X-ray diffraction patterns show that pure and Al, Cu and Mg doped manganese dioxides (d-MnO{sub 2}) crystallized in the cryptomelane-MnO{sub 2} structure. Thermal analysis show that, with the assistance of potassium ions inside the 2 x 2 tunnel, the presence of Al, Cu and Mg doping elements increases the thermal stability of d-MnO{sub 2}. The electrical conductivity of d-MnO{sub 2} increases in comparison with pure MnO{sub 2}, while Al-doped MnO{sub 2} exhibits the lower resistivity. As shown in the magnetic measurements, the value of the experimental effective magnetic moment of Mn ions decreases with introduction of dopants, which is attributed to the presence of a mixed valency of high-spin state Mn{sup 4+}/Mn{sup 3+}. Doped MnO{sub 2} materials show good capacity retention in comparison with virgin MnO{sub 2}. Al-doped MnO{sub 2} shows the best electrochemical results in terms of capacity retention and recharge efficiency.

  16. Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders

    Science.gov (United States)

    Liu, Shuling; Qian, Yitai; Xu, Liqiang

    2009-03-01

    In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.

  17. Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O–TiO2–ZnO ternary hetero-nanostructures

    International Nuclear Information System (INIS)

    Wang Yang; Yu Ke; Yin Haihong; Song Changqin; Zhang Zhengli; Li Shouchuan; Zhang Qingfeng; Zhao Bin; Zhang Yingfang; Zhu Ziqiang; Shi Hui

    2013-01-01

    Cu 2 O–TiO 2 –ZnO ternary nano-heteroarchitectures were designed and successfully fabricated using titanium (IV) oxideacetylacetonate (TiO(acac) 2 ) as a precursor and polyethyleneimine (PEI) as a binding agent. Field emission and photocatalytic activities of pure Cu 2 O nanopines, Cu 2 O–TiO 2 core–shell nanopines and Cu 2 O–TiO 2 –ZnO ternary composites were investigated and compared. The results revealed that the as-prepared nano-heterojunctions and nanoparticles at the surface remarkably enhanced the field emission and photocatalytic activities of pure Cu 2 O nanopines. The as-prepared nano-heterojunctions induced interfacial states and energy band differentials, which caused electron transition and the inhibition of photo-induced electron–hole pair recombination. The nanoparticles at the surface formed thousands of surface nano-protrusions and active sites for photocatalytic chemical reactions. (paper)

  18. Analysis of Anti-Wear Properties of CuO Nanoparticles as Friction Modifiers in Mineral Oil (460cSt Viscosity Using Pin-On-Disk Tribometer

    Directory of Open Access Journals (Sweden)

    S. Bhaumik

    2015-06-01

    Full Text Available The present work investigated the anti-wear properties of CuO nanoparticles based mineral oil using pin-on-disk apparatus. The pin material selected was EN 24(untreated as it is used in gear manufacturing. Commonly used graphite macro particles (wt.% and CuO nanoparticles(wt.% were used as additives. It had been observed that the additives based mineral oil samples exhibited superior antiwear properties than pure mineral oil. Both CuO nanoparticles (0.2 wt.% and graphite (0.2 wt.% based lubricant showed significant decrease in coefficient of friction and specific wear rate. There was a reduction in both coefficient of friction (28.5 % approx. and specific wear rate (70 % approx. in case of CuO nanolubricants and graphite based mineral oil as compared with the pure mineral oil.Flash-fire point, viscosity and viscosity index also increased with the increase in additive concentration. The surface characteristics of the pin were studied using Scanning Electron Microscope (SEM and surface roughness tester. The SEM images showed more rough surfaces in case of pure mineral oil samples as compared with graphite and CuO nanoparticles based samples. The surface roughness values of the pins in case of graphite (0.2 wt.% and CuO nano particles (0.2 wt.% based lubricant were much lesser than pure mineral oil. From the results predicted minimum 0.2 wt.% CuO nanoparticles were required to enhance the antiwear property of the lubricant. This work aimed in bringing a comparative experimental analysis using CuO nanoparticles and commonly used graphite macro particles as lubricant additives on various properties such as viscosity, flash point, fire point, surface roughness and anti-wear properties. Thus, the work would be useful in developing new nano lubricants with minimum additive concentration.

  19. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing

    2016-12-01

    Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A pilot trial on subjects with lactose and/or oligosaccharides intolerance treated with a fixed mixture of pure and enteric-coated α- and ß-galactosidase

    Directory of Open Access Journals (Sweden)

    Di Pierro F

    2015-02-01

    Full Text Available Francesco Di Pierro,1 Alexander Bertuccioli,2 Eleonora Marini,3 Leandro Ivaldi4 1Velleja Research, Milan, Italy; 2Italian Association Fitness and Medicine, Fano, PU, Italy; 3Pharmextracta, Pontenure, Piacenza, Italy; 4Digestive Endoscopic Department, Ceva Hospital, Ceva, Cuneo, Italy Aim: Lactose and complex carbohydrates maldigestion, common food intolerances due to low gut content of α- and ß-galactosidase, lead to abdominal symptoms including pain, diarrhea, bloating, flatulence, and cramping. Commonly, intolerant patients are advised by physicians to avoid the offending foods (dairy foods, cereals, beans, etc. This food-limiting option, however, has possible nutritional risks. We have therefore evaluated the impact of using pure, enteric-coated α- plus ß-galactosidase on gut symptoms in intolerant subjects instead of avoidance of the offending foods. Methods: Sixteen subjects intolerant to lactose and/or complex carbohydrates were enrolled and evaluated in terms of gut symptoms with 1 uncontrolled diet, 2 diet devoid of offending foods, and 3 uncontrolled diet along with pure, enteric-coated α- and ß-galactosidase (DDM Galactosidase®. Results: Even with the uncontrolled diet, intolerant subjects treated with DDM Galactosidase® exhibited reduced gut symptoms (bloating, flatulence, diarrhea, and constipation significantly better than the control treatment as well as having a diet devoid of offending foods. Conclusion: DDM Galactosidase® is a valid and safe optional treatment to counteract lactose and complex carbohydrate intolerance in subjects who prefer not to avoid, at least partially, offending foods. Keywords: lactase, lactose intolerance, complex carbohydrate intolerance

  1. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    Science.gov (United States)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  2. Formulation and Characterization of Cu Doped ZnO Thick Films as LPG Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. V. PATIL

    2010-12-01

    Full Text Available Thick films of pure and various concentrations (1 wt. %, 3 wt. %, 5 wt. %, 7 wt. % and 10 wt. % of Cu-doped ZnO were prepared on alumina substrates using a screen printing technique. These films were fired at a temperature of 700ºC for two hours in an air atmosphere. Morphological, compositional and structural properties of the samples were obtained using the scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDAX and X-ray diffraction techniques respectively. The LPG gas sensing properties of these thick films were investigated at different operating temperatures and LPG gas concentrations. The surface resistance of thick films decreases when exposed to LPG gas. The Cu doped films show significant sensitivity to LPG gas than pure ZnO film. 5 wt. % Cu-doped ZnO film was found to be more sensitive (87.3 % to LPG gas exposed at 300 oC than other doping concentrations with fast response and recovery time.

  3. Density-functional study of the methoxy intermediates at Cu(111), Cu(110) and Cu(001) surfaces

    Czech Academy of Sciences Publication Activity Database

    Pick, Štěpán

    2010-01-01

    Roč. 22, č. 39 (2010), s. 395002 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z40400503 Keywords : Cu surfaces * methoxy group CH3O- * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.332, year: 2010

  4. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  5. Manufacturing and testing of W/Cu mono-block small scale mock-up for EAST by HIP and HRP technologies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Qin, Sigui [Advanced Technology and Materials Co., Ltd, Beijing (China); Wang, Wanjing; Qi, Pan [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Roccella, Selanna; Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Liu, Guohui [Advanced Technology and Materials Co., Ltd, Beijing (China); Luo, Guang-Nan, E-mail: liqiang577@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China)

    2013-10-15

    ITER-like W/Cu mono-block plasma-facing components (PFCs) will be used in vertical target regions of the experimental advanced superconducting tokamak (EAST) divertor. The first W/Cu mono-block small scale mock-up with five W mono-blocks has been manufactured successfully by technological combination of hot isostatic pressing (HIP) and hot radial pressing (HRP). The joining of a W mono-block and a pure copper interlayer was achieved by means of HIP technology and the bonding strength was over 150 MPa. The good bonding between the pure copper interlayer and a CuCrZr cooling tube was obtained by means of HRP technology. In order to understand deeply the process of HRP, the stress distribution of the mock-up during HRP process was simulated using ANSYS code. Ultrasonic Nondestructive Testing (NDT) of the W/Cu and Cu/CuCrZr interfaces was performed, showing that excellent bonding of the W/Cu and Cu/CuCrZr interfaces. The thermal cycle fatigue testing of the mock-up has been carried out by means of an e-beam device in Southwest Institute of Physics, Chengdu (SWIP) and the mock-up withstood 1000 cycles of heat loads up to 8.4 MW/m{sup 2} with the cooling water of 2 m/s, 20 °C, 0.2 MPa.

  6. Preparation, structure and thermal stability of Cu/LDPE nanocomposites

    International Nuclear Information System (INIS)

    Xia Xianping; Cai Shuizhou; Xie Changsheng

    2006-01-01

    Copper/low-density-polyethylene (Cu/LDPE) nanocomposites have been prepared using a melt-blending technique in a single-screw extruder. Their structure and thermal characteristics are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and SEM-EDS Cu-mapping show that the nanocomposites are a hybrid of the polymer and the copper nanoparticles, and the copper nanoparticles aggregates were distributed uniformly in general. The results also show that the nanocomposites and the base resin, the pure LDPE, have a different crystalline structure and the same oriented characteristics owing to the presence of copper nanoparticles and the same cooling condition. The results of DSC show that the incorporation of copper nanoparticles can decrease the melting temperatures but increase the crystallization temperatures, and can lower the crystallinity degree of the matrix of the composites. The results of TGA show that the presence of copper nanoparticles can improve the thermal stability of the nanocomposites, a maximum increment of 18 deg. C is obtained comparing with the pure LDPE in this experiment. The results of TGA also show that the influence of the incorporation of the copper nanoparticles on the thermal stability of the Cu/LDPE nanocomposites is different from that of the non-metal nanoparticles on the polymer/non-metal nanocomposites and the copper microparticles on the Cu/LDPE microcomposites. The increase of the thermal stability of the Cu/LDPE nanocomposites will decrease when the content of the copper nanoparticles is more than 2 wt.%. The difference might be caused by the fact that the activity of the metal nanoparticles is much more higher than that of the non-metal nanoparticles, and the different size effect the different copper particles has

  7. Structural features in icosahedral Al63Cu25Fe12

    International Nuclear Information System (INIS)

    Howell, R.H.; Solal, F.; Turchi, P.E.A.; Berger, C.; Calvayrac, Y.

    1991-01-01

    Since the discovery of a quasicrystalline phase in Al-Mn alloys a substantial amount of work has been done to understand the structural and physical properties of this new class of materials. More recently the discovery of a thermodynamically stable icosahedral phase in AlCuFe presents the opportunity to study pure quasicrystalline phases of high structural quality by eliminating known defects, especially phason disorder by conventional heat treatment. In particular it was shown that annealing treatments of as quenched samples resulted in a dramatic reduction in the width of the diffraction peaks associated with the elimination of as quenched defects, present in other quasicrystals. Positron annihilation lifetime measurements have a high sensitivity to intrinsic defects and positron annihilation radiation angular correlation measurements are well suited to measurements of electronic structure in systems where the defect effects do not dominate. We have measured positron annihilation lifetime and angular correlations on quasicrystalline samples of Al 63 Cu 25 Fe 12 in the pure icosahedral phase

  8. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  9. Magnetic properties of nanoscaled paramelaconite Cu{sub 4}O{sub 3−x} (x=0.0 and 0.5)

    Energy Technology Data Exchange (ETDEWEB)

    Djurek, D., E-mail: danijel.djurek@zg.t-com.hr [A. Volta Applied Ceramics (AVAC), 49247 Zlatar Bistrica, A. Šenoe 14 (Croatia); Prester, M.; Drobac, Dj. [Institute of Physics, 10000 Zagreb, Bijenička c. 46 (Croatia); Ivanda, M.; Vojta, D. [Ruđer Bošković Institute, 10000 Zagreb, Bijenička c. 54 (Croatia)

    2015-01-01

    Pure paramelaconite Cu{sub 4}O{sub 3−x} has been prepared in the form of nanoparticles with 56 nm in diameter. This mixed valency oxide crystallizes in a tetragonal lattice with 4 unit formulae and forms a pyrochlore structure which manifests in two stoichiometric forms; Cu{sub 4}O{sub 3} and Cu{sub 4}O{sub 2.5}, the latter form having two oxygen vacancies per unit cell. Magnetic lattice consists of Cu spin 1/2, and both stoichiometric forms obey transition to the antiferromagnetic state at T{sub N}=45–55 K. Defect free Cu{sub 4}O{sub 3} is indicated by an inversion symmetry and exhibits both antiferromagnetic and ferromagnetic state, where the latter is supposedly due to the superexchange interaction in Cu–O(1n)–Cu bonds. An additional magnetic transition was observed in Cu{sub 4}O{sub 3} at T=120 K, probably as a result of an incommensurate ordering. Absence of an inversion symmetry in the oxygen defect Cu{sub 4}O{sub 2.5} results in a long range Dzyaloshinsky–Moriya interaction accompanied by the strong superparamagnetism. - Highlights: • The first successful preparation of pure paramelaconite Cu{sub 4}O{sub 3−x}. • High resolution AC susceptibility measurements. • Evidence is presented for two stoichiometric forms of paramelaconite; defect free Cu{sub 4}O{sub 3} and Cu{sub 4}O{sub 2.5}. • Additional magnetic transition is observed at T=120 K in the defect free Cu{sub 4}O{sub 3}.

  10. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  11. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    Science.gov (United States)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  12. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts

    International Nuclear Information System (INIS)

    Lu, J.Z.; Wu, L.J.; Sun, G.F.; Luo, K.Y.; Zhang, Y.K.; Cai, J.; Cui, C.Y.; Luo, X.M.

    2017-01-01

    The microstructural response and grain subdivision process in commercially pure (CP) titanium subjected to multiple laser shock peening (LSP) impacts were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. The micro-hardness curves as a function of the impact time were also determined. The deformation-induced grain refinement mechanism of the close-packed hexagonal (hcp) material by laser shock wave was subsequently analyzed. Experimental results showed that uniform equiaxed grains with an average size of less than 50 nm were generated due to the ultra-high plastic strain induced by multiple LSP impacts. Special attention was paid to four types of novel deformation-induced microstructural features, including a layered slip band in the tension deformation zone, and inverse-transformation martensite, micro-twin grating and micro-twin collision in the compression deformation zone. Furthermore, the grain refinement mechanism in the near-surface layer of CP titanium subjected to multiple LSP impacts contains two types of simultaneous subdivision modes: multi-directional mechanical twin (MT)-MT intersections at (sub)micrometer scale, and the intersection between longitudinal secondary MTs and transverse dislocation walls at nanometer scale. In addition, both grain refinement (nanocrystallization) and the existence of a small amount of inverse-transformation martensite induced by multiple LSP impacts contribute to an increase in the micro-hardness of the near-surface layer.

  13. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    Science.gov (United States)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  14. Group ib organometallic chemistry. XXXIV. Thermal behaviour and chemical reactivity of tetranuclear Me2N-substituted diarypropenylcopper-copper anion (Vi2Cu4X2) and mixed diarylpropenyl/organocopper (Vi2Cu4R2) compounds

    NARCIS (Netherlands)

    Hoedt, R.W.M. ten; Koten, G. van; Noltes, J.G.

    1980-01-01

    Thermal decomposition of configurationally pure 1,2-diarylpropenylcopper compounds Z-Vi2CU4Br2 and Z-Vi2Cu4R2 [Vi = (2-Me2NC6H4)C=C(Me)-(C6H4Me-4), R = 2-Me2NC6H4 or 4-MeC6H4CC] predominantly results in the formation of ViH. In contrast, only dimers (ViVi) were formed on thermolysis of (Z-ViCu2OTf)η

  15. EXAFS investigations of Cu-Mg-O compound

    CERN Document Server

    Sidorenko, A F; Babanov, Y A; Naumov, S V; Samokhvalov, A A

    2001-01-01

    The interest to systems containing copper oxide is connected with the problem of high-temperature superconductivity because of the closeness of its basic physical properties and properties of superconductor mother Cu-compounds. In this work, EXAFS study of the Cu sub 0 sub . sub 2 Mg sub 0 sub . sub 8 O compound is presented. A new iterative algorithm of the solution of ill-posed problem on determining three partial pair correlation functions from one EXAFS-data set near the Cu K-edge is described. The results of X-ray scattering study of a given sample show a presence of a single phase with the MgO structure and a lattice parameter of 4.219 A instead of 4.208 A for pure MgO. From the EXAFS investigations, we find the local distortion of the lattice. We revealed that the short range order differs both from a hypothetical alloy with the MgO structure and from copper oxide.

  16. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    . The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities. Electronic supplementary information (ESI) available: Synthesis and TEM images of pure ZnO nanocrystals. Photocatalytic testing procedures and degradation curves. SEM and TEM images, SAED pattern and EDS spectra and maps of parts of Cu-ZnO hybrid samples. A schematic image of coincident lattice matching between Cu and Zn

  17. Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity.

    Science.gov (United States)

    Souza, Vânia L; de Almeida, Alex-Alan F; Souza, Jadiel de S; Mangabeira, Pedro A O; de Jesus, Raildo M; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C; Loguercio, Leandro L

    2014-01-01

    Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.

  18. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  19. Synthesis and characterization of Cu2+ substituted magnetite

    International Nuclear Information System (INIS)

    Morales, A. L.; Velásquez, A. A.; Urquijo, J. P.; Baggio, E.

    2011-01-01

    Samples of magnetite, both pure and doped with divalent copper, Fe 3 − x Cu x O 4 , with x = 0, 0.05, 0.10 and 0.20 atm.%, were synthesized hydrothermally. The samples were characterized by Atomic Absorption Spectroscopy, Mössbauer Spectroscopy, X-ray diffraction, Scanning Electron Microscopy and SQUID magnetometry. The analyses made by the above techniques showed that as the Cu 2+ concentration increases, a simultaneous reduction in the magnetic and structural parameters takes place, namely: magnetic hyperfine interactions at octahedral sites, particle size and lattice constant. Degradation in the particles morphology as well as a distribution of their size were also observed. Our study points two important effects of Cu 2+ in magnetite, the first one is its incorporation within the structure, replacing Fe 2+ ions and decreasing both the magnetic hyperfine interactions at octahedral sites and the bulk magnetization, the second one is the contraction of the crystalline lattice of magnetite, because incorporation of Cu 2+ within the structure, generation of vacancies or both simultaneous effects.

  20. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    International Nuclear Information System (INIS)

    Feng, Li-Chao; Xie, Ning; Shao, Wen-Zhu; Zhen, Liang; Ivanov, V.V.

    2014-01-01

    Highlights: • Cu 2 O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu 2 O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO 2 and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu 2 O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu 2 O/Cu was investigated in Na 3 AlF 6 –CaF 2 –Al 2 O 3 electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu 2 O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling content of Cu phase. The calculated corrosion rate

  1. Effect of Cu insertion on structural, local electronic/atomic structure and photocatalyst properties of TiO{sub 2}, ZnO and Ni(OH){sub 2} nanostructures: XANES-EXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Aditya; Varshney, Mayora [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of); Shin, Hyun Joon, E-mail: shj001@postech.ac.kr [Pohang Accelerator Laboratory (POSTECH), Pohang, 37673 (Korea, Republic of); Lee, Byeong-Hyeon [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of); Chae, Keun Hwa, E-mail: khchae@kist.re.kr [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of); Won, Sung Ok, E-mail: sowon@kist.re.kr [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of)

    2017-04-15

    We report detailed investigations on the synthesis, structural, morphology, electronic/atomic structure and photocatalyst properties of Cu doped TiO{sub 2}, ZnO and Ni(OH){sub 2} nanostructures. All of the samples were synthesized by using the chemical precipitation method. Samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and photocatalyst measurements. XRD studies revealed single phase nature of the samples and omitted the presence of trivial metallic or binary oxide phases. TiO{sub 2} set of samples have shown nanorod kind of morphology, however TEM images of ZnO and Ni(OH){sub 2} set of samples depicted the spherical morphology of particles. XANES spectra at the Cu K-edge and Cu L-edge, along with the atomic multiplet calculations, revealed the predominance of Cu{sup 2+} ions in all of the samples, within the entire doping range. Ti L-edge and Ti K-edge XANES confirmed the existence of Ti{sup 4+} ions in the pure and Cu doped TiO{sub 2} samples with anatase local structure. Zn L-edge XANES results confirmed the divalent character of Zn ions in the pure and Cu doped ZnO, which is further validated by the Zn K-edge XANES. Ni L-edge and Ni K-edge XANES conveyed the +2 valence state of Ni ions in the pure and Cu doped Ni (OH){sub 2} samples. EXAFS analysis at the Cu K-edge nullifies the formation of Cu metallic clusters and other trivial phases, suggesting random distribution of Cu atoms in the oxide materials. Though, local atomic arrangement of Cu ions is disparate in the different oxide compounds. As an application of the pure and Cu doped TiO{sub 2}, ZnO and Ni(OH){sub 2} nanostructures, towards the degradation of water pollutant dyes, we demonstrate that all of the samples can serve as effective photocatalyst materials towards the degradation of methyl orange aqueous pollutant dye under the UV-light irradiation

  2. Facile synthesis of ZnO/CuInS{sub 2} nanorod arrays for photocatalytic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yawei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Zhang, Xinyu [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Xing, Yonglei; Yin, Xingtian [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Du, Yaping, E-mail: ypdu2013@mail.xjtu.edu.cn [Frontier Institute of Science and Technology Jointly with College of Science, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-11-05

    Highlights: • Vertically-aligned ZnO nanorod arrays were synthesized by the hydrothermal process. • Monodisperse CuInS{sub 2} QDs were synthesized by the one-pot colloidal chemistry method. • ZnO/CuInS{sub 2} nanorod arrays films were fabricated by the EPD process. • The homogeneous CuInS{sub 2} loading was optimized by EPD duration. • The photoelectrochemical and photocatalytic activities of the ZnO/CuInS{sub 2} nanorod arrays films were discussed. - Abstract: Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS{sub 2} quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS{sub 2} heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS{sub 2} film with the deposition duration of 80 min showed the highest degradation rate and photocurrent density (0.95 mA/cm{sup 2}), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS{sub 2} QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS{sub 2} loading and well-maintained one-dimensional nanostructure.

  3. Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides

    Science.gov (United States)

    Medina-Montes, M. I.; Vieyra-Brito, O.; Mathews, N. R.; Mathew, X.

    2018-05-01

    In this work, CuSbS2 thin films were developed by annealing binary precursors deposited sequentially by rf magnetron sputtering. The recrystallization process was optimized and the films were extensively characterized using a number of tools such as XRD, Raman, SEM, energy dispersive x-ray spectroscopy, atomic force microscopy, Hall, UV–vis spectroscopy, Ellipsometry, Seebeck, and photoresponse. The influence of annealing temperature on the structure, morphology, elemental composition, optical and electrical properties are reported. Annealing below 350 °C resulted in famatinite (Cu3SbS4) and chalcostibite (CuSbS2) ternaries as well as binary phases. Phase-pure chalcostibite was obtained in the range of 350 °C–375 °C. At 400 °C, although CuSbS2 was predominant, tetrahedrite phase (Cu12Sb4S13) appeared as an additional phase. The elemental composition of the films was slightly sulfur deficient, and the atomic percentages of Cu, Sb and S showed a dependence on annealing temperature. The material properties of the phase-pure CuSbS2 thin films are: optical band gap in the range of 1.5–1.62 eV, absorption coefficient close to 105 cm‑1, atomic ratios of Cu/Sb ∼1 and (Cu + Sb)/S ∼1.2, crystal size 18.3–24.5 nm and grain size 50–300 nm. The films were photo-sensitive, showed p-type semiconductor behavior. Electrical resistivity, carrier density and hole mobility were 94–459 Ω cm, 1.6–7.0 × 1015 cm‑3 and 8.4–9.5 cm2 V‑1 s respectively.

  4. Solid-state phase transitions in CuCl under hydrostatic pressures to 12.8 GPa

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Huang, C.Y.; Olsen, C.; Schmidt, L.C.

    1981-01-01

    The phase transitions in solid CuCl under hydrostatic conditions at pressures to 12.8 GPa are examined. The transition at 4.4 GPa from zinc-blende to tetragonal is observed. Our negative observations for the upper transition at 8.2 GPa and for the formation of an opaque phase due to the disproportionation reaction support the contention that pressure gradients are important in affecting the behavior of pure CuCl

  5. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    Science.gov (United States)

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  6. Electronic configuration of the c(2 x 2)MnCu two-dimensional alloy in layered structures supported on Cu(100)

    International Nuclear Information System (INIS)

    Gallego, S; Munoz, M C; Huttel, Y; Avila, J; Asensio, M C

    2003-01-01

    The c(2 x 2)MnCu surface alloy on Cu(100) can be considered as a purely two-dimensional magnetic system where the Mn atoms exhibit a large corrugation closely related to their high spin moment. In this paper we investigate the influence of the atomic environment on the electronic and magnetic properties of the two-dimensional alloyed layer, extending our study to the less known multilayered system made of MnCu two-dimensional alloy layers embedded in a Cu crystal. The analysis is based on angle-resolved photoelectron spectroscopy measurements and calculations using the Green function matching method, which allows us to treat exactly the projection of the three-dimensional lattice on the c(2 x 2) plane. A complete study of the valence band is performed along the two-dimensional Brillouin zone in a wide energy range. We show that the presence of Mn results in an important redistribution of the spin-polarized electronic states of the neighbouring Cu atoms. This redistribution is not accompanied by a net charge transfer between different atoms, and also the spin moment of Cu remains small. Most of the new features induced by Mn in the surface alloy are also present in the multilayered system, evidencing that they are specific to the two-dimensional alloyed layer and not surface effects

  7. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  8. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Lavanya, N; Radhakrishnan, S; Sudhan, N; Sekar, C; Leonardi, S G; Neri, G; Cannilla, C

    2014-01-01

    A novel folic acid biosensor has been fabricated using Cu doped SnO 2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO 2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO 2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO 2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO 2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO 2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10 −10 to 6.7 × 10 −5 M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery. (paper)

  9. Structural and optical studies of CuO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chand, Prakash, E-mail: KK-PC2006@yahoo.com; Gaur, Anurag, E-mail: KK-PC2006@yahoo.com; Kumar, Ashavani, E-mail: KK-PC2006@yahoo.com [Department of Physics, National Institute of Technology, Kurukshetra-136119 (India)

    2014-04-24

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.

  10. Structural and optical studies of CuO nanostructures

    International Nuclear Information System (INIS)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2014-01-01

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively

  11. Structural and optical studies of CuO nanostructures

    Science.gov (United States)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2014-04-01

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.

  12. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    Science.gov (United States)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  13. The role of molecular architecture and layer composition on the properties and performance of CuPc-C6 photovoltaic devices

    International Nuclear Information System (INIS)

    Schultes, S.M.; Sullivan, P.; Heutz, S.; Sanderson, B.M.; Jones, T.S.

    2005-01-01

    We have studied the effects of molecular architecture, co-deposition and annealing on the properties and performance of photovoltaic cells based on copper phthalocyanine (CuPc)-fullerene (C 6 ) heterojunctions. Significant improvements in performance are achieved when mixed CuPc:C 6 layers are incorporated into the device structure due to the creation of an intermolecularly mixed donor (D)-acceptor (A) blend that favours efficient exciton dissociation. We utilise the control afforded by organic molecular beam deposition to show that the mixed-layer composition plays an important role in determining device performance and correlate device efficiency to the morphological and spectroscopic properties of the organic layers. A maximum power conversion efficiency of η p = 1.17% is achieved for devices containing a mixed layer of ratio 75:25 CuPc:C 6 surrounded by thin continuous layers of pure organic material at the electrode interfaces. A structure containing a compositional gradient where the CuPc:C 6 composition is varied from purely D to purely A via three mixed layers of increasing A composition leads to a further improvements in efficiency (η p = 1.36%). Finally, we use thermal annealing to show how structural defects and morphological templating of organic thin films reduces the interfacial area for exciton separation and yields poor device performance

  14. Electron paramagnetic resonance investigation of polycrystalline CaCu3Ti4O12

    International Nuclear Information System (INIS)

    Mozzati, Maria Cristina; Azzoni, Carlo Bruno; Capsoni, Doretta; Bini, Marcella; Massarotti, Vincenzo

    2003-01-01

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu 3 Ti 4 O 12 have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO 4 -TiO 6 -CuO 4 complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested

  15. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  16. Wsbnd Cu functionally graded material: Low temperature fabrication and mechanical characterization

    Science.gov (United States)

    Yusefi, Ali; Parvin, Nader; Mohammadi, Hossein

    2018-04-01

    In this study, we fabricated and characterized a Wsbnd Cu functionally graded material (FGM) with 11 layers, including a pure copper layer. Samples were prepared by mixing a mechanically alloyed Nisbnd Mnsbnd Cu powder with W and Cu powders, stacking the powders, pressing the stacked layers, and finally sintering at 1000 °C. The utilization of a Nisbnd Mnsbnd Cu system may reduce the cost but without losing the good sintering behavior and physical and mechanical properties. The composition of the material was analyzed based on scanning electron microscopy images and by energy dispersive X-ray spectroscopy mapping, which indicated that in the presence of Ni and Mn, the Cu atoms could diffuse into the W particles. All of the layers had a very high relative density, thereby indicating their densification and excellent sintering behavior. We also found that the porosity values in the Cu phase remained unchanged at approximately 2.39% across the FGM. Mechanical measurements showed that the hardness (72%), modulus of elasticity (61%), and ultimate tensile strength (58%) increased with the W content across the Wsbnd Cu FGM, whereas the fracture toughness (KIC) varied in the opposite manner (minimum of 4.52 MPa/m0.5).

  17. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  18. Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

    DEFF Research Database (Denmark)

    Sopousek, J.; Palcut, Marián; Hodúlová, Erika

    2010-01-01

    The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching...... to room temperature. The samples were analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry...

  19. Precipitation of β′ phase and hardening in dental-casting Ag–20Pd–12Au–14.5Cu alloys subjected to aging treatments

    International Nuclear Information System (INIS)

    Kim, Yonghwan; Niinomi, Mitsuo; Hieda, Junko; Nakai, Masaaki; Cho, Ken; Fukui, Hisao

    2014-01-01

    The age-hardening behavior of the dental-casting Ag–20Pd–12Au–14.5Cu alloy subjected to aging treatment at around 673 K is well known, and this hardening has been widely employed in various applications. To date, the age-hardening of this alloy has been explained to attribute to the precipitation of a β phase, which is a B2-type ordered CuPd phase or PdCu x Zn 1−x phase. In this study, results obtained from microstructural observations using a transmission electron microscopy and a scanning transmission electron microscopy revealed that a fine L1 0 -type ordered β′ phase precipitated in the matrix and a coarse-structure region (consisting of Ag- and Cu-rich regions) appeared after aging treatment at 673 K and contributed to increase in hardness. The microstructure of the coarse β phase, which existed before aging treatment, did not change by aging treatment. Thus, it is concluded that the fine β′ phase precipitated by aging treatment contributed more to increase in hardness than the coarse-structure region and coarse β phase. - Highlights: • Hardness of Ag–20Pd–12Au–14.5Cu alloy increased significantly by aging treatment. • A fine β′ phase and a coarse structure region appeared after aging treatment. • The microstructure of a coarse β phase did not change by aging treatment. • It is considered that the fine β′ phase contributed most to age-hardening

  20. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    Science.gov (United States)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  1. Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Beni, Valerio; Liu, Xianjie; Willander, Magnus

    2013-06-20

    In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD) and scanning electron microscopy (SEM) techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS) technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 10² µA/mMcm² and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose.

  2. Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-06-01

    Full Text Available In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD and scanning electron microscopy (SEM techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 102 µA/mMcm2 and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose.

  3. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    International Nuclear Information System (INIS)

    Yu, Chao

    2017-01-01

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu 36 Ni 64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 mol H2 mol CuNi -1 min -1 and E a = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-free catalyst for hydrogenation reactions in a green environment without using pure hydrogen.

  4. Microstructures and mechanical properties of Cu-Sn alloy subjected to elevated-temperature heat deformation

    Science.gov (United States)

    Hui, Jun; Feng, Zaixin; Fan, Wenxin; Wang, Pengfei

    2018-04-01

    Cu-Sn alloy was subjected to elevated-temperature isothermal compression with 0.01 s‑1 strain rate and 500 ∼ 700 °C temperature range. The thermal compression curve reflected a competing process of work hardening versus dynamic recovery (DRV) and recrystallization, which exhibited an obvious softening trend. Meanwhile, high-temperature deformation and microstructural features in different regions of the alloy was analyzed through EBSD. The results show that grains grow as the temperature rises, competition among recrystallization, substructural, and deformation regions tends to increase with the increase of temperature, and distribution frequency of recrystallization regions gradually increases and then drops suddenly at 650 °C. At 500 ∼ 550 °C, preferentially oriented texturing phenomenon occurs, low angle boundaries(LABs) are gradually transformed into high angle boundaries (HABs) and the Σ (CSL) boundaries turn gradually into Σ3 boundaries. In tensile test of tin bronze, elongation at break increases slowly, whereas yield strength (YS) and ultimate tensile strength (TS) decrease gradually.

  5. Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper

    Science.gov (United States)

    Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.

    2018-04-01

    AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.

  6. Phase controlled solvothermal synthesis of Cu_2ZnSnS_4, Cu_2ZnSn(S,Se)_4 and Cu_2ZnSnSe_4 Nanocrystals: The effect of Se and S sources on phase purity

    International Nuclear Information System (INIS)

    Pal, Mou; Mathews, N.R.; Paraguay-Delgado, F.; Mathew, X.

    2015-01-01

    In this study, we have reported the synthesis of Cu_2ZnSnSe_4 (CZTSe), Cu_2ZnSnS_4 (CZTS) and Cu_2ZnSn(S,Se)_4 (CZTSSe) nanocrystals with tunable band gap and composition obtained by solvothermal method. The crystalline structure, composition, morphology and optical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Raman scattering, energy dispersive X-ray spectroscopy, transmission electron microscopy and diffuse reflectance (DR) spectroscopy. While the XRD patterns of CZTS and CZTSe nanoparticles prepared with elemental S/Se powder revealed the presence of phase pure nanoparticles, the CZTSSe nanoparticles obtained using a mixture of S and Se, were found to contain many secondary phases under the same synthesis protocol. Formation of impurity phases in CZTSSe sample, can be avoided by using a mixture of 1-dodecanethiol (DT; CH_3(CH_2)_1_1SH)/oleylamine (OLA) instead of S powder and following the same experimental procedure. The incorporation of S in CZTSe nanocrystals prepared in presence of DDT/OLA mixture was confirmed through structural and optical characterizations. The optical properties of the quaternary chalcogenide nanocrystals were found to vary with the chemical composition of the material. - Highlights: • Solvothermal synthesis of CZTS, CZTSSe and CZTSe nanocrystals and discussion on possible formation mechanism. • Use of dodecanethiol/oleylamine mixture to synthesize phase-pure CZTSSe nanocrystals. • Formation of impurity phases can be controlled with proper S and Se sources.

  7. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  8. 76 FR 69284 - Pure Magnesium From China

    Science.gov (United States)

    2011-11-08

    ... China Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... China would be likely to lead to continuation or recurrence of material injury to an industry in the...), entitled Pure Magnesium from China: Investigation No. 731-TA-696 (Third Review). Issued: November 2, 2011...

  9. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite

    Science.gov (United States)

    Sai Vandana, C.; Hemalatha Rudramadevi, B.

    2018-04-01

    The pure and copper (Cu) substituted Gadolinium orthoferrites, GdFeO3, GdCu0.1Fe0.9O3, GdCu0.2Fe0.8O3 and GdCu0.3Fe0.7O3 were synthesized by conventional solid state method. The structural, morphological, dielectric, magnetic and impedance properties of Cu substituted Gadolinium orthoferrites have been investigated. The crystallographic phase as well as the substitution of Cu2+ ions in the lattice of GdFeO3 is confirmed from the x-ray diffraction patterns. The Fourier transform infrared spectra exhibit two prominent fundamental absorption peaks at ∼417 cm‑1 and 545 cm‑1. These bands are related to inherent stretching vibrations of metals at octahedral and tetrahedral sites respectively. The coercivity (Hc) and saturation magnetization (Ms) of the synthesized samples at different temperatures were determined from the hysteresis plots. Higher coercive values, 598 Oe and 600 Oe were achieved in GdCu0.1Fe0.9O3 ferrites compared to 527 Oe and 360 Oe in pure GdFeO3 at room temperature (300 K) and low temperature (20 k) respectively. Dielectric dispersion has been observed for gadolinium ferrite samples with Maxwell–Wagner type interfacial polarization. The decrease of dielectric constant and dielectric loss tangent with an increase in frequency was observed. The conduction due to charge hopping between localized states was confirmed from AC conductivity measurements. The composition dependent cationic distributions estimated from XRD, magnetic and electrical studies are in good agreement with each other. The achieved results indicate that the substitution of Cu in gadolinium orthoferrite strongly influences the crystal structure, magnetic and electrical properties thereby making them suitable as multiple state memory devices, transducers, electronic field controlled ferromagnetic resonance devices and spintronic devices.

  10. Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Chen, Minfang, E-mail: mfchentj@126.com [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-01-30

    In this study, pure Cu nanoparticles (NPs) have been successfully synthesized and the Cu nano-ink was prepared for direct writing on photo paper using a roller pen. The tri-sodium citrate was used as initial reducing-cum-surfactant agent followed by hydrazine as a second massive reducing agent and cetyltrimethylammonium bromide (CTAB) as extra surfactant agent. From the XRD, TEM, and HR-TEM analyses, the synthesized particles are confirmed to be Cu in spherical shape with sizes range of 2.5 ± 1.0 nm. By analyzing the FT-IR spectroscopy and TGA curves, it was found that the obtained particles capped with tri-sodium citrate and CTAB layers are stable to oxidation up to the temperature 228 °C. The reduced size and enhanced air-stability of the Cu NPs result in an improved particle density upon sintering, which is mainly responsible for the increased conductivity of the Cu patterns. The resistivity of Cu patterns sintered in Ar at 160 °C for 2 h is 7.2 ± 0.6 μΩ cm, which is 4.40 times the bulk Cu resistivity. The drawn Cu lines exhibited excellent integrity and good conductivity, which were experimentally tested. Moreover, a Cu electrode and a sample RFID antenna were successfully made.

  11. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  12. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    Science.gov (United States)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  13. Synthesis and characterization of Cu{sup 2+} substituted magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A. L. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Velasquez, A. A., E-mail: avelas26@eafit.edu.co [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Urquijo, J. P. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Baggio, E. [Centro Brasileiro de Pesquisas Fisicas (Brazil)

    2011-11-15

    Samples of magnetite, both pure and doped with divalent copper, Fe{sub 3 - x}Cu{sub x}O{sub 4}, with x = 0, 0.05, 0.10 and 0.20 atm.%, were synthesized hydrothermally. The samples were characterized by Atomic Absorption Spectroscopy, Moessbauer Spectroscopy, X-ray diffraction, Scanning Electron Microscopy and SQUID magnetometry. The analyses made by the above techniques showed that as the Cu{sup 2+} concentration increases, a simultaneous reduction in the magnetic and structural parameters takes place, namely: magnetic hyperfine interactions at octahedral sites, particle size and lattice constant. Degradation in the particles morphology as well as a distribution of their size were also observed. Our study points two important effects of Cu{sup 2+} in magnetite, the first one is its incorporation within the structure, replacing Fe{sup 2+} ions and decreasing both the magnetic hyperfine interactions at octahedral sites and the bulk magnetization, the second one is the contraction of the crystalline lattice of magnetite, because incorporation of Cu{sup 2+} within the structure, generation of vacancies or both simultaneous effects.

  14. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  15. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  16. Interplay between structural symmetry and magnetism in Ag–Cu

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Tsung-Wen; Lai, S.K., E-mail: sklai@coll.phy.ncu.edu.tw

    2016-01-01

    We present first-principles theoretical calculations of the magnetic properties of bimetallic clusters Ag–Cu. The calculations proceeded by combining a previously developed state-of-the-art optimization algorithm (P.J. Hsu, S.K. Lai, J. Chem. Phys. 124 (2006) 0447110) with an empirical potential and applied this numerical scheme to determine first the lowest energy structures of pure clusters Ag{sub 38} and Cu{sub 38}, and also their different atomic compositions Ag{sub n}Cu{sub 38−n} for n=1,2,…,37. Then, we carried out the Kohn–Sham spin unrestricted density functional theory calculations on the optimized atomic structures obtained in the preceding step. Given the minimized structures from the first step as input configurations, the results of these re-optimized structures by full density functional theory calculations yield more refined electronic and atomic structures. A thorough comparison of the structural differences between these two sets of atomic geometries, one from using an empirical potential in which the electronic degrees of freedom were included approximately and another from subsequent minimization using the spin unrestricted density functional theory, sheds light on how the electronic charges disperse near atoms in clusters Ag{sub n}Cu{sub 38−n}, and hence the distributions of electronic spin and charge densities at re-optimized sites of the cluster. These data of the electronic dispersion and the ionic configuration give clue to the mystery of the unexpected net magnetic moments which were found in some of the clusters Ag{sub n}Cu{sub 38−n} at n=1–4, 24 as well as the two pure clusters. Possible origins for this unanticipated magnetism were explained in the context of the point group theory in much the same idea as the Clemenger–Nilsson model applied to simple metal clusters except that we draw particular attention to the atomic topologies and stress the bearing that they have on valence electrons in inducing them to disperse and

  17. Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities

    Science.gov (United States)

    Wang, Yongbin; Zhang, Lixin; Jiu, Hongfang; Li, Na; Sun, Yixin

    2014-06-01

    A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.

  18. Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities

    International Nuclear Information System (INIS)

    Wang, Yongbin; Zhang, Lixin; Jiu, Hongfang; Li, Na; Sun, Yixin

    2014-01-01

    A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.

  19. Depositing of CuS nanocrystals upon the graphene scaffold and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbin [Chemical Engineering and Environment Institute, North University of China, Taiyuan 030051 (China); Zhang, Lixin, E-mail: edwardzlx@163.com [Chemical Engineering and Environment Institute, North University of China, Taiyuan 030051 (China); Jiu, Hongfang [College of Science, North University of China, Taiyuan 030051 (China); Li, Na; Sun, Yixin [Chemical Engineering and Environment Institute, North University of China, Taiyuan 030051 (China)

    2014-06-01

    A series of copper sulfide nanocrystals/graphene nanocomposites (CuS/GR) with different weight ratios of GR were fabricated via a one-step hydrothermal approach by using dimethylsulfoxide (DMSO) as the source of sulfur and solvent. The as-prepared samples were studied by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS), transmission scanning electron microscopy (TEM) and photoluminescence spectra (PL) are employed to determine the properties of the samples. The results show that the CuS nanocrystals with an average size of 16 nm almost overspread on the GR graphene scaffold. The samples exhibit excellent photocatalytic activities in degrading the methylene blue (MB) compared with pure CuS. This work shows that CuS/GR nanocomposites would be promising in dye wastewater treatment as Fenton-like reagents.

  20. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu{sub 2}O microspheres for degrading organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui, E-mail: chengyahui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Lin, Yuanjing [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Xu, Jianping [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Li, Lan [Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Du, Xiwen [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Weichao [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Liu, Hui, E-mail: liuhui@nankai.edu.cn [Department of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zheng, Rongkun [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-03-15

    Graphical abstract: - Highlights: • Cu NPs introduce the SPR and result in an increase of visible light absorption. • The photocatalytic activity of Cu{sub 2}O/Cu improves greatly due to the SPR effect. • A dark catalytic activity is observed stemming from the Fenton-like reaction. • The • O{sub 2}{sup −} and • OH radicals contribute to the photocatalytic process. • The • OH radicals contribute to the dark catalytic process. - Abstract: Micron-sized Cu{sub 2}O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu{sub 2}O–Cu–H{sub 2}O{sub 2} system exhibits a superior photocatalytic activity to Cu{sub 2}O–H{sub 2}O{sub 2} or pure H{sub 2}O{sub 2} with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H{sub 2}O{sub 2}. The radical quenching experiments indicate that both • O{sub 2}{sup −} and • OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the • OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H{sub 2}O{sub 2}, the Cu{sub 2}O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  1. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    Science.gov (United States)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  2. Synthesis and characterization of nanocrystalline Cu-Al coatings

    International Nuclear Information System (INIS)

    Lau, M.L.; He, J.; Schweinfest, R.; Ruehle, M.; Levi, C.G.; Lavernia, E.J.

    2003-01-01

    Commercially pure Cu and Al powders were blended in a 90:10 ratio by weight and then mechanically milled in methanol or in liquid nitrogen. The milled powders, as well as as-blended (non-milled) powder, were deposited as coatings using high velocity oxygen fuel thermal spraying. Scanning and transmission electron microscopy techniques were used to investigate the microstructure of the powders and coatings. The results showed that milling of the powders in methanol induced the conversion of most of the Al into amorphous Al 2 O 3 , precluding the desired mechanical alloying. This experimental observation was consistent with available thermodynamic data. In contrast, cryomilling exhibited no significant oxidation and induced mechanical alloying of the powders, albeit incomplete. The non-milled powder generated a coating with a bimodal grain structure consisting of fine Cu grains and coarse Al grains. Amorphous oxide regions and coarse Al grains were observed intermixed with the finer Cu matrix in the coatings sprayed using the powders milled in methanol. Coatings based on cryomilled powders consisted primarily of equiaxed Cu grains and twinned martensite regions, with occasional inclusion of elongated amorphous Al 2 O 3 regions

  3. Purely temporal figure-ground segregation.

    Science.gov (United States)

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  4. Optical and structural properties of CuO nanofilm: Its diode application

    International Nuclear Information System (INIS)

    Erdogan, Ibrahim Y.; Guellue, O.

    2010-01-01

    The high crystalline CuO nanofilms have been prepared by spin coating and annealing combined with a simple chemical method. The obtained films have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-vis (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy. Structural analysis results demonstrate that the single phase CuO on Si (1 0 0) substrate is of high a crystalline structure with a dominant in monoclinic (1 1 1) orientation. FT-IR results confirm the formation of pure CuO phase. UV-vis absorption measurements indicate that the band gap of the CuO films is 2.64 eV. The PL spectrum of the CuO films shows a broad emission band centered at 467 nm, which is consistent with absorption measurement. Also, Au/CuO/p-Si metal/interlayer/semiconductor (MIS) diodes have been fabricated. Electronic properties (current-voltage) of these structures were investigated. In addition, the interfacial state properties of the MIS diode were obtained. The interface-state density of the MIS diode was found to vary from 6.21 x 10 12 to 1.62 x 10 12 eV -1 cm -2 .

  5. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  6. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Research on green production methods for metal oxide nanoparticles (NPs is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray (EDX, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and dynamic light scattering (DLS. Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  7. Model answers in pure mathematics for a-level students

    CERN Document Server

    Pratt, GA; Schofield, C W

    1967-01-01

    Model Answers in Pure Mathematics for A-Level Students provides a set of solutions that indicate what is required and expected in an Advanced Level examination in Pure Mathematics. This book serves as a guide to the length of answer required, layout of the solution, and methods of selecting the best approach to any particular type of math problem. This compilation intends to supplement, not replace, the normal textbook and provides a varied selection of questions for practice in addition to the worked solutions. The subjects covered in this text include algebra, trigonometry, coordinate geomet

  8. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  9. Use of accelerators in activation analysis, specially for the characterization of pure substances

    International Nuclear Information System (INIS)

    Engelmann, C.

    1979-01-01

    The principal means of activation, their respective potential performance and their preferential fields of application are briefly reviewed. The possibilities offered by charged particles and gamma photons where the determination of light elements or of other impurities is concerned, in pure substances, are discussed. Examples, relating to the evaluation of boron, carbon, nitrogen, oxygen or fluorine levels in metals (Na, Al, Ti, Ni, Cu, Zr, Mo, Ta, W, Pb, etc.), in alloys (PbCuTe, PbSnCd) and in semiconductors (Si, AsGa, InP, etc.) are presented. Where some of these products are concerned, the results obtained by nuclear methods are compared with the values provided by other analytical techniques. The superiority of the first, when the concentration levels of these impurities are less than 1 μg.g -1 , is clearly apparent [fr

  10. Reducibility and Oxidation Activity of Cu Ions in Zeolites. Effect of Cu Ion Coordination and Zeolite Framework Composition

    Czech Academy of Sciences Publication Activity Database

    Bulánek, R.; Wichterlová, Blanka; Sobalík, Zdeněk; Tichý, J.

    2001-01-01

    Roč. 31, č. 1 (2001), s. 13-25 ISSN 0926-3373 R&D Projects: GA AV ČR IBS4040016 Grant - others:VW Stiftung(DE) 1/72937 Institutional research plan: CEZ:AV0Z4040901 Keywords : Cu ions * Cu-ZSM-5 * TPR by hydrogen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.643, year: 2001

  11. Modulation of pure spin currents with a ferromagnetic insulator

    Science.gov (United States)

    Villamor, Estitxu; Isasa, Miren; Vélez, Saül; Bedoya-Pinto, Amilcar; Vavassori, Paolo; Hueso, Luis E.; Bergeret, F. Sebastián; Casanova, Fèlix

    2015-01-01

    We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3F e5O12 (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the nonlocal resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a path towards the development of spin logics.

  12. Group IB Organometallic Chemistry XXXIV: Thermal behavior and chemical reactivity of tetranuclear Me2N-substituted diarylpropenylcopper-copper anion (Vi2Cu4X2) and mixed diarylpropenyl/organocopper (Vi2Cu4R2) compounds

    NARCIS (Netherlands)

    Koten, G. van; Hoedt, R.W.M. ten; Noltes, J.G.

    1980-01-01

    Thermal decomposition of configurationally pure 1, 2-diarylpropenylcopper compounds Z-Vi{2}CU{4}Br{2} and Z-Vi{2}Cu{4}R{2} [Vi @? (2-Me{2}NC{6}H{4})C@?C(Me)-(C{6}H{4}Me-4), R @? 2-Me{2}NC{6}H{4} or 4-MeC{6}H{4}C@?C] predominantly results in the formation of ViH. In contrast, only dimers (ViVi) were

  13. Processing and characterization of composite CuO/CuO/Cu-CGO obtained by a chemical synthesis route in one step

    International Nuclear Information System (INIS)

    Sousa, A.R.O. de; Menezes, A.J.; Souza, G.S.; Lima, C.G.M. de; Souza, G.S.; Dutra, R.P.S.; Macedo, D.A.

    2016-01-01

    This paper deals with the processing and characterization of composite CuO / ceria doped with 10 mol% gadolinia (CuO-Ce0,9Gd0,1O1,95) obtained by a chemical synthesis route in one step. It was varied CuO content at 40, 50 and 60% by weight, resulting in resin precursor, which was mixed with the CGO and then heat treated at 350 ° C and subsequently calcined at 1050 deg C. The particulate materials were characterized by X-ray diffractometry using powders, it was possible to synthesize and deposit, by serigraphy, films of the anodes of the three compositions CGO electrolyte. The technique of impedance spectroscopy allowed the analysis of the electrical properties of the material, as well as the understanding of their behavior when subjected to different atmospheres of hydrogen and methane. (author)

  14. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  15. Evaluation of surface energy state distribution and bulk defect concentration in DSSC photoanodes based on Sn, Fe, and Cu doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Ekanayake, Piyaisiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research -A*STAR, 3 Research Link, 117602 (Singapore); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558 (Australia); Hobley, Jonathan [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Chellappan, Vijila [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Gorelik, Sergey; Subramanian, Gomathy Sandhya [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Lim, Chee Ming [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam)

    2015-10-01

    Graphical abstract: - Highlights: • The structural, optical and optoelectronic properties of 1 mol.% Fe, Sn and Cu doped TiO{sub 2} have been compared. • Transient lifetimes for pure TiO{sub 2} and Sn doped TiO{sub 2} were considerably shorter than Fe and Cu doped TiO{sub 2}. • A good correlation between the bulk defects and transient decay for the doped TiO{sub 2} powders was observed. • Photon to current conversion efficiency of DSSC based on the metal doped TiO{sub 2} were in order Sn-TiO{sub 2} > Cu-TiO{sub 2} > Pure >> Fe-TiO{sub 2}. • DSSC based on Fe doped photoanodes is limited by a high concentration of surface free holes observed at 433 nm. - Abstract: Electron transfer dynamics in the oxide layers of the working electrodes in both dye-sensitized solar cells and photocatalysts greatly influences their performance. A proper understanding of the distribution of surface and bulk energy states on/in these oxide layers can provide insights into the associated electron transfer processes. Metal ions like Iron (Fe), Copper (Cu) and Tin (Sn) doped onto TiO{sub 2} have shown enhanced photoactivity in these processes. In this work, the structural, optical and transient properties of Fe, Cu and Sn doped TiO{sub 2} nanocrystalline powders have been investigated and compared using EDX, Raman spectroscopy, X-ray Photoelectron spectroscopy (XPS), and Transient Absorption spectroscopy (TAS). Surface free energy states distributions were probed using Electrochemical Impedance spectroscopy (EIS) on Dye Sensitized Solar Cells (DSSC) based on the doped TiO{sub 2} photoanodes. Raman and XPS Ti2p{sub 3/2} peak shifts and broadening showed that the concentration of defects were in the order: Cu doped TiO{sub 2} > Fe doped TiO{sub 2} > Sn doped TiO{sub 2} > pure TiO{sub 2}. Nanosecond laser flash photolysis of Fe and Cu doped TiO{sub 2} indicated slower transient decay kinetics than that of Sn doped TiO{sub 2} or pure TiO{sub 2}. A broad absorption peak and fast

  16. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  17. Luminescence properties of pure and doped CaSO4 nanorods irradiated by 15 MeV e-beam

    International Nuclear Information System (INIS)

    Salah, Numan; Alharbi, Najlaa D.; Enani, Mohammad A.

    2014-01-01

    Calcium sulfate (CaSO 4 ) doped with proper activators is a highly sensitive phosphor used in different fields mainly for radiation dosimetry, lighting and display applications. In this work pure and doped nanorods of CaSO 4 were produced by the co-precipitation technique. Samples from this material doped with Ag, Cu, Dy, Eu and Tb were exposed to different doses of 15 MeV e-beam and studied for their thermoluminesence (TL) and photoluminescence (PL) properties. Color center formation leading to PL emissions were investigated before and after e-beam irradiation. The samples doped with rare earths elements (i.e. Dy, Eu and Tb) were observed to have thinner nanorods than the other samples and have higher absorption in the UV region. The Ag and Tb doped samples have poor TL response to e-beam, while those activated by Cu, Dy and Eu have strong glow peaks at around 123 °C. Quite linear response curves in the whole studied exposures i.e. 0.1–100 Gy were also observed in Cu and Dy doped samples. The PL results show that pure CaSO 4 nanorods have active color centers without irradiation, which could be enriched/modified by these impurities mainly rare earths and further enhanced by e-beam irradiation. Eu 3+ → Eu 2+ conversion is clearly observed in Eu doped sample after e-beam irradiation. These results show that these nanorods might be useful in lighting and display devices development

  18. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties

    International Nuclear Information System (INIS)

    Karunakaran, C.; Manikandan, G.; Gomathisankar, P.

    2013-01-01

    Highlights: •CuO nanoleaves synthesized by CTAB-assisted hydrothermal method. •CuO nanodiscs synthesized by CTAB-assisted sonochemical method. •Combustion synthesized CuO is highly porous. •Synthetic method and morphology influence CuO bactericidal activity. -- Abstract: Cetyltrimethylammonium bromide (CTAB)-assisted microwave synthesis of CuO provides nanoleaves and in the absence of CTAB the shape of CuO is irregular. Sonochemical synthesis of CuO using CTAB gives nanodiscs whereas irregularly shaped flake-like structure is obtained without CTAB. Combustion synthesized CuO is highly porous with innumerable large holes. CTAB does not provide any structure in combustion synthesis. Transmission electron micrographs (TEM) display the constituent nanoparticles of microwave and sonochemically synthesized CuO. The powder X-ray diffractogram (XRD) shows the sample obtained by sonochemical method in the absence of CTAB as a mixture of monoclinic CuO, cubic Cu 2 O, and orthorhombic Cu(OH) 2 . But the rest of the samples are pure CuO in monoclinic phase. The selected area electron diffractograms (SAED) of the microwave and sonochemically synthesized samples, in the presence as well as in the absence of CTAB, confirm the monoclinic phase of CuO and indicates the presence of amorphous CuO in traces. All the samples are characteristic of Fourier Transform infrared (FT-IR) Cu–O stretching frequencies. The method of synthesis and also the morphology influence the electrical properties as well as the bactericidal activity of CuO

  19. Frozen-in vacancies in PVD-Cu films with improved high-pressure reflowability studied using a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, A; Kubo, D; Mizuno, M; Araki, H [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Onishi, T [Materials Research Laboratory, Kobe Steel Ltd., 5-5 Takatsukadai 1-chome, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Shirai, Y [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: atsushi.yabuuchi@mat.eng.osaka-u.ac.jp

    2009-05-01

    Recently, a new process has been proposed for fabricating a LSI interconnection; filling trenches and via holes with Cu using high-pressure annealing treatment. It is already known that a Cu film produced by physical vapor deposition (PVD) has a lower reflowability compared to a Cu film produced by electrochemical deposition (ECD). Additionally, it has also been recognized that the addition of Sb to the PVD-Cu film improves the reflowability. However, the factors responsible for the reflowability of Cu films have not yet been studied. In this work, we evaluated a PVD pure-Cu film and a PVD Cu-0.5at%Sb film by using a slow positron beam. Addition of Sb led to the introduction of lattice defects in the as-deposited film. These defects that were observed in the PVD-CuSb dilute alloy film were identified as frozen-in vacancies that were produced during deposition.

  20. Frozen-in vacancies in PVD-Cu films with improved high-pressure reflowability studied using a slow positron beam

    International Nuclear Information System (INIS)

    Yabuuchi, A; Kubo, D; Mizuno, M; Araki, H; Onishi, T; Shirai, Y

    2009-01-01

    Recently, a new process has been proposed for fabricating a LSI interconnection; filling trenches and via holes with Cu using high-pressure annealing treatment. It is already known that a Cu film produced by physical vapor deposition (PVD) has a lower reflowability compared to a Cu film produced by electrochemical deposition (ECD). Additionally, it has also been recognized that the addition of Sb to the PVD-Cu film improves the reflowability. However, the factors responsible for the reflowability of Cu films have not yet been studied. In this work, we evaluated a PVD pure-Cu film and a PVD Cu-0.5at%Sb film by using a slow positron beam. Addition of Sb led to the introduction of lattice defects in the as-deposited film. These defects that were observed in the PVD-CuSb dilute alloy film were identified as frozen-in vacancies that were produced during deposition.

  1. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    Science.gov (United States)

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu + /Cu 2+ and Fe 2+ /Fe 3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  2. Covellite CuS as a matrix for "invisible" gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals

    Science.gov (United States)

    Tagirov, Boris R.; Trigub, Alexander L.; Kvashnina, Kristina O.; Shiryaev, Andrey A.; Chareev, Dmitriy A.; Nickolsky, Maximilian S.; Abramova, Vera D.; Kovalchuk, Elena V.

    2016-10-01

    .3 for both positions of Cu. This result is confirmed by theoretical analysis of electron density performed using quantum theory of atoms in molecules (QTAIM). Modeling of the Au L3 edge EXAFS/XANES spectra showed that Au in covellite exists in the form of the isomorphous solid solution formed by substitution for Cu atoms in triangular coordination with the Me-S distance in the first coordination shell increased by 0.18 Å relative to the pure CuS structure. The ;formal; oxidation state of Au in covellite is +1. The Bader partial atomic charge for Au in covellite is lower than the charge of Cu (+0.2 e vs. +0.5 e) indicating that the degree of covalency for the Au-bearing covellite is higher than that of pure CuS. The analysis of electronic density of states shows that this structural position of Au results in strong interactions between hybridized Au s,p,d, S p, and Cu p,d orbitals. Such chemical bonding of Au to S and Cu can result in the formation of Au-bearing solid solution with other minerals in the Cu-Fe-S system.

  3. Optical, structural and photocatalysis properties of Cu-doped TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bensouici, F., E-mail: fbensouici@yahoo.fr [Department of Physics, URMPE Unite, UMBB University, 35000 Boumerdes (Algeria); Bououdina, M.; Dakhel, A.A. [Department of Physics, College of Science, University of Bahrain, PO Box 32038 (Bahrain); Tala-Ighil, R.; Tounane, M.; Iratni, A. [Department of Physics, URMPE Unite, UMBB University, 35000 Boumerdes (Algeria); Souier, T. [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36 (Oman); Liu, S.; Cai, W. [Key laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Technology, Center for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-02-15

    Highlights: • A simple chemical route to obtain thin layers of Cu doped TiO{sub 2}. • Detailed structure analysis was carried out by Rietveld refinements. • Forming the CuO phase decreases the efficiency photocatalysis of TiO{sub 2}. - Abstract: Pure and Cu{sup +2} doped TiO{sub 2} thin films have been successfully deposited onto glass substrate by sol–gel dip-coating. The films were annealed at 450 °C for 1 h and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM-EDX), atomic force microscopy (AFM), UV–vis spectrophotometer and photocatalytic degradation of methylene blue. XRD confirmed the presence of two phases at higher Cu concentration; TiO{sub 2} anatase and CuO. AFM analysis showed that the surface roughness increases within increasing Cu content as well as the presence of large aggregates at higher Cu content. SEM observations confirmed the granular structure of the films, and EDX analysis revealed a low solubility limit (effective doping) of Cu into TiO{sub 2} lattice. It was found that the optical band gap energy decreases with increasing Cu content. At constant irradiation time, the photo-degradation of methylene blue rate decreased with increasing concentration of Cu{sup +2}.

  4. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  5. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  6. Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding

    Directory of Open Access Journals (Sweden)

    V.C. Sinha

    2016-09-01

    Full Text Available In the present study, the microstructure and mechanical properties of similar and dissimilar friction stir welded joints of aluminium alloy (AlA and pure copper (Cu were evaluated at variable tool rotational speeds from 150 to 900 rpm in steps of 150 rpm at 60 mm/min travel speed and constant tilt angle 2°. The interfacial microstructures of the joints were characterised by optical and scanning electron microscopy. The Al4Cu9, AlCu, Al2Cu and Al2Cu3 intermetallic compounds have been observed at the interface and stir zone region of dissimilar Al/Cu FSWed joints. Variation in the grain size was observed in the stir zone depending upon the heat input value. Axial force, traverse force and torque value were analysed with variation in tool rotational speed. Residual stresses were measured at the stir zone by X-ray diffraction technique. Maximum ultimate tensile strength of ∼75% of AlA strength for AlA–AlA joints has been obtained at 750 rpm and for Cu–Cu joint tensile strength of ∼100% of tensile strength of Cu was obtained at 300 rpm. However, for Cu–AlA joint when processed at 600 rpm tool rotational speed achieved maximum ultimate tensile strength of ∼77% of AlA.

  7. Modulation of Jahn-Teller effect on magnetization and spontaneous electric polarization of CuFeO2

    Science.gov (United States)

    Xiao, Guiling; Xia, Zhengcai; Wei, Meng; Huang, Sha; Shi, Liran; Zhang, Xiaoxing; Wu, Huan; Yang, Feng; Song, Yujie; Ouyang, Zhongwen

    2018-03-01

    CuFe0.99Mn0.01O2 and CuFe0.99Co0.01O2 single crystal samples are grown by a floating zone technique and their magnetization and spontaneous electric polarization have been investigated. Similarly with pure CuFeO2, an obviously anisotropic magnetization and spontaneous electric polarization were observed in the both doped samples, and their phase transition critical fields and temperatures are directly doping ion dependent. Considering the different d-shell configuration and ionic size between Mn3+, Co3+ and Fe3+ ions, in which the Mn3+ ion with Jahn-Teller (J-T) effect has different distortion on the geometry frustration from both of Fe3+ and Co3+ ion. Since for Mn3+ ion, the orbital splitting results from the low-symmetry J-T distortion in a crystal-field environment leads to a distorted MnO6 octahedron, which different from undistorted FeO6 and CoO6 octahedrons. The strain between distorted and undistorted octahedrons produces different effects on the spin reorientation transition and spontaneous electric polarization. Although the pure CuFeO2 has a very strong and robust frustration, the presence of the strain due to the random distribution of distorted MnO6 octahedron and undistorted CoO6 (FeO6) octahedrons leads to its spin reorientation transitions and spontaneous electric polarization different from CuFeO2.

  8. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  9. Can Cu(II) ions be doped into the crystal structure of potassium hydrogen tartrate?

    OpenAIRE

    Srinivasan, Bikshandarkoil R.; Remesh, H.

    2015-01-01

    The differing binding preferences of the hydrogen tartrate ligand (HC4H4O6)- namely {\\mu}7-octadentate mode for potassium ion and bidentate mode for cupric ion rules out the doping (incorporation) of any Cu(II) ion into the crystal structure of potassium hydrogen tartrate. Hence, the claim of growth of copper doped potassium hydrogen tartrate viz. K0.96Cu0.04C4H5O6 by Mathivanan and Haris, Indian J Pure App Phys 51 (2013) 851-859 is untenable.

  10. Critical current density in (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x melt-textured composites  

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto

    2018-01-01

    Melt textured (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7−δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses...... indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed...... in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, respectively. The YBa2Cu3O7−δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4...

  11. Preparation and characterization of sub-20 nm Cu{sub X}@Ag{sub 1} core-shell nanoparticles by changing concentration of silver precursor

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Sang-Soo; Lee, Jong-Hyun, E-mail: pljh@snut.ac.kr

    2017-01-01

    Ultrafine Ag-coated Cu (Cu@Ag) nanoparticles (NPs) less than 20 nm in diameter were prepared. After synthesizing ultrafine Cu NPs using a solvothermal method to serve as the core particles, Cu@Ag NPs were fabricated with different initial Ag precursor concentrations, resulting in different thicknesses, densities, and uniformities of Ag shells. The average thickness and density of the Ag shell increased with increasing initial Ag precursor concentration in a Cu:Ag atomic ratio from 6:1 to 1:1. However, excessive Ag precursor concentrations induced homogeneous nucleation and growth of surplus fine pure NPs. Ag dewetting behavior and Cu oxidation in the Cu{sub 4}@Ag{sub 1} NPs were observed, they occurred during heating at 200 and 250 °C, respectively. The electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films decreased with increasing temperature from 200 to 240 °C. The resistivity after washing the OA and sintering for 60 min at 240 °C in air was measured to be 4.96 × 10{sup −3} Ω cm. The film was sintered in nitrogen using the ink containing non-washed Cu{sub 4}@Ag{sub 1} NPs indicated the lower resistivity of 2.70 × 10{sup −3} Ω cm owing to the non-oxidation atmosphere, although the chemically capped oleylamine in the core-shell NPs hindered the sintering behavior. - Highlights: • Ultrafine Ag-coated Cu nanoparticles less than 20 nm in diameter were fabricated. • Different Ag precursor concentrations influenced thickness and density of Ag shell. • Excessive Ag precursor concentrations induced formation of surplus fine pure NPs. • Ag dewetting behavior and Cu oxidation in Cu{sub 4}@Ag{sub 1} nanoparticles were observed. • Electrical resistivities of sintered Cu{sub 4}@Ag{sub 1} films were 2.70–4.96 × 10{sup −3} Ω cm.

  12. Wetting of molybdenum with molten Cu-O alloys

    International Nuclear Information System (INIS)

    Yupko, V.L.; Garbuz, V.V.; Kryuchkova, N.I.

    1992-01-01

    The Cu-O alloys were prepared from type MOb copper (GOST 859-78) with an oxygen content of 0.001 wt.% and type ChDA cuprous oxide (MRTU 6-09-1451-64), the powder of which was first pressed into briquettes. The weighted portions of Cu 2 O were weighed on an Elektrobalans scale having an absolute error of ±5 · 10 -7 g. The relative error in weighing an approximately 1 · 10 -4 g weighed portion of Cu 2 O for preparation of the alloy with the minimum oxygen content of 0.002% was, therefore, ± 0.5% and consequently for the alloys with a higher oxygen content the accuracy was higher. The alloys were prepared on a ZrO 2 + 5% Y 2 O 3 ceramic at 1,420 K in a vacuum of 6.7 · 10 -3 Pa,d their weight was 1.0-1.5 g, and the melting time 30 sec. The pure type MOb copper was remelted in the same manner. The time relationships of the angle of wetting of molybdenum by molten Cu-O alloys under conditions of combined heating are given. With an increase in oxygen content from 0.004 to 0.005%, wetting drops sharply

  13. Interphase Constituent of Laminated Composites Ti46Zr26Cu17Ni11

    Directory of Open Access Journals (Sweden)

    XU Bingtong

    2017-10-01

    Full Text Available Thermal analysis of the Ti46Zr26Cu17Ni11 amorphous ribbon prepared by melt spinning was conducted by using DSC. Accordingly the amorphous alloy was treated by vacuum heat treatment at 693 K (Tg, 753 K (Tg-Tx1 and 813 K (> Tx1 for different time to analyze the crystallization behavior. Taking Ti46Zr26Cu17Ni11 amorphous alloy, TA2 and pure Al as raw materials, laminated composites were fabricated by Gleeble-3500 thermal simulator at 873 K, 10 MPa and 8 h. The phase composition, precipitation order and properties of interface layers were investigated by SEM, TEM, micro hardness tester, combined thermodynamics and element diffusion theory. The results indicate that the glass transition temperature Tg of Ti46Zr26Cu17Ni11 amorphous is 720 K and the initial crystallization temperature Tx1 is 788 K. The I phase is crystallized from the amorphous at first, followed by a ternary or quaternary Laves phase and a TiNi phase precipited. After hot pressing, the interface between pure Al and crystallization layer is divided into two parts, which are Al3Ni with small thickness and Al3(Ti0.6Zr0.4 with fine grain and uniform microstructure. The interfaces are straight and there are no defects, with a thickness ratio of about 6.5:1 compared with interface layer between pure Ti with Al. The hardness of Al3(Ti0.6Zr0.4 and Al3Ti are 564.2HV and 579.8HV respectively. The plasticity of Al3(Ti0.6Zr0.4 layer is better.

  14. Stability of sputter deposited cuprous oxide (Cu2O) subjected to ageing conditions for photovoltaic applications

    Science.gov (United States)

    Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.

    2018-02-01

    Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.

  15. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    Science.gov (United States)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  16. Defects in electroplated Cu and their impact on stress migration reliability studied using monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Suzuki, Takashi; Nakamura, Tomoji; Ohdaira, Toshiyuki; Suzuki, Ryoichi

    2007-01-01

    Positron annihilation was used to probe vacancy-type defects in electroplated Cu fabricated using different electrolytes. Isochronal annealing experiments revealed that the agglomeration of vacancy-type defects in grains was observed below 200degC and that their concentration started to decrease above 300degC. The observed annealing stages of the defects agree with those for pure Cu irradiated with light particles such as electrons. The size and concentration of vacancies decreased with decreasing concentrations of residual impurities in Cu films. A decrease in the impurity concentration, however, increased the failure rate of Cu interconnects in a stress-induced voiding test. Thus, void formation related to stress-induced failure can be reduced through the introduction of vacancy clusters into grains. (author)

  17. Structural, dynamical & electronic properties of CaCuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, B.K.; Agrawal, S. [Allahabad Univ. (India)

    1994-12-31

    The scalar relativistic version of an accurate first principles full potential self- consistent linearized muffin tin orbital (LMTO) method has been employed for describing the physical properties of the parent system of the high-Tc oxide superconductors, i.e., CaCuO2. The presently employed modified version of the LMTO method is quite fast and goes beyond the usual LMTO-ASA method in the sense that it permits a completely general shape of the potential and the charge density. Also, in contrast to LMTO-ASA, the present method is also capable of treating distorted lattice structures accurately. The calculated values of the lattice parameters of pure CaCuO2 lie within 3% of the experimentally measured values for the Sr-doped system Ca(.86)Sr(.14)CuO(2). The computed electronic structures and the density of states is quite similar to those of the other oxide superconductors, except of their three- dimensional character because of the presence of strong coupling between the closely spaced CuO2 layers. The van Hove singularity peak appears slightly below the Fermi level and a small concentration of oxygenation /or/ substitutional doping may pin it as the Fermi level. The calculated frequencies for some symmetric frozen phonons for undoped CaCuO2 are quite near to the measured data for the Sr-doped CaCuO2.

  18. Wire bond degradation under thermo- and pure mechanical loading

    DEFF Research Database (Denmark)

    Pedersen, Kristian Bonderup; Nielsen, Dennis Achton; Czerny, Bernhard

    2017-01-01

    This paper presents a fundamental study on degradation of heavy Al bond wires typically used in high power modules. Customized samples are designed to only consist of Al bond wires on standard Si diodes. These samples are subjected to pure mechanical and passive thermal cycling to investigate...

  19. Spectroscopic and transport studies of Cu ion doped in (40 – x)Li2O ...

    Indian Academy of Sciences (India)

    Unknown

    MS received 13 March 2000; revised 19 September 2000. Abstract. .... the glass network may replace either the probe ion (Cu2+) oxygen or one of the oxygens of .... Bi–O bonds in the pure glass (Bishay and Maghrabi 1969;. Hazra and Ghosh ...

  20. Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles

    Science.gov (United States)

    Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.

    2018-04-01

    The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.

  1. Epitaxial YBa2Cu3O7-δ/Sr2RuO4 heterostructures

    International Nuclear Information System (INIS)

    Schlom, D.G.; Merritt, B.A.; Madhavan, S.

    1997-01-01

    The anisotropic oxide superconductors YBa 2 Cu 3 O 7-δ and Sr 2 RuO 4 have been epitaxially combined in various ways (c-axis on c-axis, c-axis on a-axis, and a-axis on a-axis) though the use of appropriate substrates. Phase-pure a-axis oriented or c-axis oriented epitaxial Sr 2 RuO 4 films were grown by pulsed laser deposition. YBa 2 Cu 3 O 7-δ films were then grown on both orientations of Sr 2 RuO 4 films and the resulting epitaxy was characterized

  2. The neuroanatomy of pure apraxia of speech in stroke.

    Science.gov (United States)

    Graff-Radford, Jonathan; Jones, David T; Strand, Edythe A; Rabinstein, Alejandro A; Duffy, Joseph R; Josephs, Keith A

    2014-02-01

    The left insula or Broca's area have been proposed as the neuroanatomical correlate for apraxia of speech (AOS) based on studies of patients with both AOS and aphasia due to stroke. Studies of neurodegenerative AOS suggest the premotor area and the supplementary motor areas as the anatomical correlates. The study objective was to determine the common infarction area in patients with pure AOS due to stroke. Patients with AOS and no or equivocal aphasia due to ischemic stroke were identified through a pre-existing database. Seven subjects were identified. Five had pure AOS, and two had equivocal aphasia. MRI lesion analysis revealed maximal overlap spanning the left premotor and motor cortices. While both neurodegenerative AOS and stroke induced pure AOS involve the premotor cortex, further studies are needed to establish whether stroke-induced AOS and neurodegenerative AOS share a common anatomic substrate. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. TD-NMR studies on CuSO{sub 4} salt hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus; Magin, Peter; Wengeler, Robert [BASF Aktiengesellschaft, Ludwigshafen (Germany); Kleinschmidt, Sebastian [Universitaet Magdeburg, FB Chemie (Germany)

    2008-07-01

    Despite the high concentration of paramagnetic copper ions, solid CuSO{sub 4} hydrates exhibit surprizingly narrow NMR signals. This is known since the late 1940s. Using TD-NMR methods established for polymer studies, the relaxation behaviour of CuSO{sub 4} preparations with different water content was studied at room temperature. For the water content of the pentahydrate and below, the NMR signal exhibits a pure solid-state-type magnetization decay behaviour. For slightly overstoichiometric moisture contents, a liquid-like signal is observed in addition to the solid signal. However, the relative amplitudes of the solid and the liquid signal do not mirror the stoichiometric composition of the pentahydrate and the excess water. Instead, the solid signal amplitude only accounts for four hydrate water molecules while the fifth water exhibits rapid exchange with the liquid phase and thus contributes to the liquid-type signal. This finding is in good agreement to results from investigations into the crystal structure of solid CuSO4 pentahydrate.

  4. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  5. Synthesis of graphene oxide-copper molybdate (GO-CuM) nanocomposites for photocatalytic application

    Science.gov (United States)

    Singh, Gajendar; Bhargava, V. Sai; Sharma, Manu

    2018-05-01

    Transition metal molybdates (TMBs) MMoO4 (M=Ni, Cu, Fe, Zn, Co, etc.) based nanocomposites have been considered as remarkable materials in the field of electronics, optics, catalysis, supercapicitors and energy storage devices. Nanocomposites of TMBs with graphene oxide have also been chosen as an effective material in photocatalytic application. GO-CuM nanocomposites were synthesized by ultra-sonication method at RT, followed by reflux route for preparation of CuM and GO by modified Hemmer's method. As prepared nanocomposites were characterized using analytical techniques such as PXRD, SEM, FT-IR and UV-Visible spectroscopy. The enhanced photocatalytic activity of Methylene blue (MB) dye was observed by GO-CuM nanocomposites as compared to pure copper molybdate. GO-CuM nanocomposites show high photodegradation rate (0.094 min-1) whereas CuM was degraded only 30 % with the rate of 0.0029 min-1. The high photocatalytic efficiency is due to the presence of graphene oxide that helps to delay the charge recombination in photocatalytic reaction The effect of the different amount of graphene oxide on the photocatalytic activity of as prepared photocatalyst has also been investigated.

  6. Using electrophysiology to demonstrate that cuing affects long-term memory storage over the short term

    OpenAIRE

    Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.

    2015-01-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hyp...

  7. Transgastric pure-NOTES peritoneoscopy and endoscopic ultrasonography for staging of gastrointestinal cancers

    DEFF Research Database (Denmark)

    Donatsky, Anders Meller; Vilmann, Peter; Meisner, Søren

    2012-01-01

    BACKGROUND: Human natural orifice transluminal endoscopic surgery (NOTES) has mainly been based on simultaneous laparoscopic assistance (hybrid NOTES), forgoing the theoretical benefits of the NOTES technique. This is due to a lack of NOTES-specific instruments and endoscopes, making pure-NOTES...... procedures difficult and time consuming. An area where pure NOTES could be adopted at its present stage of development is minimally invasive staging of gastrointestinal (GI) cancer. The aim of this study is to evaluate the feasibility of combining transgastric (TG) pure-NOTES peritoneoscopy...... and intraperitoneal endoscopic ultrasonography (ip-EUS) with intraluminal EUS (il-EUS) for peritoneal evaluation. METHODS: This was a feasibility and survival study where il-EUS followed by ip-EUS and peritoneoscopy was performed in 10 pigs subjected to TG pure NOTES. A score was given with regard to achieved...

  8. Sensors of the gas CO in thin film of SnO{sub 2}:Cu; Sensores del gas CO en pelicula delgada de SnO{sub 2}:Cu

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Sanchez Z, F. E., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2011-10-15

    Thin films of SnO{sub 2}:Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO{sub 2} were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO{sub 2}:Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO{sub 2}:Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  9. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  10. Rehabilitation of pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......-designed and controlled studies of rehabilitation of pure alexia....

  11. Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper

    International Nuclear Information System (INIS)

    Zhang, Jingqing; Shen, Yifu; Yao, Xin; Xu, Haisheng; Li, Bo

    2014-01-01

    Highlights: • 6061-T6 Al and pure Cu were successfully underwater friction stir lap welded. • The underwater weld was analyzed via comparing with the classical weld. • The oxidation of Cu was prevented via the external water. • The amount of Al–Cu intermetallic was decreased by the external water. • The thickness of Al–Cu diffusion interlayer was decreased by the external water. - Abstract: Friction stir welding (classical FSW) is considered to offer advantages over the traditional fusion welding techniques in terms of dissimilar welding. However, some challenges still exist in the dissimilar friction stir lap welding of the aluminum/copper (Al/Cu) metallic couple, among which the formation of the Al–Cu intermetallic compounds is the major problem. In the present research, due to the fact that the formation and growth of the intermetallic are significantly controlled by the thermal history, the underwater friction stir welding (underwater FSW) was employed for fabricating the weld, and the weld obtained by underwater FSW (underwater weld) was analyzed via comparing with the weld obtained under same parameters by classical FSW (classical weld). In order to investigate the effect of the external water on the thermal history, the K-type thermocouple was utilized to measure the weld temperature, and it is found that the water could decrease the peak temperature and shorten the thermal cycle time. The XRD results illustrate that the interface of the welds mainly consist of the Al–Cu intermetallic compounds such as CuAl 2 and Cu 9 Al 4 together with some amounts of Al and Cu, and it is also found that the amount of the intermetallic in the underwater weld is obvious less than in the classical weld. The SEM images and the EDS line scan results also illustrate that the Al–Cu diffusion interlayer at the Al–Cu interface of the underwater weld was obviously thinner than that of the classical weld

  12. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  13. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  14. Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kato, H.; Ohsuna, T.

    2003-01-01

    Microscopic structures of Cu60Ti10+xZr30-x (x=0 and 10) alloys have been investigated by transmission electron microscopy, x-ray diffraction (XRD) and differential scanning calorimeter (DSC). In the Cu60Ti10Zr30 samples annealed at 708 K for times ranging from 0 to 130 min, where the enthalpy...... of the first exothermic peak decreases by 80%, the corresponding XRD patterns still look similar to that for the as-prepared sample. However, the simulated XRD patterns for the pure Cu51Zr14 phase, which is the crystalline phase formed during the first exothermic reaction, with small grain sizes and defects...... clearly show a broadened amorphous-like feature. This might be the reason that no diffraction peaks from the nanocrystalline component were detected in the XRD patterns recorded for the as-cast or as-spun Cu60Ti10+xZr30-x (x=0 and 10) alloys and for the alloys annealed at lower temperatures, in which...

  15. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  16. Electron paramagnetic resonance investigation of polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mozzati, Maria Cristina [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Azzoni, Carlo Bruno [INFM-Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Capsoni, Doretta [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Bini, Marcella [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy); Massarotti, Vincenzo [Dipartimento di Chimica Fisica ' Mario Rolla' , Universita di Pavia and IENI-CNR, Sezione di Pavia, viale Taramelli 16, I-27100 Pavia (Italy)

    2003-11-05

    Electron paramagnetic resonance (EPR) measurements on pure polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} have been performed and are discussed within a crystal-field approach. A symmetric signal centred at g = 2.15 is observed for T>25 K, with no evidence of hyperfine structure. At this temperature an antiferromagnetic transition is observed as confirmed by static magnetization data. Cu defective and 2% doped (V, Cr, Mn, La) samples were also prepared and considered, mainly to understand the nature of the observed paramagnetic centre. Substitutions in the octahedral sites, causing variations of the configuration in CuO{sub 4}-TiO{sub 6}-CuO{sub 4} complexes, change the magnetic and EPR features. To justify the EPR response a strong copper-hole delocalization is suggested.

  17. Low-temperature synthesis of CuFeO{sub 2} (delafossite) at 70 °C: A new process solely by precipitation and ageing

    Energy Technology Data Exchange (ETDEWEB)

    John, Melanie, E-mail: melanie.john@min.uni-muenchen.de [Section Mineralogy, Petrology & Geochemistry, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Heuss-Aßbichler, Soraya [Section Mineralogy, Petrology & Geochemistry, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Park, So-Hyun [Section Crystallography, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Ullrich, Aladin [Experimental Physics II, University of Augsburg, Universitätsstr. 1, 86159 Augsburg (Germany); Benka, Georg [Physics Department, Technical University Munich, James-Franck-Straße 1, 85748 Garching (Germany); Petersen, Nikolai [Section Geophysics, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstr. 41, 80333 Munich (Germany); Rettenwander, Daniel [Department of Materials Research & Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Horn, Siegfried R. [Experimental Physics II, University of Augsburg, Universitätsstr. 1, 86159 Augsburg (Germany)

    2016-01-15

    This study presents a new low temperature synthesis method to obtain pure delafossite (Cu{sup 1+}Fe{sup 3+}O{sub 2}) at a temperature of 70 °C within 24 h. For the first time delafossite is synthesized solely by precipitation and subsequent ageing process and without usage of any additives controlling the oxidation state of copper. The synthesized material, called LT-delafossite, consists of pure Cu{sup 1+}Fe{sup 3+}O{sub 2} exclusive of any side products. Rietveld analysis confirms the presence of both 3R (space group (SG): R-3m) and 2H (SG: P6{sub 3}/mmc) polytypes in LT-delafossite. Electron microscopy images show nanometer-sized hexagonal plates with a diameter <500 nm and a thickness of <30 nm. Measurements of the magnetic susceptibility from 2 K to 350 K in zero-field show one peak ∼18.5 K, which is attributed to an AFM phase transition. Zero-field-cooled magnetization data between −14 T and +14 T at 2 K revealed an s-shape form around the origin having no remanent magnetization. - Highlights: • New process: low temperature synthesis of pure CuFeO{sub 2} nanoparticles. • Synthesis at 70 °C within 24 h solely by precipitation and ageing. • Nanoparticle characterization by XRD, FTIR, SEM, ICP–OES, TEM and Mößbauer. • Special magnetic properties of nano-sized CuFeO{sub 2} synthesized at low temperatures.

  18. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  19. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Mýrdal, Jón Steinar Garðarsson; Hansen, Heine Anton

    2015-01-01

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core–shell nano-particle consists of a copper core interspersed....... This shows that the mixed Cu135@Au174 core–shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates....... that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles...

  20. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  1. XRD and HREM studies of nanocrystalline Cu and Pd

    International Nuclear Information System (INIS)

    Nieman, G.W.; Weertmen, J.R.; Siegel, R.W.

    1991-01-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate rain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sized range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of ≥2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. In this paper methodology, results and analysis of XRD and HREM experiments are presented

  2. Design of Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Piyong; Wang, Tingting; Zeng, Heping, E-mail: hpzeng@scut.edu.cn

    2017-01-01

    Highlights: • A novel photocatalyst Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} was designed, synthesized and characterized. • Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} was sensitized by Erythrosin B and a significant enhancement of H{sub 2} evolution rate was achieved. • Electrochemical properties were measured and a possible mechanism of H{sub 2} evolution was proposed. - Abstract: Cu-Cu{sub 2}O nanoparticles (NPs) decorated porous graphitic carbon nitride (g-C{sub 3}N{sub 4}) (Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4}) photocatalysts were prepared. When investment of copper source materials in the experiment increased to 7 wt%, the highest H{sub 2} evolution rate (400 μmol g{sup −1} h{sup −1}) was obtained under visible light irradiation in triethanolamine solution. This is about triple of pure g-C{sub 3}N{sub 4} (140 μmol g{sup −1} h{sup −1}). Moreover, various amount of Erythrosin B dye was added into Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} photoreaction solution and a significant enhancement of H{sub 2} production rate was achieved. The highest H{sub 2} production rate was 5000 μmol g{sup −1} h{sup −1} with 5 mg Erythrosin B in photoreaction system. Erythrosin B dye sensitized Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} presented stable photocatalytic H{sub 2} evolution ability and no noticeable degradation or change of photocatalyst were detected after six recycles. A possible photocatalytic mechanism of Erythrosin B dye sensitized Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} for the enhancement of photocatalytic H{sub 2} evolution is proposed.

  3. Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12

    International Nuclear Information System (INIS)

    Capsoni, D.; Bini, M.; Massarotti, V.; Chiodelli, G.; Mozzatic, M.C.; Azzoni, C.B.

    2004-01-01

    The dopant role on the electric and dielectric properties of the perovskite-type CaCu 3 Ti 4 O 12 (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90εr180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07eV is obtained at room temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements

  4. Cu{sub 2}ZnSnS{sub 4} nanoflakes prepared by one step microwave irradiation technique: Effect of Cu concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.; Dahiwale, S. S., E-mail: ssd@physics.unipune.ac.in [Department of Physic, Savitribai Phule Pune University, Pune, 411007 (India)

    2016-05-23

    Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure. Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu{sub 2}S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.

  5. Notes on the ambitwistor pure spinor string

    Czech Academy of Sciences Publication Activity Database

    Lipinski Jusinskas, Renann

    2016-01-01

    Roč. 2016, č. 5 (2016), s. 1-12, č. článku 116. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : ambitwistor string * pure spinor formalism Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  6. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc

    Science.gov (United States)

    Wang, Lijun; Zhang, Xiao; Wang, Yuan; Yang, Ze; Jia, Shenli

    2018-04-01

    The two-dimensional (2D) rotary axisymmetric model is used to describe the formation and development of a cathode spot on a copper-chromium alloy (CuCr) in a vacuum arc. The model includes hydrodynamic equations and the heat transfer equation. Parameters used in this model come from experiments and other researchers' work. The influence of parameters is analyzed, and the simulation results are compared with pure metal simulation results. In simulation, the depth of the cathode crater is from 0.5 μm to 1.1 μm, the radius of the cathode crater is from 1.6 μm to 2.6 μm, the maximum velocity of the droplet is from 200 m/s to 600 m/s, and the maximum temperature is from 3500 K to 5000 K which is located in the area with a radius of 0.5-1.5 μm. The simulation results show that a smooth cathode surface is advantageous for reducing ablation, the ablation on the CuCr alloy is smaller than that on the pure metal cathode electrode, and the cathode spot appears on the chromium grain only on CuCr. The simulation results are in good agreement with the experiment.

  7. Origin of ferroelectricity and exotic magnetism in frustrated LiCuVO4

    Science.gov (United States)

    Mourigal, Martin

    2013-03-01

    The spin-1/2 Heisenberg chain with competing ferromagnetic nearest-neighbor (J1) and antiferromagnetic next-nearest neighbor (J2) interactions is probably one the simplest, yet richest model in frustrated magnetism. It is experimentally realized in a diversity of Mott insulators, in particular in copper-oxide materials built-up from edge-sharing CuO6 octahedra. The quasi-1D compound LiCuVO4 stands out for the diverse emergent magnetic and multiferroic phenomena it displays, its simple crystal structure and its availability as high-quality single crystals. I will review recent elastic neutron scattering works on LiCuVO4 which elucidate the nature of its ground-state as a function of applied electric field and magnetic field up to 14 T. Below 3.5 T, a model long-range ordered ferroelectric spin-cycloid is unveiled, its chirality fully controlled by an applied electric field, and the corresponding magnetoelectric coupling in excellent agreement with the predictions of a purely electronic mechanism based on spin currents. Above 8 T, a transition to a new quantum state is observed. This new phase resembles the longitudinal density-wave of magnon-pairs (p=2 SDW) predicted in the purely 1D case but is characterized by the intriguing absence of long-ranged dipolar correlations. Work performed at the Institut Laue-Langevin in Grenoble and in collaboration with M. Enderle, B. Fåk, R. K. Kremer and J. Law.

  8. Luminescence properties of pure and doped CaSO{sub 4} nanorods irradiated by 15 MeV e-beam

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: nsalah@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alharbi, Najlaa D. [Sciences Faculty for Girls, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Enani, Mohammad A. [Dept. of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-01-15

    Calcium sulfate (CaSO{sub 4}) doped with proper activators is a highly sensitive phosphor used in different fields mainly for radiation dosimetry, lighting and display applications. In this work pure and doped nanorods of CaSO{sub 4} were produced by the co-precipitation technique. Samples from this material doped with Ag, Cu, Dy, Eu and Tb were exposed to different doses of 15 MeV e-beam and studied for their thermoluminesence (TL) and photoluminescence (PL) properties. Color center formation leading to PL emissions were investigated before and after e-beam irradiation. The samples doped with rare earths elements (i.e. Dy, Eu and Tb) were observed to have thinner nanorods than the other samples and have higher absorption in the UV region. The Ag and Tb doped samples have poor TL response to e-beam, while those activated by Cu, Dy and Eu have strong glow peaks at around 123 °C. Quite linear response curves in the whole studied exposures i.e. 0.1–100 Gy were also observed in Cu and Dy doped samples. The PL results show that pure CaSO{sub 4} nanorods have active color centers without irradiation, which could be enriched/modified by these impurities mainly rare earths and further enhanced by e-beam irradiation. Eu{sup 3+} → Eu{sup 2+} conversion is clearly observed in Eu doped sample after e-beam irradiation. These results show that these nanorods might be useful in lighting and display devices development.

  9. Properties and distribution of pure GA-sequences of mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Guenter Albrecht-Buehler

    Full Text Available The article describes DNA sequences of mammalian genomes that are longer than 50 bases, but consist exclusively of G's and A's ('pure GA-sequences'. Although their frequency of incidence should be 10(-16 or smaller, the chromosomes of human, chimpanzee, dog, cat, rat, and mouse contained many tens of thousands of them ubiquitously located along the chromosomes with a species-dependent density, reaching sizes of up to 1300 [b]. With the exception of a small number of poly-A-, poly-G-, poly-GA-, and poly-GAAA-sequences (combined <0.5%, all pure GA-sequences of the mammals tested were unique individuals, contained several repeated short GA-containing motifs, and shared a common hexa-nucleotide spectrum. At most 2% of the human GA-sequences were transcribed into mRNAs; all others were not coding for proteins. Although this could have made them less subject to natural selection, they contained many [corrected] times fewer point mutations than one should expect from the genome at large. As to the presence of other sequences with similarly restricted base contents, there were approximately as many pure TC-sequences as pure GA-sequences, but many fewer pure AC-, TA, and TG-sequences. There were practically no pure GC-sequences. The functions of pure GA-sequences are not known. Supported by a number of observations related to heat shock phenomena, the article speculates that they serve as genomic sign posts which may help guide polymerases and transcription factors to their proper targets, and/or as spatial linkers that help generate the 3-dimensional organization of chromatin.

  10. Microstructure Evolution and Texture Development in a Cu-8.5%AT. AL Material Subjected to Hydrostatic Extrusion

    Directory of Open Access Journals (Sweden)

    Jakubowska D.

    2016-06-01

    Full Text Available The aim of the present paper was to investigate microstructure and texture evolution of two single crystals and polycrystal of Cu-8.5%at.Al material. All of mentioned samples were deformed by HE to achieve true strain ε = 1.17. For microstructure analyzes observations by transmission electron microscope (STEM were done. Crystalline size for samples after SPD were determine using XRD method. The global texture measurements were done using Bruker D8 Discover diffractometer equipped in Cr radiation. Microstructure investigations revealed nanocrystalline structure in single crystals with initial orientations and and polycrystalline Cu-8.5%at.Al material after SPD. The global texture measurements have shown the stability of initial orientation of Cu-8.5%at.Al single crystal after HE, whereas the same SPD process strongly brakes up the orientation Cu-8.5%at. Al single crystal.

  11. Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion

    Science.gov (United States)

    An, X. H.; Lin, Q. Y.; Wu, S. D.; Zhang, Z. F.; Figueiredo, R. B.; Gao, N.; Langdon, T. G.

    2011-09-01

    Disks of pure Cu and several Cu-Al alloys were processed by high-pressure torsion (HPT) at room temperature through different numbers of turns to systematically investigate the influence of the stacking fault energy (SFE) on the evolution of microstructural homogeneity. The results show there is initially an inhomogeneous microhardness distribution but this inhomogneity decreases with increasing numbers of turns and the saturation microhardness increases with increasing Al concentration. Uniform microstructures are more readily achieved in materials with high or low SFE than in materials with medium SFE, because there are different mechanisms governing the microstructural evolution. Specifically, recovery processes are dominant in high or medium SFE materials, whereas twin fragmentation is dominant in materials having low SFE. The limiting minimum grain size (d min) of metals processed by HPT decreases with decreasing SFE and there is additional evidence suggesting that the dependence of d min on the SFE decreases when the severity of the external loading conditions is increased.

  12. Phase controlled solvothermal synthesis of Cu{sub 2}ZnSnS{sub 4}, Cu{sub 2}ZnSn(S,Se){sub 4} and Cu{sub 2}ZnSnSe{sub 4} Nanocrystals: The effect of Se and S sources on phase purity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Mou [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, 62580 Temixco, Morelos (Mexico); Instituto de Física, BUAP, Av. San Claudio y Blvd. 18 Sur Col. San Manuel, Ciudad Universitaria, C.P. 72570, Puebla (Mexico); Mathews, N.R. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, 62580 Temixco, Morelos (Mexico); Paraguay-Delgado, F. [Departamento de Materiales Nanoestructurados, Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua (Mexico); Mathew, X., E-mail: xm@ier.unam.mx [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, 62580 Temixco, Morelos (Mexico)

    2015-09-15

    In this study, we have reported the synthesis of Cu{sub 2}ZnSnSe{sub 4} (CZTSe), Cu{sub 2}ZnSnS{sub 4} (CZTS) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) nanocrystals with tunable band gap and composition obtained by solvothermal method. The crystalline structure, composition, morphology and optical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Raman scattering, energy dispersive X-ray spectroscopy, transmission electron microscopy and diffuse reflectance (DR) spectroscopy. While the XRD patterns of CZTS and CZTSe nanoparticles prepared with elemental S/Se powder revealed the presence of phase pure nanoparticles, the CZTSSe nanoparticles obtained using a mixture of S and Se, were found to contain many secondary phases under the same synthesis protocol. Formation of impurity phases in CZTSSe sample, can be avoided by using a mixture of 1-dodecanethiol (DT; CH{sub 3}(CH{sub 2}){sub 11}SH)/oleylamine (OLA) instead of S powder and following the same experimental procedure. The incorporation of S in CZTSe nanocrystals prepared in presence of DDT/OLA mixture was confirmed through structural and optical characterizations. The optical properties of the quaternary chalcogenide nanocrystals were found to vary with the chemical composition of the material. - Highlights: • Solvothermal synthesis of CZTS, CZTSSe and CZTSe nanocrystals and discussion on possible formation mechanism. • Use of dodecanethiol/oleylamine mixture to synthesize phase-pure CZTSSe nanocrystals. • Formation of impurity phases can be controlled with proper S and Se sources.

  13. AuCu@Pt Nanoalloys for Catalytic Application in Reduction of 4-Nitrophenol

    Directory of Open Access Journals (Sweden)

    Sadia Mehmood

    2016-01-01

    Full Text Available To enhance and optimize nanocatalyst ability for nitrophenol (4-NP reduction reaction we look beyond Au-metal nanoparticles and describe a new class of Au nanoalloys with controlled composition for core of AuCu-metals and Pt-metal shell. The reduction of 4-NP was investigated in aqueous media spectroscopically on 7.8 nm Au nanospheres (AuNSs, 8.3 nm AuCuNSs, and 9.1 nm AuCu@Pt core-shell NSs in diameter. The rate constants of the catalyzed reaction at room temperature, activation energies, and entropies of activation of reactions catalyzed by the AuCu@Pt core-shell NSs are found to have different values to those of the pure metal NSs. The results strongly support the proposal that catalysis by nanoparticles is taking place efficiently on the surface of NSs. These core-shell nanocatalysts exhibited stability throughout the reduction reaction and proved that heterogonous type mechanisms are most likely to be dominant in nanoalloy based catalysis if the surface of the NSs is not defected upon shell incorporation.

  14. Origin of the Distinct Diffusion Behaviors of Cu and Ag in Covalent and Ionic Semiconductors.

    Science.gov (United States)

    Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wei, Su-Huai

    2016-10-14

    It is well known that Cu diffuses faster than Ag in covalent semiconductors such as Si, which has prevented the replacement of Ag by Cu as a contact material in Si solar cells for reducing the cost. Surprisingly, in more ionic materials such as CdTe, Ag diffuses faster than Cu despite that it is larger than Cu, which has prevented the replacement of Cu by Ag in CdTe solar cells to improve the performance. But, so far, the mechanisms behind these distinct diffusion behaviors of Cu and Ag in covalent and ionic semiconductors have not been addressed. Here we reveal the underlying mechanisms by combining the first-principles calculations and group theory analysis. We find that the symmetry controlled s-d coupling plays a critical role in determining the diffusion behaviors. The s-d coupling is absent in pure covalent semiconductors but increases with the ionicity of the zinc blende semiconductors, and is larger for Cu than for Ag, owing to its higher d orbital energy. In conjunction with Coulomb interaction and strain energy, the s-d coupling is able to explain all the diffusion behaviors from Cu to Ag and from covalent to ionic hosts. This in-depth understanding enables us to engineer the diffusion of impurities in various semiconductors.

  15. Significant enhancement in volumetric and gravimetric capacitance of Cu-TiO2/PPY composite for supercapacitor application

    Science.gov (United States)

    Purty, B.; Choudhary, R. B.

    2018-04-01

    Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.

  16. Ab initio Assessment of Bi1-xRExCuOS (RE=La, Gd, Y, Lu) Solid Solution as Semiconductor for Photochemical Water Splitting

    KAUST Repository

    Lardhi, Sheikha F.

    2017-04-12

    The investigation of BiCuOCh (Ch = S, Se and Te) semiconductors family for thermoelectric or photovoltaic materials is an increasing topic of research. These materials can also be considered for photochemical water splitting if one representative having a bandgap, Eg, around 2 eV can be developed. With this aim, we simulated the solid solution Bi1-xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (Eg~1.1 eV) to pure RECuOS compositions (Eg~2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, a large variety of properties were computed for each system including bandgap, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting application. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.

  17. Ab initio Assessment of Bi1-xRExCuOS (RE=La, Gd, Y, Lu) Solid Solution as Semiconductor for Photochemical Water Splitting

    KAUST Repository

    Lardhi, Sheikha F.; Curutchet, Antton; Cavallo, Luigi; Harb, Moussab; Le Bahers, Tangui

    2017-01-01

    The investigation of BiCuOCh (Ch = S, Se and Te) semiconductors family for thermoelectric or photovoltaic materials is an increasing topic of research. These materials can also be considered for photochemical water splitting if one representative having a bandgap, Eg, around 2 eV can be developed. With this aim, we simulated the solid solution Bi1-xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (Eg~1.1 eV) to pure RECuOS compositions (Eg~2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, a large variety of properties were computed for each system including bandgap, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting application. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.

  18. Fabrication of friction-reducing texture surface by selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs)

    Science.gov (United States)

    Wang, Xinjian; Liu, Junyan; Wang, Yang; Fu, Yanan

    2017-02-01

    This paper reports a process of selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs) for the fabrication of full dense Cu friction-reducing texture on the metallic surface in ambient condition. This technique synthesizes pure Cu by chemical reduction route using an organic solvent during laser melting in the atmosphere environment, and provides a flexible additive manufacture approach to form complex friction-reduction texture on the metallic surface. Microtextures of ring and disc arrays have been fabricated on the stainless steel surface by SLM-IP Cu NPs. The friction coefficient has been measured under the lubricating condition of the oil. Disc texture surface (DTS) has a relatively low friction coefficient compared with ring texture surface (RTS), Cu film surface (Cu-FS) and the untreated substrate. The study suggests a further research on SLM-IP approach for complex microstructure or texture manufacturing, possibly realizing its advantage of flexibility.

  19. Breakdown conditioning of copper, CuZr and GlidCop® : effect of mechanical surface treatments

    CERN Document Server

    Ramsvik, T; Calatroni, S; Taborelli, M; CERN. Geneva. TS Department

    2007-01-01

    Motivated by the need of novel materials for the CLIC accelerating structures to resist mechanical fatigue, the copper based metals Copper Zirconium C15000 (CuZr) and GlidCop® Al-15 C15715 have been investigated by DC breakdown measurements, and compared with commercially pure Oxygen-free Copper C10100 (Cu-OFE). In all three cases the saturated breakdown fields (Esat) are similar, despite significant differences in their tensile strengths. In addition, the choice of mechanical surface preparation techniques influences the final breakdown characteristics. For both CuZr and GlidCop® immediate conditioning takes place when the surfaces are prepared by milling. For electro discharge machined (EDM) surfaces, however, several breakdown events are needed to obtain saturation. Specifically, for EDM treated CuZr and GlidCop®, ~50 and ~200 breakdown events are required to reach Esat.

  20. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  1. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    Science.gov (United States)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  2. Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure

    Science.gov (United States)

    Liu, Xiaohui; Xu, Meng; Zhang, Xijian; Wang, Weiguang; Feng, Xianjin; Song, Aimin

    2018-03-01

    Low-resistivity, single-crystalline Cu2O films were realized on MgO (110) substrates through manipulating the oxygen pressure (PO2) of pulsed-laser deposition. X-ray diffraction and high resolution transmission electron microscopy measurements revealed that the films deposited at PO2 of 0.06 and 0.09 Pa were single phase Cu2O and the 0.09-Pa-deposited film exhibited the best crystallinity with an epitaxial relationship of Cu2O (110)∥MgO (110) with Cu2O (001)∥MgO (001). The pure phase Cu2O films exhibited higher transmittances and larger band gaps with an optical band gap of 2.56 eV obtained for the 0.09 Pa-deposited film. Hall-effect measurements demonstrated that the Cu2O film deposited at 0.09 Pa had the lowest resistivity of 6.67 Ω cm and highest Hall mobility of 23.75 cm2 v-1 s-1.

  3. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  4. Unexpected large room-temperature ferromagnetism in porous Cu{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-05-15

    Porous Cu{sub 2}O films have been fabricated on porous anodic alumina substrates using DC-reactive magnetron sputtering with pure Cu targets, and unexpectedly large room temperature ferromagnetism has been observed in the films. The maximum saturation magnetic moment along the out-of-plane direction was as high as 94 emu/cm{sup 3}. Photoluminescence spectra show that the ferromagnetism originates with oxygen vacancies. The ferromagnetism could be adjusted by changing the concentration of oxygen vacancies through annealing in an oxygen atmosphere. These observations suggest that the origin of the ferromagnetism is due to coupling between oxygen vacancies with local magnetic moments in the porous Cu{sub 2}O films, which can occur either directly through exchange interactions between oxygen vacancies, or through the mediation of conduction electrons. Such a ferromagnet without the presence of any ferromagnetic dopant may find applications in spintronic devices. - Highlights: • Porous Cu{sub 2}O films were deposited on porous anodic alumina (PAA) substrates. • Significant room-temperature ferromagnetism has been observed in porous Cu{sub 2}O films. • Ferromagnetism of Cu{sub 2}O films exhibited different magnetic signals with the field. • The saturation magnetization is 94 emu/cm{sup 3} with an out-of-plane.

  5. Dynamic Hydrogen Production from Methanol/Water Photo-Splitting Using Core@Shell-Structured CuS@TiO2 Catalyst Wrapped by High Concentrated TiO2 Particles

    Directory of Open Access Journals (Sweden)

    Younghwan Im

    2013-01-01

    Full Text Available This study focused on the dynamic hydrogen production ability of a core@shell-structured CuS@TiO2 photocatalyst coated with a high concentration of TiO2 particles. The rectangular-shaped CuS particles, 100 nm in length and 60 nm in width, were surrounded by a high concentration of anatase TiO2 particles (>4~5 mol. The synthesized core@shell-structured CuS@TiO2 particles absorbed a long wavelength (a short band gap above 700 nm compared to that pure TiO2, which at approximately 300 nm, leading to easier electronic transitions, even at low energy. Hydrogen evolution from methanol/water photo-splitting over the core@shell-structured CuS@TiO2 photocatalyst increased approximately 10-fold compared to that over pure CuS. In particular, 1.9 mmol of hydrogen gas was produced after 10 hours when 0.5 g of 1CuS@4TiO2 was used at pH = 7. This level of production was increased to more than 4-fold at higher pH. Cyclic voltammetry and UV-visible absorption spectroscopy confirmed that the CuS in CuS@TiO2 strongly withdraws the excited electrons from the valence band in TiO2 because of the higher reduction potential than TiO2, resulting in a slower recombination rate between the electrons and holes and higher photoactivity.

  6. Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals

    International Nuclear Information System (INIS)

    Addala, S.; Bouhdjer, L.; Halimi, O.; Boudine, B.; Sebais, M.; Chala, A.; Bouhdjar, A.

    2013-01-01

    A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV—visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV—visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (ΔE g = 1 eV) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement. (interdisciplinary physics and related areas of science and technology)

  7. One novel material with high visible-light activity: hexagonal Cu flakelets embedded in the petals of BiOBr flower-nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuling; Wu, Qingsheng, E-mail: qswu@tongji.edu.cn [Tongji University, School of Chemical Science and Engineering (China)

    2017-02-15

    The novel BiOBr flower-nanospheres embedded by hexagonal Cu have been synthesized successfully through an ingenious design, by one-step solvothermal process with two kinds of bifunctional reagents, namely, 1-hexadecyl-3-methylimidazolium bromide [C{sub 16}min]Br and ethylene glycol (EG). Pure BiOBr flower-sphere has been synthesized by solvothermal process. In the result of Cu-embedded BiOBr flower-nanospheres, the diameter of the flower-sphere is about 1.5 μm (±0.1) with hexagon copper about 10-nm side length in the petals of BiOBr flower-nanospheres. The Cu-embedded BiOBr composites exhibit high photocatalytic activity than pure BiOBr, which was investigated by the degradation of rhodamine B solution (RhB) and methyl orange solution (MO) under simulative visible-light irradiation. Nearly 100 and 80% of conversion can be achieved from the degradation of RhB and MO after 1.5 h, respectively. The high ability of photocatalysis may be attributed to the narrow-band-gap semiconductor BiOBr, high electron transportation of copper, and the coupling of Cu and BiOBr. It can lead to the strong absorption in the visible region and improve the separation of photogenerated electron–hole pairs.

  8. Preparation and characterization of CuInSe2 particles via the hydrothermal route for thin-film solar cells

    International Nuclear Information System (INIS)

    Wu, Chung-Hsien; Chen, Fu-Shan; Lin, Shin-Hom; Lu, Chung-Hsin

    2011-01-01

    Highlights: → A new hydrothermal process for preparing copper indium diselenide (CuInSe 2 ). → Well-crystallized CuInSe 2 particles are obtained at 180 deg. C for 1 h. → Densified CuInSe 2 thin films are prepared from ink printing. → Increasing temperatures result in an improvement of properties of CuInSe 2 films. - Abstract: CuInSe 2 powders with a chalcopyrite structure used in thin-film solar cells were successfully prepared via a hydrothermal method at low temperatures within short durations. Well-crystallized CuInSe 2 particles were formed via the hydrothermal reaction at 180 deg. C for 1 h. The concentrations of stabilizer, triethanolamine (TEA), significantly affected the purity, morphology and particle sizes of the prepared powders. Increasing the reaction duration and temperatures led to decrease the amount of second phase In(OH) 3 and resulted in the formation of pure CuInSe 2 . Densified CuInSe 2 thin films were prepared from ink printing with the addition of the flux. Increasing the selenization temperatures increased the grain size and improved the crystallinity of CuInSe 2 films.

  9. Swelling of pure copper and copper alloys after high fluence irradiation in FFTF [Fast Flux Test Facility] at approximately 4500C

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-03-01

    The swelling of pure copper and various copper-base alloys has been determined at 47.2 dpa after irradiation in FFTF-MOTA at ∼450 0 C. Data are also becoming available at 63.3 dpa. The alloys tend to fall into two broad categories, those that swell appreciably, sometimes with an S-shaped behavior, and those that resist swelling to very high neutron exposures. It appears that copper may have an intrinsic swelling rate of ∼1%/dpa that is often not reached due to its tendency toward saturation of swelling. The most swelling-resistant alloys examined to date are CuAl25, MZC and Cu-2.0Be

  10. Color Spectrum Properties of Pure and Non-Pure LATEX in Discriminating Rubber Clone Series

    International Nuclear Information System (INIS)

    Noor Aishah Khairuzzaman; Hadzli Hashim; Nina Korlina Madzhi; Noor Ezan Abdullah; Faridatul Aima Ismail; Ahmad Faiz Sampian; Azhana Fatnin Che Will

    2015-01-01

    A study of color spectrum properties for pure and non-pure latex in discriminating rubber clone series has been presented in this paper. There were five types of clones from the same series being used as samples in this study named RRIM2002, RRIM2007, RRIM2008, RRIM2014, and RRIM3001. The main objective is to identify the significant color spectrum (RGB) from pure and non-pure latex that can discriminate rubber clone series. The significant information of color spectrum properties for pure and non-pure latex is determined by using spectrometer and Statistical Package for the Social Science (SPSS). Visible light spectrum (VIS) is used as a radiation light of the spectrometer to emit light to the surface of the latex sample. By using SPSS software, the further numerical analysis of color spectrum properties is being conducted. As the conclusion, blue color spectrum for non-pure is able to discriminate for all rubber clone series whereas only certain color spectrum can differentiate several clone series for pure latex. (author)

  11. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    International Nuclear Information System (INIS)

    Samavati, Alireza; Nur, Hadi; Othaman, Z; Ismail, A F; Mustafa, M K

    2016-01-01

    Zn 1−x Cu x O (x = 0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% ( x = 0.05). However, the peak corresponding to CuO for x = 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30–52 nm. Doping Cu creates the Cu–O–Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping. (paper)

  12. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation

    Science.gov (United States)

    Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.

    2018-05-01

    Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.

  13. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    International Nuclear Information System (INIS)

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-01-01

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes

  14. Trace element determination in tomato puree using particle induced X-ray emission and Rutherford backscattering

    International Nuclear Information System (INIS)

    Romero-Davila, E.; Miranda, J.

    2004-01-01

    Particle induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were used to determine the concentrations of trace elements in samples of 12 tomato puree brands sold in the Mexican market. While RBS offered information about the main elements present in the matrix, PIXE gave results on trace elements. As a whole, data for 17 elements (C, N, O, Na, Mg, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn) were obtained. To evaluate the results, a comparison with brands from USA, Japan, Colombia, and Chile was carried out, using tomato purees produced following the domestic technology recipe. Additionally, the results were considered in the light of the Codex Alimentarius and the Mexican standard. It was found that all of the brands fall within the limits established by these standards, being of the same order of magnitude as the foreign brands. (author)

  15. Superconductivity in the Sr-Ca-Cu-O system and the phase with infinite-layer structure

    International Nuclear Information System (INIS)

    Shaked, H.; Shimakawa, Y.; Hunter, B.A.; Hitterman, R.L.; Jorgensen, J.D.; Han, P.D.; Payne, D.A.

    1995-01-01

    Superconductivity and structure in samples of (Sr,Ca)CuO 2 with the infinite-layer structure, prepared by high-pressure synthesis, have been studied using magnetic susceptibility measurements, small angle x-ray diffraction, and neutron diffraction. It is found that the superconducting (T c ∼100 K) samples in this system are phase impure and contain, in addition to the infinite-layer phase, members of the two homologous series Sr n-1 Cu n+1 O 2n (n=3,5,...; orthorhombic), and Sr n+1 Cu n O 2n+1+δ (n=1,2,...; tetragonal), as minor phases. Samples with larger phase fractions of the Sr n+1 Cu n O 2n+1+δ compounds showed higher superconducting fractions. Phase-pure infinite-layer samples are not superconducting. Based on these results, and results previously published in the literature, it is proposed that the superconductivity in these infinite-layer samples comes from the tetragonal Sr n+1 Cu n O 2n+1+δ compounds, not from the phase with the infinite-layer structure

  16. How Ego-threats Facilitate Contracts Based on Subjective Evaluations

    DEFF Research Database (Denmark)

    Sebald, Alexander; Walzl, Markus

    We show that individuals' desire to protect their self-esteem against ego-threatening feedback can mitigate moral hazard in environments with purely subjective performance evaluations. In line with evidence from social psychology we assume that agents' react aggressively to evaluations by the pri......We show that individuals' desire to protect their self-esteem against ego-threatening feedback can mitigate moral hazard in environments with purely subjective performance evaluations. In line with evidence from social psychology we assume that agents' react aggressively to evaluations...

  17. Sensors of the gas CO in thin film of SnO2:Cu

    International Nuclear Information System (INIS)

    Tirado G, S.; Sanchez Z, F. E.

    2011-10-01

    Thin films of SnO 2 :Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO 2 were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO 2 :Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO 2 :Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  18. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  19. Development and application of W/Cu flat-type plasma facing components at ASIPP

    Science.gov (United States)

    Li, Q.; Zhao, S. X.; Sun, Z. X.; Xu, Y.; Li, B.; Wei, R.; Wang, W. J.; Qin, S. G.; Shi, Y. L.; Xie, C. Y.; Wang, J. C.; Wang, X. L.; Missirlian, M.; Guilhem, D.; Liu, G. H.; Yang, Z. S.; Luo, G.-N.

    2017-12-01

    W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m-2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m-2, which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon.

  20. Development and application of W/Cu flat-type plasma facing components at ASIPP

    International Nuclear Information System (INIS)

    Li, Q; Sun, Z X; Xu, Y; Li, B; Wei, R; Wang, W J; Xie, C Y; Wang, J C; Wang, X L; Yang, Z S; Luo, G-N; Zhao, S X; Qin, S G; Shi, Y L; Liu, G H; Missirlian, M; Guilhem, D

    2017-01-01

    W/Cu flat-type plasma facing components (PFCs) were widely used in divertor of fusion device because of its advantages, such as low cost, light in weight and good machinability. However, it is very difficult to manufacture them due to the large mismatch between the thermo-mechanical properties of W and Cu. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) has successfully developed W/Cu flat-type PFCs for EAST W/Cu divertor project by hot isostatic pressing (HIP) technology. This paper presents the development and application of W/Cu flat-type PFCs at ASIPP. The optimized manufacturing process is to cast pure copper onto the rear side of W tiles at temperature of 1200 °C firstly, and then to HIP the W/Cu tiles onto CuCrZr heat sink at temperature of 600 °C, pressure of 150 MPa and duration of 3 h. W/Cu flat-type testing mock-up for EAST survived 1000 cycles at heat load of 5 MW m −2 in high heat flux tests. And then ASIPP prepared two mock-ups for CEA’s tungsten environment in steady-state tokamak (WEST) project. One mock-up withstood successfully 302 cycles of 20 MW m −2 , which are far beyond the design requirement. Since 2014, W/Cu flat-type PFCs were wildly used in EAST upper divertor as baffle and dome components which showed excellent performance in 2015 and 2016 campaigns. Given the success in EAST upper divertor, W/Cu flat-type concept is as well applied in the design of actively cooled Langmuir probes which will be mounted onto EAST divertor targets soon. (paper)

  1. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  2. Continuous amorphization of Cu-Zr studied by positron lifetime

    International Nuclear Information System (INIS)

    Wilde, G.; Wuerschum, R.; Rabitsch, H.; Puff, W.

    2006-01-01

    Full text: Solid state amorphization by cold-rolling represents an attractive alternative to commonly used ball-milling. The present work aimed at a free volume study of the process of amorphization. To study the amorphization process binary Cu-Zr alloys were mechanically intermixed by cold rolling. Foils of pure Cu and Zr were stacked to form arrays of composition Cu 60 Zr 40 and folded four times. The folded samples were rolled at a strain rate of approximately 0.1 s -1 to a thickness of about 80 μm and then folded to double the thickness and rolled again to a minimum thickness of 80 μm. This procedure was repeated until the final material was cold-rolled for up to 80 passes. The microstructural changes during cold-rolling were investigated at different stages of the mechanical intermixing process by positron lifetime and 2-dimensional Doppler broadening measurements. The obtained Doppler results are discussed analysing the S-W-plot as well as a two-component fit and the shape of the ratio curves. Finally the results are compared to the lifetime results. (author)

  3. Deuterium transport in Cu, CuCrZr, and Cu/Be

    Science.gov (United States)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.

    This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.

  4. Microscopic studies on Y2Ba4Cu7O15-δ by use of TEM and NQR techniques

    International Nuclear Information System (INIS)

    Kato, Masaki; Nakanishi, Makoto; Yoshimura, Kazuyoshi; Kosuge, Koji; Miyano, Toshio; Kakihana, Masato

    1998-01-01

    Y 2 Ba 4 Cu 7 O 15-δ compounds were characterized by microscopic investigation using TEM and NQR techniques. The authors synthesized Y247 compounds by two kinds of preparation methods: the conventional solid-state reaction (sample A) and the polymerized-complex method (sample B). The value of T c for sample A was found o be 65 K and that for sample B as 93 K by ac-χ measurements. As a result of TEM experiments, stacking faults along the c axis were observed more frequently in sample B than in sample A. These stacking faults resulted in microdomains containing pure Y123 or Y124 thin blocks of several unit cells. NQR experiments revealed that the microscopic environment of Cu(2) sites in sample A differed from either of those in the Y123 and Y124 compounds. NQR frequency values (ν Q ) of Cu(2) sites agreed well with those calculated by the point charge model applied for the Y247 structure. The spectra of Cu(2) sites in sample B could be regarded, however, as a combination of those of pure Y123, Y124, and also Y247 compounds. This fact was coincident with the result of TEM experiments. The authors concluded that the superconductivity of Y247 with higher T c originates from the thin block of Y123

  5. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  6. Effect of microstructural variation on the Cu/CK45 carbon steel friction weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.B.; Jung, S.B. [Advanced Materials and Process Research Center for IT, Sungkyunkwan Univ., Gyounggi-do (Korea)

    2003-12-01

    The mechanical properties of friction-welded pure Cu/CK45 carbon steel joints have been studied. The joint strength increased with increasing upset pressure till it reached a critical value. However, the joint strength was fixed at a low strength with increasing friction time, compared to that of the Cu base metal. The hardness near the interface at the Cu side was softer than that of the base metal due to the dynamically recrystallized and annealed grain. The width of the softened region became wider with increasing friction time and decreasing upset pressure. But the hardness of the CK45 carbon steel side showed a slightly higher value than that of the base metal. This result was explained by the formation of martensite structure at the CK45 carbon steel side during the welding process. (orig.)

  7. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  8. Microstructure, Mechanical and Tribological Properties of Ag/Bi2Sr2CaCu2O x Self-lubricating Composites

    Science.gov (United States)

    Tang, Hua; Zhang, Du; Wang, Yuqi; Zhang, Yi; Ji, Xiaorui; Song, Haojie; Li, Changsheng

    2014-01-01

    Ag/Bi2Sr2CaCu2O x self-lubricating composites were successfully fabricated by a facile powder metallurgy method. The structure and morphology of the as-synthesized composites and the worn surface after tribometer testing are characterized by using X-ray diffraction and scanning electron microscopy together with energy dispersive spectrometry. The results indicated that self-lubricating composites are composed of superconductor phase and Ag phase. Moreover, the effects of Ag on mechanical and tribological properties of the novel composites were investigated. The friction test results showed that the friction coefficient of the pure Bi2212 against stainless steel is about 0.40 at ambient temperature and abruptly decreases to about 0.17 when the temperature is cooled to 77 K. The friction coefficients of the composites from room temperature to high temperature were lower and more stable than those of pure Bi2Sr2CaCu2O x . When the content of Ag is 10 wt.%, the Ag/Bi2Sr2CaCu2O x composites exhibited excellent tribological performance, the improved tribological properties are attributed to the formation of soft metallic Ag films at the contacted zone of the composites.

  9. Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure

    International Nuclear Information System (INIS)

    Cressault, Y; Gleizes, A

    2013-01-01

    This article is devoted to the calculation of the net emission coefficient (NEC) of Ar–Al, Ar–Fe and Ar–Cu mixtures at atmospheric pressure for arc welding processes. The results are given in data tables for temperatures between 3 kK and 30 kK, for five plasma thicknesses (0, 0.5, 1, 2, 5 mm) and ten concentrations of metallic vapours (pure gas, 0.01%, 0.1%, 1%, 5%, 10%, 25%, 50%, 75% and pure metal vapours in mass proportions). The results are in good agreement with most of the works published on the subject for such mixtures. They highlight the influence of three parameters on the radiation of the plasma: the NEC is directly related to temperature and inversely related to plasma radius and is highly sensitive to the presence of metal vapours. Finally, numerical data are supplied in tables in order to develop accurate computational modelling of welding arc and to estimate both qualitatively and quantitatively the influence of each metallic vapour on the size and on the shape of the weld pool. (paper)

  10. Non-critical pure spinor superstrings

    International Nuclear Information System (INIS)

    Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon

    2007-01-01

    We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux

  11. Heterojunction p-Cu2O/ZnO-n solar cell fabricated by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Christophe Tenailleau

    2017-09-01

    Full Text Available Abstract Cuprous oxide and zinc oxide nanoparticles were prepared at room temperature by inorganic polycondensation. X-ray diffraction (XRD analyses show that the oxide phases formed are pure and well crystallized. The spark plasma sintering (SPS technique was successfully used to prepare dense nanoceramics with superimposed layers of Cu2O and ZnO nanopowders. Sintering conditions were optimized to densify the ceramics without phase transformation or diffusion. These ceramics were also characterized by XRD and scanning electron microscopy (SEM, as well as X-ray computed tomography (XCT. SEM and XCT showed that nanograins are preserved after SPS throughout both oxide materials, while a smaller layer (~20 µm of pure oxide phase with larger grains is formed in between Cu2O and ZnO during the sintering process. The SPS technique results in high material density, with the absence of porosity and cracks, homogenous distribution, and a good phase separation. This is the first time that such as-prepared dense oxide-based heterojunction exhibits a photovoltaic effect under illumination opening a new route for preparing solar cells.

  12. Atmospheric deterioration of clean surface of epitaxial (001)-YBaCuO films studied by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Ohara, Tomoyuki; Sakuta, Ken; Kamishiro, Makio; Kobayashi, Takeshi

    1991-01-01

    The effects of gas exposure on the clean surface of the epitaxial YBaCuO thin films were closely investigated using the low-energy electron diffraction (LEED) method. The clean surface was obtained by in-vacuum annealing at 500degC. Once the clean surface was exposed to air, even at room temperature, the LEED spots disappeared or sometimes became faint. To ensure the degradation mechanism of the YBaCuO clean surface, the specimens were exposed to pure O 2 and N 2 gases separately and measured by LEED. As a result, it was found that O 2 is very safe but N 2 serves as a poisonous gas for the YBaCuO clean surface. (author)

  13. Entanglement dynamics of a pure bipartite system in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-10-28

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  14. Entanglement dynamics of a pure bipartite system in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M

    2008-01-01

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  15. Mechanical and Thermal Properties of Pulsed Electric Current Sintered (PECS) Cu-Diamond Compacts

    Science.gov (United States)

    Ritasalo, Riina; Kanerva, Ulla; Ge, Yanling; Hannula, Simo-Pekka

    2014-04-01

    In this work, dispersion strengthening of copper by diamonds is explored. In particular, the influence of 50- and 250-nm diamonds at contents of 3 and 6 vol. pct on the mechanical and thermal properties of pulsed electric current sintered (PECS) Cu composites is studied. The composite powders were prepared by mechanical alloying in argon atmosphere using a high-energy vibratory ball mill. The PECS compacts prepared had high density (>97 pct of T.D.) with quite evenly distributed diamonds. The effectiveness of dispersoids in increasing the microhardness was more pronounced at a smaller particle size and larger volume fraction, explained by Hall-Petch and Orowan strengthening models. The microhardness of Cu with 6 and 3 vol. pct nanodiamonds and pure sm-Cu (submicron-sized Cu) was 1.77, 1.46, and 1.02 GPa, respectively. In annealing experiments at 623 K to 873 K (350 °C to 600 °C), the composites with 6 vol. pct dispersoids retained their hardness better than those with less dispersoids or sm-Cu. The coefficient of thermal expansion was lowered when diamonds were added, being the lowest at about 14 × 10-6 K-1 between 473 K and 573 K (200 °C and 300 °C). Good bonding between the copper and diamond was qualitatively demonstrated by nanoindentation. In conclusion, high-quality Cu-diamond composites can be produced by PECS with improved strength and better thermal stability than for sm-Cu.

  16. Preparation and characterization of very pure zirconium tetrafluoride. Application to fluorinated glass

    International Nuclear Information System (INIS)

    Bridenne, M.

    1986-12-01

    The synthesis of anhydrous and very pure zirconium tetrafluoride from zirconium tetraborohydride is studied. Zr F 4 is used for fabrication of fluorozirconate glass. Zr (BH 4 ) 4 is purified by sublimation. Two fluorinating agents F 2 and anhydrous HF are used for fluorination. The apparatus is made of fluorinated polymers and a Kel-F prototype reactor was realized. 20 g of Zr F 4 are obtained in 44 hrs with a yield of 88 %. Purity is characterized by chemical analysis (atomique absorption spectroscopy and spark mass spectroscopy) and absorption of an optical fiber made of zirconium tetrafluoride. Cr, Ni, Co and Cu content is lower than 0.1 ppm. Possibility of pilot scale production is discussed [fr

  17. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: A randomized controlled trial

    NARCIS (Netherlands)

    Gasper, A.; Hollands, W.; Casgrain, A.; Saha, S.; Teucher, B.; Dainty, J.R.; Venema, D.P.; Hollman, P.C.H.

    2014-01-01

    We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and

  18. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  19. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  20. High resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres

    CERN Multimedia

    2008-01-01

    Deep centres in silicon have been studied in great detail over the last 50 years and much progress has been made in the understanding and control of impurities in this material. Much of this effort has been focussed on the problems of metallic impurities such as Fe, Ag, Cu and Au. These are impurities that diffuse quickly into the crystal and hamper device performance. Although the understanding of these impurity centres in Si is widely thought to be "solved" recent experiments with isotopically-pure Si are disproving long-held results and are opening up new perspectives on the constitutent nature of deep centres in Si. In particular, there is new evidence to show that the family of Cu, Ag and Au may all show essentially the same behaviour by forming a cluster of $\\textbf{any four atoms}$ of these elements. This has been established for Cu and Ag through the use of different stable isotopes in the preparation of samples, but the case of Au remains unproven since there is only one stable Au isotope. In this pr...

  1. Cu-implanted ZnO nanorods array film: An aqueous synthetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ajaya Kumar, E-mail: ajayaksingh_au@yahoo.co.in [Department of Chemistry, Govt. VYT PG. Autonomous College Durg, Chhattisgarh (India); Thool, Gautam Sheel [Department of Chemistry, Govt. VYT PG. Autonomous College Durg, Chhattisgarh (India); Singh, R.S. [Department of Physics, Govt. D.T. College, Utai, Durg, Chhattisgarh (India); Singh, Surya Prakash, E-mail: spsingh@iict.res.in [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad 500007 (India)

    2015-01-05

    Highlights: • Cu doped ZnO nanorods were synthesized using low temperature aqueous solution method. • We demonstrated the capping action of TEA via theoretical simulation. • Raman analysis revealed the presence of tensile strain in Cu doped ZnO nanorods. • Growth rate was found to be high in Cu doped ZnO nanorods. - Abstract: Pure and Cu doped ZnO nanorods array are synthesized via two step chemical bath deposition method. The seed layer is prepared by successive ionic layer adsorption reaction (SILAR) method. The synthesized materials have been systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. SEM pictures show the existence of vertically well aligned hexagonal ZnO nanorods. EDAX spectrum confirms the presence of Cu in ZnO nanorods. High intense peak of (0 0 2) plane and E{sub 2}{sup high} mode for XRD and Raman spectrum respectively, suggest the ZnO nanorods are adopted c-axis orientation perpendicular to substrate. XRD and Raman analysis shows the presence of tensile strain in Cu doped ZnO nanorods. Effect of Cu doping on lattice constants, unit cell volume and Zn–O bond length of ZnO nanorods have also been studied. Room temperature PL measurement exhibits two luminescence bands in the spectra i.e. UV emission centered at 3.215 eV and a broad visible band. Theoretical investigation for capping action of triethanolamine is done by Hartree–Fock (HF) method with 3-21G basis set using Gaussian 09 program package.

  2. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    Science.gov (United States)

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  3. Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

    Science.gov (United States)

    Monahan, Bradley Michael

    Semiconductor nanoparticles have been an important area of research in many different disciplines. A substantial amount of this work has been put toward advancing the field of photovoltaics. However, current p-type photovoltaic materials can not sustain the large scale production needed for future energy demands due to their low elemental abundance. Therefore, Earth abundant semiconductor materials have become of great interest to the photovoltaic community especially, the material copper zinc tin sulfide (CZTS), also known by its mineral name kesterite. CZTS exhibits desirable properties for photovoltaics, such as elemental abundance, high absorption coefficient (~104 cm-1 ), high carrier concentration, and optimum direct band gap (1.5 eV). To date, solution based approaches for making CZTS have yielded the most promising conversion efficiencies in solar cells. To that end, the motivation of nanoparticle based inks that can be used in high throughput production are an attractive route for large scale deployment. This has driven the need to make high quality CZTS nanoparticles that possess the properties of the pure kesterite phase with high monodispersity that can be deposited into dense thin films. The inherent challenge of making a quaternary compound of a single phase has made this a difficult task; however, some of those fundamental problems are addressed in this thesis. This had resulted in the synthesis of phase-pure k-CZTS confirmed by powder X-ray diffraction, Raman spectroscopy, UV-visible absorption spectroscopy and energy dispersive x-ray spectroscopy. Furthermore, ultra-fast laser spectroscopy was done on CZTS thin films made from phase-pure kesterite nanoparticles synthesized in this work. This thesis provides new data that directly probes the lifetime of photogenerated free carriers in kesterite CZTS (k-CZTS) thin films.

  4. Express and low-cost microwave synthesis of the ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} for application in rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo; Monconduit, Laure [Institut Charles Gerhardt de Montpellier (ICGM, UMR 5253CNRS Université de Montpellier), 2, Place Eugène Bataillon, CC1502, 34095 Montpellier cedex 5 (France); Réseau sur le Stockage Electrochimique de l' Energie (RS2E,FR 3459CNRS), 33, Rue Saint-Leu, 80039 Amiens cedex (France); Berthelot, Romain, E-mail: romain.berthelot@umontpellier.fr [Institut Charles Gerhardt de Montpellier (ICGM, UMR 5253CNRS Université de Montpellier), 2, Place Eugène Bataillon, CC1502, 34095 Montpellier cedex 5 (France); Réseau sur le Stockage Electrochimique de l' Energie (RS2E,FR 3459CNRS), 33, Rue Saint-Leu, 80039 Amiens cedex (France)

    2016-10-15

    The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperature solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.

  5. Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential.

    Science.gov (United States)

    Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla

    2017-06-01

    In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.

  6. Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium

    Science.gov (United States)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2018-01-01

    The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.

  7. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    Science.gov (United States)

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  8. Solidifying incongruently melting intermetallic phases as bulk single phases using the example of Al{sub 2}Cu and Q-phase in the Al-Mg-Cu-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Andrea [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Groebner, Joachim; Hampl, Milan [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Engelhardt, Hannes [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Rettenmayr, Markus, E-mail: M.Rettenmayr@uni-jena.de [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Samples consisting of pure Al{sub 2}Cu and 95% Q-phase respectively were prepared. Black-Right-Pointing-Pointer The Q-phase composition is Al{sub 17}Cu{sub 9}Mg{sub 44}Si{sub 30}, its solubility range is negligible. Black-Right-Pointing-Pointer The Q-phase peritectic temperature was determined by DSC measurements as 703 Degree-Sign C. Black-Right-Pointing-Pointer A new thermodynamic dataset for the Q-phase has been assessed. - Abstract: Plane front directional solidification experiments were carried out for preparing incongruently melting intermetallic phases in the quaternary alloy system Al-Cu-Mg-Si, particularly the binary Al{sub 2}Cu phase and the quaternary phase ('Q-phase'). By this method, bulk samples that consist of only a single phase are generated. Sample sections consisting of 100% single phase Al{sub 2}Cu and of 95% Q-phase, respectively, were obtained. The composition of the Q-phase was measured by Energy Dispersive X-ray Spectroscopy (EDX). The measured concentrations are close to the Al{sub 3}Cu{sub 2}Mg{sub 9}Si{sub 7} composition that has recently been predicted as most stable by ab initio calculations. A peritectic temperature of 703 Degree-Sign C for the reaction Q {yields} L + Mg{sub 2}Si + (Si) was determined by differential scanning calorimetry (DSC). An optimization of the Calphad database was performed considering the measured composition and peritectic temperature. For validating the optimized database, Scheil calculations were performed and compared with the experimentally determined sequence of solidifying phases.

  9. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    Science.gov (United States)

    Alireza, Samavati; A, F. Ismail; Hadi, Nur; Z, Othaman; M, K. Mustafa

    2016-07-01

    Zn1-x Cu x O (x = 0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x = 0.05). However, the peak corresponding to CuO for x = 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping. Project supported by the Universiti Teknologi Malaysia (UTM) (Grant No. R. J1300000.7809.4F626). Dr. Samavati is thankful to RMC for postdoctoral grants.

  10. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  11. An Investigation of Structural and Electrical Properties of Nano Crystalline SnO2:Cu Thin Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    J. Podder

    2011-11-01

    Full Text Available Pure tin oxide (SnO2 and Cu doped SnO2 thin films have been deposited onto glass substrates by a simple spray pyrolysis technique under atmospheric pressure at temperature 350 °C. The doping concentration of Cu was varied from 1 to 8 wt. % while all other deposition parameters such as spray rate, carrier air gas pressure, deposition time, and distance between spray nozzle to substrate were kept constant. Surface morphology of the as-deposited thin films has been studied by Scanning Electron Microscopy (SEM. The SEM micrograph of the films shows uniform deposition. The structural properties of the as-deposited and annealed thin films have been studied by XRD and the electrical characterization was performed by Van-der Pauw method. The as-deposited films are found polycrystalline in nature with tetragonal crystal structure. Average grain sizes of pure and Cu doped SnO2 thin film have been obtained in the range of 7.2445 Å to 6.0699 Å, which indicates the nanometric size of SnO2 grains developed in the film. The resistivity of SnO2 films was found to decrease initially from 4.5095×10−4 Ωm to 1.1395× 10−4 Ωm for concentration of Cu up to 4 % but it was increased further with increasing of Cu concentrations. The experimental results depict the suitability of this material for using as transparent and conducting window materials in solar cells and gas sensors.

  12. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    Directory of Open Access Journals (Sweden)

    Traldi, S. M.

    2003-12-01

    Full Text Available Al-Si-Cu hypereutetic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties - mainly wear resistance at high temperatures. The corrosion resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS and potentiodynamic polarisation have been used to evaluate the corrosion resistance of a hypereutectic Al-Si-Cu alloy in alcoholic environments. The EIS tests were carried out in pure ethanol, and ethanol with small additions (1 mM of acid and chloride, to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium.

    Aleaciones hipereutécticas producidas por conformación por spray son muy empleadas en la industria automovilística, especialmente en los revestimientos de los cilindros. Tienen la ventaja de añadir menos peso con bajo coeficiente de expansión térmica y excelentes propiedades mecánicas, sobre todo resistencia al desgaste en altas temperaturas. Todavía, la resistencia a la corrosión de estas aleaciones en combustibles no es conocida. En este estudio fueron utilizadas las técnicas de espectroscopia de impedancia electroquímica y polarización potenciodinámica, para evaluar la resistencia a la corrosión de una aleación hipereutéctica Al-Si-Cu en medio alcohólico. Las pruebas fueron conducidas en etanol puro y etanol con pequeñas adiciones (1 mM de ácido y cloruro, con la finalidad de investigar el efecto de estos contaminantes en la resistencia a la corrosión. Hierro fundido gris, también fue

  13. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders

    International Nuclear Information System (INIS)

    Zhang, Lianmeng; Chen, Wenshu; Luo, Guoqiang; Chen, Pingan; Shen, Qiang; Wang, Chuanbin

    2014-01-01

    Highlights: • High-density (98.4%) W–20 wt.%Cu composites were low-temperature fabricated. • A highly pure Cu network and a homogenous microstructure formed in the composites. • The interfaces between W and Cu are well bonded with no spaces. • The composites have excellent thermal properties. -- Abstract: High-density W–20 wt.%Cu composites containing a Cu-network structure and exhibiting good thermal properties were fabricated by low-temperature hot-press sintering from high-purity copper-coated tungsten powders. The relative density of W–20 wt.%Cu composites sintered at 950 °C–100 MPa–2 h was 98.4%. The low-temperature densification of W–Cu composites occurs because the sintering mode of the coated particles involves only sintering of Cu to Cu, rather than both Cu to W and Cu to Cu, as required for conventional powder particles. The microstructure shows that a network of high-purity Cu extends throughout the composites, and that the W is distributed homogeneously; the interfaces between W and Cu show good contact. The composites have excellent thermal conductivity (239 W/(m K)) and a relatively low coefficient of thermal expansion (7.4 × 10 −6 /K), giving them some of the best properties reported to date for thermal-management materials. The excellent performance is mainly because of their structure, which arises from the characteristics of the high-purity copper-coated tungsten powders

  14. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  15. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  16. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  17. Differential Scanning Calorimetry and Thermodynamic Predictions—A Comparative Study of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Gernot K.-H. Kolb

    2016-08-01

    Full Text Available Al-Zn-Mg-Cu alloys are widely used in aircraft applications because of their superior mechanical properties and strength/weight ratios. Commercial Al-Zn-Mg-Cu alloys have been intensively studied over the last few decades. However, well-considered thermodynamic calculations, via the CALPHAD approach, on a variation of alloying elements can guide the fine-tuning of known alloy systems and the development of optimized heat treatments. In this study, a comparison was made of the solidus temperatures of different Al-Zn-Mg-Cu alloys determined from thermodynamic predictions and differential scanning calorimetry (DSC measurements. A variation of the main alloying elements Zn, Mg, and Cu generated 38 experimentally produced alloys. An experimental determination of the solidus temperature via DSC was carried out according to a user-defined method, because the broad melting interval present in Al-Zn-Mg-Cu alloys does not allow the use of the classical onset method for pure substances. The software algorithms implemented in FactSage®, Pandat™, and MatCalc with corresponding commercially available databases were deployed for thermodynamic predictions. Based on these investigations, the predictive power of the commercially available CALPHAD databases and software packages was critically reviewed.

  18. Analysis of corneal topography in patients with pure microphthalmia in Eastern China.

    Science.gov (United States)

    Hu, Pei-Hong; Gao, Gui-Ping; Yu, Yao; Pei, Chong-Gang; Zhou, Qiong; Huang, Xin; Zhang, Ying; Shao, Yi

    2015-12-01

    To determine the typical corneal changes in pure microphthalmia using a corneal topography system and identify characteristics that may assist in early diagnosis. Patients with pure microphthalmia and healthy control subjects underwent corneal topography analysis (Orbscan IIZ® Corneal Topography System; Bausch and Lomb, Bridgewater, NJ, USA) to determine degree of corneal astigmatism (mean A), simulation of corneal astigmatism (sim A), mean keratometry (mean K), simulated keratometry (sim K), irregularities in the 3 - and 5-mm zone, and mean thickness of nine distinct corneal regions. Patients with pure microphthalmia (n = 12) had significantly higher mean K, sim K, mean A, sim A, 3.0 mm irregularity and 5.0 mm irregularity, and exhibited significantly more false keratoconus than controls (n = 12). There was a significant between-group difference in the morphology of the anterior corneal surface and the central curvature of the cornea. Changes in corneal morphology observed in this study could be useful in borderline situations to confirm the diagnosis of pure microphthalmia. © The Author(s) 2015.

  19. Synthesis, structure and magnetic properties of crystallographically aligned CuCr_2Se_4 thin films

    International Nuclear Information System (INIS)

    Esters, Marco; Liebig, Andreas; Ditto, Jeffrey J.; Falmbigl, Matthias; Albrecht, Manfred; Johnson, David C.

    2016-01-01

    We report the low temperature synthesis of highly textured CuCr_2Se_4 thin films using the modulated elemental reactant (MER) method. The structure of CuCr_2Se_4 is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr_2Se_4. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr_2Se_4 synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10"6 erg cm"−"3; shape anisotropy: 1.07 × 10"6 erg cm"−"3), with the easy axis lying out of plane, and a larger magnetic moment (6 μ_B/f.u.) than bulk CuCr_2Se_4. - Highlights: • Crystallographically aligned, phase pure CuCr_2Se_4 were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the direction. • The magnetization is larger than bulk CuCr_2Se_4 or other CuCr_2Se_4 films made to date.

  20. Studies on Electronic Structure and Magnetic Properties of an Organic Magnet with Metallic Mn2+ and Cu2+ Ions

    Science.gov (United States)

    Yao, Jian-Guo; Peng, Guang-Xiong

    2004-11-01

    The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH = 2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H20)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μB, and the spin magnetic moment is mainly from Mn ion and Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent C, O, and N atoms along the path linking the atoms Cu and Mn. The project supported by National Natural Science Foundation of China under Grant No. 10375074 and Hubei Automotive Industries Institute Foundation under Grant No. QY2002-16

  1. Cu particles decorated pomegranate-structured SnO2@C composites as anode for lithium ion batteries with enhanced performance

    International Nuclear Information System (INIS)

    Wen, WeiWei; Zou, Mingzhong; Feng, Qian; Li, Jiaxin; Guan, Lunhui; Lai, Heng; Huang, Zhigao

    2015-01-01

    In this paper, homogeneous composites of pomegranate-structured SnO 2 @C/Cu have been prepared by a simple hydrothermal reaction coupled with wet-chemical reduction, and directly used as anode materials for lithium ion batteries (LIBs). These SnO 2 @C/Cu anodes with an unique architecture show good LIB performance with a capacity of 660 mAh g −1 tested at 600 mA g −1 after 50 cycles and good rate performance at room temperature. Compared with the pure SnO 2 and SnO 2 @C, SnO 2 @C/Cu anodes exhibit much better low-temperature electrochemical performance including reversible capacity, cycling performance, and rate performance. The good LIB performance of SnO 2 @C/Cu anodes should be associated with carbon shell and the conducting Cu particles. This unique configuration can prevent the agglomeration of active materials and facilitate electron conduction especially at a relative low temperature, and obtain the capacity stability in cycling process for LIBs.

  2. Influence of nitrogen-doping concentration on the electronic structure of CuAlO{sub 2} by first-principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-wei, E-mail: zmliuwwliu@126.com; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong

    2017-02-05

    Effect of N doping concentration on the electronic structure of N-doped CuAlO{sub 2} was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO{sub 2} were structurally stable. The calculated band gaps for N-doped CuAlO{sub 2} narrowed compared to pure CuAlO{sub 2}, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO{sub 2} shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO{sub 2} materials in optoelectronic and electronic devices. - Highlights: • Electronic structures of CuAlO{sub 2} with different N content were investigated. • The higher the N-doping concentration is, the narrower the band gap. • All the CuAlO{sub 2} with different N content were structurally stable. • The N-doped CuAlO{sub 2} shows a typical p-type semiconductor characteristic.

  3. Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from √s.sub.NN./sub. = 22.5 to 200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adare, A.; Adler, S. S.; Afanasiev, S.; Kubart, J.; Mašek, L.; Mikeš, P.; Tomášek, Lukáš; Vrba, Václav

    2008-01-01

    Roč. 78, č. 4 (2008), 044902/1-044902/15 ISSN 0556-2813 R&D Projects: GA MŠk LA08015; GA MŠk 1P04LA211; GA ČR GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : charged hadron * multiplicity fluctuations * Au+Au * Cu+Cu Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.124, year: 2008

  4. The defect structures and mechanical properties of Cu and Cu–Al alloys processed by split Hopkinson pressure bar

    International Nuclear Information System (INIS)

    Tao, Jingmei; Yang, Kai; Xiong, Haiwu; Wu, Xiaoxiang; Zhu, Xinkun; Wen, Cuie

    2013-01-01

    Pure Cu, Cu-5 at%Al, Cu-10 at%Al and Cu-15 at%Al with different stacking fault energy (SFE) of 78, 37, 7 and 5 mJ/m 2 , respectively, were processed through split Hopkinson pressure bar (SHPB) with the strain rate of 10 3 /sec. The influence of high strain rate on the evolution of microstructures and mechanical properties of Cu and Cu–Al alloys was investigated. X-ray diffraction measurements indicate that, the microstructures of Cu and Cu–Al alloys have been refined to the nano scale after deformed by SHPB, and with decreasing SFE, the average grain size decreases gradually from 72 to 40 nm, while the dislocation density increases from 0.55×10 14 to 4.4×10 14 m −2 and the twin density increases from 0.04% to 1.07%. The formation of deformation twins is an additional factor that contributes to the microhardness and strength of Cu and Cu–Al alloys except the solid solution strengthening effect. Cu-15 at%Al has the biggest strain hardening rate at larger strains due to its lowest SFE which results in the highest twin density. The results confirm that lower SFE improves both strength and strain hardening rate of materials

  5. Microalloying with Cd of Antifriction Sn-Sb-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2012-09-01

    Full Text Available In the case of bimetallic sliding linings with superior technological characteristics, the use of an antifriction ally is imposed an alloy of the type Sn-Sb-Cu, which possesses a high adherence to the steel stand and a high durability in exploitation. For this reason we use the microalloying of the antifriction alloy with cadmium. The microalloying with Cd of antifriction alloys Sn-Sb-Cu determines an increase of the adhesion property of the antifriction alloy on the steel stand. The steel stand is previously subjected to a process of degreasing with ZnCl2 and washing so that is can later be subjected to a thermal-chemical treatment of tinning.

  6. Interfacial Reaction and IMC Growth of an Ultrasonically Soldered Cu/SAC305/Cu Structure during Isothermal Aging

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2018-01-01

    Full Text Available In order to accelerate the growth of interfacial intermetallic compound (IMC layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time.

  7. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study

    International Nuclear Information System (INIS)

    Okamoto, Kensho; Kamogawa, Kenji; Okuda, Bungo; Kawabata, Keita; Tachibana, Hisao

    2007-01-01

    Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [ 123 I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author)

  8. A comparative trial of psychotherapy and pharmacotherapy for "pure" dysthymic patients.

    Science.gov (United States)

    Markowitz, John C; Kocsis, James H; Bleiberg, Kathryn L; Christos, Paul J; Sacks, Michael

    2005-12-01

    Psychotherapy of "pure" dysthymic disorder remains understudied. This article reports outcomes of an acute randomized trial of 94 subjects treated for 16 weeks with either interpersonal psychotherapy (IPT), brief supportive psychotherapy (BSP), sertraline, or sertraline plus IPT. Recruited by clinical referral and advertising, subjects met DSM-IV criteria for early onset dysthymic disorder, with no episode of major depression in the prior six months. They were randomly assigned to one of four 16-week treatments, with options for crossover or continuation treatment. Results were analyzed from the intention-to-treat sample by ANCOVA, controlling for baseline depressive severity. Subjects improved in all conditions over time, with the cells including sertraline pharmacotherapy showing superiority over psychotherapy alone for response and remission. Response rates were 58% for sertraline alone, 57% for combined treatment, 35% for IPT, and 31% for BSP. The study was underpowered and may have employed too "active" a control condition. Follow-up data were unobtainable. In this acute trial for "pure" dysthymic disorder, sertraline with or without IPT showed advantages relative to IPT and BSP. Methodological difficulties may have limited differential outcome findings. This study bolsters a small but growing literature on the treatment of dysthymic disorder, suggesting that pharmacotherapy may acutely benefit patients more than psychotherapy.

  9. Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    International Nuclear Information System (INIS)

    Wong, L. M.; Chiam, S. Y.; Wang, S. J.; Pan, J. S.; Huang, J. Q.; Chim, W. K.

    2010-01-01

    Cu 2 O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu 2 O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu 2 O. Based on this finding, we fabricate heterojunctions of p-type Cu 2 O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu 2 O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu 2 O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu 2 O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  10. Examination of the anisotropy of the wetting behaviour of liquid Al-Cu alloys on single crystalline oriented Al{sub 2}O{sub 3}-substrates; Untersuchung der Anisotropie im Benetzungsverhalten fluessiger Al-Cu Legierungen auf einkristallinen orientierten Al{sub 2}O{sub 3}-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Julianna

    2011-02-04

    The wetting behaviour of liquid Al-Cu alloys and pure metals on oriented single crystalline Al{sub 2}O{sub 3}-substrates was examined, utilising the sessile drop technique. Measurements were performed at moderate temperatures of 1100 C, where the alloys are liquid. Different Al{sub 2}O{sub 3}-surfaces were studied, which are terminated by the crystallographic planes (0001), (11 anti 20), and (1 anti 102), also called C-, A-, and R-surfaces. After deposition, pure Cu-droplets show an exponential increase of the wetting angle to a value of about 115 for all investigated Al{sub 2}O{sub 3}-surfaces. The timescale of this increase is of the order of 100 s. The effect of surface- and interfacial energies on the wetting angle is discussed considering Young's equation. The most probable reason for its time-dependence seems to be an increase of the interfacial energy due to deoxidation of the droplet. Therefore it is reasonable to regard the isotropic contact angle value as the intrinsic one of the Cu/Al{sub 2}O{sub 3} system. In contrast, the wetting angle of pure Al metal with the different Al{sub 2}O{sub 3}-substrates shows a qualitatively different behaviour. In this system, it rises from about 90 to 115 roughly for C-substrates, twice as fast as in the Cu case but to a comparable value. On the other substrates a wetting angle of about 90 establishes immediately, and no pronounced time dependence is obvious. In order to study changes in the wetting behaviour of Al-Cu-alloys, which is isotropic for Cu and anisotropic for Al-rich alloys, contact angles of Al{sub 50}Cu{sub 50}, Al{sub 30}Cu{sub 70} und Al{sub 17}Cu{sub 83} on Al{sub 2}O{sub 3} were determined. For each alloy composition the wetting angle is about 120 after 300 s. The initial values on distinct surfaces hardly differ and become non-wetting with increasing Cu-content. Hence, anisotropy decreases. To determine the work of adhesion of the solid-liquid interface, the temperature- and composition

  11. IR and TPD studies of the interaction of alkenes with Cu + sites in CuNaY and CuNaX zeolites of various Cu content. The heterogeneity of Cu + sites

    Science.gov (United States)

    Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.

    2006-08-01

    Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.

  12. Antiferromagnetic ordering states of oxygen-deficient NdBa2Cu3O6+x and Nd1+yBa2-yCu3O6+x single crystals

    DEFF Research Database (Denmark)

    Brecht, E.; Schweiss, P.; Wolf, T.

    1999-01-01

    The paper describes a study of the antiferromagnetic ordering of oxygen-deficient Nd1 + yBa2 - yCu3O6 + x single crystals. In pure, stoichiometric samples, y = 0, with different oxygen contents x in the Cu(1) plane (0.02AFI) phase appears to be stable down to 316 m...... of this reordering suggests that the Nd3+ ions on Ba sites are very effective defects forcing the AFIAFII reordering. The mechanism of reordering is explained in terms of the creation of Cu2+ moments within the Cu(1) layer due to the Nd3+ ions on Ba sites, which via polarization lead to an effective ferromagnetic...

  13. Mechanism of nanostructure formation in ball-milled Cu and Cu–3wt%Zn studied by X-ray diffraction line profile analysis

    International Nuclear Information System (INIS)

    Khoshkhoo, M. Samadi; Scudino, S.; Bednarcik, J.; Kauffmann, A.; Bahmanpour, H.; Freudenberger, J.; Scattergood, R.; Zehetbauer, M.J.; Koch, C.C.; Eckert, J.

    2014-01-01

    Highlights: • Nanostructured powders of Cu and Cu–3wt%Zn were produced using ball milling. • During cryomilling, nanostructure was formed by structural decomposition. • Dynamic recrystallization happened in room–temperature milling of Cu–3wt%Zn. • Structural decomposition took place during room–temperature milling of Cu. -- Abstract: The mechanism of nanostructure formation during cryogenic and room-temperature milling of Cu and Cu–3wt%Zn was investigated using X-ray diffraction line profile analysis. For that, the whole powder pattern modeling approach (WPPM) was used to analyze the evolution of microstructural features including coherently scattering domain size, dislocation density, and density of planar faults. It was found that for all sets of experiments, structural decomposition is the dominant mechanism of nanostructure formation during cryomilling. During subsequent RT-milling, grain refinement still occurs by structural decomposition for pure copper. On the other hand, discontinuous dynamic recrystallization is responsible for nanostructure formation during RT-milling of Cu–3wt%Zn. This is attributed to lower stacking-fault energy of Cu–3wt%Zn compared to pure copper. Finally, room temperature milling reveals the occurrence of a detwinning phenomenon

  14. Dopant concentration dependent magnetism of Cu-doped TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [University of Kerala, Centre for Nanoscience and Nanotechnology (India)

    2016-06-15

    Undoped and Cu-doped nanocrystals of TiO{sub 2} having the size range of 8–11 nm were synthesized by peroxide gel method. XRD analysis using Rietveld refinement confirmed anatase phase with a small percentage of rutile content for undoped TiO{sub 2} nanocrystals while a pure anatase phase with preferential growth along [004] direction was observed for nanocrystals of Cu-doped TiO{sub 2}. Variation in the intensity ratios of the XRD peaks of the doped samples compared to that of the undoped sample offered an evidence for the substitutional incorporation of Cu ions in the TiO{sub 2} lattice. The preferential growth of the nanocrystals along the [004] direction was verified using HRTEM analysis. Cu doping extended the optical absorption edge of TiO{sub 2} nanocrystals to the visible spectral region and caused a blue shift and broadening of the E{sub g} (1) Raman active mode of anatase TiO{sub 2}. Undoped TiO{sub 2} sample showed a weak ferromagnetism superimposed on a diamagnetic background while Cu-doped TiO{sub 2} samples exhibited a weak ferromagnetism in the low-field region with a paramagnetic component in the high-field region. The magnetic moment exhibited by the doped samples is interpreted as the resultant of a weak ferromagnetic moment in the low-field region arising from the presence of defects near the surface of TiO{sub 2} nanoparticles or from the interaction of the substituted Cu ions with the oxygen vacancies, and the paramagnetic contribution from the increased Cu dopant concentration near the surface of the particles arising from self-purification mechanism.

  15. Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity

    Science.gov (United States)

    Yu, Cuiping; Cui, Jiewu; Wang, Yan; Zheng, Hongmei; Zhang, Jianfang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng

    2018-05-01

    Self-supported CuO/Cu2O@CuO/Cu2O core-shell nanowire arrays (NWAs) are successfully fabricated by a simple and efficient method in this paper. Anodized Cu(OH)2 NWAs could in-situ convert to HKUST-1 at room temperature easily. Cu(OH)2 NWAs cores and HKUST-1 shells transform into CuO/Cu2O simultaneously after calcinations and form CuO/Cu2O@CuO/Cu2O core-shell NWAs. This smart configuration of the core-shell structure not only avoids the agglomeration of the traditional MOF-derived materials in particle-shape, but also facilitates the ion diffusion and increases the active sites. This novel structure is employed as substrate to construct nonenzymatic glucose sensors. The results indicate that glucose sensor based on CuO/Cu2O@CuO/Cu2O core-shell NWAs presents ultrahigh sensitivity (10,090 μA mM-1 cm-2), low detection limit (0.48 μM) and wide linear range (0.99-1,330 μM). In addition, it also shows excellent anti-interference ability toward uric acid, ascorbic acid and L-Cysteine co-existing with glucose, good reproducibility and superior ability of real sample analysis.

  16. The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.

    Science.gov (United States)

    Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun

    2017-04-19

    Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.

  17. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    International Nuclear Information System (INIS)

    Davoodi, J.; Ahmadi, M.; Rafii-Tabar, H.

    2010-01-01

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu 3 Pd and CuPd 3 ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  18. Mixtures of maximally entangled pure states

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    2016-09-15

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  19. Cu/Cu{sub 2}O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Anshuman [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Goswami, Navendu, E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Kaushik, S.D. [UGC-DAE-Consortium for Scientific Research Mumbai Centre, R5 Shed, BARC, Mumbai 400085 (India); Tripathi, Shilpa [UGC-DAE Consortium for Scientific Research, Indore, M.P. (India)

    2016-12-30

    Highlights: The salient features of this research article are following: • Mixed phase synthesis of Cu/Cu{sub 2}O/CuO nanoparticles prepared by Exploding Wire Technique (EWT). • Predominant Cu/Cu{sub 2}O phases along with minor CuO phase revealed through XRD, TEM, Raman, FTIR, UV–Visible and PL analyses. • XPS analysis provided direct evidences of Cu{sup 2+} and Cu{sup +} along with O deficiency for prepared nanoparticles. • Room temperature weak ferromagnetic behaviour was demonstrated for Cu/Cu{sub 2}O/CuO nanoparticles. - Abstract: In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu{sub 2}O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu{sub 2}O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu{sub 2}-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu{sub 2}O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu{sub 2}O/CuO nanoparticles are reflected through UV–vis (UV–vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes

  20. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Sai; Shen, Yong, E-mail: shenyong@sues.edu.cn; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting

    2016-11-01

    Highlights: • The flower-like CuS was synthesized by a facil solvothermal method. • The as-prepared flower-like CuS showed better solar light-driven photocatalytic activity. • The as-prepared CuS could act as a novel UV blocker. • The flower-like CuS potentially hold promise as electromagnetic shielding material. - Abstract: The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV–vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1–5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27–31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz–3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.

  1. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO_2 mediated heterogeneous activation of peroxymonosulfate

    International Nuclear Information System (INIS)

    Ding, Yaobin; Tang, Hebin; Zhang, Shenghua; Wang, Songbo; Tang, Heqing

    2016-01-01

    Highlights: • CuFeO_2 microparticles were prepared by a microwave-assisted hydrothermal method. • CuFeO_2 microparticles efficiently catalyzed the activation of peroxymonosulfate. • Quenching experiments confirmed sulfate radicals as the major reactive radicals. • Carbamazepine was rapidly degraded by micro-CuFeO_2/peroxymonosulfate. • Feasibility of CuFeO_2/peroxymonosulfate was tested for treatment of actual water. - Abstract: Microscaled CuFeO_2 particles (micro-CuFeO_2) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO_2 was of pure phase and a rhombohedral structure with size in the range of 2.8 ± 0.6 μm. The micro-CuFeO_2 efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO_4·−), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO_2 was observed to be 6.9 and 25.3 times that of micro-Cu_2O and micro-Fe_2O_3, respectively. The enhanced activity of micro-CuFeO_2 for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO_2 can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu_2O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO_2 was effective in the studied actual aqueous environmental systems.

  2. Corrosion behaviour of Mg-Cu and Mg-Mo composites in 3.5% NaCl

    International Nuclear Information System (INIS)

    Budruk Abhijeet, S.; Balasubramaniam, R.; Gupta, M.

    2008-01-01

    The corrosion behaviour of pure magnesium, Mg-Cu (0.3, 0.6, and 1 vol.%) and Mg-Mo (0.1, 0.3, and 0.6 vol.%) composites has been studied in 3.5% NaCl solution by weight loss and polarisation methods. Corrosion rates determined by weight loss method were considerably higher than that determined by polarisation method. The corrosion rate increased with increasing volume fraction of reinforcement in Mg-Cu and Mg-Mo composites. At the same volume fraction of reinforcement, molybdenum reinforced composite corroded faster than copper reinforced composite. The galvanic current density between Mg-Cu and Mg-Mo couples has been experimentally measured using zero resistance ammeter technique. The experimentally observed galvanic current densities were in close agreement with those obtained using mixed potential theory analysis. SEM observation of corroded samples confirmed microgalvanic activity at the matrix/reinforcement interfaces. The poor corrosion resistance of composites has been attributed to microgalvanic effects between the matrix and reinforcements and inferior quality of surface films

  3. Crystalline nanostructured Cu doped ZnO thin films grown at room temperature by pulsed laser deposition technique and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Qasem A. [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rao, Saleem G.; Yamani, Zain H. [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, Mohammed A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Department of Physics, Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2013-04-01

    We report structural and optical properties of Cu doped ZnO (ZnO:Cu) thin films deposited on glass substrate at room temperature by pulsed laser deposition (PLD) method without pre and post annealing contrary to all previous reports. For preparation of (ZnO:Cu) composites pure Zn and Cu targets in special geometrical arrangements were exposed to 248 nm radiations generated by KrF exciter laser. The laser energy was 200 mJ with 10 Hz frequency and 20 ns pulse width. The effect of Cu concentration on crystal structure, morphology, and optical properties were investigated by XRD, FESEM and photoluminescence spectrometer respectively. A systematic shift in ZnO (0 0 2) peak with Cu concentration observed in XRD spectra demonstrated that Cu ion has been incorporated in ZnO lattice. Uniform film with narrow size range grains were observed in FESEM images. The photoluminescence (PL) spectra measured at room temperature revealed a systematic red shift in ZnO emission peak and decrease in the band gap with the increase in Cu concentration. These results entail that PLD technique can be realized to deposit high quality crystalline ZnO and ZnO:Cu thin films without pre and post heat treatment which is normally practiced worldwide for such structures.

  4. Cyclotron production of Cu-61

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Ráliš, Jan; Seifert, Daniel

    2013-01-01

    Roč. 40, 2 Supplement (2013), S323-S323 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] R&D Projects: GA TA ČR TA02010797 Institutional support: RVO:61389005 Keywords : cyclotron U-120M * PET * Cu-61 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  5. Synthesis and characterization of ZnO/Cu2O core–shell nanowires grown by two-step electrodeposition method

    International Nuclear Information System (INIS)

    Messaoudi, O.; Makhlouf, H.; Souissi, A.; Ben assaker, I.; Amiri, G.; Bardaoui, A.; Oueslati, M.; Bechelany, M.; Chtourou, R.

    2015-01-01

    Highlights: • ZnO/Cu 2 O core/shell nanowires have been grown by two-step electrodeposition method. • SEM confirmed the homogenous distribution of Cu 2 O on the deposited nanowires. • The X-ray diffraction demonstrated that the films were pure. • Optical transmissions measurements reveal an additional contribution at about 1.7 eV. • The ZnO/Cu 2 O structure is expected to have an advantage in photovoltaic application. - Abstract: ZnO/Cu 2 O core/shell nanowires have been grown by two-step electrodeposition method on ITO-coated glass substrates. The sample's morphology was explored by means of scanning electron microscopy (SEM). SEM images confirm the homogeneity of the nanowires and the presence of Cu 2 O shell on ZnO core. X-ray diffraction and Raman scattering measurements were used to investigate the purity and the crystallinity of the samples. Optical transmission measurements reveal an additional contribution at about 1.7 eV attributed to the type-II interfacial transition witch confirms the advantage of using the ZnO/Cu 2 O structure in photovoltaic application

  6. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    Science.gov (United States)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  7. Novel β-C3N4/CuO nanoflakes: facile synthesis and unique photocatalytic performance

    Science.gov (United States)

    Zou, Lan-Rong; Huang, Gui-Fang; Li, Dong-Feng; Tian, Qing-Nan; Yang, Ke; Si, Yuan; Chang, Shengli; Zhang, Xue-Ao; Huang, Wei-Qing

    2017-09-01

    For the first time, novel β-C3N4/CuO composites with superior photocatalytic activity are successfully fabricated via a facile reflux method followed by a thermal process. The morphologies, particle size and microstructure of the synthesized β-C3N4/CuO composites largely depended upon copper chloride and the volume ratio of V water:V ethanol in the mixed precursors. The fabricated β-C3N4/CuO nanoflakes exhibited obviously enhanced visible light photocatalytic activity for the degradation of methylene blue (MB) with an  ˜3.4 and 1.9 fold increase in efficiency over that of pure g-C3N4 and commercial P25, respectively. The β-C3N4/CuO composite photocatalyst also showed photocatalytic activity for the degradation of methyl orange (MO). Moreover, the β-C3N4/CuO nanoflakes showed almost no loss of photocatalytic activity after three recycles of the degradation of the MB. A multiple synergetic mechanism in β-C3N4/CuO nanoflakes, which is featured by the highly reactive {0 0 2} facets, exposed many active sites of nanoflakes and the efficient charge separation are proposed to account for the distinguished photocatalytic activity. This work provides a facile and cost-effective strategy for designing novel β-C3N4/CuO photocatalysts for application in environmental purification.

  8. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Science.gov (United States)

    Sahai, Anshuman; Goswami, Navendu; Kaushik, S. D.; Tripathi, Shilpa

    2016-12-01

    In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu2O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu2O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu2-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu2O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu2O/CuO nanoparticles are reflected through UV-vis (UV-vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes occurring therein. Iterative X-ray photoelectron spectroscopy (XPS) fitting of core level spectra of Cu (2p3/2) and O (1s), divulges presence of Cu2+ and Cu+ in the lattice with an interesting evidence of O deficiency in the lattice structure and surface adsorption. Magnetic analysis illustrates that the prepared nanomaterial demonstrates ferromagnetic behaviour at room temperature.

  9. Magnetic susceptibility, specific heat and magnetic structure of CuNi2(PO4)2

    International Nuclear Information System (INIS)

    Escobal, Jaione; Pizarro, Jose L.; Mesa, Jose L.; Larranaga, Aitor; Fernandez, Jesus Rodriguez; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    The CuNi 2 (PO 4 ) 2 phosphate has been synthesized by the ceramic method at 800 deg. C in air. The crystal structure consists of a three-dimensional skeleton constructed from MO 4 (M II =Cu and Ni) planar squares and M 2 O 8 dimers with square pyramidal geometry, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior has been studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The bimetallic copper(II)-nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at, approximately, 29.8 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements exhibit a three-dimensional magnetic ordering (λ-type) peak at 29.5 K. The magnetic structure of this phosphate shows ferromagnetic interactions inside the Ni 2 O 8 dimers, whereas the sublattice of Cu(II) ions presents antiferromagnetic couplings along the y-axis. The change of the sign in the magnetic unit-cell, due to the [1/2, 0, 1/2] propagation vector determines a purely antiferromagnetic structure. - Graphical abstract: Magnetic structure of CuNi2(PO4)2

  10. Structural study and electronic band structure investigations of the solid solution Na xCu1-xIn5S8 and its impact on the Cu(In,Ga)Se2/In2S3 interface of solar cells

    International Nuclear Information System (INIS)

    Lafond, A.; Guillot-Deudon, C.; Harel, S.; Mokrani, A.; Barreau, N.; Gall, S.; Kessler, J.

    2007-01-01

    The present work reports investigations on the new In 2 S 3 containing Cu and/or Na compounds, which are expected to be formed at the Cu(In,Ga)Se 2 /In 2 S 3 interface. The knowledge of these materials properties is very important in order to better understand the operation of the devices based on these junction partners. It has been observed that a solid solution Na x Cu 1-x In 5 S 8 exists from CuIn 5 S 8 (x = 0) to NaIn 5 S 8 (x = 1) with a spinel-like structure. The single crystal structure determination shows that indium, copper and sodium atoms are statistically distributed on the tetrahedral sites. XPS investigations on the CuIn 5 S 8 , Na 0.5 Cu 0.5 In 5 S 8 and NaIn 5 S 8 compounds combined with the band gap changes reported in a previous work show that these variations are mainly due to valence band maximum shift; it is moved downward when x increases from 0 to 1. These observations are confirmed by the electron structure calculations based on the density functional theory, which additionally demonstrate that the pure sodium compound has direct gap whereas the copper-containing compounds have indirect gaps

  11. Structural and pinning properties of Y2Ba4CuMOy (M = Nb,Zr)/YBa2Cu3O7-δ quasi-multilayers fabricated by off-axis pulsed laser deposition

    International Nuclear Information System (INIS)

    Reich, E; Thersleff, T; Huehne, R; Iida, K; Schultz, L; Holzapfel, B

    2009-01-01

    Power applications based on YBa 2 Cu 3 O 7-δ coated conductors demand an enhancement of the critical current density J c in magnetic fields to be achieved using artificial pinning centres. A well-known approach to studying pinning by second phase nanoparticles is based on quasi-multilayer deposition of YBa 2 Cu 3 O 7-δ (Y123) and a dopant material. In this study we use the Y 2 Ba 4 CuMO y (M = Nb, Zr; M2411) phase as a dopant material, which proved to be very successful in increasing J c for bulk samples. Although stability of the M2411 phase in bulk Y123 has been reported, experimental evidence of its stability in thin films is still lacking. We found that during the quasi-multilayer deposition, yttrium doped Ba(M 1-x Y x )O 3 forms instead of the M2411 secondary phase, and this causes an increase of J c at high magnetic fields as well as an increase in the irreversibility field below 80 K as compared against pure Y123 thin films.

  12. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane

    Science.gov (United States)

    Gao, Doudou; Zhang, Yuhong; Zhou, Liqun; Yang, Kunzhou

    2018-01-01

    The catalysts containing Cu, Ni bi-metallic nanoparticles were successfully synthesized by in-situ reduction of Cu2+ and Ni2+ salts into the highly porous and hydrothermally stable metal-organic framework MIL-101 via a simple liquid impregnation method. When the total amount of loading metal is 3 × 10-4 mol, Cu2Ni1@MIL-101 catalyst shows higher catalytic activity comparing to CuxNiy@MIL-101 with different molar ratio of Cu and Ni (x, y = 0, 0.5, 1.5, 2, 2.5, 3). Cu2Ni1@MIL-101 catalyst has the highest catalytic activity comparing to mono-metallic Cu and Ni counterparts and pure bi-metallic CuNi nanoparticles in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. Additionally, in the hydrolysis reaction, the Cu2Ni1@MIL- 101 catalyst possesses excellent catalytic performances, which exhibit highly catalytic activity with turn over frequency (TOF) value of 20.9 mol H2 min-1 Cu mol-1 and a very low activation energy value of 32.2 kJ mol-1. The excellent catalytic activity has been successfully achieved thanks to the strong bi-metallic synergistic effects, uniform distribution of nanoparticles and the bi-functional effects between CuNi nanoparticles and the host of MIL-101. Moreover, the catalyst also displays satisfied durable stability after five cycles for the hydrolytically releasing H2 from AB. The non-noble metal catalysts have broad prospects for commercial applications in the field of hydrogen-stored materials due to the low prices and excellent catalytic activity.

  13. Radiolabeling of antibody for epitope of human carbonic anhydrase IX (IgG M75) by 61Cu and 64Cu and its biological testing

    Czech Academy of Sciences Publication Activity Database

    Čepa, Adam; Ráliš, Jan; Pavelka, A.; Marešová, L.; Kleinová, M.; Seifert, Daniel; Sieglová, Irena; Král, Vlastimil; Polášek, Miroslav; Lebeda, Ondřej; Paúrová, M.; Lázníček, M.

    2015-01-01

    Roč. 42, S (2015), s. 465-466 ISSN 1619-7070. [28th Annual congress of the European-Association-of-Nuclear-Medicine (EANM). 10.10.2015-14.10.2015, Hamburg] R&D Projects: GA TA ČR TA02010797; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 ; RVO:68378050 Keywords : antibodies * Cu-61 * Cu-64 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; EB - Genetics ; Molecular Biology (UMG-J)

  14. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    International Nuclear Information System (INIS)

    Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G.

    2015-01-01

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  15. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y.S. [Department of Physics, Mahatma Fule Arts, Commerce and S C Science Mahavidyalaya, Warud, Dist. Amravati (MS), 444906 (India); Talwatkar, S.S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS) 440071 (India); Sunatkari, A.L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS) 440001 (India); Pahurkar, V.G. [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India); Muley, G.G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India)

    2015-11-30

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  16. Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)

    Science.gov (United States)

    Jacobberger, Robert; Arnold, Michael

    2013-03-01

    Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio rationally tailor the graphene crystal morphology and orientation.

  17. Effects of processing parameters on Be/CuCrZr joining

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jung-Suk; Choi, Byung-Kwon; Park, Sang-Yun; Hong, Bong Guen; Jeong, Yong Hwan; Jung, Ki-Jung

    2007-01-01

    A joining of Be/CuCrZr has been considered as the key technology for the fabrication of the ITER first wall. Among the joining methods, Hot isostatic pressing (HIP), which is one of the diffusion bonding methods, is the most feasible method to join the Be and CuCrZr alloy. In the HIP joining of Be and CuCrZr, the interlayer was used to prevent the formation of brittle intermetallic compounds in the interface. Therefore, it is crucial to select a suitable interlayer for a joining of Be and CuCrZr. On the other hand, the diffusion between Be and CuCrZr would be enhanced with an increase of the HIP joining temperature, thereby increasing the joint strength. However, the HIP joining temperature is limited by the mechanical properties of CuCrZr. During the fabrication process of the ITER first wall, CuCrZr is subjected to several thermal cycles including a solution annealing, a cooling and an aging. The HIP joining of Be and CuCrZr corresponds to the aging of CuCrZr. The HIP joining at a higher temperature would cause a degradation of the mechanical properties of CuCrZr by an overaging effect although it is preferable for an improvement of the joint strength. In this study, the effect of the cooling rate on the mechanical properties of aged CuCrZr was investigated to find the maximum HIP temperature without a degradation of the mechanical properties of CuCrZr

  18. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  19. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Nagai, Yasuyoshi; Tang, Zheng; Yubuta, Kunio [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) in a Fe-Cu single crystal and was agreed well with that from a band structure calculation. Theoretical calculation of positron confinement in Fe-Cu model alloys showed that a positron quantum dot state induced by positron affinity is attained for the embedded precipitates larger than 1 nm. A new position sensitive detector with a function of one dimensional angular correlation of annihilation radiation (1D-ACAR) has been developed that enables high resolution experiments over wide ranges of momentum distribution. (author)

  20. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    Science.gov (United States)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 - 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  1. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...... temperature and quench-cooling of the flame tend to increase the dispersion of the phases and the specific surface area of the particles. Properties of both the ternary composition, the three binary compositions and the pure oxides are discussed. The calculation of simultaneous phase and chemical equilibrium...

  2. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  3. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO{sub 2} mediated heterogeneous activation of peroxymonosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yaobin, E-mail: yaobinding@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China); Tang, Hebin [College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Zhang, Shenghua; Wang, Songbo [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China); Tang, Heqing, E-mail: tangheqing@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-11-05

    Highlights: • CuFeO{sub 2} microparticles were prepared by a microwave-assisted hydrothermal method. • CuFeO{sub 2} microparticles efficiently catalyzed the activation of peroxymonosulfate. • Quenching experiments confirmed sulfate radicals as the major reactive radicals. • Carbamazepine was rapidly degraded by micro-CuFeO{sub 2}/peroxymonosulfate. • Feasibility of CuFeO{sub 2}/peroxymonosulfate was tested for treatment of actual water. - Abstract: Microscaled CuFeO{sub 2} particles (micro-CuFeO{sub 2}) were rapidly prepared via a microwave-assisted hydrothermal method and characterized by scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. It was found that the micro-CuFeO{sub 2} was of pure phase and a rhombohedral structure with size in the range of 2.8 ± 0.6 μm. The micro-CuFeO{sub 2} efficiently catalyzed the activation of peroxymonosulfate (PMS) to generate sulfate radicals (SO{sub 4}·−), causing the fast degradation of carbamazepine (CBZ). The catalytic activity of micro-CuFeO{sub 2} was observed to be 6.9 and 25.3 times that of micro-Cu{sub 2}O and micro-Fe{sub 2}O{sub 3}, respectively. The enhanced activity of micro-CuFeO{sub 2} for the activation of PMS was confirmed to be attributed to synergistic effect of surface bonded Cu(I) and Fe(III). Sulfate radical was the primary radical species responsible for the CBZ degradation. As a microscaled catalyst, micro-CuFeO{sub 2} can be easily recovered by gravity settlement and exhibited improved catalytic stability compared with micro-Cu{sub 2}O during five successive degradation cycles. Oxidative degradation of CBZ by the couple of PMS/CuFeO{sub 2} was effective in the studied actual aqueous environmental systems.

  4. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  5. Stress evolution during and after sputter deposition of thin Cu Al alloy films

    Science.gov (United States)

    Pletea, M.; Wendrock, H.; Kaltofen, R.; Schmidt, O. G.; Koch, R.

    2008-06-01

    The stress evolution during and after sputter deposition of thin Cu-Al alloy films containing 1 and 2 at.% Al onto oxidized Si(100) substrates has been studied up to thicknesses of 300 nm by means of in situ substrate curvature measurements. In order to correlate stress and morphology, the microstructure was investigated by focused ion beam microscopy, scanning electron microscopy, and atomic force microscopy. The evolution of the stress and microstructure of the Cu-Al alloy films is similar to that for sputtered pure Cu films. Film growth proceeds in the Volmer-Weber mode, typical for high mobility metals. It is characterized by nucleation, island, percolation, and channel stages before the films become continuous, as well as lateral grain growth in the compact films. With increasing Al content the overall atom mobility and, thus, the average grain size of the alloy films are reduced. Increase of the sputter pressure from 0.5 to 2 Pa leads to films with larger grain size, rougher surface morphology and higher electrical resistivity.

  6. Synthesis and characterization of ZnO/Cu{sub 2}O core–shell nanowires grown by two-step electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, O., E-mail: olfamassaoudi@gmail.com [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammam Lif, 2050 (Tunisia); Makhlouf, H.; Souissi, A.; Ben assaker, I. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammam Lif, 2050 (Tunisia); Amiri, G. [Groupe d’Etude de la Matière Condensée, CNRS Université de Versailles Saint Quentin (France); Bardaoui, A. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammam Lif, 2050 (Tunisia); Physics Department, Taif University (Saudi Arabia); Oueslati, M. [Unité Nanomatériaux et Photonique, Faculté Des Sciences de Tunis, Campus Universitaire El Manar, 2092, Tunis (Tunisia); Bechelany, M. [European Institute of Membranes (IEM ENSCM UM2 CNRS UMR 5635), University of Montpellier 2, 34095 Montpellier (France); Chtourou, R. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammam Lif, 2050 (Tunisia)

    2015-07-15

    Highlights: • ZnO/Cu{sub 2}O core/shell nanowires have been grown by two-step electrodeposition method. • SEM confirmed the homogenous distribution of Cu{sub 2}O on the deposited nanowires. • The X-ray diffraction demonstrated that the films were pure. • Optical transmissions measurements reveal an additional contribution at about 1.7 eV. • The ZnO/Cu{sub 2}O structure is expected to have an advantage in photovoltaic application. - Abstract: ZnO/Cu{sub 2}O core/shell nanowires have been grown by two-step electrodeposition method on ITO-coated glass substrates. The sample's morphology was explored by means of scanning electron microscopy (SEM). SEM images confirm the homogeneity of the nanowires and the presence of Cu{sub 2}O shell on ZnO core. X-ray diffraction and Raman scattering measurements were used to investigate the purity and the crystallinity of the samples. Optical transmission measurements reveal an additional contribution at about 1.7 eV attributed to the type-II interfacial transition witch confirms the advantage of using the ZnO/Cu{sub 2}O structure in photovoltaic application.

  7. Facile fabrication of p-n heterojunctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts

    International Nuclear Information System (INIS)

    Li, Li; Lei, Jingguo; Ji, Tianhao

    2011-01-01

    Graphical abstract: Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via two-step preparation process, and their visible-light photodegradation activities of Rhodamine B were investigated in detail. Highlights: → Cu 2 O particle-deposited TiO 2 nanobelts mainly with diameters in a range of 200-400 nm were successfully prepared. → The amount of Cu 2 O particles deposited on TiO 2 nanobelts can be tuned. → The composite structure with Cu 2 O particles and TiO 2 nanobelts exhibits p-n semiconductor heterojunction performance. → Photocatalytic properties of such composites. -- Abstract: In this paper, Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via a two-step preparation process to investigate electron-transfer performance between p-type Cu 2 O and n-type TiO 2 . Various measurement results confirm that the amount of pure Cu 2 O submicroparticles, with diameters within the range of 200-400 nm and deposited on the surface of TiO 2 nanobelts, can be controlled, and that the purity of Cu 2 O is heavily affected by reaction time. Visible-light photodegradation activities of Rhodamine B show that photocatalysts have little or no photocatalytic activities mainly due to their p-n heterojunction structure, indicating that there hardly appears any electron-transfer from Cu 2 O to TiO 2 .

  8. Antibacterial property of CuCrO{sub 2} nanopowders prepared by a self-combustion glycine nitrate process

    Energy Technology Data Exchange (ETDEWEB)

    Nien, Yung-Tang, E-mail: ytnien@nfu.edu.tw [Deparment of Materials Science and Engineering, National Formosa University, Yunlin, 63201, Taiwan (China); Hu, Mon-Ru [Deparment of Materials Science and Engineering, National Formosa University, Yunlin, 63201, Taiwan (China); Chiu, Te-Wei [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan (China); Chu, Jaw-Shiow [Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan (China)

    2016-08-15

    Porous CuCrO{sub 2} nanopowders were prepared via glycine nitrate process (GNP) at 175 °C in ambient air. The X-ray diffraction patterns showed a pure delafossite phase of CuCrO{sub 2} with numerous broad peaks, indicating a crystallite size of approximately 20 nm. The surface area of the CuCrO{sub 2} nanopowders was larger than 50 m{sup 2}/g, nearly 100 times greater than that of bulk powders (0.47 m{sup 2}/g). Pathogenic Gram-negative bacteria Escherichia coli (E. coli) were chosen as the antibacterial evaluation indicators for both the nanopowders and bulk powders. The results showed that 1750 ppm nanopowders inhibited the growth of E. coli. As a control, the bulk powders showed a normal growth profile. The antibacterial property of the CuCrO{sub 2} nanopowders can be attributed to the extremely large surface area, which induces rapid release of Cu ions and strong adhesion of nanopowders to bacteria. - Highlights: • CuCrO{sub 2} nanopowders was prepared by low-temperature glycine nitrate process. • 1250–1500 ppm of CuCrO{sub 2} nanopowders were found to depress the growth of Escherichia coli. • Bulk powders by the solid state reaction exhibited no antibacterial property. • The antibacterial property of nanopowders was attributed to rapid Cu ion releases. • Heavy adhesion of nanopowders to bacteria also resulted in antibacterial property.

  9. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B{sub 4}C composites produced through hot pressing technique and subjected to hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Alpay, E-mail: alpiozer@gmail.com

    2016-11-01

    In this study, B{sub 4}C (5, 10, and 15 wt%) particle-reinforced Ecka Alumix 231{sup ®} aluminum matrix composites were produced through the hot pressing technique. Some of these samples were subjected to hot extrusion as a secondary treatment at 4:1 ratio at a temperature of 555 °C. The obtained samples were subjected to density measurement, hardness test, microstructure analysis, and three-point bending test, and their fracture surfaces were examined. A density of over 99% was found in the samples. Al-rich solid solution and primary Si, CuAl{sub 2}, Al{sub 2}CuMg, and Mg{sub 2}Si phases in the microstructure were determined through X-ray diffraction analysis. Grain sizes were found to be 20 μm and 2 μm in the microstructures of the samples produced through hot pressing technique and of those subjected to additional hot extrusion, respectively. High hardness values were obtained in the samples subjected to hot extrusion. In these samples, wt% B{sub 4}C particle ratio and transverse rupture strength increased considerably. Furthermore, the highest compressive strain value was obtained in the 10 wt% B{sub 4}C particle-reinforced composites subjected to hot extrusion. - Highlights: • Liquid phase formed at the temperature of hot pressing and hot extrusion. • In the samples, over 99.19% density was obtained. • Average matrix grain size was measured to be 2 μm through hot extrusion. • As wt% B{sub 4}C ratio increased, transverse rupture strength values increased. • High compressive strain values were obtained in the hot extrusion samples.

  10. The DC Electrical Resistivity Curves of Bismuth-2212 Ceramic Superconductors: Evaluation of the Hole-Carrier Concentrations per-Cu Ion

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2016-04-01

    Full Text Available In this study the samples of Bismuth ceramic superconductors were synthesized by the melt textured growth methods from a 2212 stoichiometric composition in order to obtain a large amount of pure Bi-2212. The effects of Pb substitution on the properties of Bi-based Bi2−xPbxSr2CaCu2Oy superconductor with x = 0, 0.2, and 0.4 were investigated by means of DC electrical resistivity measurements. It has been found that the hole-carrier concentrations per-Cu ion of the samples change independently of Pb content.

  11. Synthesis of Nanoparticles of the Giant Dielectric Material, CaCu3Ti4O12 from a Precursor Route

    OpenAIRE

    Thomas, P.; Dwarakanath, K.; Varma, K. B. R.; Kutty, T. R. N.

    2013-01-01

    A complex oxalate precursor, CaCu3(TiO)4(C2O4)8.9H2O, was synthesized and the precipitate that obtained was confirmed to be monophasic by the wet chemical analyses, X-ray diffraction, FTIR absorption and TG, DTA analyses. The thermal decomposition of this oxalate precursor led to the formation of phase-pure calcium copper titanate, CaCu3Ti4O12, at 680oC. The bright field TEM micrographs revealed that the size of the as synthesized crystallites to be in the 30 to 80 nm range. The powders so ob...

  12. Acceptability of Musa Balbisiana (Saba Banana Puree in Two Treatments in Making Ice Cream

    Directory of Open Access Journals (Sweden)

    Mario A. De Castro Jr.

    2016-11-01

    Full Text Available Musa Balbisiana or Saba is a variety of banana fruit that is nutritious and readily available in the market the whole year round. This experimental study aimed to determine the acceptability of the ice cream made from Saba banana puree in two treatments (treatment 1- cooked puree and treatment 2- uncooked puree. Data gathered were described and analyzed using a special Analysis of Variance. The sensory characteristics of the ice cream in two treatments were compared with one another based on the 9-point hedonic scale utilized by trained panelist in the education sector in secondary, tertiary and graduate school level that specialized in food related discipline such as Food Technology, Food Service Management, Technology and Livelihood Education- Food Trades and Hotel and Restaurant Management. Results indicated that in treatment 1( cooked puree the taste and texture of the ice cream were liked extremely however its color was rated liked very much, while in treatment 2 (uncooked puree the texture and color were rated liked moderately while its taste was rated liked very much. A comparison of the sensory characteristics between the two treatments revealed that there is a significant difference in terms of taste, texture and color and overall acceptability of the Saba banana ice cream. It is then recommended that in preparing Saba banana puree using treatment 1 (cooking method, the fruit should be subjected in numerous sieving process using a fine mesh siever or sifter to produce good quality puree texture.

  13. Theoretical and experimental study on the optical and electrical properties of Cu2ZnTiS4 and its photovoltaic applications

    Science.gov (United States)

    Jia, Xuguang; Guo, Huafei; Ma, Changhao; Zhang, Kezhi; Yuan, Ningyi; Ding, Jianning

    2017-07-01

    In this paper, a I2-II-IV-VI4 quaternary kesterite-structured semiconductor Cu2ZnTiS4 thin film is synthesized by a co-sputtering approach. Its structural properties are investigated via various experimental techniques combining the prediction from first-principle calculations. Stable chemical potential range is analyzed according to the formation energy of Cu2ZnTiS4 and its competing phases. The results show that the stable pure Cu2ZnTiS4 phase can exist and the most possible impure phases are ZnS and Cu2TiS3. X-ray diffraction analysis reveals the cubic crystal structure, which is expected in the calculations. Raman spectrum analysis excludes the possibility of ZnS and Cu2TiS3 phases, which corroborates the formation of single Cu2ZnTiS4 phase. The Cu2ZnTiS4 thin film exhibits dense and pinhole free surface morphologies and a bandgap of 1.42 eV is observed. The initial photovoltaic device based on this material exhibits a 0.83% efficiency. These findings offer a promising candidate material for quaternary semiconductor solar cells.

  14. High-temperature deformation of YBa2Cu3O7-δ with Ag additions

    International Nuclear Information System (INIS)

    Routbort, J.L.; Goretta, K.C.; Singh, J.P.

    1990-01-01

    The steady-state flow stress of YBa 2 Cu 3 O 7-δ containing 15 to 30 vol.% Ag has been measured in air at nearly constant compressive strain rates between 5 x 10 -6 and 1 x 10 -4 s -1 from 830 to 900 degrees C. Addition of Ag dramatically decreases the flow stress compared to that of the pure superconductor, but the stress exponents and the activation energy for deformation remain unchanged

  15. High-frequency properties of superconducting Y-Ba-Cu-oxide thin films

    International Nuclear Information System (INIS)

    Ramakrishnan, E.S.; Su, M.; Howng, W.

    1992-01-01

    rf and microwave properties of superconducting YBa 2 Cu 3 O 7-x thin films were measured and analyzed using a coplanar resonator structure. The films were developed by sequential electron-beam evaporation of the metals followed by postanneal processing. dc properties of the films were obtained from resistance-temperature and current-voltage measurements to evaluate the transition temperature and current densities. High-frequency properties were measured from 70 to 10 K and in the frequency range 1--3 GHz to determine the film characteristics as compared to pure copper films on the same substrates

  16. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.

    Science.gov (United States)

    Sohrabnezhad, Sh; Zanjanchi, M A; Hosseingholizadeh, S; Rahnama, R

    2014-04-05

    The synthesis of CuS nanomaterial in MCM-41 matrix has been realized by chemical synthesis between MCM-41, copper sulfate pentahydrate and thiourea via a solvothermal method in ethylene glycol and water, separately. X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) were used to characterize the products. At synthesized CuS/MCM-41 sample in ethylene glycol, X-ray diffraction and diffuse reflectance spectroscopy showed pure covellite phase of copper sulfide with high crystality. But prepared CuS/MCM-41 sample in water shows the covellite, chalcocite and the djurleite phase of copper sulfide nanostructures. The formation of CuS nanostructures was confirmed by FT-IR. Photocatalytic activity of CuS/MCM-41 nanocomposites was studied for degradation of Methylene Blue (MB) under visible light. The CuS/MCM-41 nanocomposite is more effective nanocatalyst than synthesized CuS/MCM-41 sample in water for degradation of methylene blue. Several parameters were examined, catalyst amount (0.1-1gL(-1)), pH (1-13) and initial concentration of MB (0.96-10ppm). The extent of degradation was estimated from the residual concentration by spectrophotometrically. The support size was obtained in the range 60-145nm by TEM. In the same way, the average size of copper sulfide in CuSMCM-41E and CuS/MCM-41W nanostructures were obtained about 10nm and 16nm, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 Catalysts for Direct NO Decomposition

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christiansen, Sofie E.

    2006-01-01

    Cu-ZSM-5 has for many years been recognized as a unique catalyst for direct NO decomposition. Here, it is discovered that both Cu-ZSM-11 and Cu-ZSM-12 are about twice as active as Cu-ZSM-5. This difference is attributed to the active sites located almost exclusively in the straight zeolite pores...

  18. In situ monitoring the growth of thin-film ZnS/Zn (S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Araoz, R.; Abou-Ras, D. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany); Niesen, T.P. [AVANCIS GmbH and Co KG Otto-Hahn-Ring 6, 81739 Munich (Germany); Neisser, A.; Wilchelmi, K. [SULFURCELL Solartechnik GmbH Barbara-McClintock-Strasse 11, 12489 Berlin (Germany); Lux-Steiner, M.Ch. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany); Ennaoui, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany)], E-mail: ennaoui@helmholtz-berlin.de

    2009-02-02

    This paper highlights the crucial role that the control of the chemical bath deposition (CBD) process plays for buffer production of Cu-chalcopyrite solar-cell devices. ZnS/Zn (S,O) bilayer was deposited on CuInS{sub 2} (CIS) and Cu(In,Ga)(SSe){sub 2} (CIGSSe) and monitored using turbidity measurements of the solution. The results were correlated to the X-ray photoemission spectra of the samples obtained by interruption of the process at sequential stages. Two different feature regimes were distinguished: In the first stage, a heterogeneous reaction takes place on the absorber resulting in the formation of pure ZnS. The second stage of the process is homogeneous, and the in-situ turbidity measurement shows a loss in the transmission of light through the CBD solution. The measured ZnL3M45M45 Auger-peaks, during this second stage of the process, show a shift of the kinetic energy from pure ZnS to a solid-solution ZnS/ZnO ('Zn (S,O)') with decreasing amount of sulfur. These results are supported by the observations from Energy-filtered transmission electron microscopy. This paper also demonstrates that monitoring of the CBD process combined with the basic understanding using surface and interface analysis have contributed to improve the reproducibility and to enhance the photovoltaic performance of Cu-chalcopyrite thin-film solar modules.

  19. In situ monitoring the growth of thin-film ZnS/Zn (S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells

    International Nuclear Information System (INIS)

    Saez-Araoz, R.; Abou-Ras, D.; Niesen, T.P.; Neisser, A.; Wilchelmi, K.; Lux-Steiner, M.Ch.; Ennaoui, A.

    2009-01-01

    This paper highlights the crucial role that the control of the chemical bath deposition (CBD) process plays for buffer production of Cu-chalcopyrite solar-cell devices. ZnS/Zn (S,O) bilayer was deposited on CuInS 2 (CIS) and Cu(In,Ga)(SSe) 2 (CIGSSe) and monitored using turbidity measurements of the solution. The results were correlated to the X-ray photoemission spectra of the samples obtained by interruption of the process at sequential stages. Two different feature regimes were distinguished: In the first stage, a heterogeneous reaction takes place on the absorber resulting in the formation of pure ZnS. The second stage of the process is homogeneous, and the in-situ turbidity measurement shows a loss in the transmission of light through the CBD solution. The measured ZnL3M45M45 Auger-peaks, during this second stage of the process, show a shift of the kinetic energy from pure ZnS to a solid-solution ZnS/ZnO ('Zn (S,O)') with decreasing amount of sulfur. These results are supported by the observations from Energy-filtered transmission electron microscopy. This paper also demonstrates that monitoring of the CBD process combined with the basic understanding using surface and interface analysis have contributed to improve the reproducibility and to enhance the photovoltaic performance of Cu-chalcopyrite thin-film solar modules

  20. Perspectives on the Pure-Tone Audiogram.

    Science.gov (United States)

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type

  1. Microstructure of laser floating zone (LFZ) textured (Bi,Pb)-Sr-Ca-Cu-O superconductor composites

    International Nuclear Information System (INIS)

    Fuente, G.F. de la; Ruiz, M.T.; Sotelo, A.; Larrea, A.; Navarro, R.

    1993-01-01

    Directionally solidified high temperature superconducting (Bi,Pb)-Sr-Ca-Cu-O pure ceramics and composites were obtained using a laser floating zone (LFZ) apparatus. The presence of secondary non-superconducting and metallic phases as well as their solidification habit have been analysed. The influence of the LFZ growth conditions and the precursor composition on the microstructure of the final products was studied using optical and electron microscopies. (orig.)

  2. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  3. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  4. Evidence for unconventional d-wave superconducting state in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra, Hugo A.; Geibel, Christoph; Steglich, Frank; Oeschler, Niels [Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187 (Germany); Parker, David [US Naval Research Laboratory, Washington, DC 20375 (United States); Jeevan, Hirale S. [I. Physik. Institut, Georg-August-Universitaet Goettingen, Goettingen 37077 (Germany)

    2010-07-01

    The heavy-fermion CeCu{sub 2}Si{sub 2} represents a prime system to study unconventional superconductivity in the vicinity of a magnetic instability. Within the homogeneity range of pure CeCu{sub 2}Si{sub 2} different ground states can be obtained. S-type crystals exhibit a superconducting transition at T{sub c}=0.6 K, whereas A/S-type show in addition antiferromagnetic order at T{sub N}=0.8 K. In recent years, the synthesis techniques have been optimized in order to obtain large high-quality single crystals with well defined ground state properties. This allows the systematic study of the superconducting order parameter and its variation at the border with magnetic order. In this work, we present angular dependent resistivity measurements on high-quality S- and A/S-type single-crystalline CeCu{sub 2}Si{sub 2} samples. The experimental results for the angular dependence of the upper critical field B{sub c2} as well as theoretical calculations taking into account effects like the strong Pauli paramagnetism, hint towards an unconventional d-wave symmetry of the order parameter in CeCu{sub 2}Si{sub 2}.

  5. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    Energy Technology Data Exchange (ETDEWEB)

    Davoodi, J., E-mail: jdavoodi@znu.ac.ir [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Ahmadi, M. [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Rafii-Tabar, H. [Department of Medical Physics and Biomedical Engineering and Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2010-06-25

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu{sub 3}Pd and CuPd{sub 3} ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  6. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Reddy, B. Purusottam; Byon, Chan; Shim, Jaesool

    2018-06-01

    Novel electrode materials for supercapacitors comprised of carbon and copper oxide (CuO) nanospheres on graphitic carbon nitride (g-C3N4) nanosheets, denoted as C/CuO@g-C3N4 are self-assembled via a one-step co-pyrolysis decomposition method. The pure g-C3N4 and C/CuO@g-C3N4 were confirmed by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption studies and Fourier-transform infrared spectroscopy (FTIR). The specific capacitance was 247.2 F g-1 in 0.5 M NaOH at a current density of 1 A g-1, and more than 92.1% of the capacitance was retained after 6000 cycles. The property enhancement was ascribed to the synergistic effects of the three components in the composite. These results suggest that C/CuO@g-C3N4 possessed an excellent cyclic stability with respect to their capacity performance as electrode materials.

  7. Improvisation of mechanical and electrical properties of Cu by reinforcing MWCNT using modified electro-co-deposition process

    Science.gov (United States)

    Belgamwar, Sachin U.; Sharma, N. N.

    2018-04-01

    Multi-walled Carbon nanotubes–copper (MWCNT/Cu) composite powders with variable MWCNT content were synthesized by modified electro-co-deposition method. The electro-co-deposited MWCNT/Cu powders were consolidated by conventional compaction and sintering process. The consolidated products were then hot rolled and cold drawn to fine wires. The MWCNT/Cu composite wire samples were characterized for electrical and mechanical properties. We have been able to achieve an increase of around 8% in electrical conductivity of the form wires repeatedly. It has been observed that there was gradual improvement in the properties with reinforcement of MWCNT in the copper matrix. The betterment of electrical property has been achieved with simultaneous improvement in mechanical properties of the wire. The yield strength of MWCNT/Cu composite wire was found to be four times and the tensile strength two times greater than that of pure copper. The improved properties are attributed to the proper distribution of MWCNTs in the copper matrix and excellent interfacial bonding between MWCNT and composite copper fabricated by the modified method.

  8. Preparation of Cu{sub 2}O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie [Zhejiang University of Technology, Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science and College of Ocean, and State Key Lab Breeding Base of Green Chemical Synthesis Technology and Zhejiang Collaborative Innovation Center of Membrane Separation and Water Treatment (China); Li, Qingbiao; Li, Guoqing [Quanzhou Normal University, College of Chemistry and Life Science (China); Zhang, Guoliang, E-mail: membrane86571@163.com, E-mail: guoliangz@zjut.edu.cn [Zhejiang University of Technology, Institute of Oceanic and Environmental Chemical Engineering, College of Chemical Engineering and Material Science and College of Ocean, and State Key Lab Breeding Base of Green Chemical Synthesis Technology and Zhejiang Collaborative Innovation Center of Membrane Separation and Water Treatment (China)

    2015-10-15

    Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu{sub 2}O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu{sub 2}O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu{sub 2}O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu{sub 2}O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.

  9. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  10. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  11. Hot mechanical behaviour of dispersion strengthened Cu alloys

    International Nuclear Information System (INIS)

    Garcia G, Jose; Espinoza G, Rodrigo; Palma H, Rodrigo; Sepulveda O, Aquiles

    2003-01-01

    This work is part of a research project which objective is the improvement of the high-temperature mechanical properties of copper, without an important decrease of the electrical or thermal conduction properties. The general hypothesis is that this will be done by the incorporation of nanometric ceramic dispersoids for hindering the dislocation and grain boundaries movement. In this context, the object of the present work is the study of the resistance to hot deformation of dispersion-strengthened copper alloys which have prepared by reactive milling. Two different alloys, Cu-2,39wt.%Ti-0.56wt.%C and Cu-1.18wt.%Al, were prepared so as obtain a copper matrix reinforced with nanometric TiC y Al 2 O 3 particles with a nominal total amount of 5 vol.%. The particles were developed by an in-situ formation process during milling. The materials were prepared in an attritor mill, and consolidated by extrusion at 750 o C, with an area reduction rate of 10:1. The resistance to hot deformation was evaluated by hot compression tests at 500 and 850 o C, at initial strain rates of 10 -3 and 10 -4 s-1. To evaluate the material softening due temperature, annealing at 400, 650 y 900 o C during 1h were applied; after that, hardness was measured at room temperature. Both studies alloys presented a higher resistance to hot deformation than pure copper, with or without milling. Moreover, the Cu-Ti-C alloy presented a mechanical resistance higher than that of the Cu-Al one. Both alloys presented strain-stress compression curves with a typical hot-work shape: an initial maximum followed by a stationary plateau. The Cu-Ti-C alloy had a higher hardness and did not present a hardness decay even after annealings at the higher temperature imposed (900 o C), while the Cu-Al alloy did exhibit a strong decay of hardness after the annealing at 900 o C. The best behaviour exhibited by the Cu-Ti C alloy, was attributed to the formation of a major quantity of dispersoids that in the Cu-Al alloy. In

  12. Development of bonding techniques for cryogenic components (2). HIP bonding between Cu Alloys and Ti, cryogenic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Ouchi, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchiya, Yoshinori; Nakajima, Hideo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    Several joints between dissimilar materials are required in the superconducting (SC) magnet system of SC linear accelerator or fusion reactor, Pure titanium (Ti) is one of candidate materials for a jacket of SC coil of fusion reactor because Ti is non-magnetic material and has a feature that its thermal expansion is similar to SC material in addition to good corrosion resistance and workability. Also, Ti does not require strict control of environment during reaction heat treatment of SC material. Copper (Cu) or Cu-alloy is used in electrical joints and cryogenic stainless steel (SS) is used in cryogenic pipes. Therefore, it is necessary to develop new bonding techniques for joints between Ti, Cu, and SS because jacket, electrical joint and cryogenic pipe have to be bonded each other to cool SC coils. Japan Atomic Energy Research Institute (JAERI) has started to develop dissimilar material joints bonded by hot isostatic pressing (HIP), which can bring a high strength joint with good tolerance and can applied to a large or complex geometry device. HIP conditions for Cu-Ti, Cu alloy-Ti, Cu alloy-SS were investigated in this study and most stable HIP condition were evaluated by microscopic observation, tensile and bending tests at room temperature. (author)

  13. FY 1999 project on the development of new industry support type international standards. Standards development of chemical analysis and non-destructive inspection methods for pure titanium metals; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Junchitan no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To propose it to ISOTC79 and ISOTC135, study was conducted for standardization of chemical analysis method and non-destructive inspection method for industrial use pure titanium. As the chemical analysis method, the inductively coupled plasma atomic emission spectrometry which has good detection limit was developed, and at the same time, the standardization of spark and/or glow discharged atomic emission spectrometry was developed. As the non-destructive inspection method, developmental study on the following was carried out: surface defect inspection method of pure titanium metals by laser scanning inspection system or CCD camera; internal defect inspection of pure titanium sheet and coil by plate wave ultrasonic inspection method; internal defect inspection of pure titanium bar by eddy current method; inspection of very small leakage of pressurized fluid through defects in pure titanium pipe and tube by pressure differential testing method. As a result of the study, standards of system performance and tolerance were determined in analysis of Pd, Si, Al, Cu, Mo, Zr, Nb, Ta and Y. Further, analytical conditions and application ranges of the spark discharged atomic emission spectrometry were made definite in terms of 19 elements including Mn, Fe, Ni, Cr, Sn, Pb, Si, Al, V, Cu, Mo, Zr, Nb, Ta, Co, B, Y, C and W. (NEDO)

  14. Synthesis, spectroscopic analysis and electrochemical performance of modified β-nickel hydroxide electrode with CuO

    Directory of Open Access Journals (Sweden)

    B. Shruthi

    2017-03-01

    Full Text Available In the present work, a modified β-nickel hydroxide (β-Ni(OH2 electrode material with CuO has been prepared using a co-precipitation method. The structure and property of the modified β-Ni(OH2 with CuO were characterized by X-ray diffraction (XRD, Fourier Transform infra-red (FT-IR, Raman and thermal gravimetric-differential thermal analysis (TG-DTA techniques. The results of the FT-IR spectroscopy and TG-DTA indicate that the modified β-Ni(OH2 electrode materials contain intercalated water molecules and anions. A pasted–type electrode was prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry (CV and Electrochemical impedance spectroscopy (EIS studies were undertaken to assess the electrochemical behavior of pure β-Ni(OH2 and modified β-Ni(OH2 electrode with CuO in a 6 M KOH electrolyte. The addition of CuO into β-nickel hydroxide was found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. The modified nickel hydroxide with CuO was also found to exhibit a higher proton diffusion coefficient and a lower charge transfer resistance. These findings suggest that the modified β-Ni(OH2 with CuO possesses an enhanced electrochemical response and thus can be recognized as a promising candidate for battery electrode applications.

  15. (Pt{sub 1–x}Cu{sub x}){sub 3}Cu{sub 2}B and Pt{sub 9}Cu{sub 3}B{sub 5}, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    Energy Technology Data Exchange (ETDEWEB)

    Salamakha, Leonid P. [Institute of Solid State Physics, TU Wien, A-1040 Wien (Austria); Sologub, Oksana, E-mail: oksana.sologub@univie.ac.at [Institute of Solid State Physics, TU Wien, A-1040 Wien (Austria); Stöger, Berthold [Institute of Chemical Technologies and Analytics, TU Wien, A-1040 Wien (Austria); Michor, Herwig; Bauer, Ernst [Institute of Solid State Physics, TU Wien, A-1040 Wien (Austria); Rogl, Peter F. [Institute of Physical Chemistry, University of Vienna, A-1090 Wien (Austria)

    2015-09-15

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt{sub 1−x}Cu{sub x}){sub 3}Cu{sub 2}B (x=0.33) forms a B-filled β-Mn-type structure (space group P4{sub 1}32; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt{sub 9}Cu{sub 3}B{sub 5} (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt{sub 9}Zn{sub 3}B{sub 5–δ}-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt{sub 6}] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt{sub 6}] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt{sub 6}] and [Pt{sub 6}] trigonal prisms, rotated perpendicularly to the central one. There is no B–B contact as well as Cu–B contact in the structure. The relationships of Pt{sub 9}Cu{sub 3}B{sub 5} structure with the structure of Ti{sub 1+x}Os{sub 2−x}RuB{sub 2} as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt{sub 1–x}Cu{sub x}){sub 3}Cu{sub 2}B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ{sub 0}H{sub C2}(0){sup WHH} of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt{sub 9}Cu{sub 3}B{sub 5} (Pt{sub 9}Zn{sub 3}B{sub 5–δ}-type structure) from electrical resistivity measurements. - Highlights: • First two copper platinum borides, (Pt{sub 0.67}Cu{sub 0.33}){sub 3}Cu{sub 2}B and Pt{sub 9}Cu{sub 3}B

  16. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinxin; Wang, Hongying; Li, Fangbing; Li, Muqin; Zhang, Erlin; Yang, Ke

    2014-01-01

    The antibacterial activity, the cytotoxicity and the cell function of a sintered Ti-10 wt% Cu alloy were investigated in order to assess the suitability of the alloy for biomedical application. The antibacterial activity of the alloy was investigated by a plate-count method and the cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell function was monitored by measuring the AKP activity. The Cu ion released from the Ti–Cu alloy was also measured by an inductively coupled plasma spectrometer at different immersion durations. The results show that the antibacterial rates of the alloy against Escherichia coli and Staphylococcus aureus increase with an increase in the incubation duration. After 7 h of incubation, the alloy showed an antibacterial rate of 91.66% against S. aureus and 99. 01% against E. coli. With a further extension of incubation time to 24 h, the antibacterial rate increased to 100% against S. aureus and 99.93% against E. coli. No cytotoxicity was observed on the alloy by a CKK8 test during three days of incubation in comparison with commercially available pure titanium (cp-Ti). AKP test results showed a significantly high AKP value (p = 0.001 < 0.01) on the Ti–Cu alloy on day 1. The Cu ion release was thought to contribute to the strong antibacterial property, but the Cu ion did not lead to cell cytotoxicity. Strong antibacterial activity and good cell biocompatibility suggest that the Ti–Cu alloy could reduce bacterial infection and have a potential application as an implant material. (paper)

  17. Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal–organic precursors

    International Nuclear Information System (INIS)

    Hosseinpour-Mashkani, S. Mostafa; Mohandes, Fatemeh; Salavati-Niasari, Masoud; Venkateswara-Rao, K.

    2012-01-01

    Highlights: ► CuInS 2 nanoparticles were prepared using complexes via a microwave-assisted method. ► The effect of preparation parameters on the morphology of CuInS 2 was investigated. ► The as-deposited CdS/CuInS 2 films were used for the photovoltaic measurements. -- Abstract: In this work, CuInS 2 (CIS) nanoparticles have been synthesized with the aid of (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate ([Cu(DADO)]SO 4 ) and bis(propylenediamine)copper(II) sulfate ([Cu(pn) 2 ]SO 4 ) complexes as copper precursor in the presence of microwave irradiation. Besides, L-cystine, InCl 3 , and sodium dodecyl sulfate (SDS) were applied as sulfur source, indium precursor, and capping agent, respectively. To investigate the effect of preparation parameters like microwave power and irradiation time on the morphology and particle size of CuInS 2 , the experiment was carried out at different conditions. The as-synthesized CuInS 2 nanoparticles were characterized by XRD, FT-IR, PL, SEM, TEM, and EDS. The XRD results showed that pure tetragonal CuInS 2 could be only obtained after annealing at 400 °C for 2 h. The SEM images indicated that with decreasing the microwave power and irradiation time, particle size of CuInS 2 nanoparticles decreased. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film prepared by Doctor's blade method through chemical bath deposition. The as-deposited CdS/CuInS 2 films were used for the photovoltaic measurements.

  18. ANTIMICROBIAL ACTIVITY OF Ag+, Cu2+, Zn2+, Mg2+ IONS DOPED CHITOSAN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2015-04-01

    Full Text Available Modification by polymers and inorganic ions of the bioactive materials for orthopedic implants with the purpose of initiating controlled reactions in tissues that surround the implant, is one of the modern approaches in medical materials. A key feature of functional polymers is their ability to form complexes with various metal ions in solution. Chitosan is natural biopolymer with pronounced affinity to transition metal ions. Some researches prove the higher antimicrobial activity of Chitosan-metal complexes compared with pure Chitosan. The purpose of this work was the study of antimicrobial activity of Chitosan nanoparticles modified by metal ions Ag+, Cu2+, Zn2+, Mg2+ against reference strains S. aureus 25923 ATSS, E. coli ATCC 25922, C. albicans ATCC 885653 for their further use as components of the composite biomaterials for medical purpose.Chitosan nanoparticles suspension was prepared by known method based on the ionotropic gelation between chitosan and sodium tripolyphosphate.To obtain Chitosan-metal nanoparticles to the Chitosan suspension were added the corresponding metal ions aqueous solutions in quantity to match the concentration of metal ions of 200 ppm . Antibacterial activities of Ag+, Cu2+, Zn2+, Mg2+ ions doped Chitosan nanoparticles, pure Chitosan nanoparticles, metal ions and 1% (v/v acetic acid solution (it was used as solvent for Chitosan against bacteria were evaluated by determination of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC in vitro. Muller– Hinton (MH broth and MH agar (Russia were used as growth media. The bacteria suspension for further use was prepared with concentration that corresponded 0,5units by McFarland scale. The MIC was determined by a broth dilution method. The results were read after 24 hours of experimental tubes incubation at 37 oC as equivalent to the concentration of the tube without visible growth. To evaluate MBC, a sample of 0,1 ml was transferred from

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In the present work, Al 65 Cu 20 Fe 15 alloy has been synthesized by melting of pure elements (e.g., Al (99.96%),Cu (99.99%) and Fe (99.98%)), using a radiofrequency induction melting furnace. The as-prepared alloy was subjected torapid solidification by melt spinning technique at ∼ 3500 rpm speed on a copper disk of ...

  20. Musical notation reading in pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Wong, Yetta K.

    2017-01-01

    Pure alexia (PA) is an acquired reading disorder following lesions to left ventral temporo-occipital cortex. Patients with PA read slowly but correctly, and show an abnormal effect of word length on RTs. However, it is unclear how pure alexia may affect musical notation reading. We report a pure...

  1. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  2. Compounds Containing Tetragonal Cu2+ Complexes: Is the dx2–y2–d3z2–r2 Gap a Direct Reflection of the Distortion?

    DEFF Research Database (Denmark)

    García-Fernández, Pablo; Barriuso, María Teresa; García Lastra, Juan Maria

    2013-01-01

    – complex. This internal field, especially important for layered compounds, is shown to explain all puzzling experimental facts on the d–d transitions of the studied systems and is of interest in the search of new Cu2+ and Ag2+ superconducting materials where a strong correlation between Δ...... to be not correct through the study of pure K2CuF4-, KCuF3-, and Cu2+-doped KZnF3 and K2ZnF4 model compounds. Indeed, ab initio calculations prove that Δ in these insulating materials also depends on the internal electric field created by the rest of lattice ions on active electrons confined in a given CuF64...

  3. Fabrication of Cu(x)Ge(y) Nanoplatelets

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Fajgar, Radek; Medlín, R.; Klementová, Mariana; Novotný, F.; Dřínek, Vladislav

    2011-01-01

    Roč. 11, č. 9 (2011), s. 8279-8283 ISSN 1533-4880. [EuroCVD-18. Kinsale, 04.09.2011-09.09.2011] Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : CuGe * alloy * nanoplatelet Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.563, year: 2011

  4. Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease.

    Science.gov (United States)

    Wagner, M; Wolf, S; Reischies, F M; Daerr, M; Wolfsgruber, S; Jessen, F; Popp, J; Maier, W; Hüll, M; Frölich, L; Hampel, H; Perneczky, R; Peters, O; Jahn, H; Luckhaus, C; Gertz, H-J; Schröder, J; Pantel, J; Lewczuk, P; Kornhuber, J; Wiltfang, J

    2012-02-07

    To compare cued recall measures with other memory and nonmemory tests regarding their association with a biomarker profile indicative of Alzheimer disease (AD) in CSF among patients with mild cognitive impairment (MCI). Data were obtained by the German Dementia Competence Network. A total of 185 memory clinic patients fulfilling broad criteria for MCI (1 SD deficit in memory tests or in nonmemory tests) were assessed with an extended neuropsychological battery, which included the Free and Cued Selective Reminding Test (FCSRT), the word list learning task from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NP), and the Logical Memory (LM) paragraph recall test from the Wechsler Memory Scale-Revised. CSF was obtained from all patients. A total of 74 out of 185 subjects with MCI (40%) had a CSF profile consistent with AD (Aβ(1-42)/tau ratio; CSF AD+ group). FCSRT measures reflecting both free and cued recall discriminated best between CSF AD+ and CSF AD- patients, and significantly improved CSF AD classification accuracy, as compared with CERAD delayed recall and LM delayed recall. Cued recall deficits are most closely associated with CSF biomarkers indicative of AD in subjects with MCI. This novel finding complements results from prospective clinical studies and provides further empirical support for cued recall as a specific indicator of prodromal AD, in line with recently proposed research criteria.

  5. An Evaluation of Deficits in Semantic Cuing, Proactive and Retroactive Interference as Early Features of Alzheimer’s disease

    Science.gov (United States)

    Crocco, Elizabeth; Curiel, Rosie E.; Acevedo, Amarilis; Czaja, Sara J.; Loewenstein, David A.

    2015-01-01

    OBJECTIVE To determine the degree to which susceptibility to different types of semantic interference may reflect the earliest manifestations of early Alzheimer disease (AD) beyond the effects of global memory impairment. METHODS Normal elderly (NE) subjects (n= 47), subjects with amnestic mild cognitive impairment (aMCI: n=34) and 40 subjects with probable AD were evaluated using a unique cued recall paradigm that allowed for an evaluation of both proactive and retroactive interference effects while controlling for global memory impairment (LASSI-L procedure). RESULTS Controlling for overall memory impairment, aMCI subjects had much greater proactive and retroactive interference effects than NE subjects. LASSI-L indices of learning using cued recall evidenced high levels of sensitivity and specificity with an overall correct classification rate of 90%. These provided better discrimination than traditional neuropsychological measures of memory function. CONCLUSION The LASSI-L paradigm is unique and unlike other assessments of memory in that items presented for cued recall are explicitly presented, and semantic interference and cuing effects can be assessed while controlling for initial level of memory impairment. This represents a powerful procedure allowing the participant to serve as his or her own control. The high levels of discrimination between subjects with aMCI and normal cognition that exceeded traditional neuropsychological measures makes the LASSI-L worthy of further research in the detection of early AD. PMID:23768680

  6. Are Corporate Universities (CU possible in emerging countries? Arcor University (AU.

    Directory of Open Access Journals (Sweden)

    Leandro A. Viltard

    2014-09-01

    Full Text Available This article explores CU implementation and whether it is applicable and effective in emerging countries like Argentina (where there are no studies on the subject. Through an in-depth review of Arcor University (AU, Arcor’s Group CU, located in Argentina, the feasibility of the CU is shown, under certain conditions. This analysis is complemented with specialists´ interviews to deepen our insights and investigation’s results. Our conclusion is that the CU complements Corporate Training’s traditional offering, as its programs are directed towards practical contents and performance/organizational improvement. In this way, it is possible to enhance the actual corporate educational paradigm and talent employability. The research design is not experimental and is transversal as it relates to a specific moment in time.

  7. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils.

    Science.gov (United States)

    Adriaensen, K; Vrålstad, T; Noben, J-P; Vangronsveld, J; Colpaert, J V

    2005-11-01

    Natural populations thriving in heavy-metal-contaminated ecosystems are often subjected to selective pressures for increased resistance to toxic metals. In the present study we describe a population of the ectomycorrhizal fungus Suillus luteus that colonized a toxic Cu mine spoil in Norway. We hypothesized that this population had developed adaptive Cu tolerance and was able to protect pine trees against Cu toxicity. We also tested for the existence of cotolerance to Cu and Zn in S. luteus. Isolates from Cu-polluted, Zn-polluted, and nonpolluted sites were grown in vitro on Cu- or Zn-supplemented medium. The Cu mine isolates exhibited high Cu tolerance, whereas the Zn-tolerant isolates were shown to be Cu sensitive, and vice versa. This indicates the evolution of metal-specific tolerance mechanisms is strongly triggered by the pollution in the local environment. Cotolerance does not occur in the S. luteus isolates studied. In a dose-response experiment, the Cu sensitivity of nonmycorrhizal Pinus sylvestris seedlings was compared to the sensitivity of mycorrhizal seedlings colonized either by a Cu-sensitive or Cu-tolerant S. luteus isolate. In nonmycorrhizal plants and plants colonized by the Cu-sensitive isolate, root growth and nutrient uptake were strongly inhibited under Cu stress conditions. In contrast, plants colonized by the Cu-tolerant isolate were hardly affected. The Cu-adapted S. luteus isolate provided excellent insurance against Cu toxicity in pine seedlings exposed to elevated Cu levels. Such a metal-adapted Suillus-Pinus combination might be suitable for large-scale land reclamation at phytotoxic metalliferous and industrial sites.

  8. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  9. Theoretical investigation of the Friedlander reaction catalysed by CuBTC: Concerted effect of the adjacent Cu2+ sites

    Czech Academy of Sciences Publication Activity Database

    Položij, M.; Pérez-Mayoral, E.; Čejka, Jiří; Hermann, J.; Nachtigall, P.

    2013-01-01

    Roč. 204, APR 2013 (2013), s. 101-107 ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Grant - others:European Commission(XE) FP7/2007-2013, contract 228862 Institutional support: RVO:61388955 Keywords : Friedlander reaction * Metal Organic Framework (MOF) * CuBTC Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.309, year: 2013

  10. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shutesh, E-mail: shutesh.k@onsemi.com [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia); ON Semiconductor Package Innovation and Development Center, 70450 Seremban (Malaysia); Haseeb, A.S.M.A.; Johan, Mohd Rafie [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-15

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1{sup ¯}11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications.

  11. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    International Nuclear Information System (INIS)

    Krishnan, Shutesh; Haseeb, A.S.M.A.; Johan, Mohd Rafie

    2014-01-01

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1 ¯ 11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications

  12. Synthesis, structure and magnetic properties of crystallographically aligned CuCr{sub 2}Se{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Esters, Marco [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Liebig, Andreas [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Ditto, Jeffrey J.; Falmbigl, Matthias [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Albrecht, Manfred [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Johnson, David C., E-mail: davej@uoregon.edu [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States)

    2016-06-25

    We report the low temperature synthesis of highly textured CuCr{sub 2}Se{sub 4} thin films using the modulated elemental reactant (MER) method. The structure of CuCr{sub 2}Se{sub 4} is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr{sub 2}Se{sub 4}. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the <111> axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr{sub 2}Se{sub 4} synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10{sup 6} erg cm{sup −3}; shape anisotropy: 1.07 × 10{sup 6} erg cm{sup −3}), with the easy axis lying out of plane, and a larger magnetic moment (6 μ{sub B}/f.u.) than bulk CuCr{sub 2}Se{sub 4}. - Highlights: • Crystallographically aligned, phase pure CuCr{sub 2}Se{sub 4} were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the <111> direction. • The magnetization is larger than bulk CuCr{sub 2}Se{sub 4} or other CuCr{sub 2}Se{sub 4} films made to date.

  13. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst

    Science.gov (United States)

    Fuku, X.; Kaviyarasu, K.; Matinise, N.; Maaza, M.

    2016-09-01

    A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29-20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance ( C s) was calculated to be 241 F g-1 at 50 mV s-1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

  14. Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    International Nuclear Information System (INIS)

    Meng, Qingsen; Wang, Shengping; Shen, Yongli; Yan, Bing; Wu, Yuanxin; Ma, Xinbin

    2014-01-01

    Surface structure of CuCl 2 -PdCl 2 bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl 2 -PdCl 2 surfaces was also investigated. On the CuCl 2 -PdCl 2 surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl 2 surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH 3 on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH 3 species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl 2 -PdCl 2 surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl 2 -CuCl 2 catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  15. The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation

    International Nuclear Information System (INIS)

    Pluengphon, P; Bovornratanaraks, T; Pinsook, U; Vannarat, S

    2012-01-01

    The effects of Na atoms on high pressure structural phase transitions of CuIn 0.5 Ga 0.5 Se 2 (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I 4-bar 2 d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe 2 phase transitions which are I 4-bar 2 d→F m 3-bar m→C m c m structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na InGa ) is higher than that of Na at Cu sites (Na Cu ). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na Cu -Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa -1 under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that F m 3-bar m and Cmcm can coexist in some pressure range. (paper)

  16. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons; Produccion de {sup 62} Cu y {sup 64} Cu con deuterones de 4,2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Mario; Morales, J R; Riquelme, H O [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, {beta}{sup +}) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 {+-} 0,1 MeV energy has been obtained total yields of 1,103 {+-} 0,011 {mu}Cl/{mu}Ah medium for 62 Cu and of 0,148 {+-} 0,015 {mu}Cl/{mu}Ah for 64 Cu.

  17. Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Tian, Yanlong; Chang, Binbin; Fu, Jie; Zhou, Baocheng; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping

    2014-01-01

    As a metal-free semiconductor material, graphitic carbon nitride (C 3 N 4 ), the high recombination rate of photogenerated charges and insufficient sunlight absorption limit its solar-based photocatalytic activity. Here, we reported the heterojunctions of C 3 N 4 –Cu 2 O with a p–n junction structure, which was synthesized by a hydrothermal method. The HR-TEM result revealed an intimate interface between C 3 N 4 and Cu 2 O in the heterojunction, and UV–vis diffuse reflection spectra showed their extended spectral response in the visible region compared with pure C 3 N 4 . These excellent structural and spectral properties, as well as p–n junction structures, endowed the C 3 N 4 –Cu 2 O heterojunctions with enhanced photocatalytic activities. The possible photocatalytic mechanism that photogenerated holes as the mainly oxidant species in photocatalysis was proposed base on the trapping experiments. - Highlights: • A hydrothermal method was used to prepare C3N 4 –Cu 2 O heterojunction. • The resulting heterojunction possesses broader absorption in the visible region. • The material owns a high visible light activity and stability for dye degradation

  18. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  19. Pure homology of algebraic varieties

    OpenAIRE

    Weber, Andrzej

    2003-01-01

    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  20. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery.

    Science.gov (United States)

    Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad

    2017-09-15

    Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.

  1. Initial singularity and pure geometric field theories

    Science.gov (United States)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  2. Cu/Cu{sub 2}O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli, E-mail: zhaoxiaoli_zxl@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Tan, Yixin [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wu, Fengchang, E-mail: wu_fengchang@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Niu, Hongyun [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Zhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Cai, Yaqi [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Giesy, John P. [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-11-15

    A simple, novel method for synthesis of Cu/Cu{sub 2}O/CuO on surfaces of carbon (Cu/Cu{sub 2}O/CuO@C) as a non-noble-metal catalyst for reduction of organic compounds is presented. Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less expensive. Characterization of the Cu/Cu{sub 2}O/CuO@C composites by high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), infrared spectroscopy and Raman analysis, revealed that it was composed of graphitized carbon with numerous nanoparticles (100 nm in diameter) of Cu/CuO/Cu{sub 2}O that were uniformly distributed on internal and external surfaces of the carbon support. Gallic acid (GA) has been used as both organic ligand and carbon precursor with metal organic frameworks (MOFs) as the sacrificial template and metal oxide precursor in this green synthesis. The material combined the advantages of MOFs and Cu-containing materials, the porous structure provided a large contact area and channels for the pollutions, which results in more rapid catalytic degradation of pollutants and leads to greater efficiency of catalysis. The material gave excellent catalytic performance for organic dyes and phenols. In this study, Cu/Cu{sub 2}O/CuO@C was used as catalytic to reduce 4-NP, which has been usually adopted as a model reaction to check the catalytic ability. Catalytic experiment results show that 4-NP was degraded approximately 3 min by use of 0.04 mg of catalyst and the conversion of pollutants can reach more than 99%. The catalyst exhibited little change in efficacy after being utilized five times. Rates of degradation of dyes, such as Methylene blue (MB) and Rhodamine B (RhB) and phenolic compounds such as O-Nitrophenol (O-NP) and 2-Nitroaniline (2-NA) were all similar. - Highlights: • We present an effective catalyst for reductive degradation of organic dyes and phenols in water. • Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less

  3. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection.

    Science.gov (United States)

    Ibupoto, Z H; Khun, K; Liu, X; Willander, M

    2013-10-01

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only CuO bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88±0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  5. Order parameter in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra, Hugo A.; Brando, Manuel; Oeschler, Niels; Seiro, Silvia; Geibel, Christoph; Steglich, Frank [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Jeevan, Hirale S. [I. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany); Parker, David [US Naval Research Laboratory, Washington, DC (United States)

    2011-07-01

    Understanding the interplay between magnetism and unconventional superconductivity remains a key challenge in solid-state physics. A clear example is the archetypical heavy-fermion compound CeCu{sub 2}Si{sub 2} which exhibits superconductivity (T{sub c}=600 mK) in the vicinity of a magnetic quantum critical point. It is believed that magnetic fluctuations mediate superconductivity and its order parameter possesses d-wave symmetry, both ideas still under debate. In this work, a high-quality single crystal with a purely superconducting ground state (S type) has been chosen to investigate the low-temperature thermal- and electric-transport characteristics of the superconducting state. Non-vanishing contributions of low-energy quasiparticle excitations to the thermal transport ({kappa}{sub 0}/T>0) suggest the presence of nodal structure in CeCu{sub 2}Si{sub 2}. In turn, angle-dependent resistivity measurements of the upper critical field H{sub c2} point towards unconventional superconductivity with d-wave symmetry of the order parameter. Theoretical calculations reveal the strong influence of Pauli paramagnetic effects and a d{sub xy} symmetry of the gap function.

  6. Analysis of pure maple syrup consumers

    Science.gov (United States)

    Paul E. Sendak

    1974-01-01

    Virtually all of the pure maple syrup productim in the United States is in the northern states of Maine, Massachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure...

  7. Influence of La content on magnetic properties of Cu doped M-type strontium hexaferrite: Structural, magnetic, and Mossbauer spectroscopy study

    Science.gov (United States)

    Ghimire, M.; Yoon, S.; Wang, L.; Neupane, D.; Alam, J.; Mishra, S. R.

    2018-05-01

    The present study investigates the influence of Cu2+ and La3+-Cu2+ doping on the magnetic properties of Sr1-xLaxFe12-xCuxO19 (x = 0.0-0.5) hexaferrite (SrM) compounds. The samples were prepared via facile autocombustion technique followed by sintering. X-ray powder diffraction patterns show the formation of the pure phase of M-type hexaferrite for all x. Invariance in lattice parameters was observed with only Cu2+ substitution while lattice contraction along c-axis was observed with co-doping La3+-Cu2+ in SrM. The magnetic property of these compounds is explained based on Cu2+ occupancy in the absence and presence of La3+ in SrM magnetoplumbite structure. The Cu2+ doped SrFe12-xCuxO19 sample showed a monotonic decrease in Ms value while La3+-Cu2+ showed a noticeable increase in Ms value with x. Furthermore, while coercivity of Cu2+ doped SrM reduced with x, the coercivity of La3+-Cu2+ doped SrM showed a marked 12% increase in coercivity at x = 0.1 (Hc = 4391 Oe) from that of x = 0.0 (3918 Oe). Interestingly, Cu2+ doped SrM displayed invariance in Tc ∼ 458.6 °C with x, while La3+-Cu2+ doping reduced Tc by 5% from its x = 0 (Tc = 451.9 °C) to 429.6 °C. The room temperature Mossbauer spectral analysis confirmed a Cu2+ preference for the 12k site and its occupancy is observed to be influenced by the presence of La3+ ion at the Sr2+ site.

  8. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans.

    Science.gov (United States)

    Lefevre, Marie; Racedo, Silvia M; Denayrolles, Muriel; Ripert, Gabrielle; Desfougères, Thomas; Lobach, Alexandra R; Simon, Ryan; Pélerin, Fanny; Jüsten, Peter; Urdaci, Maria C

    2017-02-01

    Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 10 9 spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    Science.gov (United States)

    Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.

  10. No antiferromagnetic reordering at low temperature in pure YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Casalta, H.; Schleger, P.; Brecht, E.

    1994-01-01

    Magnetic ordering has been investigated by neutron scattering on an YBa2Cu3O6+x single crystal with x=0.1 and x=0.18, and an Al doped YBa2(CU2.86Al0.14)O-6.25 crystal. For the undoped crystal an antiferromagnetic ordering transition (AFI) was observed at T-N=410 K and 368 K (respectively for x=0...

  11. Physical properties of nanostructured (PbSx(CuS1−x composite thin films grown by successive ionic layer adsorption and reaction method

    Directory of Open Access Journals (Sweden)

    A.U. Ubale

    2016-03-01

    Full Text Available Nanostructured ternary semiconducting (PbSx(CuS1−x thin films were grown on glass substrates by successive ionic layer adsorption and reaction (SILAR technique at room temperature. The structural, morphological and optical characterizations of the films were carried out by X-ray diffraction, scanning electron microscopy and UV–Vis spectrophotometer respectively. The structural studies revealed that, (PbSx(CuS1−x films are nanocrystalline in nature and have mixed phase of cubic PbS and hexagonal CuS. The optical absorption measurements showed that band gap energy of (PbSx(CuS1−x can be engineered between 2.57 and 2.28 eV by varying compositional parameter ‘x’. The room temperature dc dark electrical resistivity of PbS film is found to be 28.85 Ωcm and it decreases when content of Cu in composite increases and becomes 0.05 Ωcm for pure CuS. The thermo-emf measurements showed that the as deposited (PbSx(CuS1−x films are of n-type. The water angle contact measurements of (PbSx(CuS1−x, revealed that, films are hydrophilic in nature and it could be advantageous in electrochemical application.

  12. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Science.gov (United States)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  13. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  14. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing; Kovalev, Valery; Chen, Wen

    2014-01-01

    Highlights: • ZnSe is employed as passivation layer in CuInS 2 quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS 2 based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS 2 quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS 2 quantum dot sensitized TiO 2 photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS 2 quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS 2 based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer

  15. Stability of Cu-Precipitates in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Torsten E. M. Staab

    2018-06-01

    Full Text Available We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.

  16. Influence of the volume-contact area ratio on the growth behavior of the Cu-Sn intermetallic phase

    Science.gov (United States)

    Giddaluri, Venkatakamakshi Supraja

    Solder Joints play a very important role in electronic packaging industry by serving as mechanical support and provides integrity to the device. The increasing demand for high performance, environmental and economic feasibility and miniaturization led to the development of high density interconnects. With the reduction in the size/standoff height of the solder reliability issues in the surface mount assemblies and packaging structures under various rigorous environments are becoming significant. One of the most important impact factors that affect the solder joint reliability is the growth rate IMC formed between the solder and substrate with reduction in joint size. IMC formation is required to ensure good bonding and connectivity of the device in packaging. However excess IMC growth rate is detrimental to the device from mechanical aspects due to its brittle nature. Thus there is a need to study effect the IMC growth rate behavior with the solder joint size/standoff height. In this present study, two solder joints of different standoff heights and same composition (pure Sn solder) are used subjected to reflow process at 270°C for 1--7 min to study solid liquid interfacial reaction on joint size and the same experiment is repeated with SAC alloy of composition (96.5% Sn, 3.0% Ag, 0.5% Cu) to investigate the effect of joint size and initial copper concentration on IMC growth rate. The IMC thickness of the Sn 15microm solder joint at 1 min and 7 min is found to be 1.52microm and 2.86microm respectively while that of Sn 150microm solder joint is 1.31microm and 3.16 microm. The thickness is high in low standoff height sample at the early stage of reaction with decrease in IMC growth rate as the time of reflow increases. In case of 25microm SAC alloy solder joint the IMC thickness from 1 and 7 min is found to be 2.1microm and 3.5microm while that of 250microm SAC alloy solder joint its 1.43microm and3.235microm. Similar trend is observed but the IMC thickness is more

  17. Fundamentals of the Pure Spinor Formalism

    CERN Document Server

    Hoogeveen, Joost

    2010-01-01

    This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved

  18. Using virtual reality to distinguish subjects with multiple- but not single-domain amnestic mild cognitive impairment from normal elderly subjects.

    Science.gov (United States)

    Mohammadi, Alireza; Kargar, Mahmoud; Hesami, Ehsan

    2018-03-01

    Spatial disorientation is a hallmark of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease. Our aim was to use virtual reality to determine the allocentric and egocentric memory deficits of subjects with single-domain aMCI (aMCIsd) and multiple-domain aMCI (aMCImd). For this purpose, we introduced an advanced virtual reality navigation task (VRNT) to distinguish these deficits in mild Alzheimer's disease (miAD), aMCIsd, and aMCImd. The VRNT performance of 110 subjects, including 20 with miAD, 30 with pure aMCIsd, 30 with pure aMCImd, and 30 cognitively normal controls was compared. Our newly developed VRNT consists of a virtual neighbourhood (allocentric memory) and virtual maze (egocentric memory). Verbal and visuospatial memory impairments were also examined with Rey Auditory-Verbal Learning Test and Rey-Osterrieth Complex Figure Test, respectively. We found that miAD and aMCImd subjects were impaired in both allocentric and egocentric memory, but aMCIsd subjects performed similarly to the normal controls on both tasks. The miAD, aMCImd, and aMCIsd subjects performed worse on finding the target or required more time in the virtual environment than the aMCImd, aMCIsd, and normal controls, respectively. Our findings indicated the aMCImd and miAD subjects, as well as the aMCIsd subjects, were more impaired in egocentric orientation than allocentric orientation. We concluded that VRNT can distinguish aMCImd subjects, but not aMCIsd subjects, from normal elderly subjects. The VRNT, along with the Rey Auditory-Verbal Learning Test and Rey-Osterrieth Complex Figure Test, can be used as a valid diagnostic tool for properly distinguishing different forms of aMCI. © 2018 Japanese Psychogeriatric Society.

  19. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  20. Concurrence classes for general pure multipartite states

    International Nuclear Information System (INIS)

    Heydari, Hoshang

    2005-01-01

    We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator-valued measure on quantum phase. In particular, we construct W m class, GHZ m , and GHZ m-1 class concurrences for general pure m-partite states. We give explicit expressions for W 3 and GHZ 3 class concurrences for general pure three-partite states and for W 4 , GHZ 4 and GHZ 3 class concurrences for general pure four-partite states