WorldWideScience

Sample records for pulverised coal injection

  1. Three-dimensional simulation of flow and combustion for pulverised coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.Y.; Zulli, P.; Rogers, H.; Mathieson, J.G.; Yu, A.B. [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    A three-dimensional numerical model of pulverised coal injection has been developed for simulating coal flow and combustion in the tuyere and raceway of a blast furnace. The model has been used to simulate previously reported combustion tests, which feature an inclined co-axial lance with an annular cooling gas. The predicted coal burnout agrees well with that measured for three coals with volatile contents and particle size ranging between 20.2-36.4% and particle sizes 1-200 {mu}m. Many important phenomena including flow asymmetry, recirculating flow and particle dispersion in the combustion chamber have been predicted. The current model can reproduce the experimental observations including the effects on burnout of coal flowrate and the introduction of methane for lance cooling.

  2. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  3. Method and device for the combustion of pulverised coal

    Energy Technology Data Exchange (ETDEWEB)

    Schoppe, F

    1977-01-13

    Until now, high combustion space loadings in pulverised coal firing were only obtained with melting combustion, where the ash is fluid. The disadvantage of this is that part of the heating surface is covered by liquid slack, and this type of combustion cannot operate in 'on-off operation', as the slack solidifies when the boiler is switched off. According to the invention, however, pulverised coal, which is reluctant to react, can be burnt at high combustion space loadings of over 2000 Mcal/cu. metre. hour. atm. with dry ash extraction, so that its use is possible for the combustion in central heating plants in detached houses and blocks of flats, with 'on-off operation'. For this purpose, the pulverised coal is heated under excess pressure in an atmosphere with a maximum of 10% of oxygen with a speed of heating of 1000/sup 0/C/sec up to 100 to 150/sup 0/C above its ignition temperature, and can be blown into the combustion air. Tangentially to the flame jet, a cold gas flow is guided so that burning particles thrown out at the sides are cooled below the ash melting temperature, before they reach the walls. The burning flame jet is accelerated, by using the excess pressure, via an injector, into a zone at less than the ash melting temperature, so that dry ash extraction is guaranteed.

  4. Status of advanced ultra-supercritical pulverised coal technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-01

    In pulverised coal combustion (PCC) power plant, increasing the maximum temperature of the steam cycle increases the electrical efficiency, which in turn lowers both coal consumption and flue gas emissions. However, the maximum steam temperature is limited by materials that can operate at these conditions for practical service lifetimes without failure. The EU, USA, Japan, India and China all have material research programmes aiming for the next generation of increased steam temperatures and efficiency, known as advanced ultra-supercritical (AUSC) or 700°C technology. This report reviews developments and status of these major material research programmes.

  5. Carbon burnout of pulverised coal in power station furnaces

    Energy Technology Data Exchange (ETDEWEB)

    R.I. Backreedy; L.M. Fletcher; J.M. Jones; L. Ma; M. Pourkashanian; A. Williams; K. Johnson; D.J. Waldron; P. Stephenson [University of Leeds, Leeds (United Kingdom)

    2003-07-01

    The degree of carbon burnout in pulverised fuel fired power stations is important because it is linked with power plant efficiency and coal ash suitability for construction purposes. The use of computational methods to calculate carbon burnout in such systems has been aided by the increasing availability of fast computers and improvements in computational methodologies. Despite recent advances in fluid flow, coal devolatilisation and coal combustion models, the use of CFD methods for detailed design purposes or for the selection of commercial coals is still limited. In parallel, industrial engineering codes, which combine simplified thermal models with advanced coal combustion models, are still undergoing development since they provide economic advantages over detailed CFD analysis. Although the major coal combustion processes are well established, an understanding regarding the role of coal macerals and the influence of ash on the combustion process is still lacking. A successful coal model must be able to handle all the complexities of combustion, from the details of the burner geometry through to the formation of unburnt carbon as well as NOx. The development of such a model is described here.

  6. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  7. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  8. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.S.; Glarborg, P.; Dam-Johansen, K.; Hepburn, P.W.; Hesselmann, G. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-07-01

    This work is concerned with the applicability of modelling swirling pulverised coal flames with ideal chemical reactors. The objectives were to predict the emissions of NO and CO, and the burnout of char. The fluid dynamics were simplified by use of a system of ideal chemical reactors. The near burner zone was modelled as a well-stirred reactor, the jet expansion as a plug flow reactor, the external recirculation zone as a well-stirred reactor, and the down stream zone as a number of well-stirred reactors in series. A reduced model of a detailed reaction mechanism was applied to model gas phase chemistry and a novel model was developed for soot oxidation. A population balance was used to keep track of size and density changes for the char combustion. Individual particle temperatures were calculated for each size fraction. The model includes only one burner specific calibration parameter which is related to the mixing of air and fuel. The model was validated against experimental results from a 160 kH{sub th} pulverised coal burner. For single staged combustion at varying stoichiometries, for two stage combustion, and for different coals good agreement between model and experiment was obtained for NO emissions and carbon in ash. This work also indicates that the interaction between the homogeneous gas phase chemistry and the heterogeneous chemistry (soot and char), due to recombination of radicals on the surfaces, is of importance for the nitrogen chemistry in coal flames, especially for ammonia formation. 84 refs., 31 figs., 7 tabs.

  9. Computational fluid dynamics (CFD) modelling of coal/biomass co-firing in pulverised fuel boilers

    Energy Technology Data Exchange (ETDEWEB)

    Moghtaderi, B.; Meesri, C. [University of Newcastle, Callaghan, NSW (Australia). CRC for Coal in Sustainable Development, Dept. of Chemical Engineering

    2002-07-01

    The present study is concerned with computational fluid dynamics (CFD) modelling of coal/biomass blends co-fired under conditions pertinent to pulverised fuel (PF) boilers. The attention is particularly focused on the near burner zone to examine the impact of biomass on the flame geometry and temperature. The predictions are obtained by numerical solution of the conservation equations for the gas and particle phases. The gas phase is solved in the Eulerian domain using steady-state time-averaged Navier-Stokes equations while the solution of the particle phase is obtained from a series of Lagrangian particle tracking equations. Turbulence is modelled using the {kappa}-{epsilon} and Reynolds Stress models. The comparison between the predictions and experimental measurement reported in the literature resulted in a good agreement. Other influences of biomass co-firing are observed for fuel devolatilisation and burnout. 19 refs., 6 figs.

  10. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  11. Certification of trace element contents (As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn) in a fly ash obtained from the combustion of pulverised coal

    International Nuclear Information System (INIS)

    Griepink, B.; Colinet, E.; Guzzi, G.; Haemers, L.; Muntau, H.

    1983-01-01

    The element contents of As, Cd, Co, Cu, Fe, Mn, Hg, Na, Pb and Zn of a fly ash from pulverised coal are certified. The procedures and their results for the homogenisation, the contamination and homogeneity checks and the analytical campaign are reported. The certified mass fractions and indicative values for Cr, Ni, Th, V and water soluble sulphate are given. The work was carried out within the framework of the activities of the Community Bureau of Reference (BCR) of the Commission of the European Communities. (orig.) [de

  12. A collaborative project on the effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, H.A.; O`Connor, M.; Stephenson, P.L.; Whitehouse, M.; Richards, D.G.; Hesselmann, G.; MacPhail, J.; Lockwood, F.C.; Williamson, J.; Williams, A.; Pourkashanian, M. [ETSU, Harwell (United Kingdom)

    1998-12-01

    This paper describes a UK Department of Trade and Industry-supported collaborative project entitled `The Effects of Coal Quality on Emission of Oxides of Nitrogen (NO{sub x}) and Carbon Burnout in Pulverised Coal-fired Utility Boilers`. The project involved extensive collaboration between the UK power generators, boiler and burner manufacturers and research groups in both industry and academia, together with several of the world`s leading computational fluid dynamics (CFD) `software houses`. The prime objectives of the project were to assess the relationship between NO{sub x} emissions and carbon burnout and to develop and validate predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon-in-ash. Results showed good correlations for NO{sub x} and carbon burnout when comparing data from full-scale and large-scale rig trials. Laboratory-scale tests were found to be useful but the influence of burner aerodynamics was more difficult to quantify. Modelling showed that predicted NO{sub x} emissions were encouragingly close to measured emissions but predicting carbon burnout was less successful. 24 refs., 4 figs., 6 tabs.

  13. Optimization of pulverised coal combustion by means of CFD/CTA modeling

    Directory of Open Access Journals (Sweden)

    Filkoski Risto V.

    2006-01-01

    Full Text Available The objective of the work presented in this paper was to apply a method for handling two-phase reacting flow for prediction of pulverized coal combustion in large-scale boiler furnace and to assess the ability of the model to predict existing power plant data. The paper presents the principal steps and results of the numerical modeling of power boiler furnace with tangential disposition of the burners. The computational fluid dynamics/computational thermal analysis (CFD/CTA approach is utilized for creation of a three-dimensional model of the boiler furnace, including the platen superheater in the upper part of the furnace. Standard k-e model is employed for description of the turbulent flow. Coal combustion is modeled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the simplified P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Some distinctive results regarding the examined boiler performance in capacity range between 65 and 95% are presented graphically. Comparing the simulation predictions and available site measurements concerning temperature, heat flux and combustion efficiency, a conclusion can be drawn that the model produces realistic insight into the furnace processes. Qualitative agreement indicates reasonability of the calculations and validates the employed sub-models. After the validation and verification of the model it was used to check the combustion efficiency as a function of coal dust sieve characteristics, as well as the impact of burners modification with introduction of over fire air ports to the appearance of incomplete combustion, including CO concentration, as well as to the NOx concentration. The described case and other experiences with CFD/CTA stress the advantages of numerical modeling and

  14. Utilisation of high carbon pulverised fuel ash

    OpenAIRE

    Mahmud, Maythem Naji

    2011-01-01

    Coal combustion by-products generated from coal-fired power plant and cause enormous problems for disposal unless a way can be found to utilize these by-products through resource recovery programs. The implementation of air act regulations to reduce NOx emission have resulted millions of tonnes of pulverised fuel ash (PFA) accumulated with high percentage of unburned carbon made it un-saleable for the cement industry. Moreover, alternative fuels such as biomass and import coals were suggested...

  15. Influence of start-ups with fuel-oil on the operation of electrostatic precipitators in pulverised coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, B.; Vilches, L.F.; Canadas, L.; Salvador, L. [University of Seville, Seville (Spain)

    2004-04-01

    This article describes the results of a series of tests carried out in a pilot fly ash electrostatic precipitation facility operating with real gases from a 550 MWe pulverized coal-fired power station. The main goal of these tests was to determine the effects of boiler start-ups on the performance of the electrostatic preciptator. The tests were carried out during start-ups of the power station boiler. All tests were carried out with the same fuel. An evaluation was made of the effects of the use of fuel-oil as auxillary fuel in start-ups and shut-downs of the boiler, and different electrostatic precipitators operation procedures were tested during start-ups and shut-downs. The results of the experiments made it possible to assess the relative importance of different variables on the possible deterioration of the efficiency of the precipitators. Also evaluated were operational modes that have demonstrated an improvement in the performance of the precipitators after the transient stage of these operations. As a result of this study, a number of important operational recommendations are made on boiler start-up and shut-down procedures.

  16. The effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, M. [National Power plc, Swindon (United Kingdom)

    1999-04-01

    A comprehensive study is reported on the impact of coal quality on nitrogen oxides emissions and carbon burnout in utility boilers, with the aim of assessing their relationship and developing predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon burnout. Power station trials demonstrated that coal quality effects nitrogen oxides and burnout. The variability in boiler conditions also impacted on these factors. Lower nitrogen and higher volatile coals generally produced less NO{sub x}. Volatile content was the most important generic coal property for predicting burnout. Modelling rig tests, using data from advanced laboratory-scale tests, were found to be just as successful as using rig tests for predicting NO{sub x} performance of different coals. Laboratory-scale tests were found to be successful in providing accurate predictions of burnout for the coals studied. Mathematical models, however, were found to be less successful in this area and further work to develop this is required. A major achievement was CFD solutions of full-scale utility boiler furnaces in a single mesh. 32 refs., 15 figs., 33 tabs., 2 apps.

  17. Toward an understanding of coal combustion in blast furnace tuyere injection

    Energy Technology Data Exchange (ETDEWEB)

    John G. Mathieson; John S. Truelove; Harold Rogers [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    The former Broken Hill Proprietary Company Limited, along with its successors BlueScope Steel and BHP Billiton, like many of their iron and steel making counterparts, has had a long history of investigating pulverised coal injection and combustion under the conditions of blast furnace tuyere injection. A succession of pilot scale hot models and combustion test rigs have been constructed and operated at the company's Newcastle Laboratories beginning with the pilot scale hot raceway model in 1981. Each successive generation of test rig has attempted to provide a closer approximation to the actual blast furnace situation with the current test rig (1998 to present) seeking to promote an 'expanding' combusting coal plume. Test rig configuration is demonstrated to have a significant effect on coal burnout at a nominal transit time of 20 ms. The development of the combustion test rigs has been supported through the co-development of a range of sampling and measuring techniques and the application of a number of numerical combustion models. This paper reviews some of the milestones along the path of these investigations, the current understandings and what the future potentially holds. It's not solved yet! 17 refs., 11 figs.

  18. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  19. Temperature field distribution of coal seam in heat injection

    OpenAIRE

    Zhang Zhizhen; Peng Weihong; Shang Xiaoji; Wang Kun; Li Heng; Ma Wenming

    2017-01-01

    In this article, we present a natural boundary element method (NBEM) to solve the steady heat flow problem with heat sources in a coal seam. The boundary integral equation is derived to obtain the temperature filed distribution of the coal seam under the different injecting conditions.

  20. Case study on ground surface deformation induced by CO2 injection into coal seam

    International Nuclear Information System (INIS)

    Li Hong; Tang Chun'an

    2010-01-01

    To monitor a geomechanical response of injecting CO 2 into relatively shallow coal seams, tiltmeters were set as an array to cover the ground surface area surrounding the injection well, and to measure the ground deformation during a well fracturing stimulation and a short-term CO 2 injection test. In this paper, an attempt to establish a quantitative relationship between the in-situ coal swelling and the corresponding ground deformation was made by means of numerical simulation study. (authors)

  1. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  2. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  3. Lance for injecting highly-loaded coal slurries into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, D.

    1991-10-29

    A lance is used to inject fuel oil into a blast furnace. This simple design permits conversion of coal water and coal tar slurries to a fine mist at very low flow rates. This design prevents the build-up of deposits which increases service life and steadies the flow rate.

  4. Modelling fireside corrosion of heat exchangers in co-fired pulverised fuel power systems

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield Univ. (United Kingdom). Energy Technology Centre; Fry, A.T. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    As a result of concerns about the effects of CO{sub 2} emissions on the global environment, there is increasing pressure to reduce such emissions from power generation systems. The use of biomass co-firing with coal in conventional pulverised fuel power stations has provided the most immediate route to introduce a class of fuel that is regarded as both sustainable and carbon neutral. In the future it is anticipated that increased levels of biomass will need to be used in such systems to achieve the desired CO{sub 2} emission targets. However there are concerns over the risk of fireside corrosion damage to the various heat exchangers and boiler walls used in such systems. Future pulverised fuel power systems will need to be designed to cope with the effects of using a wide range of coal-biomass mixes. However, such systems will also need to use much higher heat exchanger operating temperatures to increase their conversion efficiencies and counter the effects of the CO{sub 2} capture technologies that will need to be used in them. Higher operating temperatures will also increase the risk of fireside corrosion damage to the critical heat exchangers. This paper reports work that has been carried out to develop quantitative corrosion models for heat exchangers in pulverised fuel power systems. These developments have been particularly targeted at producing models that enable the evaluation of the effects of using different coal-biomass mixtures and of increasing heat exchanger operating conditions. Models have been produced that have been targeted at operating conditions and materials used in (a) superheaters/reheaters and (b) waterwalls. Data used in the development of these models has been produced from full scale and pilot scale plants in the UK using a wide range of coal and biomass mixtures, as well as from carefully targeted series of laboratory corrosion tests. Mechanistic and neural network based models have been investigated during this development process to

  5. Control of spontaneous combustion of coal in goaf at high geotemperatureby injecting liquid carbon dioxide: inertand cooling characteristics of coal

    Science.gov (United States)

    Liu, Zhenling; Wen, Hu; Yu, Zhijin; Wang, Chao; Ma, Li

    2018-02-01

    The spontaneous combustion of coal in goaf at high geo temperatures is threatening safety production in coalmine. The TG-DSC is employed to study the variation of mass and energy at 4 atmospheres (mixed gases of N2, O2 and CO2) and heating rates (10°C/min) during oxidation of coal samples. The apparent activation energy and pre-exponential factor of coal oxidation decrease rapidly with increasing theCO2 concentration. Furthermore, its reaction rate is slow, its heat released reduces. Based on the conditions of 1301 face in the Longgucoalmine, a three-dimensional geometry model is developed to simulate the distributions stream field and temperature field and the variation characteristics ofCO2 concentration field after injecting liquidCO2. The results indicate that oxygen reached to depths of˜120m in goaf, 100m in the side of inlet air, and 10m in the side of outlet air before injecting liquidCO2. After injecting liquidCO2for 28.8min, the width of oxidation and heat accumulation zone is shortened by 20m, and the distance is 80m in the side of working face and 40˜60m in goafin the direction of dip affected by temperature.

  6. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    Science.gov (United States)

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  7. Impact of thermal processes on CO2 injectivity into a coal seam

    International Nuclear Information System (INIS)

    Qu, H Y; Liu, J S; Pan, Z J; Connell, L

    2010-01-01

    The objective of this study is to investigate how thermal gradients, caused by CO2 injection, expansion and adsorption, affect the permeability and adsorption capacity of coal during CO2 sequestration. A new permeability model is developed in which the concept of elastic modulus reduction ratio is introduced to partition the effective strain between coal matrix and fracture. This model is implemented into a fully coupled mechanical deformation, gas flow and heat transport finite element simulator. To predict the amount of CO2 sequested, the extended Langmuir sorption model is used, with parameters values taken from the literature. The coupled heat and gas flow equations, are solved in COMSOL using the finite element method. The simulation results for a constant volume reservoir demostrate that thermal strain acts to significantly reduce both CO2 injectivity and adsorption capacity. These impacts need to be considered in the calculation of the optimum injection rate and the total sequestration capacity.

  8. An injection technique for in-situ remediation of abandoned underground coal mines

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Remediation of underground mines can prove to be a difficult task, given the physical constraints associated with introducing amendments to a subterranean environment. An acid mine abatement project involving in-situ chemical treatment method was conducted by the University of Oklahoma. The treatment method involved the injection of an alkaline coal combustion by-product (CCB) slurry into a flooded mine void (pH 4.4) to create a buffered zone. Injection of the CCB slurry was possible through the use of equipment developed by the petroleum industry for grouting recovery wells. This technology was selected because the CCB slurry could be injected under significant pressure and at a high rate. With higher pressure and rates of injection, a large quantity of slurry can be introduced into the mine within a limited amount of time. Theoretically, the high pressure and rate would improve dispersal of the slurry within the void. In addition, the high pressure is advantageous in fracturing or breaking-down obstructions to injection. During the injection process, a total of 418 tons of CCB was introduced within 15 hours. The mine did not refuse any of the material, and it is likely that a much larger mass could have been added. One injection well was drilled into a pillar of coal. Normally this would pose a problem when introducing a slurry; however, the coal pillar was easily fractured during the injection process. Currently, the pH of the mine discharge is above 6.5 and the alkalinity is approximately 100 mg/L as CACO 3

  9. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  10. Preliminary measurement of the drag force on a porous cylinder with fluid evolution under conditions relevant to pulverised-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dijan Supramono; Graham J. Nathan; Peter J. Ashman; Peter J. Mullinger [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, Schools of Chemical Engineering and Mechanical Engineering

    2003-07-01

    The trajectories of the particles in pulverised coal combustion systems determine their residence times and reaction environments, and hence coal burnout and flame length. The trajectories, in turn, depend upon the drag coefficient of the particle. The effect of the evolution of fluid from the surface of the particle on this coefficient has never been measured before, particularly at the low particle Reynolds numbers that apply during coal combustion. Therefore mathematical models must rely on assumed sphere drag coefficients, which do not account for the effect of fluid evolving from the surface. A technique of using a porous cylinder mounted on a pendulum, instead of a sphere, through which fluid can be forced to evolve, simulating fluid evolution in coal devolatilisation and char burning, is used. The pendulum is capable of measuring drag forces of the order of 10-5 to 10-6 Newton, at Reynolds numbers similar to that experienced by coal particles. This paper presents preliminary measurements of drag force at relevant conditions. The working fluid is water in the first instance, although it will be extended to diluted glycerine in the future. The cross flow is provided by a water tunnel and the ejected fluid is induced by a separate pump. Both the Reynolds number and the ratio of evolution velocity to free-stream velocity are chosen to span conditions relevant to pulverised coal combustion. 16 refs., 5 figs., 2 tabs.

  11. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  12. Exergo-Ecological Assessment Of Auxiliary Fuel Injection Into Blast-Furnace

    Directory of Open Access Journals (Sweden)

    Stanek W.

    2015-06-01

    Full Text Available Metallurgy represents complex technological chain supplied with different kinds of primary resources. Iron metallurgy based on blast-furnace process, dominates in world steel production. Metallurgical coke is the basic fuel in this case. Its production is connected with several environmental disadvantageous impacts. One of them is the extended production chain from primary energy to final energy. The reduction of coke consumption in the process can be achieved e.g. by injection of auxiliary fuels or increasing the thermal parameters in the process. In present injection of pulverised coal dominates while recirculation of top-gas seems to be future technology. However, the latter one requires the CO2 removal that additionally extended the production chain. The evaluation of resources management in complex energy-technological systems required application of advanced method based on thermodynamics. In the paper the system exergo-ecological assessment of pulverised coal injection into blast-furnace and top-gas recirculation has been applied. As a comparative criterion the thermo-ecological cost has been proposed.

  13. CFD modelling and analysis of pulverized coal injection in blast furnace: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yansong; Yu, Aibing [Laboratory for Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Zulli, Paul [BlueScope Steel Research (BSR), P.O. Box 202, Port Kembla, NSW 2505 (Australia)

    2011-05-15

    In order to understand the complicated phenomena of pulverized coal injection (PCI) process in blast furnace (BF), several mathematical models have been developed by the UNSW and BSR cooperation. These models are featuring from coal combustion in a pilot-scale test rig, to coal combustion in a real BF, and then to coal/coke combustion in a real BF, respectively. This paper reviews these PCI models in aspects of model developments and model applicability. The model development is firstly discussed in terms of model formulation, their new features and geometry/regions considered. The model applicability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that the three PCI models are all able to describe PCI operation qualitatively. The model of coal/coke combustion in a real BF is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. Such model gives a more reliable burnout prediction over the raceway surface, which could better represent the amount of unburnt char entering the coke bed. These models are useful for understanding the flow-thermo-chemical behaviours and then optimising the PCI operation in practice. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Study of the phenomenon of cathodic pulverisation at low energy; Etude du phenomene de la pulverisation cathodique a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Druaux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Every time positive ions bombard the cathode of a discharge tube, a continuous destruction of the cathode and a corresponding deposit on the surrounding walls are observed. This phenomenon is known as 'cathodic pulverisation'. It has been known for about a century, but the difficulties of observation and the numerous secondary phenomena which accompany it have for a long time held up the correct explanation of its physical mechanism. At the present time, it can be said that no theory can yet claim to make it completely intelligible. However, cathodic pulverisation can be considered as a particular case of the phenomenon of collisions between atomic particles; in this instance it is a question of the impact of positive ions accelerated by U volts (I{sub U}{sup +}) on the atoms of a solid or liquid target X. (author) [French] Chaque fois que des ions positifs bombardent la cathode d'un tube a decharge, on observe une destruction continue de celle-ci et un depot correspondant sur les parois environnantes. Ce phenomene est appele 'pulverisation cathodique'. Il est connu depuis un siecle environ, mais les difficultes d'observation et les nombreux phenomenes secondaires qui l'accompagnent ont retarde pendant longtemps l'explication correcte de son mecanisme physique. A l'heure actuelle, on peut dire qu'aucune theorie ne peut encore pretendre a son intelligibilite complete. Cependant, on peut considerer la pulverisation cathodique comme un cas particulier du phenomene de chocs entre particules atomiques; en l'occurrence, il s'agit de l'impact d'ions positifs acceleres par U volts (I{sub U}{sup +}) sur les atomes d'une cible X solide ou liquide. (auteur)

  15. Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Tsung-Han

    2007-01-01

    Volatiles release and particle formation for two kinds of pulverized coals (a high volatile bituminous coal and a low volatile bituminous coal) in a drop tube furnace are investigated to account for the reactions of pulverized coal injected in blast furnaces. Two different sizes of feed particles are considered; one is 100-200 mesh and the other is 200-325 mesh. By evaluating the R-factor, the devolatilization extent of the larger feed particles is found to be relatively poor. However, the swelling behavior of individual or two agglomerated particles is pronounced, which is conducive to gasification of the chars in blast furnaces. In contrast, for the smaller feed particles, volatiles liberated from the coal particles can be improved in a significant way as a result of the amplified R-factor. This enhancement can facilitate the performance of gas phase combustion. Nevertheless, the residual char particles are characterized by agglomeration, implying that the reaction time of the char particles will be lengthened, thereby increasing the possibility of furnace instability. Double peak distributions in char particle size are observed in some cases. This possibly results from the interaction of the plastic state and the blowing effect at the particle surface. Considering the generation of tiny aerosols composed of soot particles and tar droplets, the results indicate that their production is highly sensitive to the volatile matter and elemental oxygen contained in the coal. Comparing the reactivity of the soot to that of the unburned char, the former is always lower than the latter. Consequently, the lower is the soot formation, the better is the blast furnace stability

  16. Massive injection of coal and superoxygenated blast into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Toxopeus, H.L.; Danloy, G.; Franssen, R.; Havelange, O. [Corus, IJmuiden (Netherlands)

    2002-07-01

    The aim of the present project was to demonstrate the industrial feasibility of a massive injection of coal, {+-}270 kg/tHM, combined with a high O{sub 2} enrichment of the blast. The coke rate would thus be reduced to well below 250 kg/tHM. A reference level of 200-220 kg coal/tHM was successfully accomplished. However, the technical condition of the blast furnace hearths overruled all ambitions, the anticipated trial scheme had to be abandoned and no further trials were performed. A very short trial was aborted shortly after reaching an injection level of around 265 coal/tHM, due to excessive generation of very fine sludge originating from incomplete combustion. This forced the operators to investigate the merits of combustion more in depth. At the aimed low coke-rate detailed information about the gas distribution is of utmost importance. Therefore, in conjunction with the industrial tests, CRM designed a gas tracing method. Measurement of the transfer time between the injection point (a tuyere) and the sampling points (on an above-burden probe) would allow deduction of the radial gas distribution. CRM made the design and the start-up of an installation built by Hoogovens on blast furnace 7 of IJmuiden. Since then, repeated measurements have shown that the gas transfer time profiles are consistent with the data measured at the blast furnace top and at the wall. The modifications of the moveable armour position are reflected better and faster on the gas distribution as measured by helium tracing than on the skin flow temperatures.

  17. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  18. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  19. Combustion behaviour of pulverised wood - Numerical and experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Lixin Tao [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-05-01

    This report presents the experimental results achieved in an on-going project financed by STEM (Energimyndigheten) within the research program 'Gasification and combustion of solid fuels', during the first phase of the project (2001-03-05 to 2002-03-05). The project is a collaboration project between LTH and TPS on combined numerical modelling/experimental investigation on combustion of pulverised wood. Particularly TPS carry out the experimental investigation in a laboratory vertical furnace. During the project, the experimental rig has been developed. The experimental furnace has an inner diameter of 0.25 m and a height of 4 m. A pulverised wood flame is established using an axial burner that is installed on the top of the furnace. Experimental study on a selected pulverised wood with determined size distribution and anisotropy character has been carried out in this furnace. During the experiment, the wall temperatures of the furnace were continuously measured using 8 thermocouples of type K that are installed on the wall with a spacing about 0.5 m. The gas temperatures in the furnace were monitored using 5 fixed suction pyrometers that are placed along the centre of the furnace. At the bottom of the furnace, a fixed gas-sampling probe was installed. The flue gas concentrations were continuously monitored with on-line gas analysers. The extent of combustion was measured through the analysis of sampled gaseous products and condensable solid products. A movable liquid quench probe was used to carry out the gas and solid sampling through a number of sampling holes that are opened along the furnace wall. The quench liquor used is an alkaline water solution containing a small amount of a detergent to dissolve HCN and tar. The quench liquor and solid samples were separated and collected in a knockout pot. The gas was filtered and passed through two bubblers with acidic solution to collect NH{sub 3}. The gas concentrations were then analysed with on-line gas

  20. Damage Effects and Fractal Characteristics of Coal Pore Structure during Liquid CO2 Injection into a Coal Bed for E-CBM

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-05-01

    Full Text Available Pore structure has a significant influence on coal-bed methane (CBM enhancement. Injecting liquid CO2 into coal seams is an effective way to increase CBM recovery. However, there has been insufficient research regarding the damage effects and fractal characteristics of pore structure at low temperature induced by injecting liquid CO2 into coal samples. Therefore, the methods of low-pressure nitrogen adsorption-desorption (LP-N2-Ad and mercury intrusion porosimetry (MIP were used to investigate the damage effects and fractal characteristics of pore structure with full aperture as the specimens were frozen by liquid CO2. The adsorption isotherms revealed that the tested coal samples belonged to type B, indicating that they contained many bottle and narrow-slit shaped pores. The average pore diameter (APD; average growth rate of 18.20%, specific surface area (SSA; average growth rate of 7.38%, and total pore volume (TPV; average growth rate of 18.26% increased after the specimens were infiltrated by liquid CO2, which indicated the generation of new pores and the transformation of original pores. Fractal dimensions D1 (average of 2.58 and D2 (average of 2.90 of treated coal samples were both larger the raw coal (D1, average of 2.55 and D2, average of 2.87, which indicated that the treated specimens had more rough pore surfaces and complex internal pore structures than the raw coal samples. The seepage capacity was increased because D4 (average of 2.91 of the treated specimens was also higher than the raw specimens (D4, average of 2.86. The grey relational coefficient between the fractal dimension and pore structure parameters demonstrated that the SSA, APD, and porosity positively influenced the fractal features of the coal samples, whereas the TPV and permeability exerted negative influences.

  1. Enchancing the use of coal by gas reburning and sorben injection

    International Nuclear Information System (INIS)

    Keen, R.T.; Hong, C.C.; Opatrny, J.C.; Sommer, T.M.; Folsom, B.A.; Payne, R.; Ritz, H.J.; Pratapas, J.M.; May, T.J.; Krueger, M.S.

    1993-01-01

    The Gas Reburning-Sorbent Injection (GR-SI) Process was demonstrated on a 71 MWe net tangentially fired boiler at Hennepin, Illinois, and is being demonstrated on a 33 MWe net cyclone-fired boiler at Springfield, Illinois as a Clean Coal Technology Round I demonstration project. The Hennepin demonstration was completed after more than 2,000 hours of successful operation. In long-term demonstration testing at a Ca/S molar ratio of 1.75 an 19 percent gas heat input, 53 percent SO 2 reduction and 67 percent NO x reduction were achieved without any adverse impacts on boiler performance or electrostatic precipitator performance with flue gas humidification. These achievements exceeded the project goals of 50 and 60 percent, respectively. The CO 2 reduction due to the use of 18 percent natural gas was 8 percent

  2. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  3. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  4. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  5. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  6. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  7. Method of cutting steeply falling coal beds. [Bacteria, which only grow on methane, are injected into the coal bed and form low viscosity polysaccharides: as a result the coal collapses into the haulage gallery and is hauled away

    Energy Technology Data Exchange (ETDEWEB)

    Gretsinger, B Ye; Chernyshenko, D V; Levin, A D; Malashenko, Yu R; Shinkovskiy, V A; Shurova, Z P; Volkov, V I

    1982-01-01

    The purpose of the invention is to reduce outlays for collapse and output of coal by creating artificial cavities of sliding along the coal bed in the surrounding rocks. This goal is achieved because in the well drilled in the bed for the entire height of the level, a suspension of cells of methane-oxidizing microorganisms is injected. The methane-oxidizing microorganisms used are, for example, the thermophilic culture Methylococcus thermophilus of strains ShP which grow at 45-65/sup 0/ C, or the mesophilic culture Methanomonas rubna of strains 15 Sh growing at 20-37/sup 0/ C. As a result of the vital activity of these cultures, polysaccharides are formed with viscosity of 5-7 and 3-4 St respectively. The mine pressure disrupts the blocks between the wells, and the outline section of the steeply dropping coal bed, being destroyed, slides on the products of vital activity of the microorganisms to the haulage gallery. Then the coal drops on cross cuts to the field gallery through which it is transported. Studies established that the only coal substrate which is suitable for growth of these microorganism cultures is methane. The synthesis of one g of absolutely dry substance of these microorganism requires 1.78 g of methane and 4.7 g of oxygen. The cultures are resistant to hydrostatic pressure from 20 to 150 atm and short-term pressure of gradient drops which occur during injection of the cellular suspension into the coal bed. They are filtered through the coal with preservation of the oxidizing and reproductive properties and are cultivated on the methane contained in the bed and form considerable number of exopolysaccarides. The polysaccarides weaken the bond between the bed and the surrounding rocks and serve as a unique lubricant promoting the sliding towards the haulage gallery of the coal blocks destroyed by mine pressure.

  8. Plan for injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    International Nuclear Information System (INIS)

    Gray, T.A.; Moran, T.C.; Broschart, D.W.; Smith, G.A.

    1998-01-01

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990's, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. Injecting grout into the mine workings to reduce AMD (and thus reducing treatment costs) is proposed. The procedure involves injecting grout mixes composed primarily of coal combustion byproducts (CCB's) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. The injection program was developed to account for this by utilizing closer injection hole spacing in second-mined areas. Construction began in January 1998, with grout injection expected to commence in mid-April 1998

  9. Specifying and using pulverised fuel ash as an engineered fill

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, B.G.; Coombs, R. [University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom). Dept. of Civil Engineering

    1996-12-31

    Claims arising from incorrect use of fill materials are often due to a lack of understanding of material behaviour and incomplete or wrong specifications. This is especially the case when using waste products such as pulverised fuel ash (pfa). A review of current and proposed specifications and current practice highlights some of the problems arising when selecting design parameters and acceptance criteria for pfa. Pfa can be considered a particulate material and properties of a pfa can be ascertained at the design stage because the sources are known. Design parameters are post peak effective strength parameters taken from triaxial or direct shear tests on saturated specimens compacted to 90% of the average maximum dry density. Compaction characteristics and design parameters of a particular source can be determined from tests if it is stockpiled pfa, or historical records if it is conditioned pfa. Method compaction can be used to place pfa but site trials should be carried out to determine the best method. Experience has shown that six to eight passes are sufficient, but usually the movement of construction traffic during tipping and spreading pfa will give the minimum required density. Inundation has little effect on compacted ash provided the water content is within acceptable limits, that is within 20% of the average optimum water content. 6 refs., 6 figs., 3 tabs.

  10. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  11. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  12. Successful continuous injection of coal into gasification and PFBC system operating pressures exceeding 500 psi - DOE funded program results

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, T.; Aldred, D.; Rutkowski, M. [Stamet Inc., North Holywood, CA (United States)

    2006-07-01

    The current US energy program is focussed towards commercialisation of coal-based power and IGCC technologies that offer significant improvements in efficiency and reductions in emissions. For gasification and pressurised fluidized bed combustors to be widely accepted, certain operational components need to be significantly improved. One of the most pressing is provision of reliable, controlled and cost-effective solid fuel feeding into the pressure environment. The US Department of Energy has funded research to develop the unique Stamet 'Posimetric{reg_sign} Solids Pump' to be capable of feeding coal into current gasification and PFBC operating pressures. The research objective is a mechanical rotary device able to continuously feed and meter coal into pressured environments of at least 34 bar (500 psi). The research program comprised an initial design and testing phase to feed coal into 20 bar (300 psi) and a second phase for feeding into 34 bar (500 psi). The first phase target was achieved in December 2003. Following modification and optimization, in January 2005, the Stamet Pump achieved a world-record pressure level for continuous injection of coal of 38 bar (560 psi). Research is now targeting 69 bar (1000 psi). The paper reviews the successful pump design, optimisations and results of the testing. 16 figs., 2 tabs.

  13. A study of the solid and gaseous products generated by a dc plasma torch under coal and steam injection

    International Nuclear Information System (INIS)

    Beuthe, T.G.; Chang, J.S.; Irons, G.A.; Lu, W.K.; Berezin, A.A.; Chu, E.Y.

    1988-01-01

    In this work, the solid and gaseous products generated by a DC plasma torch under simultaneous coal powder and supersaturated steam injection are examined. A range of steam (0.75[g/min]) and coal powder (0-10[g/min]) were injected into the hot argon plasma and the product gases were analyzed by gas chromatographic techniques, an optical multichannel analyzer and infrared CO and CO/sub 2/ analyzers. The solid product generated by the present process was analyzed using neutron activation analysis and scanning electron microscopy. Results indicate that the most common product constituents consisted of simple compounds such as carbon dioxide, carbon monoxide, hydrogen, oxygen and nitrogen. Detailed analysis using infra-red analyzers and gas chromatographic techniques showed that the product gas contained significant amounts of H/sub 2/(--2[%], CO(0.5-4.5[%]) and CO/sub 2/(0.5-1.0[%]) gases, where approximately 80 (%) was still argon gas. Evidence was found of slight amounts of OH, but no significant amount of CH/sub 2/ compounds were detected. The energy yields of the CO/sub 2/ and CO production rates were in the range of 4-10 and 5-25 [g/kWhr] respectively. The produced gas CO:CO/sub 2/ concentration ratio was approximately in the order of 10. Neutron activation analysis shows that the solid product generated in the present process is significantly different from the ash produced by a conventional coal fired furnace. The overall concentrations of trace oxides are significantly lower in the solid product than in conventional ash, tending to support the hypothesis that the solid product is a coke rather than an ash. The conditions in the plasma torch also seem to favour the removal of Ca, S and Si oxides from the coal. Downstream temperature analysis indicates the product gas can be heated from 600 to 1500(K) depending on the torch operating conditions and injectant flowrates

  14. The power of Indonesian coal

    Energy Technology Data Exchange (ETDEWEB)

    Rosiak, T. [Duke/Fluor Daniel (United States)

    2003-02-01

    The paper presents three Indonesian projects carried out by Duke/Fluor Daniel whose unique construction and operation have demonstrated the versatility and value of coal-fired power generation. These are: the construction of units 7 and 8 of the Paiton Private Power Project, a 1230 MW pulverised coal plant in Paiton, East Java; construction of a coal fired generation plant and transmission system to provide power for the expansion of a copper and gold mine on the island of Papua; and construction of four 28 MW pulverized coal units to provide 'heavy lifting' for a new mine at Batu Hijau on the island of Sumbawa. Coal was found to cost less than diesel for power generation. 2 photos.

  15. Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study

    Energy Technology Data Exchange (ETDEWEB)

    Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.

  16. Grace announces coal-to-methanol project

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R

    1980-02-15

    WR Grace and Co. are planning a feasibility study for a plant to produce 5000 tons/day of methanol and 6000 tons/day of carbon dioxide from captive coal reserves in Colorado. The study will be performed by Energy Transition Co. (ETCo). The producers would be used for pipeline transmission of pulverised coal, probably to California. At the destination the coal would go to a power station, the methanol to a gas turbine and the carbon dioxide to an oil producer for tertiary recovery.

  17. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  18. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Wolf, Karl Heinz; Rogut, Jan

    2017-01-01

    Recent studies have shown that by coupling the underground coal gasification (UCG) with the carbon capture and storage (CCS), the coal energy can be economically extracted with a low carbon footprint. To investigate the effect of UCG and CCS process parameters on the feasibility of the UCG-CCS pr....... Additionally, we show that the zero-emission conversion of unmineable deep thin coal resources in a coupled UCG-CCS process, that is not practical with the current state of technology, can be realized by increasing the energy efficiency of the carbon dioxide capture process.......-CCS process, we utilize a validated mathematical model, previously published by the same authors, that can predict the composition of the UCG product, temperature profile, and coal conversion rate for alternating injection of air and steam for unmineable deep thin coal layers. We use the results of the model...

  20. Modelling methods for co-fired pulverised fuel furnaces

    Energy Technology Data Exchange (ETDEWEB)

    L. Ma; M. Gharebaghi; R. Porter; M. Pourkashanian; J.M. Jones; A. Williams [University of Leeds, Leeds (United Kingdom). Energy and Resources Research Institute

    2009-12-15

    Co-firing of biomass and coal can be beneficial in reducing the carbon footprint of energy production. Accurate modelling of co-fired furnaces is essential to discover potential problems that may occur during biomass firing and to mitigate potential negative effects of biomass fuels, including lower efficiency due to lower burnout and NOx formation issues. Existing coal combustion models should be modified to increase reliability of predictions for biomass, including factors such as increased drag due to non-spherical particle sizes and accounting for organic compounds and the effects they have on NOx emission. Detailed biomass co-firing models have been developed and tested for a range of biomass fuels and show promising results. 32 refs., 4 figs., 3 tabs.

  1. Potential for visible plume formation at a coal-fired boiler using ammonia injection for non-catalytic NOx control

    International Nuclear Information System (INIS)

    Hess, T.

    1993-01-01

    Circulating fluidized bed boilers utilizing ammonia injection for non-catalytic NO x reduction have been highly successful in reducing NO x emissions to very low levels. However, one limitation on this technology is the potential for the formation of visible plumes. One plant, with uncontrolled NO x of about 190 ppm, reduces NO x concentrations to the 20-25 ppm range by injecting ammonia in the boiler's cyclones. However, infrequent, short-lived, white, detached plumes have been noted extending for short distances downwind of the stack. Because unreacted ammonia is present in the flue gas along with HCl from coal combustion, the formation of solid NH 4 Cl in the atmosphere was suspected to be the most likely cause of the visible plume. Simple thermodynamic calculations predict the formation of solid ammonium chloride very soon after the flue gas mixes with cooler ambient air and plume optical density calculations are in reasonable agreement with observed plume density. Stack testing and other tests have been conducted during both plume and non-plume events to confirm that NH 4 Cl formation is the most likely cause of the capacity. As presented in this paper, the test data and theoretical calculations indicate that a visible plume may be expected when as little as 5 ppm of ammonia and HCl are present in the flue gas, depending on observation conditions. Analyses of fuel samples taken during stack tests show about 40% of the chlorine in the low chloride coal fired, typically less than 0.04%, is released from the stack as HCl. Ammonia slip is somewhat variable depending on combustion conditions in the boiler and the temperature at the ammonia injection points

  2. European coal technology applied by the Danish power companies

    Energy Technology Data Exchange (ETDEWEB)

    Frydenberg, B. [Elsamprojekt A/S, Fredericia (Denmark)

    1996-12-31

    The development of coal-fired power plants has shown remarkable improvements with regard to efficiency and cleaner technology, and as coal remains the most important fuel for electric power production, it is important to make use of this technological development to reduce CO{sub 2} emissions. Of the three available technologies: Integrated Coal Gasification and Combined Cycle, Fluid Bed Combustion and Pulverised Coal with Ultra Supercritical Steam Data, the technology chosen by I/S ELSAM is the PC-USC with power production efficiencies growing from 45% to 50%. 5 figs., 1 tab.

  3. Automatic coal sampling for thermoelectric power plants; some remarks on moisture

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, M.

    1983-06-01

    Some problems associated with automatic coal sampling are discussed, in particular the change in moisture content during transport to sampling station. The moisture level is reduced by crushing and air exposure. Possible solutions to the problems are outlined: reducing exposure to air; reducing the degree of pulverisation; and use of special crushing equipment.

  4. Effect of the grinding behaviour of coal blends on coal utilisation for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, CSIC, Oviedo (Spain); Miles, N. [School of Chemical, Environmental and Mining Engineering, Nottingham Univ. (United Kingdom)

    1999-11-01

    Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different hardgrove grindability index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. (orig.)

  5. Strategic considerations for clean coal R and D

    International Nuclear Information System (INIS)

    McMullan, J.T.; Williams, B.C.; McCahey, S.

    2001-01-01

    While present interest in coal-fired power generation is centred on the developing countries, with new natural-gas-fired power stations predominating in the developed world, in the long term coal will return to being the fuel of choice for power generation for much of the world. To minimise the global impact of coal use it is essential, therefore, that coal technologies are developed that are efficient, clean and economically attractive. Techno-economic analyses of the options for coal are presented together with a strategic overview of potential lines of development. The broad conclusions are that new coal plants will not be truly competitive with natural gas until the price of gas increases to about 3.3 EURO/GJ, compared with a coal price of 1.3 EURO/GJ. Present state-of-the-art pulverised coal-fired plant is close to its optimum techno-economic performance and further improvements depend on the development of cost-effective super-alloys. However, there are good opportunities to increase the efficiency of coal use to greater than 50% (LHV basis) using gasification-based power generation cycles. Unless credit is given for the much lower emissions provided by these cycles, the pulverised coal and pressurised fluidised bed combustion will remain the most economic options. (author)

  6. Assessment of PCDD/F and PBDD/F Emissions from Coal-fired Power Plants during Injection of Brominated Activated Carbon for Mercury Control

    Science.gov (United States)

    The effect of the injection of brominated powdered activated carbon (Br-PAC) on the emission of brominated and chlorinated dioxins and furans in coal combustion flue gas has been evaluated. The tests were performed at two U.S. Department of Energy (DOE) demonstration sites where ...

  7. The fate of injectant coal in blast furnaces: The origin of extractable materials of high molecular mass in blast furnace carryover dusts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.N.; Wu, L.; Paterson, N.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [University of London Imperial College of Science & Technology, London (United Kingdom). Dept. of Chemical Engineering

    2005-07-01

    The aim of the work was to investigate the fate of injectant coal in blast furnaces and the origin of extractable materials in blast furnace carryover dusts. Two sets of samples including injectant coal and the corresponding carryover dusts from a full sized blast furnace and a pilot scale rig have been examined. The samples were extracted using 1-methyl-2-pyrrolidinone (NMP) solvent and the extracts studied by size exclusion chromatography (SEC). The blast furnace carryover dust extracts contained high molecular weight carbonaceous material, of apparent mass corresponding to 10{sup 7}-10{sup 8} u, by polystyrene calibration. In contrast, the feed coke and char prepared in a wire mesh reactor under high temperature conditions did not give any extractable material. Meanwhile, controlled combustion experiments in a high-pressure wire mesh reactor suggest that the extent of combustion of injectant coal in the blast furnace tuyeres and raceways is limited by time of exposure and very low oxygen concentration. It is thus likely that the extractable, soot-like material in the blast furnace dust originated in tars is released by the injectant coal. Our results suggest that the unburned tars were thermally altered during the upward path within the furnace, giving rise to the formation of heavy molecular weight (soot-like) materials.

  8. Characterisation of supplementary fuels for co-combustion with pulverised coal

    NARCIS (Netherlands)

    Heikkinen, J.M.

    2005-01-01

    The current and future energy policy aims at increasing the share of renewable energy in worlds energy supply. One possibility to enhance energy production by renewable sources within a short term is co-combustion. This means co-firing biomass and waste with fossil fuels at existing power plants

  9. Modelling of limestone injection for SO2 capture in a coal fired utility boiler

    International Nuclear Information System (INIS)

    Kovacik, G.J.; Reid, K.; McDonald, M.M.; Knill, K.

    1997-01-01

    A computer model was developed for simulating furnace sorbent injection for SO 2 capture in a full scale utility boiler using TASCFlow TM computational fluid dynamics (CFD) software. The model makes use of a computational grid of the superheater section of a tangentially fired utility boiler. The computer simulations are three dimensional so that the temperature and residence time distribution in the boiler could be realistically represented. Results of calculations of simulated sulphur capture performance of limestone injection in a typical utility boiler operation were presented

  10. The partition behavior and the chemical speciation of selected trace elements in a typical coal sample during pyrolysis / Tivo Bafana Hlatshwayo

    OpenAIRE

    Hlatshwayo, Tivo Bafana

    2008-01-01

    Sasol is by far the world's leading company in upgrading of low-grade coal into high value chemicals and fuels. Such plants also utilise fine particles or pulverised coal in the combustion process to generate steam and electricity for their processes. Certain trace elements released from coal during utilisation may be of environmental concern. From the literature findings it appears that the elements of interest are mercury, arsenic and selenium due to their potential health hazard and as...

  11. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  12. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  13. Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers

    Science.gov (United States)

    Rathi, Bhasker; Siade, Adam J.; Donn, Michael J.; Helm, Lauren; Morris, Ryan; Davis, James A.; Berg, Michael; Prommer, Henning

    2017-12-01

    Coal seam gas production involves generation and management of large amounts of co-produced water. One of the most suitable methods of management is injection into deep aquifers. Field injection trials may be used to support the predictions of anticipated hydrological and geochemical impacts of injection. The present work employs reactive transport modeling (RTM) for a comprehensive analysis of data collected from a trial where arsenic mobilization was observed. Arsenic sorption behavior was studied through laboratory experiments, accompanied by the development of a surface complexation model (SCM). A field-scale RTM that incorporated the laboratory-derived SCM was used to simulate the data collected during the field injection trial and then to predict the long-term fate of arsenic. We propose a new practical procedure which integrates laboratory and field-scale models using a Monte Carlo type uncertainty analysis and alleviates a significant proportion of the computational effort required for predictive uncertainty quantification. The results illustrate that both arsenic desorption under alkaline conditions and pyrite oxidation have likely contributed to the arsenic mobilization that was observed during the field trial. The predictive simulations show that arsenic concentrations would likely remain very low if the potential for pyrite oxidation is minimized through complete deoxygenation of the injectant. The proposed modeling and predictive uncertainty quantification method can be implemented for a wide range of groundwater studies that investigate the risks of metal(loid) or radionuclide contamination.

  14. Effect of some pulverised plant materials on the developmental stages of fish beetle, Dermestes maculatus Degeer in smoked catfish (Clarias gariepinus) during storage.

    Science.gov (United States)

    Fasakin, E A; Aberejo, B A

    2002-11-01

    The effectiveness of pulverised plant materials; Tithonium diversifolia, Afromomum melegueta, Nicotiana tabacum, Monodora myristica and Piper guineense as ovicidal, larvicidal and adult deterents of fish beetle (Dermestes maculatus) in smoked catfish (Clarias gariepinus) during storage were evaluated. Leaves of T. diversifolia, N. tabacum and seeds of A. melegueta, M. myristica and P. guineese were dried and pulverised into powder. Adults and larvae of third generation (F3) of D. maculatus were introduced into Kilner jars containing disinfested fish samples. Pulverised plant materials were applied to the surface of the fish samples at 10% (w/w) and monitored for 40 days, while egg hatchability of the insects was monitored for seven days. The result showed that all the plant materials had varying degree of insecticidal activities. Pulverised powder of P. guineense and A. melegueta were the most effective and significantly (P 0.05) affected by the plant materials. The percentage weight loss in fish treated with P. guineense and A. melegueta were minimal compared with the untreated fish sample. The result of this study showed that pulverised plant materials obtained from P. guineense and A. melegueta could be used to deter egg hatchability and adult emergence of D. maculatus in smoked catfish during storage. This could also reduce percentage losses due to insect infestation on smoked fish during storage.

  15. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    Science.gov (United States)

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...

  16. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  17. Ameliorer les performances environnementales des centrales a charbon pulverise via la co-combustion de combustible derive de dechets

    Science.gov (United States)

    Vekemans, Odile Geraldine

    interactions between ReEF(TM) components take place during its devolatilization. During the second step of this study, performances of the co-firing of coal and sorbent are compared to that of co-combustion of coal and ReEF(TM) without sorbent. This is carried out in a reactor specially build for this study, capable of reproducing the contact mode between gas and particles, the concentrations, the temperature gradient and the pressure typical of pulverized coal boiler. SO2 emissions reduction around 20% are observed in presence of CaCO3 and of Ca(OH)2 compared to the coal baseline, reduction that generally increased with the increase of sorbent molar ratio compared to sulfur (also called stoic). As for the co-combustion of 20%th of ReEF(TM) and coal, a SO2 emission reduction around 20% is also measured, with no clear effect of ReEF(TM) composition (fiber to plastic ratio). On the other hand, the HCl level that is negligible during coal combustion with and without sorbent, reaches around 20ppm in presence of ReEF(TM), and increases proportionally with the ReEF(TM) plastic content. The first step of this work consists in the study of the co-combustion of coal and ReEF(TM) containing limestone (CaCO3), a mix of sodium bicarbonate (NaHCO3) and limestone, as well as a mix of trona (Na2CO3.NaHCO3.H2O) and limestone. The amount of sorbent in the ReEF(TM) as well as the feeding parameters are adjusted to reach a 20%th feeding of ReEF(TM) compared to coal, to inject sorbents at a stoic of 1, 2 and 2.5 and to obtain Na/Ca molar ratios of 0, 0.1 with trona and NaHCO3, and 0.5 with NaHCO 3 only. Globally, as in the case of sorbent alone, the increase of the total stoic of the feed leads to increased SO2 capture. For a given stoic, to combine waste and limestone in the ReEF(TM), compared to using limestone alone, allows to reach higher levels of SO2 emissions reduction. The combination of sodium-based and calcium-based sorbent even leads to record SO2 emissions reduction of more than 50

  18. Mineralogical investigations into ash deposits of selected brown coals; Mineralogische Untersuchungen an Ascheansaetzen ausgewaehlter Braunkohlen

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, J.; Ullrich, B. [Technische Univ. Dresden, Inst. fuer Geotechnik (Germany)

    2003-07-01

    Within the framework of the research project financed by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AIF) ''Experimental investigations into the formation of ash deposits from stack gases during the combustion of pulverised lignite'' and supervised by the chair of power station technology (Institute of Energy Technology) of the Dresden Technical University, the mineral composition of ash deposits of six different coals were investigated: two coal blends (different countries worldwide), two lignites from east from the River Elbe (types WM and JAe), one from west of the River Elbe and one Rhenish lignite. (orig.)

  19. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  20. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  1. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    Energi, Haesselbyverket, has now invested in equipment for burning pellets instead of coal. In Linkoeping wastes of rubber are mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1997 was 370 SEK/ton or 10 per cent higher than in 1996. For the world, the average import price fell to 46 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1998 as a result of the crisis in Asia. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards. The co-generation plants have all some sort of SO 2 -removal system. Mostly used is the wet-dry method. The biggest co-generation plant, Vaesteraas, has newly invested in a ca talytic NO x -cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO x -burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO x -duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 800 tons in 1997, a minor increase compared to 1996. The coal demand in the OECD-countries has increased about 1.7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong demand for electrical power in the Asian countries and the developing countries. However, greater efforts to minimize the

  2. A Poromechanical Model for Coal Seams Injected with Carbon Dioxide: From an Isotherm of Adsorption to a Swelling of the Reservoir Un modéle poromécanique pour l’injection de dioxyde de carbone dans des veines de charbon : d’une isotherme d’adsorption à un gonflement du réservoir

    Directory of Open Access Journals (Sweden)

    Nikoosokhan S.

    2012-11-01

    Full Text Available Injecting carbon dioxide into deep unminable coal seams can enhance the amount of methane recovered from the seam. This process is known as CO2-Enhanced Coal Bed Methane production (CO2-ECBM. The seam is a porous medium whose porous system is made of cleats (small natural fractures and of coal pores (whose radius can be as small as a few angström. During the injection process, the molecules of CO2 get adsorbed in the coal pores. Such an adsorption makes the coal swell, which, in the confined conditions that prevail underground, induces a closure of the cleat system of the coal bed reservoir and a loss of injectivity. In this work, we develop a poromechanical model which, starting from the knowledge of an adsorption isotherm and combined with reservoir simulations, enables to estimate the variations of injectivity of the coal bed reservoir over time during the process of injection. The model for the coal bed reservoir is based on poromechanical equations that explicitly take into account the effect of adsorption on the mechanical behavior of a microporous medium. We consider the coal bed reservoir as a dual porosity (cleats and coal porosity medium, for which we derive a set of linear constitutive equations. The model requires as an input the adsorption isotherm on coal of the fluid considered. Reversely, the model provides a way to upscale an adsorption isotherm into a meaningful swelling of the coal bed reservoir at the macroscopic scale. The parameters of the model are calibrated on data on coal samples available in the literature. Reservoir simulations of an injection of carbon dioxide in a coal seam are performed with an in-house finite volume and element code. The variations of injection rate over time during the process of injection are obtained from the simulations. The effect of the compressibility of the coal matrix on those variations is discussed. L’injection de dioxyde de carbone dans des veines de charbon profondes peut augmenter

  3. PETROBRAS green petroleum coke used as partial replacement for coal injected mixtures in blast furnaces; Utilizacao do coque verde de petroleo da PETROBRAS em substituicao parcial ao carvao mineral das misturas injetadas em altos fornos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Agenor Medrado da; Medrado, Swami Botelho; Noblat, Sebastiao Jorge Xavier [Companhia Siderurgia Nacional. CSN. Gerencia Geral de Processos Siderurgicos. RJ (Brazil)], e-mails: ams@csn.com.br, swami@csn.com.br, s.noblat@csn.com.br; Carvalho Junior, Joao Andrade de [Universidade Estadual Paulista Julio de Mesquita Filho. Faculdade de Engenharia de Guaratingueta. Departamento de Energia, SP (Brazil)], e-mail: joao@feg.unesp.br

    2010-04-15

    The PETROBRAS produced green petroleum coke (GPC) is a carbon rich fuel, virtually ash-free, with low sulfur content and is a fuel suitable to replace metallurgical coke in blast furnaces. The GPC was tested in a pulverized coal injection simulator built in the Volta Redonda research center. It presented a low burning efficiency due to low volatile material content and high substitution rate by the carbon content. The industrial-scale tests were carried out in blast furnaces with up to 50% PETROBRAS GPC in the coal blends, which has never been done before in the steel industry. The injected coal/CVP mixtures produced no negative side effects in the blast furnace grinding systems, pneumatic conveying or operating process. The mixture burning process inside the blast furnace, showed a decrease in fuel consumption, with a significant reduction in metallurgical coke consumption. The industrial-scale tests of the GPC mixtures did not reach the 70% maximum for lack of the GPC feedstock, it being necessary to continue with standard coal mixtures. (author)

  4. A new device for the efficient pulverisation and extraction of myocardial biopsies for high energy phosphate analysis.

    Science.gov (United States)

    Speir, E H; Sullivan, J; Patterson, R E

    1985-07-01

    We developed a new device for processing frozen myocardial biopsies. Frozen samples of 20 to 50 mg were dropped into a 25 ml stainless steel centrifuge tube held in a custom-made aluminium container precooled in liquid nitrogen. A stainless steel pestle attached to a stainless steel disk was driven by a modified heavy-duty staple gun to pulverise the tissue rapidly at low temperatures. The tissue powder was extracted with 0.3N PCA at 0 degree C in the centrifuge tube which was then transferred to a Sorvall super-speed centrifuge. Values for adenosine triphosphate (ATP) were 5.6 +/- 0.7 mumol . g-1 wet weight (mean +/- SD). Creatine phosphate (CP) yield was 12.2 +/- 3 mumol . g-1 wet weight. The % recovery of an added internal standard for ATP was 86 +/- 18% and for CP 90 +/- 16% with the new method.

  5. Evaluation of different pulverisation methods for RNA extraction in squash fruit: lyophilisation, cryogenic mill and mortar grinding.

    Science.gov (United States)

    Román, Belén; González-Verdejo, Clara I; Peña, Francisco; Nadal, Salvador; Gómez, Pedro

    2012-01-01

    Quality and integrity of RNA are critical for transcription studies in plant molecular biology. In squash fruit and other high water content crops, the grinding of tissue with mortar and pestle in liquid nitrogen fails to produce a homogeneous and fine powered sample desirable to ensure a good penetration of the extraction reagent. To develop an improved pulverisation method to facilitate the homogenisation process of squash fruit tissue prior to RNA extraction without reducing quality and yield of the extracted RNA. Three methods of pulverisation, each followed by the same extraction protocol, were compared. The first approach consisted of the lyophilisation of the sample in order to remove the excess of water before grinding, the second one used a cryogenic mill and the control one a mortar grinding of frozen tissue. The quality of the isolated RNA was tested by carrying out a quantitative real time downstream amplification. In the three situations considered, mean values for A(260) /A(280) indicated minimal interference by proteins and RNA quality indicator (RQI) values were considered appropriate for quantitative real-time polymerase chain reaction (qRT-PCR) amplification. Successful qRT-PCR amplifications were obtained with cDNA isolated with the three protocols. Both apparatus can improve and facilitate the grinding step in the RNA extraction process in zucchini, resulting in isolated RNA of high quality and integrity as revealed by qRT-PCR downstream application. This is apparently the first time that a cryogenic mill has been used to prepare fruit samples for RNA extraction, thereby improving the sampling strategy because the fine powder obtained represents a homogeneous mix of the organ tissue. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  7. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  8. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  9. Modelling of NO formation in the combustion of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Backreedy, R.I.; Jones, J.M.; Pis, J.J.; Pourkashanian, M.; Rubiera, F.; Williams, A. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain)

    2002-03-01

    Coal blending is becoming of increasing importance in power stations firing pulverised coal as a result of increasing competition, stricter emission legislation and is an attractive way of improving plant economic and combustion performance. Presently, the two general methods used by power station operators to assess or predict the performance of an unknown coal blend to be fired in power station boilers are by the use of experimental large scale rig tests or correlation indices derived from experience of firing other coal blends in the power station environment. The first is expensive and the second is of doubtful accuracy in some cases. This paper evaluates the application of mathematical modelling of the combustion of a series of binary coal blends in the test situation of a drop tube reactor to predict the NO emissions and degree of char burnout. Its applicability to low NOx burners used in power stations is discussed and it is concluded that present mathematical coal combustion models are not developed sufficiently to enable an adequate description of the binary blends and the physical and chemical processes, which may include interactions, during combustion of the blend. This means that accurate predictions cannot be made. 20 refs., 4 figs., 5 tabs.

  10. Bio-coal, torrefied lignocellulosic resources – Key properties for its use in co-firing with fossil coal – Their status

    International Nuclear Information System (INIS)

    Agar, D.; Wihersaari, M.

    2012-01-01

    Bio-coal has received generous amounts of media attention because it potentially allows greater biomass co-firing rates and net CO 2 emission reductions in pulverised-coal power plants. However, little scientific research has been published on the feasibility of full-scale commercial production of bio-coal. Despite this, several companies and research organisations worldwide have been developing patented bio-coal technologies. Are the expectations of bio-coal realistic and are they based on accepted scientific data? This paper examines strictly peer-reviewed scientific publications in order to find an answer. The findings to date on three key properties of torrefied biomass are presented and reviewed. These properties are: the mass and energy balance of torrefaction, the friability of the product and the equilibrium moisture content of torrefied biomass. It is these properties that will have a major influence on the feasibility of bio-coal production regardless of reactor technology employed in production. The presented results will be of use in modelling commercial production of bio-coal in terms of economics and green-house gas emission balance. -- Highlights: ► A technical note on torrefaction research results. ► Presents experimental values on three key properties. ► Mass-energy balance, grindability, equilibrium moisture content of torrefied biomass. ► Results useful for modelling bio-coal production schemes.

  11. A study on the char burnout characteristics of coal and biomass blends

    Energy Technology Data Exchange (ETDEWEB)

    Behdad Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment

    2007-10-15

    The char burnout characteristics of coal/biomass blends under conditions pertinent to pulverised fuel combustors were investigated by a combined modelling and experimental approach. Results indicate that blending of coal with biomass increases the likelihood of char extinction (i.e. extinction potential of the char particle in the blend), in turn, decreasing the char burnout level. Our modelling results attribute this to a reduction in the char particle size to levels below a critical dimension which appears to be a strong function of the fuel blending ratio (the weight percentage of biomass in the blend), fuel reactivity, char cloud shape and particle density number. It is demonstrated here that the drop in the char burnout level during co-firing can be effectively resolved when a more reactive secondary coal is added to the blend to minimise its extinction potential. 22 refs., 8 figs., 2 tabs.

  12. The Indonesian coal industry

    International Nuclear Information System (INIS)

    Cook, A.; Daulay, B.

    2000-01-01

    In this comprehensive article the authors describe the origins and progress of the Indonesian coal industry and the role it plays, and will play, in the domestic energy scene and world coal trade. In the '80s, the Indonesian coal industry laid the basis for major expansion such that coal production rose from under a million tonnes in 1983 to 10.6 million tonnes in 1990, 50.9 million tonnes by 1996 and 61.2 million tonnes in 1992. At the same time, exports have increased from 0.4 million tonnes to 44.8 million tonnes. Current export levels are higher than originally expected, due in part to a slow down in the construction of electric power stations and a partial switch to natural gas. This has slowed the rate at which domestic coal demand has built up. The majority of coals currently exported are low rank steam coals, but some of the higher rank and very low ash coals are used for blast furnace injection, and a very small proportion may even be used within coking blends, even though they have poor coking properties. The Indonesian coal industry has developed very rapidly over the last six years to become a significant exporter, especially within the ASEAN context. The resources base appears to be large enough to support further increases in production above those already planned. It is probable that resources and reserves can be increased above the current levels. It is likely that some reserves of high value coals can be found, but it is also probable that the majority of additions to reserves will be lower in rank (and therefore quality) compared with the average of coals currently being mined. Reserves of qualities suitable for export will support that industry for a considerable period of time. However, in the longer term, the emphasis of production will increasingly swing to the domestic market

  13. Wireless vibration monitoring in a US coal-fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Gbur, G.L.; Wier, W.; Bark, T.

    2006-07-15

    Choosing a reliable wireless systems able to provide data on vibration magnitudes in a coal pulveriser was never going to be easy, so two systems were tested alongside each other. One was the Wireless MCT System produced by SKF Reliability Systems; the other was from an alternative vendor. A replacement wireless vibration monitor was required at the Baldwin Energy Complex near Decartar, Illinois, USA. A single CE-Raymond model 923.RP pulverizer equipped with eight Wilcox on 786A accelerometers was chosen for monitoring. Five days after installation, the pulverizer experienced a failure. The wireless system provided vibration magnitudes to Dynegy's OSI PI Historian software. Analysis of this data coupled with an unsuccessful attempt to adjust the grinding roll, revealed that the number two grinding roll bearing had failed. The SKF Reliability System proved to detect the fault earlier than the non-SKF system and was chosen for the plant. 10 figs., 1 tab.

  14. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  15. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  16. The effects of pf grind quality on coal burnout in a 1 MW combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Richelieu Barranco; Michael Colechin; Michael Cloke; Will Gibb; Edward Lester [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering, Nottingham Fuel and Energy Centre

    2006-05-15

    A study was carried out to determine the effect of pf particle size distribution on coal burnout propensity in a 1 MW pulverised fuel burner. The specific aim of the work was to assess the improvement in combustion performance achievable by retrofitting commercially available high performance static or dynamic classifiers to existing plants. Two coals were used and were selected as representative of extremes in fuel characteristics experienced by coal importing utilities in Europe. Each coal was fired in the unit at a range of grind sizes to determine the overall impact of a variable performance from a mill. The levels of unburnt carbon in the resultant flyashes for the two coals showed significantly different behaviour. For the higher volatile coal, the unburnt carbon was found to be insensitive to grind quality. However, the coarser grinds of the other coal produced significantly lower unburnt carbon than expected when compared with the finest grinds. Generally the results indicate that the installation of improved classification technology, leading to a finer product, will help to lower unburnt carbon levels. Nevertheless, further work will be necessary to establish the levels of diminishing returns for grind size, burnout performance and grind costs. 21 refs., 4 figs., 4 tabs.

  17. Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2013-01-01

    The deployment of oxy-fuel combustion in utility boilers is one of the major options for CO2 capture. However, combustion under oxy-firing conditions differs from conventional air-firing combustion, e.g., in the aspect of radiative heat transfer, coal conversion and pollutants formation....... In this work, a numerical study on pulverised coal combustion was conducted to verify the applicability and accuracy of several sub-models refined for oxy-fuel conditions, e.g., gaseous radiative property model, gas-phase combustion mechanism and heterogeneous char reaction model. The sub-models were...... implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21-35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results...

  18. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  19. A Reduced Reaction Scheme for Volatile Nitrogen Conversion in Coal Combustion

    DEFF Research Database (Denmark)

    Pedersen, Lars Saaby; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    In pulverised coal flames, the most important volatile nitrogen component forming NOx is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. The present work was concerned with developing a model for HCN/NH3/NO conversion based...... that the CO/H-2 chemistry was described adequately, the reduced HCN/NH3/NO model compared very well with the detailed model over a wide range of stoichiometries. Decoupling of the HCN chemistry from the CO/H-2 chemistry resulted in over-prediction of the HCN oxidation rate under fuel rich conditions, but had...... negligible effect on the CO/H-2 chemistry. Comparison with simplified HCN models from the literature revealed significant differences, indicating that these models should be used cautiously in modelling volatile nitrogen conversion....

  20. Fate(s) of injected CO2 in a coal-bearing formation, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial-brine-rock-CO2 interactions

    Science.gov (United States)

    Shelton, Jenna L.

    2013-01-01

    Coal beds are one of the most promising reservoirs for geologic carbon dioxide (CO₂) sequestration, as CO₂ can strongly adsorb onto organic matter and displace methane; however, little is known about the long-term fate of CO₂ sequestered in coal beds. The "2800' sand" of the Olla oil field is a coal-bearing, oil and gas-producing reservoir of the Paleocene–Eocene Wilcox Group in north-central Louisiana. In the 1980s, this field, specifically the 2800' sand, was flooded with CO₂ in an enhanced oil recovery (EOR) project, with 9.0×10⁷m³ of CO₂ remaining in the 2800' sand after injection ceased. This study utilized isotopic and geochemical tracers from co-produced natural gas, oil and brine from reservoirs located stratigraphically above, below and within the 2800' sand to determine the fate of the remaining EOR-CO₂, examining the possibilities of CO₂ migration, dissolution, mineral trapping, gas-phase trapping, and sorption to coal beds, while also testing a previous hypothesis that EOR-CO₂ may have been converted by microbes (CO₂-reducing methanogens) into methane, creating a microbial "hotspot". Reservoirs stratigraphically-comparable to the 2800' sand, but located in adjacent oil fields across a 90-km transect were sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. The source field for the EOR-CO₂, the Black Lake Field, was also sampled to establish the δ¹³C-CO₂ value of the injected gas (0.9‰ +/- 0.9‰). Four samples collected from the Olla 2800' sand produced CO₂-rich gas with δ¹³C-CO₂ values (average 9.9‰) much lower than average (pre-injection) conditions (+15.9‰, average of sands located stratigraphically below the 2800' sand in the Olla Field) and at much higher CO₂ concentrations (24.9 mole %) than average (7.6 mole %, average of sands located stratigraphically below the 2800' sand in the Olla Field), suggesting the presence of EOR-CO₂ and gas-phase trapping as

  1. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  2. Coal pump

    Science.gov (United States)

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  3. Coal 95; Kol - 95

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    1996-12-31

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO{sub 2} and NO{sub x} as given by county administrations or concession boards. The cogeneration plants all have some SO{sub 2} removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO{sub x} cleaning system. Most other plants use low NO{sub x} burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs.

  4. Australian coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    Total export shipments of coal in Australia in the year ending June 30 1985 reached a record of 83.8 Mt. The export trade is expected to bring in an income of 4 billion Australian dollars in the current year making coal Australia's biggest revenue-earning export commodity. This article presents a brief overview of the Australian coal industry with production and export statistics and information on major open pit and underground mines.

  5. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  6. Venezuelan coal

    International Nuclear Information System (INIS)

    Vazquez, L.U.

    1991-01-01

    The existence of coal deposits in Venezuela has been known since the early nineteenth century, when the Naricual Mines were discovered in the State of Anzoategui Eastern Venezuela. Through the years the Venezuelan coal business had its ups and downs, but it was not until 1988 that we could properly say that our coal began to play a role in the international market. This paper reports that it is only now, in the nineties, that Venezuelan coal projects have come under a planning, promotional and developmental policy preparing the ground for the great projects Venezuela will have in the not-too-distant future

  7. Southeast Asia - air pollution control and coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    Soud, H.N.

    1997-12-01

    Coal-fired power generation in Southeast Asia continues to grow in order to satisfy the increasing demand for electricity throughout the region. Emissions standards have been adopted in some Southeast Asian countries. Particulate matter, SO{sub 2} and NO{sub x} emissions are the main air pollutants for which standards have been introduced. Coal cleaning, and upgrading are not used much currently. Blending is used in Thailand and is being investigated in Indonesia. Pulverised coal combustion continues to dominate the coal-fired generating capacity. FBC is used at smaller scale and in a few cases. PFBC and IGCC are considered only as options for the future. Control priority is given to particulate matter and ESPs are installed on most (existing and new) coal-fired plants. Although FGD has been installed at Mae Moh in Thailand and is planned for Paiton in Indonesia and Sual in the Philippines, the technology is still considered expensive and its application is likely to remain limited. Boiler optimisation is the main NO{sub x} abatement method currently used. It is expected that low NO{sub x} burners will be used in the future especially in new plant. 166 refs., 1 fig., 40 tabs.

  8. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  9. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  10. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  11. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    Science.gov (United States)

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Converting coal

    Energy Technology Data Exchange (ETDEWEB)

    Avigliano, A. [Bedeschi (Italy)

    2006-10-15

    In September 2005, Bedeschi was commissioned to design and supply a coal unloading, conveying and storage facility for a new raw coal line system within Hatien II Cement Co. The new plant is composed of a grab unloader, a conveyor system, a storage shed with stacking and reclaiming facilities, a complete dedusting system and civil and steel structure engineering. The scope of supply includes a local fabrication portion; however, main components will be imported. The project will be completed in 21 months. The paper looks into the mechanics of loading and unloading coal. 4 figs., 4 photos.

  13. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  14. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  15. Coal - 97

    International Nuclear Information System (INIS)

    Sparre, C.

    1997-01-01

    The report deals with the use of coal and coke during 1996. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1996 was 1,2 mill tons and 50% higher than in 1995. The increase is probably temporary and due to high prices of electricity because of lack of water power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generation plants. During the top year 1987 coal was used in 18 hotwater plants and 11 co-generation plants. 1996 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1996 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. The coke consumption in the industry was 1,5 mill tons. 0,3 mill tons of coke were imported. The average price of steam coal imported in Sweden in 1996 was 340 SEK/ton or 2% higher than in 1995. For the world, the average import price was 51,5 USD/ton, nearly the same as the year before. The contract prices for delivery during 1997 are about equal as the end of 1996. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards

  16. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  17. Observer-based Coal Mill Control using Oxygen Measurements

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; S., Tom

    2006-01-01

    This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control...... of the coal flow difficult, causing stability problems and limits the plant's load following capabilities. To alleviate this problem without having to rely on expensive flow measurement equipment, a novel observer-based approach is investigated. A Kalman filter based on measurements of combustion air flow led...... into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate, it becomes possible to close an inner loop around the coal mill itself, thus giving a better disturbance rejection capability. The approach is validated against...

  18. Distilling coal

    Energy Technology Data Exchange (ETDEWEB)

    Blythe, F C

    1914-09-14

    In the destructive distillation of bituminous coal, heavy hydrocarbon oil, such as petroleum, kerosine, shale oil, and heavy tar oil, obtained in some cases during the process, is added to the coal, which is then distilled under pressure and at a comparatively low temperature regulated so as to produce a large proportion of hydrocarbon oils and a small proportion of permanent gas. In one method, about 5 to 10 parts of hydrocarbon oil are mixed with 100 parts of crushed or ground coal, and the mixture is heated in a closed vessel, provided in some cases with an agitator, under a pressure of about 60 lb/in/sup 2/, and the temperature may be gradually raised to 350/sup 0/C and then to about 500/sup 0/C. The heating may be by means of superheated steam with or without external heat.

  19. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  20. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  1. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  2. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  3. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  4. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  5. Coal marketing manual 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This manual provides information on the international coal market in tabulated format. Statistics are presented for the Australian coal industry, exports, currency movements, world coal production, coal and coke imports and exports. Detailed information is provided on the Australian coal industry including mine specific summaries. Pricing summaries for thermal and coking coal in 1987, coal quality standards and specifications, trends in coal prices and stocks. Imports and exports for World coal and coke, details of shipping, international ports and iron and steel production. An exporters index of Australian and overseas companies with industry and government contacts is included. 15 figs., 67 tabs.

  6. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  7. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  10. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  11. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  12. Coal statistics 1977

    Energy Technology Data Exchange (ETDEWEB)

    Statistical Office of the European Communities

    1978-01-01

    Presents tables of data relating to the coal market in the European Community in 1977. The tables cover hard coal production, supply and trade; briquettes; cokes; lignite, brown coal briquettes and peat; and mines and coke ovens.

  13. Australian coal yearbook 1989

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, A [ed.

    1989-01-01

    This yearbook contains a mine directory; details of coal export facilities and ports; annual coal statistics; a buyers' guide; names and addresses of industry organisations and an index of coal mine owners.

  14. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  15. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  16. Australian black coal statistics 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This second edition of Australian black coal statistics replaces the Joint Coal Board's publication 'Black coal in Australia'. It includes an expanded international coal trade supplement. Sections cover resources of black coal, coal supply and demand, coal production, employment and productivity of mines, export data, coal consumption and a directory of producers.

  17. Determination of the stagnation point in pulverized coal swirl flames by detailed analysis of laser velocity measurements; Staupunktbestimmung in Kohlenstaub-Drallflammen mittels detaillierter Analyse von LDA-Daten

    Energy Technology Data Exchange (ETDEWEB)

    Ohliger, A.; Stadler, H.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    When Laser Doppler Anemometry (LDA) is used for experimental investigation of flow fields in pulverised coal flames, the measured coal particle velocities are usually averaged in order to determine the gas velocity. This paper shows that this approach can lead to a misinterpretation of the data. In the burner vicinity of the investigated flame, where high accelerations in the gas phase occur, a discrepancy appears between the measured velocity distribution and the expected normal distribution. Thus, a detailed analysis of the measured particle data is conducted and compared to conventional averaging. The difference can be attributed to large particles from the inner recirculation zone of the flame, which do not follow the gas flow properly. (orig.)

  18. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  19. 1982 Australian coal conference papers

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This third Australian coal conference included papers discussing the market for coal, finance and investment, use of computers, mining, coal research, coal preparation and waste disposal, marketing and trade, and the transport of coal. All papers have been individually abstracted.

  20. Ultravitrinite coals from Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lapo, A.V.; Letushova, I.A.

    1979-03-01

    Chemical and petrographic analysis was conducted on coals from the Anadyrya and Bukhti Ugol'noi deposits. Characteristics of the most prevalent type of vitrinite coals in both regions are presented here. Anadyrya coals belong to a transitional phase between brown coal and long flame. Ultravitrinite coals predominate. Gas coals from Bukti Ugol'noi have a higher carbon content than Anadyrya coals. They also have a higher hydrogen content and yield of initial resin. In several cases there was also a higher yield of volatile substances. Chukotka coals are characterized by a 10 percent higher initial resin yield than equally coalified Donetsk coals, other indicators were equal to those of Donetsk coals. Because of this, Chukotka coals are suitable for fuel in power plants and as raw materials in the chemical industry. (15 refs.) (In Russian)

  1. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  2. Record coking coal settlements

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, C.

    2005-02-01

    The US$100/tonne psychological barrier in coking coal prices has been well and truly smashed. The article examines developments in coal pricing. It includes quotes from many senior executives in the coal industry as collected at McCloskey's Australian Coal.04 conference held in Sydney, 18-19 November 2004. 2 photos.

  3. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  4. Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, E.V.; Kalugin, V.M.; Nigmatulina, E.N.; Volkova, N.I.; Frenkel, A.E.; Maksimova, N.V. [Geophysics and Mineralogy Sb RAS, Novosibirsk (Russian Federation). United Institute of Geology

    2002-05-01

    Ferrospheres originating during the pulverised fuel firing of brown coals from the Chelyabinsk basin (South Urals, Russia) have been examined for determination of their chemical and phase compositions, morphology and formation conditions. Most of the ferrospheres are close to ideal spheres with dendritic or skeletal structure. The appearance of microsphere inner anatomy is determined by morphology of ferrispinel aggregates, which compose more than 85 vol% of these globules. The analysed ferrispinels are complex solid solutions based on FeFe{sub 2}O{sub 4} with impurities of MgFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and nCaO x mFe{sub 2}O{sub 3}. The glasses coexisted with ferrispinel crystallites are basic-ultrabasic in composition. Ferrospheres are the quenching products of high-ferrous melts originated from melting of iron-bearing carbonate admixtures in coals. The mass crystallisation of ferrispinels in ferrospheres was a result of iron changes from Fe{sup 2+} to Fe{sup 3+} and following ferritisation of high-ferrous melts during molten drops cooling. The residual melt is quenched to form a low-silicon, high-calcium, high-ferrous glass. the skeletal and dendritic forms of ferrispinel are due to their crystallisation under drastic supercooling conditions. 22 refs., 6 figs., 2 tabs.

  5. Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J. [University of Glamorgan, Pontypridd (United Kingdom). Division of Mechanical Engineering

    2006-03-15

    The optimisation of burner operation in conventional pulverised-coal-fired boilers for co-combustion applications represents a significant challenge This paper describes a strategic framework in which Artificial Intelligence (AI) techniques can be applied to solve such an optimisation problem. The effectiveness of the proposed system is demonstrated by a case study that simulates the co-combustion of coal with sewage sludge in a 500-kW pilot-scale combustion rig equipped with a swirl stabilised low-NOx burner. A series of Computational Fluid Dynamics (CFD) simulations were performed to generate data for different operating conditions, which were then used to train several Artificial Neural Networks (ANNs) to predict the co-combustion performance. Once trained, the ANNs were able to make estimations of unseen situations in a fraction of the time taken by the CFD simulation. Consequently, the networks were capable of representing the underlying physics of the CFD models and could be executed efficiently for a large number of iterations as required by optimisation techniques based on Evolutionary Algorithms (EAs). Four operating parameters of the burner, namely the swirl angles and flow rates of the secondary and tertiary combustion air were optimised with the objective of minimising the NOx and CO emissions as well as the unburned carbon at the furnace exit. The results suggest that ANNs combined with EAs provide a useful tool for optimising co-combustion processes.

  6. Granisetron Injection

    Science.gov (United States)

    Granisetron immediate-release injection is used to prevent nausea and vomiting caused by cancer chemotherapy and to ... nausea and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with ...

  7. Edaravone Injection

    Science.gov (United States)

    Edaravone injection is used to treat amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease; a condition in which ... die, causing the muscles to shrink and weaken). Edaravone injection is in a class of medications called ...

  8. Meropenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection will not work for colds, flu, or other viral infections. Taking ...

  9. Chloramphenicol Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work for colds, flu, or other viral infections. Taking ...

  10. Colistimethate Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work for colds, flu, or other viral infections. Using ...

  11. Defibrotide Injection

    Science.gov (United States)

    Defibrotide injection is used to treat adults and children with hepatic veno-occlusive disease (VOD; blocked blood ... the body and then returned to the body). Defibrotide injection is in a class of medications called ...

  12. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  13. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  14. Concerning coal: an anthology

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Hawse, M.L.; Maloney, P.J. [eds.

    1997-12-31

    The anthology takes a humanistic look at coal mining in Illinois. One of its goals is to increase public awareness of coal in American society; it also seeks to enhance understanding of the historical aspects of coal and to study the impact of coal on mining families. Many of the 25 selections in the anthology come from Coal Research Center publications, `Concerning coal` and `Mineral matters`. Articles are arranged in three parts entitled: life in the mining community; mining in folklore, story telling, literature, art and music; and technology as it affected the people of the coal fields. 117 refs., 25 photos. 1 map.

  15. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  16. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  17. ACR coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This publication is a comprehensive reference document on production, exports, prices and demand of coal in world markets. A forecast of demand by coal type and country up to the year 2000 is provided. Statistics of the Australian export industry are complemented by those of South Africa, USA, Canada, Indonesia, China, C.I.S. and Colombia. A very comprehensive coal quality specification for nearly all the coal brands exported from Australia, as well as leading non-Australian coal brands, is included.

  18. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  19. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  20. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  1. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  2. DRUCKFLAMM - Investigation on combustion and hot gas cleanup in pulverized coal combustion systems. Final report; DRUCKFLAMM - Untersuchungen zur Verbrennung und Heissgasreinigung bei der Druckkohlenstaubfeuerung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Benoehr, A.; Schuermann, H.; Stroehle, J.; Klaiber, C.; Kuhn, R.; Maier, J.; Schnell, U.; Unterberger, S.

    2001-07-01

    The ambitions of making energy supply more efficient and less polluting brought forth the development of coal based combined cycle power plants allowing considerable increases in net efficiencies. One of the regarded firing concepts for a coal based combined cycle power plant is represented by the pressurised pulverised coal combustion process which has the highest efficiency potential compared with the other coal based concepts. The fundamental purpose of the project was to gain firm knowledge concerning firing behaviour of coal in a pressurised pulverised coal combustion system. Detailed investigations were carried out in a pressurised entrained flow reactor taking into account fuel conversion and particle behaviour, pollutant formation and material behaviour under conditions of a pressurised pulverised coal firing. During the project's investigations several different measurement techniques were tested and partially also acquired (e.g. a two-colour-pyrometry system to measure simultaneous particle surface temperature and particle diameter of burning fuel particles). Calculation models under pressurised conditions for pressure vessel simulation and better scale-up were developed synchronously with the experimental investigations. The results gained using the pressurised entrained flow reactor show that many combustion mechanisms are influenced by increased pressure, for instance the fuel conversion is intensified and at the same time pollutant emissions decreased. The material investigations show that the ceramic materials used due to the very high combustion temperatures are very sensitive versus slagging and fast temperature changes, therefore further development requirements are needed to fully realise the high durability of ceramics in the pressurised furnace. Concerning the improvement of existing models for furnace simulation under pressurised conditions, a good resemblance can be observed when considering the actual measurement results from the test

  3. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1994-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  4. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I.; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1993-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  5. Use of coal-water mixtures in blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Malgarini, G; Giuli, M; Davide, A; Carlesi, C [Centro Sviluppo Materiali, Rome (Italy); Italsider, Genoa [Italy; Deltasider, Piombino [Italy

    1989-03-01

    At the present time, an ironworks blast furnace employing a pulverized coal injection (PCI) system is in operation at the Piombino Works (Italy). A wide development, within this industry, of PCI techniques is expected in the near future to limit, as much as possible, the rebuilding of coke ovens. Research activities and industrial trials aimed at maximizing the use of coal injection into blast furnaces are in course of development. This paper uses flowsheets to illustrate such a system and provides graphs to indicate the economic convenience of PCI systems as compared with systems using naphtha as an injected fuel.

  6. Monitoring of Underground Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagoner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-08-31

    For efficient and responsible UCG operations, a UCG process must be monitored in the following three categories: 1) process parameters such as injection and product gas flow rates, temperature, pressure and syngas content and heating value; 2) geomechanical parameters, e.g., cavity and coal seam pressures, cavity development, subsidence and ground deformation; and 3) environmental parameters, e.g., groundwater chemistry and air quality. This report focuses on UCG monitoring with geophysical techniques that can contribute to monitoring of subsurface temperature, cavity development, burn front, subsidence and deformation.

  7. Trends in Japanese coal trade

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, S

    1986-01-01

    The author discusses 1) the latest forecast for coal demand in Japan; 2) trends in Japanese steam coal demand, with breakdown by industry; 3) the organization of steam coal supply, with details of the distribution network and of the new coal cartridge system; 4) the demand for metallurgical coal. Other topics outlined include the current status of Japanese coal production, Japanese coal trade, and the development of overseas coal resources. 1 figure, 5 tables.

  8. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  9. Coal marketing manual 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This manual presents information for the use of marketers, consumers, analysts and investors. The information is presented in a series of tables and figures. Statistics are given for: Australian export tonnages and average export values for 1978-1985; international pig iron production 1976 to 1985; and international crude steel production 1979 to 1985. Trends in Australian export tonnages and prices of coal are reviewed. Details of international loading and discharge ports are given, together with a historical summary of shipping freight-rates since 1982. Long term contract prices for thermal and coking coal to Japan are tabulated. A review of coal and standards is given, together with Australian standards for coal and coke. A section on coal quality is included containing information on consumer coal quality preferences and Australian and Overseas coal brands and qualities. Finally an index is given of contact details of Australian and Overseas exporting companies, government departments, and the Australian Coal Association.

  10. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis (CWP) is a lung disease that ...

  11. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  12. Hydromorphone Injection

    Science.gov (United States)

    ... anyone else to use your medication. Store hydromorphone injection in a safe place so that no one else can use it accidentally or on purpose. Keep track of how much medication is left so ... with hydromorphone injection may increase the risk that you will develop ...

  13. Ketorolac Injection

    Science.gov (United States)

    ... an older adult, you should know that ketorolac injection is not as safe as other medications that can be used to treat your condition. Your doctor may choose to prescribe a different medication ... to ketorolac injection.Your doctor or pharmacist will give you the ...

  14. Paclitaxel Injection

    Science.gov (United States)

    (pak'' li tax' el)Paclitaxel injection must be given in a hospital or medical facility under the supervision of a doctor who is experienced in giving chemotherapy medications for cancer.Paclitaxel injection may cause a large decrease in the number of white blood cells (a type of blood cell ...

  15. Fording Canadian Coal Trust

    Energy Technology Data Exchange (ETDEWEB)

    Popowich, J.; Millos, R. [Elk Valley Coal Corporation, Calgary, AB (Canada)

    2004-07-01

    This is the first of five slide/overhead presentations presented at the Fording Canadian Coal Trust and Tech Cominco Ltd. investor day and mine tour. The Fording Canadian Coal Trust is described. The Trust's assets comprise six Elk Valley metallurgical coal mines and six wollastonite operations (in the NYCO Group). Trust structure, corporate responsibility, organizational structure, reserves and resources, management philosophy, operating strategies, steel market dynamics, coal market, production expansion, sales and distribution are outlined. 15 figs., 5 tabs.

  16. Coal. [1987 and 1989

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    Despite increases in recently negotiated coal prices in US dollar terms, unit export returns for Australian coal are expected to rise only marginally in 1988-89 due to the anticipated appreciation of the Australian dollar. Australian coal production is expected to recover in 1988-89, after falling in 1987-88. A table summarising coal statistics in 1985-87 is presented. 2 figs., 1 tab.

  17. Review biodepyritisation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, C.; Sukla, L.B.; Misra, V.N. [Regional Research Lab., Orissa (India)

    2004-01-01

    This review provides a detailed summary of the recent and past research activities in the area of biodesulfurisation of coal. It provides information about microorganisms important for biodesulfurisation of coal, with the emphasis on Thiobacillus ferrooxidans. The review presents an insight into various methods of desulfurisation of coal combining physical and biological methods. Also, there are discussions on coal structure, distribution, mechanism and kinetics of pyrite oxidation and jarosite precipitation. Finally, areas requiring further research are identified.

  18. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  19. Coal world market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A brief analysis of major tendencies in the world market of coal is presented. It is pointed out that recent years, by and large, were favourable for the development of the world coal industry. Prices for coal (both for power-grade and coking one) in 1995 after many years of depressive state increased by nearly 20 % and reached a maximum of the last decade. International coal trading continues to grow and the tendency may persist in the mext two years

  20. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  1. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  2. Coal economics and taxation

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    These proceedings contain opening remarks, the luncheon and dinner addresses, list of delegates and the papers presented at the four sessions on Coal Mines cost money - for what.; Coal mines cost money - Where the money comes from; taxation and royalty policies; and the coal industry view on operating costs. Sixteen papers are abstracted separately.

  3. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  4. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    Science.gov (United States)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has production in a double porosity model considering two domains: the matrix (m) and the fracture (f) for which the initial and boundary conditions are different. The resulting comprehensive 3D models had helped in better understanding the tectonic structures of the region, especially the relationships between the fault systems.

  5. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  6. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  7. On the non-linear nature of the variation, with intensity, of high energy cathode sputtering, and the variation of the latter with temperature (1960); Sur le caractere non lineaire en fonction de l'intensite de la pulverisation cathodique a haute energie et sa variation en fonction de la temperature (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, C; Ranc, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    A new cathode sputtering theory at high energy is presented which has been elaborated in taking in account the non-linearity of this phenomenon with the density of the impinging ions. This theory allows to predict the influence of target temperature on the rate of cathode sputtering. This influence is experimentally demonstrated. (author) [French] On presente, au sujet de la pulverisation cathodique a haute energie, une theorie qui tient compte de la non-linearite de la variation de ce phenomene avec la densite des ions incidents. Cette theorie permet de predire l'influence de la temperature de la cible sur la vitesse de pulverisation cathodique. On demontre l'existence de cette influence par une methode experimentale. (auteur)

  8. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  9. Coal and public perceptions

    International Nuclear Information System (INIS)

    Porter, R.C.

    1993-01-01

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  10. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  11. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  12. Washability of Australian coals

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, R L

    1979-06-01

    Australian coals tend to be young in geological age and high in ash by world standards; preparation of the coal before marketing is almost universal. On the basis of float and sink data from 39 locations in the eastern Australian coalfields, the coals are place in four categories representing increasing difficulty in their washability characteristics. These seem to be related neither to the geological age nor the geographical position of the deposit and Hunter Valley coals, for example, span all categories. The influence of crushing on the washability of Australian coals is briefly considered and from limited data it is concluded to be appreciably smaller than for British or North American coals. A strategy for the float and sink analysis of Australian coals is proposed and the influence of washability characteristics on current trends in the selection of separating processes for coking and steaming products is discussed.

  13. Temozolomide Injection

    Science.gov (United States)

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  14. Buprenorphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opiate partial agonists. It works to prevent withdrawal symptoms ... help. If the victim has collapsed, had a seizure, has trouble breathing, or can't be awakened, ...

  15. Risperidone Injection

    Science.gov (United States)

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  16. Haloperidol Injection

    Science.gov (United States)

    ... haloperidol extended-release injection are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  17. Omalizumab Injection

    Science.gov (United States)

    ... injection is used to decrease the number of asthma attacks (sudden episodes of wheezing, shortness of breath, and ... about how to treat symptoms of a sudden asthma attack. If your asthma symptoms get worse or if ...

  18. Injection Tests

    CERN Document Server

    Kain, V

    2009-01-01

    The success of the start-up of the LHC on 10th of September was in part due to the preparation without beam and injection tests in 2008. The injection tests allowed debugging and improvement in appropriate portions to allow safe, efficient and state-of-the-art commissioning later on. The usefulness of such an approach for a successful start-up becomes obvious when looking at the problems we encountered before and during the injection tests and could solve during this period. The outline of the preparation and highlights of the different injection tests will be presented and the excellent performance of many tools discussed. A list of shortcomings will follow, leading to some planning for the preparation of the run in 2009.

  19. Cefotaxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work for colds, flu, or other viral infections. Using ...

  20. Cefuroxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work for colds, flu, or other viral infections. Using ...

  1. Doripenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work for colds, flu, or other viral infections. Taking ...

  2. Daptomycin Injection

    Science.gov (United States)

    ... in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria.Antibiotics such as daptomycin injection will not work for treating colds, flu, or other viral infections. ...

  3. Ceftaroline Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work for colds, flu, or other viral infections. Using ...

  4. Aztreonam Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as aztreonam injection will not work for colds, flu, or other viral infections. Taking ...

  5. Cefazolin Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work for colds, flu, or other viral infections. Taking ...

  6. Ceftazidime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work for colds, flu, or other viral infections. Using ...

  7. Cefotetan Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotetan injection will not work for colds, flu, or other viral infections. Using ...

  8. Cefoxitin Injection

    Science.gov (United States)

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking ...

  9. Tigecycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infection.Antibiotics such as tigecycline injection will not work for colds, flu, or other viral infections. Using ...

  10. Ertapenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work for colds, flu, or other viral infections. Taking ...

  11. Ceftriaxone Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work for colds, flu, or other viral infections.Using ...

  12. Cefepime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using ...

  13. Telavancin Injection

    Science.gov (United States)

    ... is in a class of medications called lipoglycopeptide antibiotics. It works by killing bacteria that cause infection.Antibiotics such as telavancin injection will not work for colds, flu, or other viral infections. Using ...

  14. Doxycycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infections.Antibiotics such as doxycycline injection will not work for colds, flu, or other viral infections. Taking ...

  15. Vancomycin Injection

    Science.gov (United States)

    ... is in a class of medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection will not work for colds, flu, or other viral infections. Taking ...

  16. Octreotide Injection

    Science.gov (United States)

    ... carton and protect it from light. Dispose of multi-dose vials of the immediate-release injection 14 ... and immediately place the medication in a safe location – one that is up and away and out ...

  17. Moxifloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using moxifloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  18. Delafloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using delafloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  19. Levofloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using levofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  20. Ciprofloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using ciprofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  1. Alirocumab Injection

    Science.gov (United States)

    ... 9 (PCSK9) inhibitor monoclonal antibodies. It works by blocking the production of LDL cholesterol in the body ... hives difficulty breathing or swallowing swelling of the face, throat, tongue, lips, and eyes Alirocumab injection may ...

  2. Evolocumab Injection

    Science.gov (United States)

    ... 9 (PCSK9) inhibitor monoclonal antibody. It works by blocking the production of LDL cholesterol in the body ... hives difficulty breathing or swallowing swelling of the face, throat, tongue, lips, and eyes Evolocumab injection may ...

  3. Acyclovir Injection

    Science.gov (United States)

    ... It is also used to treat first-time genital herpes outbreaks (a herpes virus infection that causes sores ... in the body. Acyclovir injection will not cure genital herpes and may not stop the spread of genital ...

  4. Butorphanol Injection

    Science.gov (United States)

    ... Butorphanol is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using butorphanol injection, you may experience withdrawal symptoms such as nervousness, agitation, shakiness, diarrhea, chills, ...

  5. Seismic characterization of CO{sub 2} in coals

    Energy Technology Data Exchange (ETDEWEB)

    McCrank, J.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    The Mynheer coal seam was targeted for an enhanced coalbed methane (CBM) experiment. During initial testing of the reservoir permeability, 180 tonnes of carbon dioxide (CO{sub 2}) was injected into the seam. The objective of the study was to characterize the coal zones and to determine if the small volume of CO{sub 2} in the thinly bedded and seismically tuned reservoir can be detected in the 3D surface seismic data. The multi-well pilot project took place in the Pembina Field of west-central Alberta. The Ardley coals were tested for CO{sub 2} injection, enhanced CBM production, and CO{sub 2} sequestration. The seismic survey captured the condition of the reservoir after formation permeability tests. It was concluded that the anomalies seen in the seismic data can be attributed to changes in the physical properties of the coal due to CO{sub 2} adsorption. 2 refs., 5 figs.

  6. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion

    International Nuclear Information System (INIS)

    Singh, D.; Croiset, E.; Douglas, P.L.; Douglas, M.A.

    2003-01-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO 2 capture technologies are available for retrofit. One option is to separate CO 2 from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O 2 /CO 2 recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO 2 for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO 2 from coal power plants, however O 2 /CO 2 appears to be a more attractive retrofit than MEA scrubbing. The CO 2 capture cost for the MEA case is USD 53/ton of CO 2 avoided, which translates into 3.3 cents/kW h. For the O 2 /CO 2 case the CO 2 capture cost is lower at USD 35/ton of CO 2 avoided, which translates into 2.4 cents/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices

  7. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    Science.gov (United States)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  8. Process for hydrogenating coal and coal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.; Tarrer, A.R.

    1983-02-15

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260/sup 0/ C to 315/sup 0/ C in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275/sup 0/ C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350/sup 0/ C.

  9. Process for hydrogenating coal and coal solvents

    Science.gov (United States)

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  10. Coal use and coal technology study (KIS)

    International Nuclear Information System (INIS)

    Kram, T.; Okken, P.A.; Gerbers, D.; Lako, P.; Rouw, M.; Tiemersma, D.N.

    1991-11-01

    The title study aims to assess the possible role for coal in the Netherlands energy system in the first decades of the next century and the part new coal conversion technologies will play under various conditions. The conditions considered relate to (sectoral) energy demand derived from national scenarios in an international context, to energy prices, to environmental constraints (acidification, solid waste management and disposal) and to the future role for nuclear power production. Targets for reduction of greenhouse gas emissions are not explicitly included, but resulting CO 2 emissions are calculated for each variant case. The part that coal can play in the Dutch energy supply is calculated and analyzed by means

  11. National Coal Board Medical Service annual report 1981-82

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Sections report on: medical examinations and consultations; protection from health hazards, such as pneumoconiosis and other prescribed diseases; problems such as vitamin D in miners' blood, Legionnaires' disease, rehabilitation and physiotherapy, high pressure injection injuries, pump packing; National Coal Board (Coal Products) Ltd.; injuries and treatment; and nursing service. A list of staff and their publications and a supplement on occupational toxicology are included.

  12. Comprehensive report to Congress Clean Coal Technology Program

    International Nuclear Information System (INIS)

    1992-06-01

    This project will provide a full-scale demonstration of Micronized Coal Reburn (MCR) technology for the control of NO x on a wall-fired steam generator. This demonstration is expected to reduce NO x emissions by 50 to 60%. Micronized coal is coal that has been very finely pulverized (80% less than 325 mesh). This micronized coal, which may comprise up to 30% of the total fuel fired in the furnace, is fired high in the furnace in a fuel-rich reburn zone at a stoichiometry of 0.8. Above the reburn zone, overfire air is injected into the burnout zone at high velocity for good mixing to ensure complete combustion. Overall excess air is 15%. MCR technology reduces NO x emissions with minimal furnace modifications, and the improved burning characteristics of micronized coal enhance boiler performance

  13. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  14. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  15. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  16. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  17. Impact of Heat and Mass Transfer during the Transport of Nitrogen in Coal Porous Media on Coal Mine Fires

    OpenAIRE

    Shi, Bobo; Zhou, Fubao

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was pr...

  18. 基于压水试验的杨村煤矿底板断层带渗流性质研究%Research on Seepage Characteristics of Floor Fault Zone Based on Water Injection Test in Yangcun Coal Mine

    Institute of Scientific and Technical Information of China (English)

    邵明喜; 官云章; 曹思文; 张鑫; 刘近国; 吕先阳; 孙晓倩

    2016-01-01

    In order to study the seepage characteristics of the floor fault zone in Yangcun Mine, water injection test method was used for the measurement of Fault 5 and a number of measured data were obtained. Analysis results showed that the permeability of this fault was bad and its permeation resistance was relatively strong in the original state. Four water injection tests on this fault were carried out, and from the comparison of the permeability changing curves in four water injection tests it was found out that the repeated water injection can lead failure of the fault zone, which in turn improved its permeability. The relation between test pressure and flow rate(p—Q) of F5 fault was a dilation or erosion type, the fissures in this fault zone developed and many filling materials existed in it, so it has stronger resistance to seepage.%为研究杨村煤矿底板断层带的渗流性质,采用现场压水试验方法对底板F5断层进行了测试并获取了大量的实测数据,分析结果表明:该断层在原始状态下渗流能力较差,阻渗性较强。对该断层进行了4次压水试验,对比4次压水试验的渗透系数变化曲线可知,重复压水可导致断层带明显渗透破坏,由此造成其导渗性能的进一步增强;F5断层带两段压渗试验压力和流量关系( p—Q )为扩张或冲蚀型,该断层带裂隙发育,裂隙中间有较多充填物,阻渗能力较好。

  19. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  20. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  1. The coal cleat system: A new approach to its study

    Directory of Open Access Journals (Sweden)

    C.F. Rodrigues

    2014-06-01

    Full Text Available After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1 how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2 how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS, able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.

  2. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  3. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  4. Cuttability of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1978-01-01

    The process of cutting dull M, dull bright MB, bright dull BM, and bright B coal under various compressive stress conditions was studied in laboratory tests. The efficiency of ploughs depends much more on the natural mining conditions than does that of shearer-loaders. For seams of medium workability, it is difficult to forecast whether ploughs will be successful. Cuttability tests are a good way of determining whether ploughs can be used. The effort necessary to cut coal in a stressed condition depends not only on such properties as the workability defined by the Protodyakonov index or compressive strength, but also, and mainly, on the petrographic structure and elastic properties of the coal. In bright coals with high elastic strain, and with BM and MB coals, a much greater increment of effort is necessary with increase in compressive stresses. The cuttability of dull coals from difficult mines was not very different.

  5. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  6. Coal-to-liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.W.

    2006-03-15

    With crude oil prices rocketing, many of the oil poor, but coal rich countries are looking at coal-to-liquid as an alternative fuel stock. The article outlines the two main types of coal liquefaction technology: direct coal liquefaction and indirect coal liquefaction. The latter may form part of a co-production (or 'poly-generation') project, being developed in conjunction with IGCC generation projects, plus the production of other chemical feedstocks and hydrogen. The main part of the article, based on a 'survey by Energy Intelligence and Marketing Research' reviews coal-to-liquids projects in progress in the following countries: Australia, China, India, New Zealand, the Philippines, Qatar and the US. 2 photos.

  7. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  8. The certification of the surface density (kg/m sub 2 ) of BCR CRM 038 ('fly ash from pulverised coal') comprised in methyl cellulose films simulating dust charged filters. BCR 128

    Energy Technology Data Exchange (ETDEWEB)

    Griepink, B; Marchandise, H; Colinet, E; Dams, R

    1988-01-01

    BCR CRM 38 ('Fly Ash') has been embedded in a stable methylcellulose foil of about 10{mu}m thickness. This has been done by making a slurry of fly ash and methylcellulose in water and spiking it with {sup 42}K as a radioactive tracer. The slurry was spread over glass plates and allowed to dry. 'Filters' of uniform size were punched out of the foil. The surface density (e.g. {mu}g/cm{sup 2}) of the fly ash was calculated for each individual 'filter' by comparing the {sup 42}K-activity of the filter with that of the initial suspension. The uncertainties in the so obtained surface density of random and of systematic origin have been estimated. The total relative uncertainty in the surface density of every element certified in BCR 38 is 4-6%. Studies of stability and homogeneity have revealed that this material is well suited for the verification of the results of non-destructive analytical techniques for dust components.

  9. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  10. Clean coal technologies

    International Nuclear Information System (INIS)

    Bourillon, C.

    1994-01-01

    In 1993 more than 3.4 billion tonnes of coal was produced, of which half was used to generate over 44 per cent of the world's electricity. The use of coal - and of other fossil fuels- presents several environmental problems such as emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO 2 ), and carbon dioxide (CO 2 ) into the atmosphere. This article reviews the measures now available to mitigate the environmental impacts of coal. (author)

  11. Marketing Canada's coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    The topics are presented which were discussed at the 36th Canadian Coal Conference, held in Vancouver, BC in September 1985. The theme was Challenges, today and tomorrow and the conference sought to examine the primary problems confronting the world coal industry today: overcapacity, soft demand, depressed prices and intense global competition. Coal production in Canada was presented and its role in the steelmaking and electric power industries evaluated. A general mood of optimism prevailed.

  12. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  13. Optimal coal import strategy

    International Nuclear Information System (INIS)

    Chen, C.Y.; Shih, L.H.

    1992-01-01

    Recently, the main power company in Taiwan has shifted the primary energy resource from oil to coal and tried to diversify the coal supply from various sources. The company wants to have the imported coal meet the environmental standards and operation requirements as well as to have high heating value. In order to achieve these objectives, establishment of a coal blending system for Taiwan is necessary. A mathematical model using mixed integer programming technique is used to model the import strategy and the blending system. 6 refs., 1 tab

  14. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  15. Australian coal year book 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This yearbook presents a review of the Australian coal industry during the 1984-85 financial year. Included are details on mines, future prospects, coal export facilities and ports, annual cost statistics and a index of coal mine owners.

  16. Teduglutide Injection

    Science.gov (United States)

    ... who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in a class of medications ... of the ingredients.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  17. Dexrazoxane Injection

    Science.gov (United States)

    ... are used to treat or prevent certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent or decrease heart damage caused by doxorubicin in women who are taking the medication to treat breast cancer that has spread to other parts of the ...

  18. Triptorelin Injection

    Science.gov (United States)

    ... puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in children 2 years and older. Triptorelin injection is in a class of medications called gonadotropin-releasing hormone (GnRH) agonists. It works by decreasing the amount ...

  19. Australian black coal statistics 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This third edition of Australian black coal statistics covers anthracite, bituminous and subbituminous coals. It includes maps and figures on resources and coal fields and statistics (mainly based on the calendar year 1991) on coal demand and supply, production, employment and productivity in Australian coal mines, exports, prices and ports, and domestic consumption. A listing of coal producers by state is included. A final section presents key statistics on international world trade in 1991. 54 tabs.

  20. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  1. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  2. A new experimental method to determine the CO2 sorption capacity of coal

    NARCIS (Netherlands)

    Hol, S.; Peach, C.J.; Spiers, C.J.

    2010-01-01

    Enhanced Coalbed Methane production (ECBM) involves the injection of CO2 to desorb CH4 from coal seams, and offers significant potential for deploying Carbon Capture and Storage (CCS). An essential starting parameter, determined in the laboratory, is the absolute CO2 storage potential of the coal

  3. Heat and mass transfer of liquid nitrogen in coal porous media

    Science.gov (United States)

    Lang, Lu; Chengyun, Xin; Xinyu, Liu

    2018-04-01

    Liquid nitrogen has been working as an important medium in fire extinguishing and prevention, due to its efficiency in oxygen exclusion and heat removal. Such a technique is especially crucial for coal industry in China. We built a tunnel model with a temperature monitor system (with 36 thermocouples installed) to experimentally study heat and mass transfer of liquid nitrogen in non-homogeneous coal porous media (CPM), and expected to optimize parameters of liquid nitrogen injection in engineering applications. Results indicate that injection location and amount of liquid nitrogen, together with air leakage, significantly affect temperature distribution in CPM, and non-equilibrium heat inside and outside of coal particles. The injection position of liquid nitrogen determines locations of the lowest CPM temperature and liquid nitrogen residual. In the deeper coal bed, coal particles take longer time to reach thermal equilibrium between their surface and inside. Air leakage accelerates temperature increase at the bottom of the coal bed, which is a major reason leading to fire prevention inefficiency. Measurement fluctuation of CPM temperature may be caused by incomplete contact of coal particles with liquid nitrogen flowing in the coal bed. Moreover, the secondary temperature drop (STD) happens and grows with the more injection of liquid nitrogen, and the STD phenomenon is explained through temperature distributions at different locations.

  4. Thermal coal utilization for the ESCAP region

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A selection of papers is presented originating from talks to coal utilization workshops for the ASEAN region in 1981. The papers cover: planning aspects - economic and technical aspects of coal usage, long term planning for fuel coal needs, planning and coal selection for coal-fired power plants, coal availability and marketing, and economic aspects of coal usage in developing countries; combustion and plant - changing from coal to oil, principles and problems of coal combustion, use of indigenous and imported coals and their effects on plant design, coal pulverizing mills, ash and dust disposal, environmental aspects of coal combustion, industrial sized coal-fired boilers; transport and storage -ocean shipment, coal receival facilities and associated operations, shipping and rail transport, coal handling and transport, environmental issue in the transport and handling of coal, coal preparation and blending; testing and properties - coal types, characterization properties and classification; training power plant operators; the cement industry and coal, the Australian black coal industry.

  5. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  6. Dry piston coal feeder

    Science.gov (United States)

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  7. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  8. Coal in Canada

    International Nuclear Information System (INIS)

    Salaff, S.

    1991-01-01

    This article examines the potential market for coal-fired independent power projects in western Canada. The topics of the article include emissions issues, export potential for power produced, and financial and other assistance to independent power producers offered by British Columbia Hydro and coal mining companies in the region, including financing of projects and power distribution services including connecting to the USA grids

  9. Black coal. [Australia

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R

    1973-01-01

    Statistics are given for the Australian black coal industry for 1970-3 (production, value, employment, wages and salaries, productivity, trade, stocks, consumption, export contracts, exploration, etc.). In less detail, world coal trade is reviewed and coke production is mentioned briefly. (LTN )

  10. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Vitali V. Lissianski

    2001-09-07

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that

  11. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Lissianski, Vitali V.

    2001-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO x and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO x control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO x reduction in basic coal reburning depends on process conditions, initial NO x and coal type. Up to 60% NO x reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO x reduction in reburning by coal gasification products. Modeling predicted that composition of coal

  12. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  13. The renaissance of coal

    International Nuclear Information System (INIS)

    Schernikau, Lars

    2013-01-01

    There is hardly another energy resource where public opinion and reality lie as far apart as they do for coal. Many think of coal as an inefficient relic from the era of industrialisation. However, such views underestimate the significance of this energy resource both nationally and globally. In terms of global primary energy consumption coal ranks second behind crude oil, which plays a central role in the energy sector. Since global electricity use is due to rise further, coal, being the only energy resource that can meet a growing electricity demand over decades, stands at the beginning of a renaissance, and does so also in the minds of the political leadership. Coal is indispensable as a bridging technology until the electricity demand of the world population can be met primarily through renewable resources.

  14. Methane of the coal

    International Nuclear Information System (INIS)

    Vasquez, H.

    1997-01-01

    In the transformation process of the vegetable material to the coal (Carbonization), the products that are generated include CH 4, CO2, N2 and H2. The methane is generated by two mechanisms: below 50 centigrade degree, as product of microbial decomposition, the methanogenic is generated; and above 50 centigrade degree, due to the effects of the buried and increase of the range of the coal, the thermogenic methane is detachment, as a result of the catagenic. The generated methane is stored in the internal surfaces of the coal, macro and micro pores and in the natural fractures. The presence of accumulations of gas of the coal has been known in the entire world by many years, but only as something undesirable for its danger in the mining exploitation of the coal

  15. China's coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Karmazin, V A

    1988-09-01

    Presents data on China's coal industry. China's coal reserves are estimated to be 4,000 million Mt; annual production is over 800 Mt. Eleven new mining projects have been recently completed. They were financed with participation of foreign capital (US$ 1,400 million). Twenty-five new mines with 32.27 Mt production capacity were planned to be put into operation in 1988. Annual coal production is expected to increase to 870 Mt in 1990 at a cost of US$ 8,500 million. Numerical data on China's individual coal basins, new schemes, capital outlay and foreign capital participation are given. The dynamic development of China's coal industry since 1949 is briefly reviewed and management methods are explained.

  16. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  17. USA coal producer perspective

    Energy Technology Data Exchange (ETDEWEB)

    Porco, J. [Alpha Natural Resources, Latrobe, PA (US). Alpha Energy Global Marketing

    2004-07-01

    The focus is on the Central Appalachian coal industry. Alpha Natural Resources was formed in 2002 from Pittston Coal's Virginia and Coastal operations. AMCI's U.S. operations and Mears Enterprises in Pennsylvania were acquired later. The company produces 20-21 million tonnes per year and sells 20 million tonnes of steam coal and 10 million tonnes of exports, including some coal that is brokered. Foundry coke is a major product. Capital investment has resulted in increased productivity. Central Appalachia is expected to continue as a significant coal-producing region for supplying metallurgical coke. Production is expected to stabilize, but not increase; so the mines will have a longer life. 31 slides/overheads are included.

  18. Coal in the Mediterranean

    International Nuclear Information System (INIS)

    Sore, J.C.; Coiffard, J.

    1992-01-01

    Mediterranean countries are not traditionally coal producers. In France, the main mines were located in the North and East, and belonged to the great coal fields of northern Europe. Spain is a modest producer (ten million tonnes), as is Turkey with its three million tonnes. The only way most of these mines can stand up to international competition is by an array of protectionistic measures and subsidies. This state of affairs has marked events of quite another nature, as it relates to energy economics. That is, coal has taken on increasing importance in the energy supplies of all the countries of the Mediterranean zone over the past twenty years. In this article, we set out by describing coke supply for the Mediterranean ensemble, and then go on to analyze the development aspects of coal for electrical production, the future of Mediterranean lignite, and the supply of imported coal. 4 refs., 11 figs., 3 tabs

  19. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  20. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  1. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-09-10

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed

  2. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO x reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO x reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO x reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO x reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO x reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO x reduction on the surface of char played important role. Economic analysis confirmed economic benefits of the FFR

  3. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  4. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  5. Coal: Less than lackluster

    International Nuclear Information System (INIS)

    Doerell, P.

    1994-01-01

    Not many in the world coal industry will remember 1993 as a good year. The reasons for the poor state of affairs were first the weak economic climate, and second, the energy glut. For the first time after expanding steadily since the 70s, seaborne trade in hard coal fell by about 4% to 350M mt. Steam coal accounted for a good half of this volume. While demand continued to rise in the newly industrialized countries of the Pacific area, imports into Europe of both coking coal and steam coal fell sharply. The United States, CIS, and Canada had to accept substantial losses of export volume. Australia, as well as South Africa, Colombia, and Indonesia consolidated their market positions and Poland, too, recorded high volumes available for export. The positive news came from Australia, where in mid-December the New South Wales coal industry reported an increase in the net profit after tax from $A83M (about $55M) to $A98M (about $126M) in 1992/1993. This success was however ascribed less to an improvement in the fundamental mining indicators than to the fall in the Australian dollar and the lowering of corporate tax. The reduction in capital investment by 26% down to $A330M (after the previous year when it had also been cut by 25%) is seen by the chairman of the NSW Coal Assoc. as not auguring well for the industry's ability to meet the forecast growth in demand to the year 2000

  6. Coal in competition

    Energy Technology Data Exchange (ETDEWEB)

    Manners, G

    1985-06-01

    During the past decade world coal consumption has expanded by about 26% whilst energy demands overall have grown by only 17%. This is because of the increased price of oil products, plus a period during which the costs of mining coal in many parts of the world have been moderately well contained. Over-ambitious forecasts of coal demand have encouraged the considerable over-investment in coalmining capacity that exists today. Costs of winning coal and transporting it are low, but sales depend on the rate of growth of a country's demand for energy. Some countries are more successful at marketing coal than others. Amongst the major factors that influence the rate of substitution of one source of energy for another is the nature and age of the boiler stock. The outcome of the developing environmental debate and calls for reduction in SO/sub 2/ and NO/sub x/ emissions from coal-fired boilers is going to affect coal's fortunes in the 1990's.

  7. A coal combine

    Energy Technology Data Exchange (ETDEWEB)

    Wlachovsky, I; Bartos, J

    1980-02-15

    A design is presented for a coal combine, equipped with two drum operational units, on whose both ends of the upper surface of the body, two coal saws are mounted with the help of a lever system. These saws, found in an operational position, form a gap in the block of the coal block, which is not embraced by the drum operational unit. The coal block, found between the gap and the support, falls down onto the longwall scraper conveyor. The lever system of each coal saw is controlled by two hydraulic jacks. One of the jacks is mounted vertically on the facial wall of the body of the combine and is used for the hoisting for the required height of the horizontal arm of the lever, reinforced by one end in the hinge on the body of the combine. On the ''free'' end of that lever, a coal saw is mounted in a hinge-like fashion and which is connected by the hydraulic jack to the horizontal arm of the lever system. This hydraulic jack is used for the clamping of the coal saw to the face.

  8. An experimental and mathematical modeling study comparing the reactivity and burnout of pulverized coal in air (O{sub 2}/N{sub 2}) and oxyfuel (O{sub 2}/CO{sub 2}) environments

    Energy Technology Data Exchange (ETDEWEB)

    Liza Elliott; Yinghui Liu; Bart Buhre; Jennifer Martin; Raj Gupta; Terry Wall [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, Chemical Engineering

    2005-07-01

    Carbon dioxide in flue gas from conventional combustion processes is present as a dilute gas. CO{sub 2} capture is more easily achieved from a concentrated CO{sub 2} stream, which can be achieved by firing fuels with oxygen to obtain a sequestration ready gas stream, called oxy-fuel combustion. In this technology, the oxygen stream is usually diluted by recycled flue gas (RFG), so that the coal burns in an environment which is primarily O{sub 2}/CO{sub 2}. A size cut of a number of pulverised coals were devolatalised in N{sub 2} and CO{sub 2}. These sized coals were also combusted in a drop-tube furnace in an O{sub 2}/N{sub 2} environment simulating air combustion, and O{sub 2}/CO{sub 2} simulating oxyfuel combustion, with varying O{sub 2} levels from 3 to 30% v/v. Measurements of the extent of devolatilisation and coal burnout were completed. The detailed data provided for one coal indicated that the devolatilisation process in the O{sub 2}/CO{sub 2} environments is influenced by char gasification, and the char reaction rates are fitted better by a fractional order rate than first order in oxygen. Combustion rates in the oxyfuel environment were slightly higher. Estimates of the burnout for furnaces retrofitted from air to oxyfuel indicate that a better burnout can be expected. These trends were common for all coals. 14 refs., 4 figs., 5 tabs.

  9. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  10. Coal desulphurisation as a method of sulphur dioxide emission control

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, R.L.; Cockshott, A.R.

    1983-11-01

    Three methods of washing power station coal are first described and their effectiveness is discussed. The following wet and dry flue gas desulphurisation processes are discussed briefly: alkali injection, adsorption processes, Davy/Wellman-Lord, lime/limestone, double alkali, citrate, aqueous carbonate, spray absorption and magnesium oxide.

  11. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  12. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  13. Economic outlook for coal

    International Nuclear Information System (INIS)

    Denis Casey.

    1997-01-01

    Coal still a fundamental component of two major industries in New South Wales- electricity production and steel making. Its future will be shaped by its ability to meet expected international increases in demand for thermal coal, and by profitability and possible impact of greenhouse strategy decisions. By 2002 the demand for the State's coal is estimated at a total of 116 million tons and it expected to play an increased role in the fuel mix for electricity generation because of its competitive price, established technologies and abundant supply

  14. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  15. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  16. Coal liquefaction becomes viable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    In 2003 the May/June issue of CoalTrans International speculated that coal liquefaction would become viable due to falling coal prices. This has not proved the case but the sustained high oil price is sparking new interest. A survey by Energy Intelligence and Marketing Research during November 2005 revealed a growth in the number of projects under development or at the feasibility stage. The article reports projects in China, the USA, Australia, New Zealand, the Philippines and India. China is commissioning the first wave of large liquefaction plants. The key question is whether other countries, particularly the USA, will follow.

  17. Revival of coal. [France and USA

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This edition is devoted to the production and consumption of coal in France. It presents a study of the main topics involved, discusses the position of coal in France - under what form should it beused, and deals with coal consumption in cement works role of coal for urban district heating, future of coal gasification in France, France's coal policy, coal industry in the USA, underground gasification of coal, France's coal reserves, etc.. (In French)

  18. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  19. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  20. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  1. Coal exports still growing

    International Nuclear Information System (INIS)

    Blain, M.

    1998-01-01

    It is shown that the swings and roundabouts of the Asian economic shake out and Australian dollar devaluation are starting to work their way through the Australian export coal market. Perhaps somewhat surprisingly, at this stage the results are not proving to be as bad as were at first predicted by some market watchers. Export revenue and tonnages are up 12% for the year to July 98. Coal exports totaling $9.5 billion left Australia's shores in the 12 months confirming coal as Australia's single largest export revenue earner. Sales volumes in the present financial year are still increasing, the market being driven by steadily increasing Asian demand for steaming coal from places like Korea, Malaysia, Thailand and the Philippines

  2. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  3. Coal industry - memoranda

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This paper contains 41 memoranda submitted to the UK House of Commons Energy Committee containing views on the UK coal industry and responses to questions from the Select Committee. The following organizations are represented: Department of Energy; National Coal Board; APEX; BACM; NACODS; NUM; UDM; TUC; CEGB; Electricity Council; Northern Ireland Electricity Service; SSEB; British Gas Corporation; BP; Conoco (UK) Ltd.; Costain Mining Ltd.; Shell UK Ltd.; BSC; ICI; Boots; CBI; PSA; Solid Fuel Advisory Service; Domestic Coal Consumers Council; Associated Heat Services; Association of Shell Boilermakers; Babcock Power Ltd.; GEC; Foster Wheeler Power Products; ABMEC; British Longwall Mining Association; Federation of Civil Engineering Contractors; Federation of Small Mines of Great Britain; Chamber of Coal Traders; Coalfield Communities Campaign; Nottinghamshire County Council; Federation of Self-Employed and Small Businesses; the Colombian, Belgian and Netherlands Embassies; and Plaid Cymru.

  4. Coal terminal directory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The directory gives a comprehensive listing of the world's coal terminals, in a total of 50 countries including information on throughput, facilities, storage capacity, and vessel size limitation.

  5. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  6. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  7. Coal flotation technical review

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, N. [C. Clarkson & Associates Pty. Ltd., Brisbane, Qld. (Australia)

    1996-10-01

    The Australian Coal Association Research Program (ACARP) recently commissioned a study into the status of flotation in coal preparation, in order to direct limited funds to areas of maximum benefit. The primary purpose of the study was the assessment of new flotation technologies, including those commercially available and those still under development. Technologies examined included: the Jameson Cell, Microcel, and Ekof cell. Problems and advantages are discussed, with suggestions for future areas of research. 3 figs.

  8. 1988 coal price negotiation

    Energy Technology Data Exchange (ETDEWEB)

    Senmura, Akira

    1988-12-01

    In the negotiation on raw coal price for 1988, which began at the end of 1987, Australia requested price rise of 4 - 5 dollars for the reason of rise of Australian dollars, conditions of mines, price drop in the past five years, and world supply/demand of coal. Japan insisted to maintain the price of preceding year. The talk ended in a dead lock which could last a long time. Negotiation on the Canadian coal price also encountered difficulties but an agreement was obtained in March as Japan accepted the increased price. After which, Japan and Australia agreed to raise the price by 2.90 dollars and an increase over last year. Producing countries also requested a wide price rise as 7.50 dollars for general coal, making in this area very difficult to progress. Finally, they agreed to raise the price by 6.30 dollars and the electric power utility in Japan responded by importing of U.S. coal, which has a lower heat output but is also cheaper. It depends on Australia for 70% of coal supply but started to diversify the source. 3 tabs.

  9. Coal mining in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mills, L J

    1981-12-01

    In 1959 black coal production in Australia totalled some 21.9 million tonnes per annum, 70% of this being produced from underground mines in the coalfields of New South Wales. By 1980 output levels had increased by nearly 350% to 75.4 million tonnes per annum (54% of which was exported) compared with 5% some 20 years earlier. Because it is blessed with large reserves of coal and other forms of energy, it is inevitable that the Australian coal mining industry will be required to play a major role in the development of the international coal market through to the end of the present century. Experts now predict a need for the black coal output in Australia to be developed from its present level to a minimum of 293 million tonnes per annum by the year 2000. This paper examines the present circumstances in the Australian coal industry and attempts to outline the development which has to be undertaken in order to meet the needs of an energy hungry world.

  10. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  11. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  12. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  13. Coal development potential in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M N; Pelofsky, A H [eds.

    1986-01-01

    A total of 48 papers were presented, and covered the following topics: the current situation in Pakistan with respect to development and utilization of coal resources; the policies that have been responsible for the development and utilization of coal resources in Pakistan; coal development and utilization in other developing nations e.g. Indonesia, Greece, Philippines, China, Thailand and Haiti; and technological developments in coal exploration; extraction, handling, transport and utilization which could accelerate future development of Pakistan's coal resources. Specific subjects covered include the use of coal in the cement industry of Pakistan; the production of briquettes for domestic use, development and training of personnel for the coal industry; and sources of finance for coal development projects. Particular emphasis is given throughout the conference to the Lakhra coal mine/power plant project which aims to develop and effectively utilize the lignite reserves of Sind Province. 47 papers have been abstracted separately.

  14. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Results: Safe injection procedures regarding final waste disposal were sufficiently adopted, while measures regarding disposable injection equipment, waste containers, hand hygiene, as well as injection practices were inadequately carried out. Lack of job aid posters that promote safe injection and safe disposal of ...

  15. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  16. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  17. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  18. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  19. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  20. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  1. An overview of underground coal gasification and its applicability for Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Pekpak, E.; Yoncaci, S.; Kilic, M.G. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Coal is expected to maintain its significance as an energy source for a longer time period than oil and natural gas. Environmental concerns have led to the development of clean coal technologies, such as coal gasification. Coal gasification can be used at either at surface or in underground coal gasification (UCG). UCG has several advantages over surface gasification and conventional mining such as rank low calorific value coals. Coal gasification also has the potential to contribute to the energy supply of a country. Most Turkish coals are lignite and UCG may enable diversification of energy sources of Turkey and may help decrease external dependency on energy. This paper presented a study that matched a UCG technique to the most appropriate (Afsin Elbistan) lignite reserve in Turkey. Two UCG techniques were presented, including the linked vertical well method, and the directional drilling-controlled retractable injection point (CRIP) method. The properties of coal seams and coal properties were also outlined. It was concluded that Cobanbey is the most preferable sector in the Elbistan Lignite Reserve for a pilot study, and that the linked vertical well method could be considered as a candidate method. 17 refs., 6 tabs., 1 fig.

  2. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    Science.gov (United States)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  3. Market, trading and coal price

    International Nuclear Information System (INIS)

    Muller, J.C.; Cornot-Gandolphe, S.; Labrunie, L.; Lemoine, St.; Vandijck, M.

    2006-01-01

    The coal world experienced a true upheaval in the past five years World coal consumption went up 28 % between 2000 and 2005, as a result of the strong growth in Chinese demand. The growth should continue in the coming years: electrical plant builders' orders are mainly for coal. The regained interest in coal is based on the constraints experienced by competing energies (increase in oil and natural gas prices, geopolitical uncertainties, supply difficulties) and by the abundant reserves of coal in the world and the competitiveness of its price. The strong growth in world coal demand comes with a change in rules governing steam coal trading. While long term bilateral agreements were most common until the late nineties, there has been a true revolution in coal marketing since 2000: spot contracts, stock exchange emergence and futures contracts, price indexes. In a few years, the steam coal market has become a true commodities market, overtaking many more goods. The price of coal has also gone through strong variations since 2003. Whereas the price had been stable for decades, in 2004 the strong increase in China' s demand for coal and iron ore resulting in transport shortage, caused a strong increase in CAF coal prices. Since then, prices have gone down, but remain higher than the Eighties and Nineties levels. In spite of the increase, coal remains available at more competitive prices than its competing energies. (authors)

  4. Global thermal coal trade outlook

    International Nuclear Information System (INIS)

    Ewart, E.

    2008-01-01

    Wood Mackenzie operates coal consulting offices in several cities around the world and is the number one consulting company in terms of global coal coverage. The company offers a unique mine-by-mine research methodology, and owns a proprietary modeling system for coal and power market forecasting. This presentation provided an overview of global thermal markets as well as recent market trends. Seaborne markets have an impact on price far greater than the volume of trade would imply. Research has also demonstrated that the global thermal coal market is divided between the Pacific and Atlantic Basins. The current status of several major coal exporting countries such as Canada, the United States, Venezuela, Colombia, Indonesia, Australia, China, South Africa, and Russia was displayed in an illustration. The presentation included several graphs indicating that the seaborne thermal coal market is highly concentrated; traditional coal flow and pricing trends shift as Asian demand growth and supply constraints lead to chronic under supply; coal prices have risen to historic highs in recent times; and, the Asian power sector demand is a major driver of future growth. The correlation between oil and gas markets to thermal coal was illustrated along with two scenarios of coal use in the United States in a carbon-constrained world. The impact of carbon legislation on coal demand from selected coal regions in the United States was also discussed. Wood Mackenzie forecasts a very strong growth in global thermal coal demand, driven largely by emerging Asian economies. tabs., figs

  5. Possibilities of using pulverized non coking coals in ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wijk, Olle; Mathiesen, Mihkel; Eketorp, Sven

    1977-08-01

    The use of pulverized coal in iron making suggests solutions to the mounting problems created by the increasing scarcity of coking coals, and other fossil fuels such as oil and natural gas. The unavailability of coke can be met with two principally different measures. Blast furnace coke rates can be decreased by substituting injected pulverized coal or other carbon containing fuels for part of the coke burden, and the coke itself may be substituted by formed coke. A more radical solution is to abandon the blast furnace process, and instead produce the raw iron in processes not requiring coke. Two such processes are discussed in the paper, the Inred process, developed by Boliden Kemi AB, Sweden, and the smelting reduction process by means of injection, currently being developed at the Royal Institute of Technology in Stockholm. Both processes have potential advantages over the coke oven/sintering plant/blast furnace-complex especially concerning energy requirements and structure, but also in economical terms. The injection process seems to present a further advantage in the possibility of gasifying coal in the process, thus yielding a synthesis gas for methanol production in addition to the raw iron.

  6. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  7. Bright outlook for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    After enduring contract price cuts over the past two years of almost 17% for thermal coal and 23% for hard coking coal, the New South Wales coal industry is looking forward to a reversal of fortune for 2001. Increased export demand, improved prices, significant improvements in mine site productivity, a weak Australian dollar and the probability of a number of new projects or extensions progressing to development are likely to result in an increase in NSW saleable production to around 110 million tonnes (Mt) in 2000-01. Sharply weaker coal prices over the past two years, intensified international competition and the Asian economic downturn had a negative impact on profitability, investment, exports and employment in the NSW coal industry. As a result, the industry has undergone substantial restructuring. The restructuring process has led to a consolidation in ownership, reduced production costs and improved operational efficiency. The outcome is an industry well positioned to take advantage of the positive market conditions and one likely to experience levels of profitability not achieved over the past few years

  8. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  9. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  10. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post-injection

  11. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  12. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  13. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  14. Sequestration of carbon dioxide – influence of coal surface chemistry

    Directory of Open Access Journals (Sweden)

    Orzechowska-Zięba Agnieszka

    2016-01-01

    Full Text Available The physical gas adsorption is a widely used method for the characterisation of the solids porosity. The water steam, primarilydue to its physicochemical properties and ease of use in the experiment has great potential as a sorbate. When applied to coal, water steam allows to determine the quantity of primary adsorption centers as measurement of interaction of molecules adsorbed to the surface of the adsorbent. In order to determine the adsorption capacity and the chemical nature of the coal surface, adsorption / desorption of water vapour to the selected coals was examined at 303K, using a volumetric method. The presence of water in the coal may affect on the sorption properties of other molecules. The analysis of the results show that the coals of low rank and a high content of oxygen functional groups, which are the active sites, showed a greater affinity to absorbing water molecules. Adsorption isotherms were compiled through approximating the Langmuir and BET linear equation to measurement data. Based on the adsorption equation, the amount of adsorption centers have been specified, which can potentially be involved in the adsorption of CO2 during the injection of gas into the coal seams.

  15. Mathematical Modelling and Experimental Evaluation of Electrostatic Sensor Arrays for the Flow Measurement of Fine Particles in a Square-shaped Pipe

    OpenAIRE

    Zhang, S; Yan, Yong; Qian, XC; Hu, YH

    2016-01-01

    Abstract—Square-shaped pneumatic conveying pipes are used in some industrial processes such as fuel injection systems in coal-fired power plants and circulating fluidized beds. However, little research has been conducted to characterise the gas–solid two-phase flow in a square-shaped pneumatic conveying pipe. This paper presents mathematical modelling and experimental assessment of novel non-restrictive electrostatic sensor arrays for the measurement of pulverised fuel flow in a square-shaped...

  16. TEKO returns to coal

    International Nuclear Information System (INIS)

    TREND

    2003-01-01

    Slovak government will not grant state long-term credit guarantee sized about 1 billion Slovak crowns, which Geoterm, a.s., Kosice company would like to get from World bank. Loan should be used as for construction of geothermal source in village Durkov near Kosice, which would be connected in Kosice thermal plant TEKO, a.s. Geothermal sources capacity after realization of planned investments should reach half of present output of plant. The nearest TEKO investments should head to changes in plant production process. Plant wants to redirect in heat and thermal energy production from existing dominant gas consumption to black coal incineration. Black coal incineration is more advantageous than natural gas exploitation in spite of ecologic loads. TEKO also will lower gas consumption for at least 30 per cent and rise up present black coal consumption almost twice

  17. Coal liquefaction still a dream

    Energy Technology Data Exchange (ETDEWEB)

    Overberg, H

    1982-03-19

    Liquefaction of coal is not profitable in West Germany and will not be so far some time to coal. This is true for West German and imported coal. The result may be improved but not changed by combined conversion of coal and top residues of distilleries. These are the main statements of a study carried out by Messrs. Veba Oel AG, Gelsenkirchen, on behalf of the Federal Minister for Research and Technology. The results of the study are presented in 20 volumes.

  18. Coal: the dinosaur wakes up

    International Nuclear Information System (INIS)

    Rousseau, Y.; Cosnard, D.

    2005-01-01

    In western countries, coal is considered as an industry of the past, but at the Earth's scale the situation is radically the opposite. Since three years, coal is the faster developing energy source, in particular thanks to China expansion and to the oil crisis which makes coal more competitive. This short paper presents the situation of coal mining in China: projects, working conditions and environmental impact. (J.S.)

  19. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  20. Possibilities for automating coal sampling

    Energy Technology Data Exchange (ETDEWEB)

    Helekal, J; Vankova, J

    1987-11-01

    Outlines sampling equipment in use (AVR-, AVP-, AVN- and AVK-series samplers and RDK- and RDH-series separators produced by the Coal Research Institute, Ostrava; extractors, crushers and separators produced by ORGREZ). The Ostrava equipment covers bituminous coal needs while ORGREZ provides equipment for energy coal requirements. This equipment is designed to handle coal up to 200 mm in size at a throughput of up to 1200 t/h. Automation of sampling equipment is foreseen.

  1. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Science.gov (United States)

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  2. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  3. Steel story founded on coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Paper reports on an iron and steel plant in New Zealand which uses non-coking subbituminuous coal to produce the sponge iron. The transport of the ironsand and the coal to the site and the operation of the kiln in which the ironsand is reduced by the coal is described.

  4. Microscopic coal research in Canada

    NARCIS (Netherlands)

    Hacquebard, P.A.

    1955-01-01

    Since the industrial developments of Europe and North America in the nineteenth century, coal has been considered as the most important mineral wealth a country could possess. Coal was often referred to as King Coal, and it was not until around 1950 that its position as the major fuel for modern

  5. Competitive edge of western coal

    International Nuclear Information System (INIS)

    Keith, R.D.

    1990-01-01

    This paper expresses views on the competitive advantages of one of the nation's most remarkable energy resources--Western coal. It covers utilization of Western coal, and its advantages. The Arkansas Power and Light Company and its demand for coal are also covered

  6. Coal type and burnout performance

    Energy Technology Data Exchange (ETDEWEB)

    Lester, E.; Cloke, M. [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    1999-07-01

    A variety of coals underwent refire tests in a drop tube furnace. Characteristics of the coal fractions, the pyrolysed char fractions and the refired char fractions were compared to determine links between coal composition, intermediate char products and burnout. 9 refs., 1 fig., 2 tabs.

  7. The new deal of coal

    International Nuclear Information System (INIS)

    Kalaydjian, F.; Cornot-Gandolphe, S.

    2008-01-01

    While coal appears as an inescapable resource to answer the energy needs of the 21. century, its highly CO 2 emitting combustion represents a major risk with respect to the requirements of the fight against climate change. In the first part of this book, the basic aspects of energy markets are explained and in particular the role that coal is going to play in the world's energy supplies. In the second part, the new coal usages are presented, which, combined with CO 2 capture and sequestration techniques, should allow to conciliate a massive use of coal and the respect of environmental constraints. This book is based on the works presented in February 2008 by the French institute of petroleum (IFP) about the new outlets of coal and the risks for climate change. Content: 1 - coal, energy of the 21. century: abundant and well distributed reserves; growing up world production; exponential world demand; international trade: still limited but in full expansion; 2 - Technologies for a CO 2 -free coal: CO 2 capture and sequestration technologies; towards poly-generation; production of coal-derived liquid fuels; 3 - Appendices: coals formation; coal in China: status and perspectives; coal in the USA: status and perspectives; coal in India: status and perspectives; COACH: an ambitious European project; CBM - E-CBM, status and perspectives. (J.S.)

  8. Reducing coal miner absenteeism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.H.; Clingan, M.R. (Bureau of Mines, PA (USA). Pittsburgh Research Center)

    1989-09-01

    High absenteeism at coal mines can seriously affect safety and hamper productivity. Several effective strategies for achieving high attendance which mine operators may not have considered are presented and a method is proposed for implementing programs for minimizing absenteeism among coal miners. The best strategies for improving attendance will vary according to the needs and circumstances of the particular mine, however, the process for establishing such a program is relatively invariant. A four-stage process is recommended; evaluate data from prior attendance records, communicate attendance goals and policy, develop and implement an attendance promotion program, and recycle. 12 refs., 5 figs.

  9. PNNL Coal Gasification Research

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  10. Coal ash monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  11. Industrial coal survey

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-25

    UK industrial coal sales were down 400,000t to 7.1mt in 1991. This was largely due to fall in cement purchases as the construction industry was badly hit in the recession. Increased competition from petroleum coke also had an effect. A brief roundup is presented of sales to the UK's major coal buyers: Alcan, ICI, Blue Circle, Castle Cement, Rugby Cement, British Steel, UK Paper, Courtaulds, Unilever, AHS Emstar, Tate Lyle, and British Sugar. 1 tab.

  12. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Nermine Mohamed Tawfik Foda

    2017-01-10

    Jan 10, 2017 ... sures regarding disposable injection equipment, waste containers, hand hygiene ... injection practices lead to high prevalence of NSSIs in operating rooms. .... guidelines, the availability of training courses to HCWs, and provi-.

  13. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  14. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  15. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  16. Injection Laryngoplasty Materials

    OpenAIRE

    Haldun Oðuz

    2013-01-01

    Injection laryngoplasty is one of the treatment options for voice problems. In the recent years, more safe and more biocompatible injection materials are available on the market. Long and short term injection materials are discussed in this review.

  17. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to ... early in the treatment of certain serious infections. Penicillin G procaine injection is in a class of ...

  18. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  19. Measuring ash content of coal

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1980-01-01

    An apparatus for measuring the ash content of coal is claimed. It comprises a means for irradiating a known quantity of coal in a transport container with a known dose of neutrons, a means for detecting γ-rays having a predetermined energy emitted by the irradiated coal, the γ-rays being indicative of the presence of an ash-forming element in the coal, a means for producing a signal related to the intensity of the γ-ray emission and a means responsive to the signal to provide an indication of the concentration of the ash-forming element in the coal

  20. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  1. Coal belt options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    Whether moving coal long distances overland or short distances in-plant, belt conveyors will always be in demand. The article reports on recent systems developments and applications by Beumer, Horizon Conveyor Equipment, Conveyor Dynamics, Doppelmayr Transport Technology, Enclosed Bulk Systems, ContiTech and Bateman Engineered Technologies. 2 photos.

  2. World coking coal markets

    International Nuclear Information System (INIS)

    McCloskey, G.

    2010-01-01

    This article discussed conditions in world coking coal markets. There is increased demand from Asia for metallurgical coal imports. World iron production was up 22 percent in first 7 months of 2010. Supply is up in Australia, the United States, Canada, New Zealand, Russia, and Mongolia, but the unexpected surge in supply caused prices to drop following a robust start to the year. Coking coal exports are up for the United States and Australia, but a delay in expanded production is expected until 2014. There is increased demand from Brazil, India, Taiwan, South Korea, and Japan as well as new plants in Thailand, Indonesia, and Brazil. Unexpectedly, Australia is backing out of the Chinese market but increasing exports to Japan and South Korea. India is seeing flat performance in iron production and imports, and the United States has surged back into Asia. A considerable increase is expected in the seaborne import requirement by 2020. Prices are expected to fall and then rise. This presentation also discussed whether coking coal index pricing is impossible or inevitable. 3 tabs., 5 figs.

  3. Occupational coal tar dermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Salazar, L; Guimaraens, D; Romero, L V; Gonzalez, M A

    1987-04-01

    The paper describes the allergic reaction to coal tar of a man handling it in a factory. The reaction appeared in the form of eczema on his trunk, arms and legs, but his hands were not affected as he had been wearing gloves. 1 ref.

  4. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  5. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  6. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  7. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  8. China's coal export and inspection

    International Nuclear Information System (INIS)

    Xiaodong Li

    1993-01-01

    With the development of world's business and trade, coal has become a large part of the import and export goods in the international market. The total amount of coal trade has risen a lot. China is rich in coal resources. According to the estimate made by some experts, the reserve which has been explored recently could be exploited hundreds of years. China's output of raw coal has risen a lot during the past forty years. China coal industry has developed rapidly since the 1980s. It is possible for China to become a big coal export country since it has rich resources and increasing output. The paper suggests four steps which must be taken to expand coal exports in China: improve the level of management and administration of coal mines so as to raise the economic benefit; the follow-up production capacity of the present mines must be enhanced rapidly; step up construction of new large-scale mines; and China's coal washing capacity must be improved speedily since the low capacity has seriously influenced the improvement of coal quality. The paper describes the inspection bureaus and companies that have developed to perform inspection of exports in order to guarantee the quality of export coal

  9. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  10. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  11. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  12. Coal resources availability in Botswana

    International Nuclear Information System (INIS)

    Modisi, M.P.

    1990-01-01

    This paper reports that Southern Africa, and Botswana in particular, is well-endowed with relatively large reserves of coal. The existence of coal in Botswana has been known since the end of the last century. Exploration activities by the Geological Survey and the private sector led to the discovery of major deposits and by the late 1960s reserves capable of supporting a mine at Morupule for the domestic market has been confirmed. The oil crises of 1973-74 and 1978-79 stimulated increased interest in coal exploration the world over and Botswana attracted several private sector companies looking for coal that could be traded on the international market. As a result vast resources and reserves of low to medium quality bituminous coal, suitable for the export market, were proved. Resources amounting to 21,680 million tonnes of in situ coal had been revealed by 1987. Reserves of possible economic exploitation are estimated at 10,180 million tonnes in two coal field areas, namely the Morupule Coal Field and the Mmamabula Coal Field. Since the collapse of oil prices and consequently coal prices in the mid-1980s, enthusiasm for coal exploration has plummeted and relatively little prospecting has taken place. The coal occurs within the Upper Carboniferous to Jurassic Karoo Supergroup which underlies some 60 percent of the country's land surface. The western part of the country is mantled by the Kalahari beds, a top layer of unconsolidated sands masking bedrock geology. Although coal seams have been intersected in boreholes in this western area, most exploration activity has taken place in the eastern part of the country where the Morupule and Mmamabula coal fields are located. It is in the east that most of the population is concentrated and infrastructure has been developed

  13. Buckets of money for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    The revival of coal prices is providing record profits for Australian coal producers. As the world's largest coal exporter, any move in coal prices has significant ramifications for the Australian economy. The coal boom of the mid-1980s resulted in a massive increase in mine capacity and subsequently excess supply. This resulted in the decade between 1990 and 2000 seeing benchmark prices for coking coal in Japan plummeting to $US 39 a tonne (down from around the $US 52 mark) and a price of $US 28 for a tonne of steaming coal. Asia's financial problems, late in the decade coupled with a rapid fall in Asian steel making, also added to our coal export woes. As a result for most of the 1990s, Australia's coal sector delivered inadequate returns, was seen as over-capitalised and suffered from a profound investor indifference. But the sector is now seeing a definite turnaround in fortunes. Prices for thermal coal are on the rise and the benchmark coking coal prices to Asia have also jumped. Market analysts reported the price for contract deliveries of thermal coal in April this year were $US 34.50 ($AUD 69.35) up by $US 5.75 from the same time last year. The increased production is expected on the back of a continued rise in export demand, further improvement in prices, significant improvements in mine productivity, a weak Australian dollar and the probability of new projects and mine extensions going into operation. The improved returns have also flowed into rising valuations for listed coal miners. Over the last year, coal miners such as MIM and Gympie Gold, have delighted in share price gains of 12 per cent and 55 per cent respectively. These sort of performances are being repeated across the Australian industry

  14. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  15. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  16. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  17. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  18. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  19. US and world coal trade

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, B

    1988-07-01

    This paper reviews the US's coal trade with other countries in the world. Despite being pressed to support domestic coal producers, US utilities are looking towards Colombia for more of their supplies. Whilst the amount of Colombian coal imported into the US is small, it is a combination of this and coal imported from Australia, Canada and China which is causing concern. Studies indicate that the volume of coal imported into the US may rise to 3 Mt/year within three years. Coal exports may suffer if Brazil bans the import of significant quantities of US coking coal in retaliation against American trade sanctions against Brazilian computer import barriers. Also, Romania is expected to impose tariffs on US imports which will have an impact on US coal exported to Romania. US remains the top coal exporter to the European Communities but its lead was cut back due to a big rise of Australian export. A portion of EC market has also been lost to the USSR and Poland. Meanwhile, Japan is resisting buying US's steam coal because it is too expensive.

  20. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  1. Coal industry statistics for 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    In 1977 Belgian coal production reached 7,068,000 t, a drop of 170,000 t (2.3%) on the previous year. Production from the Campine coalfield had risen by 160,000 t while in the South, where two pits had been shut down during the year, there was a fall in output of 330,000 t. On 31st December 1977 the number of underground personnel totalled 17,681 as against 19,154 at the same time in 1976. Underground output continued to decline in the South while in the Campine there was an increase of 7.6%. Pit-head stocks fell by 400,000 t, to 721,000 t, 658,000 t of this being held in the Campine collieries. As regards Belgian coal disposals, the only increase (+52.0%) was in coal sent to power stations. Import figures stood at 6,592,000 t, a drop of 10.5% over the previous year. Includes figures for apparent coal consumption, a com parison of coal figures for 1976 and 1977 and the mined-coal production. Shows how coal production has evolved in the various coalfields and the number of pits in operation. Production is classified into coal types. Also covers the shutting-down of production capacities; manpower and OMS; coal briquette production; briquette output and disposals; end-of-year pit-head stocks according to coalfields, grades and types of coal. Figures for apparent consumption of coal and coal briquettes; exports and imports 1973-77 and countries of origin. Gives delivery figures for Belgian and imported coal to the domestic market. (In French)

  2. Integrated engineering and cost model for management of coal combustion byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H. [Department of Mining Engineering, Southern Illinois University at Carbondale, Carbondale, Illinois (United States); Renninger, S. [US Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia (United States)

    1998-07-01

    An integrated engineering and cost model has been developed as a part of an overall research project for exploring the technical, environmental and economic feasibility of disposing coal combustion byproducts and flue gas desulfurisation products in underground coal mines in Illinois. The features of the model have been keyed in user-friendly software. In this paper, the purpose and the structure of the model are described. The capabilities of the software are illustrated through an example involving transportation of byproducts in containers from a power plant to a mine site, and subsequent placement of the byproducts in a abandoned underground coal mine using a hydraulic injection system. 3 refs.

  3. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  4. Black coal in Australia 1985-86

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The annual publication contains comprehensive statistical details of the Australian black coal industry. Included are statistics on coal supply and disposal, production plant and equipment, coal preparation, capital expenditure, employees, exports, coal consumption, resources. Maps of mine locations are included, also tables showing coal supply and disposal, production figures, plant and equipment, employees, exports, resources.

  5. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  6. Methods and machinery for pulverising solid wastes

    CSIR Research Space (South Africa)

    Simpkins, MJ

    1976-11-01

    Full Text Available This report is published on behalf of the South African Committee for Solid Wastes which in turn advises the National Committee for Environmental Sciences on problems concerned with Solid Wastes in South Africa. It is particularly concerned...

  7. Bulk analysis of coal

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    1982-01-01

    Nuclear techniques used in the coal industry to determine specific energy, ash and moisture are outlined. Ash analysis by radioisotope X-ray techniques include a single X-ray measurement using a transmission or backscatter geometry and techniques with compensation for iron variations. Neutron techniques can be used to measure the concentration of some specific elements in coal. The measurement of specific energy, ash and moisture then depends on the correlation of the particular parameter with the measured elemental composition. Carbon can be determined by a combination of a measurement of 4.43 MeV 12 C gamma-rays from neutron inelastic scattering with a separate 60 Co gamma-ray scattering measurement. Sulphur meters are based on the measurement of 5.42 MeV neutron capture of gamma rays

  8. Coal refuse reclamation project

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.

    1979-04-06

    A 13.8 ha abandoned coal refuse site in southwestern Illinois was reclaimed by recontouring the refuse material and covering it with a minimum 30 cm of soil. The reclamation procedure included determination of the site's final land use, collection of preconstruction environmental data, and development and implementation of engineering plans. The project is demonstrating methods that can be used to reclaim abandoned coal refuse sites, and a multidisciplinary approach is being used to evaluate postconstruction environmental and economic effects of the reclamation effort. Surface water quality has shown significant improvement and plant cover is becoming established on the site. Soil microbial populations are developing and wildlife habitats are forming. The economic value of the site and adjacent properties has increased substantially and the area's aesthetic value has been enhanced. This project is providing valuable design data for future reclamation efforts of this type.

  9. Pulverized coal devolatilization prediction

    International Nuclear Information System (INIS)

    Rojas, Andres F; Barraza, Juan M

    2008-01-01

    The aim of this study was to predict the two bituminous coals devolatilization at low rate of heating (50 Celsius degrade/min), with program FG-DVC (functional group Depolymerization. Vaporization and crosslinking), and to compare the devolatilization profiles predicted by program FG-DVC, which are obtained in the thermogravimetric analyzer. It was also study the volatile liberation at (10 4 k/s) in a drop-tube furnace. The tar, methane, carbon monoxide, and carbon dioxide, formation rate profiles, and the hydrogen, oxygen, nitrogen and sulphur, elemental distribution in the devolatilization products by FG-DVC program at low rate of heating was obtained; and the liberation volatile and R factor at high rate of heating was calculated. it was found that the program predicts the bituminous coals devolatilization at low rate heating, at high rate heating, a volatile liberation around 30% was obtained

  10. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  11. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  12. 75 FR 18015 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2010-04-08

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... coal production, and Indian coal production under section 45. FOR FURTHER INFORMATION CONTACT: Philip... Coal, and Indian Coal:'', Line 26, the language ``is 2.15 cents per kilowatt hour on the'' is corrected...

  13. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2013-04-03

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... renewable electricity production, refined coal production, and Indian coal production under section 45... resources, and to 2013 sales of refined coal and Indian coal produced in the United States or a possession...

  14. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2012-04-11

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... electricity production, refined coal production, and Indian coal production under section 45. DATES: The 2012... sales of refined coal and Indian coal produced in the United States or a possession thereof. Inflation...

  15. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  16. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  17. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  18. Method to liquefy coal

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D.C.; Kehl, W.L.

    1977-06-08

    In a method to liquify coal in the presence of hydrogen and hydrogen-transfer solvents, a hydrogenation catalyst is used in which an amorphous aluminium phosphate is taken as catalyst carrier. The particular advantage of aluminium phosphate catalyst carriers is their property of not loosing their mechanical strength even after manifold oxidizing regeneration (burning off the deposited carbon). The quantity of carbon deposited on the catalyst when using an aluminium phosphate carrier is considerably loss than with usual catalyst carriers.

  19. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  20. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  1. Coal fights back

    International Nuclear Information System (INIS)

    Ince, R.

    1990-01-01

    During the twentieth century coal has moved from being the dominant energy hero that fueled the industrial revolution to a background role: a fuel of last choice, a supplemental resource, and sometimes a convenient villain in the environmental debate. But, as this paper points out, the other side of the coin is that coal is dependable, plentiful, and the price is right. To examine the issue as it merits, reason will have to be substituted for emotion. We are currently in what the author of this paper calls the crisis enrichment stage of the debate. In this stage, when definitive knowledge is lacking, there is a temptation to imagine the worst, overcorrect the problem, and do considerable damage to energy supply and economic needs. The environmental movement has provoked a hunt for someone to blame for the world's current environmental situation. Without a proven culprit to blame for disturbances to some of the world's lakes and forests, it has been decided that coal is the cause. This paper makes a plea for balance, urging all parties to find some acceptable middle ground between energy production and environmental protection

  2. Indian coal tars. II

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A N; Bhatnagar, J N; Roy, A K

    1954-01-01

    Laboratory experiments were carried out on these efforts: (1) rank and specific-gravity fractions on tar yield; (2) addition of water to the coal charge, or steam during carbonization, on yield of tar and tar acids; (3) the presence of a cracking agent (shale) with and without steam addition on the yield of tar and tar acids (the particular shale used without steam reduced the yield, and the restricted use of steam brought the yield to the former noncatalyzed level); and (4) catalytic effect of three different samples of shale, firebrick, quartz, coke, and silica-alumina on the cracking of tar acids (the most active were two of the shales, a freshly-prepared coke, and the Al/sub 2/O/sub 3/-SiO/sub 2/ catalysts that gave conversion up to 98%). The products were mainly carbon, aromatic hydrocarbons of the naphthalene series and gases (CO and H/sub 2/). The yield of the tar becomes less as coal of lower specific gravity is used or when higher temperatures are used for carbonization. The mineral matter associated with Indian coals acts as a decomposition catalyst for tar acids, as shown by experiments on the decomposition of PhOH at temperatures above 800/sup 0/.

  3. Coal: a human history

    Energy Technology Data Exchange (ETDEWEB)

    Freese, B.

    2002-12-01

    Prized as 'the best stone in Britain' by Roman invaders who carved jewellery out of it, coal has transformed societies, powered navies, fueled economies, and expanded frontiers. It made China a twelfth-century superpower, inspired the writing of the Communist Manifesto, and helped the northern states win the American Civil War. Yet the mundane mineral that built our global economy - and even today powers our electrical plants - has also caused death, disease, and environmental destruction. As early as 1306, King Edward I tried to ban coal (unsuccessfully) because its smoke became so obnoxious. Its recent identification as a primary cause of global warming has made it a cause celebre of a new kind. In this book, Barbara Freese takes us on an historical journey that begins three hundred million years ago and spans the globe. From the 'Great Stinking Fogs' of London to the rat-infested coal mines of Pennsylvania, from the impoverished slums of Manchester to the toxic city streets of Beijing, this book describes an ordinary substance that has done extraordinary things.

  4. Research of coal flash hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Zhu, H.; Wu, Y.; Tang, L.; Cheng, L.; Xu, Z. [East China University of Science and Technology, Shanghai (China)

    2001-02-01

    Using x-ray photoelectron spectroscopy (XPS) analyses the organic sufur of seven different Chinese coals and their semi-cokes from flash hydropyrolysis were studied. The results showed that the organic sulfur in coal was alkyal sulfur and thiophene with the peak of XPS located in 163.1-163.5 eV and 164.1-164.5 eV. The relative thiophene content in coal increased with the coal rank. The type of organic sulfur in semi-coke in flash hydropyrolysis was generally thiophene species; its XPS peak also located in 164.1-164.5 eV, and was in accord with its corresponding coal. Total alkyl sulfur and some thiophene sulfur were removed during the flash hydropyrolysis process. The alkyl sulfur had very high activity in hydrogenation reaction. Flash hydropyrolysis was an important new clean-coal technique and had notable desulfurization effect. 13 refs., 2 figs., 4 tabs.

  5. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  6. Ambitious coal to gasoline plan

    Energy Technology Data Exchange (ETDEWEB)

    Taffe, P

    1979-06-20

    A design study carried out by Badger Energy concludes that the first US commercial gasoline from coal facility could be completed in eight years. The cost of gasoline would be 1.09 US dollars/gal. in 1990 with coal at 25 US dollars/ton. The process involves oxygen-blown coal gasification, conversion to methanol by the Mobil process, gas fractionation and HF alkylation.

  7. CVFA: Coal vendor financial advisor

    International Nuclear Information System (INIS)

    Goote, W.G.; Andersen, S.

    1992-01-01

    An expert system for determining coal vendor financial viability in fuel purchasing contracts at an electric utility is described. The system blends rules, data objects, and financial knowledge to provide a rational basis for accepting or rejecting coal contracts given the financial capability of the coal vendor. The discussion concludes with a critique of managerial issues in the development of the system and its use in decision making. 3 refs., 1 fig

  8. Causes of coal degradation at working faces

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Coal comminution by shearer loaders at working faces and factors influencing it are analyzed. Three groups of factors are evaluated: coal mechanical properties, design and specifications of shearer loaders and mining schemes. On the basis of analyses, recommendations for increasing proportion of coarse coal and reducing coal comminution in underground coal mines in Poland are made. Increasing output of coarse coal in coal seams with a high proportion of dull coal is most economic. Increasing power of drive systems for shearer loaders to 500 kW or more decisively influences grain size distribution of coal and increases proportion of coarse coal, especially in seams of dull coal. Gradually increasing cutting depth of a shearer loader negatively influences haulage speed and coarse coal output. Replacing gradual cutting depth increase by attack at the full cutting depth increases proportion of coarse coal. When medium or thick coal seams are mined a coal bench from 0.3 to 0.5 m thick should be left in the roof or between 2 benches cut by 2 cutting drums. The coal bench left in the face disintegrates under the influence of gravity and the proportion of coarse coal increases. Optimizing yield strength of powered supports at a working face is a further method for improving grain size distribution of coal and increasing proportion of coarse coal. 2 references.

  9. Coal resources of Indiana

    Science.gov (United States)

    Spencer, Frank Darwyn

    1953-01-01

    The Indiana coal field forms the eastern edge of the eastern interior coal basin, which is near some of the most densely populated and highly productive manufacturing areas of the United States. (See fig. 1. ) For this reason Indiana coal reserves are an important State and National asset. In dollar value the coal mining industry is the largest of Indiana's natural-resource-producing industries. The total value of coil production for the year 1950 was more than 100 million dollars, or more than that of all other natural-resource industries in the State combined. As estimated herein, the original coal reserves of Indiana total 37,293 million tons, of which 27,320 million tons is contained in beds more than 42 inches thick; 7,632 million tons in beds 28 to 49. inches thick; and 2,341 million tons in beds 14 to 28 inches thick. The remaining reserves as of January 1951, total 35,806 million tons, of which 18,779 million tons is believed to be recoverable. The distribution of the reserves in these several categories is summarized by counties in table 1. Of the total original reserves of 37,293 million tons, 6,355 million tons can be classified as measured; 8,657 million tons as indicated; and 22,281 million tons as inferred. Strippable reserves constitute 3,524 million tons, or 9.5 percent of the total original reserves. The distribution of the strippable and nonstrippable original reserves is summarized in tables 2 and 3 by counties and by several categories, according to the thickness of the beds and the relative abundance and reliability of the information available for preparing the estimates. The distribution of the estimated 18,779 million tons of recoverable strippable and nonstrippable reserves in Indiana is further summarized by counties in table 4, and the information is presented graphically in figures 2 and 3. The tables i to 4 and figures 2 and 3 include beds in the 14- to 28-inch category, because thin beds have been mined in many places. However, many

  10. Coal, energy and environment: Proceedings

    International Nuclear Information System (INIS)

    Mead, J.S.; Hawse, M.L.

    1994-01-01

    This international conference held in Czechoslovakia was a bold attempt to establish working relationships among scientists and engineers from three world areas: Taiwan, the United States of America, and Czechoslovakia. The magic words unifying this gathering were ''clean coal utilization.'' For the ten nationalities represented, the common elements were the clean use of coal as a domestic fuel and as a source of carbon, the efficient and clean use of coal in power generation, and other uses of coal in environmentally acceptable processes. These three world areas have serious environmental problems, differing in extent and nature, but sufficiently close to create a working community for discussions. Beyond this, Czechoslovakia is emerging from the isolation imposed by control from Moscow. The need for each of these nations to meet and know one another was imperative. The environmental problems in Czechoslovakia are extensive and deep-seated. These proceedings contain 63 papers grouped into the following sections: The research university and its relationship with accrediting associations, government and private industry; Recent advances in coal utilization research; New methods of mining and reclamation; Coal-derived waste disposal and utilization; New applications of coal and environmental technologies; Mineral and trace elements in coal; Human and environmental impacts of coal production and utilization in the Silesian/Moravian region; and The interrelationships between fossil energy use and environmental objectives. Most papers have been processed separately for inclusion on the data base

  11. The Global Value of Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal plays an essential role in our global energy mix, particularly for power generation; and through that to the alleviation of energy poverty. The use of coal continues to grow rapidly and will continue, together with other fuels, to support world economic and social development particularly in rapidly developing world economies such as China and India. The purpose of this paper is to highlight for policy makers the value of coal to world economic and social development and so encourage development of a policy environment that will allow the coal and electricity industries to make the necessary investments in production capacity and CO2 emissions reduction technologies.

  12. Coal pre-feasibility assessment

    International Nuclear Information System (INIS)

    1994-03-01

    It examines the feasibility of using coal from the Delbi-Moya reserve for domestic or institutional cooking, industrial process heating and electricity generation. It indicates as coal can be mined from the Delbi reserve at a cost of EB110/tonne, can be processed for EB400/tonne and transported to Addis Ababa for 150/tonne. The wholesale price of coal briquettes in Addis Ababa would be EB750/tonne. Domestic users can save EB475 per year by switching from charcoal to coal briquettes. And for a 50MW plant annual saving would be of the order of EB30 million per year. 11 tab. 4 figs. 6 appendex

  13. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  14. World coal perspectives to 2030

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    In Summer 2004, The World Energy Council published a Study on 'Sustainable Global Energy Development: the Case of Coal'. The Study aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both, the contribution that coal could make to economic development as well as the need for coal adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. (Author)

  15. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  16. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  17. 1980 Australian coal conference. Conference papers

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Papers were presented under the following headings: supply and demand for coal; government policies - coal development; mining finance and taxation; Australian coal mining practices; research and development; infrastructure and transportation; legislation and safe working practices; and industrial relations.

  18. Southern Coal Corporation Clean Water Settlement

    Science.gov (United States)

    Southern Coal Corporation is a coal mining and processing company headquartered in Roanoke, VA. Southern Coal Corporation and the following 26 affiliated entities are located in Alabama, Kentucky, Tennessee, Virginia and West Virginia

  19. Coal Mining-Related Respiratory Diseases

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  20. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Nermine Mohamed Tawfik Foda

    2017-01-10

    Jan 10, 2017 ... Background: Of the estimated 384,000 needle-stick injuries occurring in hospitals each year, 23% occur in surgical settings. This study was conducted to assess safe injection procedures, injection practices, and circumstances contributing to needlestick and sharps injures (NSSIs) in operating rooms.

  1. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  2. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  3. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  4. Too Much Coal, Too Little Oil

    OpenAIRE

    Frederick van der Ploeg; Cees Withagen

    2011-01-01

    Optimal climate policy is studied. Coal, the abundant resource, contributes more CO2 per unit of energy than the exhaustible resource, oil. We characterize the optimal sequencing oil and coal and departures from the Herfindahl rule. "Preference reversal" can take place. If coal is very dirty compared to oil, there is no simultaneous use. Else, the optimal outcome starts with oil, before using oil and coal together, and finally coal on its own, The "laissez-faire" outcome uses coal forever or ...

  5. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  6. Coal chemistry and technology. Komur Kimyasi ve Teknolojisi

    Energy Technology Data Exchange (ETDEWEB)

    Kural, O [ed.

    1988-01-01

    The 18 chapters cover the following topics: mining in Turkey; formation, petrography and classification of coal; chemical and physical properties of coal; mechanical properties of coal; spontaneous combustion of coal and the methods of prevention; sampling of coal; coal preparation and plants; desulfurization of coal; bituminous coal and its consumption; lignite and its consumption; world coal trade and transportation; other important carbon fuels; briquetting of coal; carbonization and coking formed coke; liquefaction of coal; gasification of coal; underground gasification of coal; and combustion models, fluidized-bed combustion, furnaces. An English-Turkish coal dictionary is included. 641 refs., 244 figs., 108 tabs.

  7. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  8. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  9. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  10. Promotive study on preparation of basis for foreign coal import. Study on coal renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yoji [Japan Economic Research Institute, Tokyo

    1988-09-16

    This is an interim report on the coal renaissance study carried out in 1987 as a part of the Promotive Study on Preparation of Basis for Foreign Coal Import. The background and ideology of coal renaissance, future aspect of demand for coal, problems pertaining to the expansion of application, and a proposal for the expansion of coal usage are described in order. The role of coal expected as an alternate fuel for petroleum, development of new application fields for coal, conversion to coal, contribution of Japan to the stablization of international coal supply are outlined. Coal renaissance aims, based on technology, at stimulation of coal demand, change in the image of coal, and the utilization of the accumulated abundant knowhow. The aspect of coal demand in 2000, solution and current status of various restricting factors relating to the use of coal in general industry, and the remaining problems are discussed. 6 figures, 10 tables.

  11. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  12. Calcitonin Salmon Injection

    Science.gov (United States)

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  13. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  14. Aminocaproic Acid Injection

    Science.gov (United States)

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  15. Deoxycholic Acid Injection

    Science.gov (United States)

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  16. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  17. Antigen injection (image)

    Science.gov (United States)

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  18. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available Final Project Report Coal pillar design procedures G. York, I. Canbulat, B.W. Jack Research agency: CSIR Mining Technology Project number: COL 337 Date: March 2000 2 Executive Summary Examination of collapsed pillar cases outside of the empirical... in strength occurs with increasing specimen size. 45 40 35 30 25 20 15 10 5 0 20 40 60 80 100 120 140 160 UNIAX IA L COMPR EHEN SIV E S TR ENG TH (M Pa ) CUBE SIZE (cm) Figure 1...

  19. Distilling coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, W P

    1906-01-11

    Substances containing hydrocarbons, such as cannel coal, lignite, and shale, are destructively distilled by dividing the charge into small bodies confined in an air-tight chamber through which the products of combustion from a contiguous furnace are passed, the furnace serving also to heat the chamber. The temperature is kept below red heat so that the initial products, such as vapors of heavy oils, paraffin, waxes, naphthas, phenols, and cresols, are not decomposed and there is no formation of gaseous products such as naphthalene and benzol. The operation is of short duration, and large amounts of good coke are produced.

  20. Coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-29

    The proposal concerns a stage in the process of cooling the synthetic gas produced in a coal gasification plant at temperatures above 900/sup 0/C. The purpose is to keep the convection heating surface of the subsequent waste heat plant free of dirt. According to the invention, the waste heat plant has a radiation area connected before it, on the heating surfaces of which the slack carried over solidifies. This radiation area has a hydraulic and thermal cleaning system, which can be raised or lowered in a water bath. The subclaims concern all the constructional characteristics of this cleaning system, which causes the solidified slack to crack.

  1. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  2. Carbonizing etc. , coal etc

    Energy Technology Data Exchange (ETDEWEB)

    Duckham, A M; Rider, D; Watts, J S

    1924-01-17

    In drying, carbonizing, and distilling coal, shale, etc., by passage through a heated retort, the material is spread in a thin layer over the heating surface by a conveying-screw with a shallow thread. The retort is heated by a bath of molten metal, and the conveyingscrew intermeshes with a scraper screw of smaller diameter, and of a different hand; the screws are mounted on shafts geared together by wheels. The material after passing through the retort is delivered into a chute closed at the bottom by an arc-shaped water seal carried on arms and opened periodically by a lever.

  3. Distilling coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J

    1917-12-21

    Coals of various kinds such as shales, bitumens, and oil sand, peat, etc. are distilled at 350 to 450/sup 0/C and in the presence of vapors and gases obtained by cracking hydrocarbon oils, or the gases obtained by separating the condensable hydrocarbons therefrom, and, if desired, with the addition of superheated steam. The hydrocarbons are properly cracked by passing through molten lead as described in Specification 116,304. According to the Provisional Specification, superheated steam alone may be used to effect the distillation.

  4. The revolutionary importance of coal

    OpenAIRE

    Macfarlane, Alan

    2004-01-01

    Alan Macfarlane discusses the coal revolution, the change from energy harvested from the sun through plants and animals, to the stored carbon energy of millions of years of sunlight. Filmed on a coal heap in Coalbrookdale, where the industrial revolution in England began.

  5. Utilisation of chemically treated coal

    International Nuclear Information System (INIS)

    Bezovska, M.

    2002-01-01

    The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal contain humic acids but lignite from Novaky deposit represents the most easily available and concentrated from of humic acids. The possibilities of utilisation of humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of coals humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water. Oxidised coal with high content of humic acids and nitrogen is used in agriculture as fertilizer. Humic acids are active component in coal and can help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabilize toxic metal residues already present in soil. (author)

  6. Brown coal gasification made easy

    International Nuclear Information System (INIS)

    Hamilton, Chris

    2006-01-01

    Few Victorians will be aware that gas derived from coal was first used in 1849 to provide lighting in a baker's shop in Swanston Street, long before electric lighting came to the State. The first commercial 'gas works' came on stream in 1856 and Melbourne then had street lighting run on gas. By 1892 there were 50 such gas works across the State. Virtually all were fed with black coal imported from New South Wales. Brown coal was first discovered west of Melbourne in 1857, and the Latrobe Valley deposits were identified in the early 1870s. Unfortunately, such wet brown coal did not suit the gas works. Various attempts to commercialise Victorian brown coal met with mixed success as it struggled to compete with imported New South Wales black coal. In June 1924 Yallourn A transmitted the first electric power to Melbourne, and thus began the Latrobe Valley's long association with generating electric power from brown coal. Around 1950, the Metropolitan Gas Company applied for financial assistance to build a towns gas plant using imported German gasification technology which had been originally designed for a brown coal briquette feed. The State Government promptly acquired the company and formed the Gas and Fuel Corporation. The Morwell Gasification Plant was opened on 9 December 1956 and began supplying Melbourne with medium heating value towns gas

  7. Centrifuge treatment of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  8. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  9. Uranium content of Philippine coals

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Sombrito, E.Z.; Nuguid, Z.S.; Bulos, A.M.; Bucoy, B.M.; De la Cruz, M.

    1984-01-01

    Uranium content of coal samples from seven areas in the Philippines, i.e. Cebu, Semirara, Bislig, Albay, Samar, Malangas and Polilio Is. was found to contain trace quantities of uranium. The mean value of 0.401 ppm U is lower than reported mean uranium contents for coal from other countries. (ELC)

  10. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  11. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  12. Coke from partially briquetted preheated coal mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Belitskii, A.N.; Sklyar, M.G.; Toryanik, Eh.I.; Bronshtein, A.P.

    1988-07-01

    Analyzes effects of partial coal charge briquetting on coking and on quality of coke for metallurgy. Effects of mixing hot coal briquets on temperature and moisture of coal were investigated on an experimental scale in a coking plant. Coal with a moisture content of 12% was used. Coking mixture consisted of 30% briquets and 70% crushed coal. Fifteen minutes after briquet mixing with coal, the mean coal charge temperature increased to 100-105 C and moisture content was lower than 2-5%. Results of laboratory investigations were verified by tests on a commercial scale. Experiments showed briquetting of weakly caking or non-caking coal charge components to be an efficient way of preventing coke quality decline. Adding 15-20% briquets consisting of weakly caking coal did not influence coke quality. Mixing hot coal briquets reduced moisture content in crushed coal, increased its temperature and reduced coking time.

  13. Coal: a revival for France?

    International Nuclear Information System (INIS)

    Brones, W.

    2007-01-01

    All energy consumption forecasts indicate a world production peak of fossil fuels around 2030 followed by a rapid decline. The oil peak should probably occur earlier. In this context the huge worldwide reserves of coal represent a fantastic opportunity to meet the world power demand which should double between 2002 and 2030 with in particular a huge growth in China and India. If promising alternate technologies (coal liquefaction..) exist which would allow to replace petroleum by coal, the main question remains the management of CO 2 . Capture and sequestration techniques are already implemented and tested and the search for new coal deposits is going on, in particular in France in the Nievre area. Economic studies about the profitability of coal exploitation in France stress on the socio-economical advantage that a revival of this activity would represent, in particular in terms of employment. (J.S.)

  14. Coal liquids -- Who needs them?

    International Nuclear Information System (INIS)

    Gray, D.; Tomlinson, G.

    1995-01-01

    The paper discusses the global energy demand situation as presented at the last World Energy Congress. The total energy demand was calculated for each country and projected to 2100. The paper then discusses the energy situation in the United States, especially the forecasted demand for crude oil and natural gas liquids. Imports will be needed to make up the shortfall in domestic production. The shortfall in conventional petroleum could be supplied by converting coal into liquid fuels. Currently the cost of high quality coal liquids is too high to compete with petroleum, but trends suggest that the price will be competitive in the year 2030 using current technology. Continuing research on coal liquefaction will reduce the price of coal liquids so that coal liquids could play a significant role sooner

  15. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  16. Temperature profiles of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Sensogut, C.; Ozdeniz, A.H.; Gundogdu, I.B. [Dumlupinar University, Kutahya (Turkey). Mining Engineering Department

    2008-07-01

    Excess of produced coals should be kept in the stockyards of the collieries. The longer the duration time for these coals, the greater possibility for spontaneous combustion to take place. Spontaneously burnt coals result in economical and environmental problems. Therefore, taking the necessary precautions before an outburst of the spontaneous combustion phenomenon is too important in terms of its severe results. In this study, a stockpile having industrial dimensions was formed in coal stockyard. The effective parameters on the stockpiles of coal such as temperature and humidity of the weather, time, and atmospheric pressure values were measured. The interior temperature variations of these stockpiles caused by the atmospheric conditions were also measured. The interior temperature distribution maps of the stockpile together with maximum and minimum temperature values were expressed visually and numerically by the assistance of obtained data.

  17. Coal pile leachate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E C; Kimmitt, R R

    1982-09-01

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  18. Coal mine subsidence

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Longwall coal mining in southern Illinois occurs beneath some of the best agricultural land in the U.S. This region is characterized by highly productive, nearly level, and somewhat poorly drained soils. Subsidence from longwall mining causes changes in surface topography which alters surface and subsurface hydrology. These changes can adversely affect agricultural land by creating wet or ponded areas that can be deleterious to crop production. While most subsided areas show little impact from subsidence, some areas experience total crop failure. Coal companies are required by law to mitigate subsidence damage to cropland. The objective of this paper is to test the effectiveness of mitigation in restoring grain yields to their pre-mined levels. The research was conducted on sites selected to represent conventional mitigation techniques on the predominate soils in the area. Corn (Zea mays L.) and soybean [Glycine max.(L.) Merr] yields in 1988, 1989, 1990, and 1991 from mitigated areas were compared to yields from nearby undisturbed areas

  19. Comparative emissions from Pakistani coals and traditional coals

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y X [Guangzhou Medical College (China). Dept. of Hygiene; Huang, L F [Guangzhou Health and Anti-epidemic Station (China)

    1994-12-31

    Briquette coal has been widely used for domestic cooking and heating in many Chinese cites over the last two decades. To determine whether burning briquette coal contributes significantly to indoor air pollution, a study was performed in cities-of Southern China in which the measured levels of SO{sub 2}, NO{sub x}, TSP, SD, B(a)P in the kitchens of coal burning families were compared with levels obtained in families using gas. Significantly higher contentions of these pollutants, whose peaks correlated with daily cooking episodes, were detected in coal burning families. The levels of TSP and B(a)P were further found to be dependent on cooking methods, with deep frying and stir-frying of meat generating the most indoor TSP and B(a)P. Briquette coal burning was found to be the source of B(a)P contamination in food. A higher incidence of chronic pharyngitis as well as a suppressed salivary bacteriolytic enzyme activity were found in children of coal burning families. Epidemiologic and laboratory studies also show a close association between coal burning and the incidence of lung cancer in females. (author)

  20. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  1. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  2. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  3. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  4. Techno-economic study of CO{sub 2} capture from an existing coal-fired power plant: MEA scrubbing vs. O{sub 2}/CO{sub 2} recycle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D; Croiset, E; Douglas, P L [Waterloo Univ., Dept. of Chemical Engineering, Waterloo, ON (Canada); Douglas, M A [Natural Resources Canada, CANMET Energy Technology Centre, Nepean, ON (Canada)

    2003-11-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO{sub 2} capture technologies are available for retrofit. One option is to separate CO{sub 2} from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O{sub 2}/CO{sub 2} recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO{sub 2} for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO{sub 2} from coal power plants, however O{sub 2}/CO{sub 2} appears to be a more attractive retrofit than MEA scrubbing. The CO{sub 2} capture cost for the MEA case is USD 53/ton of CO{sub 2} avoided, which translates into 3.3 cent/kW h. For the O{sub 2}/CO{sub 2} case the CO{sub 2} capture cost is lower at USD 35/ton of CO{sub 2} avoided, which translates into 2.4 cent/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices. (Author)

  5. The complex using of coals of Ekibastuz coal basin and wastes of their development

    International Nuclear Information System (INIS)

    Gorlov, E.G.; Kost, L.A.; Lebedeva, L.N.; Shpirt, M.Ya.

    2013-01-01

    Present article is devoted to main directions of complex using of coals of Ekibastuz coal basin and wastes of their development. It was found that gasification of Ekibastuz coals is the perspective way of their using. It is defined that coal gasification could solve the ecological problems which arise at industrial combustion of coal. Therefore, the thermodynamic and experimental researches were conducted.

  6. Development of I and C system for the coal feeder of coal firing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Teak Soo; Park, Chan Ho [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    KECC(Kepco Coal Feeder Control System) receives coal weight, conveyor speed and boiler demand signals. It controls coal flow by generating speed signal of feeder which conveys coal in hopper to pulverizer, displaying measured coal quantity and providing local auto and manual manipulator (author). 33 figs.

  7. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  8. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2018-04-01

    Full Text Available Although enhanced coal bed methane recovery (ECBM and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 through the coal seam. A precious understanding of CO2 flow behaviour is necessary due to various complexities generated in coal seams upon CO2 injection. This paper aims to provide a comprehensive overview on the CO2 flow behaviour in deep coal seams, specifically addressing the permeability alterations associated with different in situ conditions. The low permeability nature of natural coal seams has a significant impact on the CO2 sequestration process. One of the major causative factors for this low permeability nature is the high effective stresses applying on them, which reduces the pore space available for fluid movement with giving negative impact on the flow capability. Further, deep coal seams are often water saturated where, the moisture behave as barriers for fluid movement and thus reduce the seam permeability. Although the high temperatures existing at deep seams cause thermal expansion in the coal matrix, reducing their permeability, extremely high temperatures may create thermal cracks, resulting permeability enhancements. Deep coal seams preferable for CO2 sequestration generally are high-rank coal, as they have been subjected to greater pressure and temperature variations over a long period of time, which confirm the low permeability nature of such seams. The resulting extremely low CO2 permeability nature creates serious issues in large-scale CO2 sequestration/ECBM projects, as critically high injection pressures are required to achieve sufficient CO2 injection into the coal seam. The situation becomes worse when CO2 is injected into such coal seams, because CO2 movement in the coal seam creates a significant influence on the natural permeability of the seams through CO2

  9. Study of mechanically activated coal combustion

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolij P.

    2009-01-01

    Full Text Available Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods at coals grinding on their chemical activeness at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activeness that enables development of new highly boosted processing methods for coals with various levels of metamorphism.

  10. Australian coal year book 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, A [ed.

    1984-01-01

    The first edition of this new publication provides comprehensive data on the Australian coal industry. Apart from a mine directory which lists technical details for each mine, other subjects include; coal export facilities; annual coal statistics; buyers guide; suppliers directory; addresses of relevant organizations and an index of coal mine owners.

  11. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  12. Clean coal technology challenges for China

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J. [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-01-01

    China is rich in coal reserves and also the largest coal producer and consumer in the world. Coal constitutes over 70% of the total energy consumption, some 86% of coal production is burned directly, which causes serious air pollution problems. However, based on China's specific energy structure, coal utilisation will remain the dominant means of energy usage and clean coal technology must be the way forward if the environmental problems are to be resolved. This article discusses China's Clean Coal Technology Program, its implementation, including the clean coal technologies being developed and introduced, with reference to the key R & D institutes for each of the coal-using sectors. The article is an edited version of the 2000 Robens Coal Science Lecture, delivered in London in October 2000. The China Coal Technology Program for the 9th Five-Year Plan (1996-2000) was approved in 1997. The technologies included in the Program considered in this article are in: coal washing and grading, coal briquette, coal water slurry; circulating fluidised bed technology; pressurised fluidised bed combined cycle; integrated gasification combined cycle; coal gasification, coal liquefaction and flue gas desulfurisation. 4 tabs.

  13. Coal: the future in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    The whole issue is devoted to the future of coal in South Africa, and includes articles on the Petrick report, coal conversion research in South Africa, the activities of the Fuel Research Institute (on beneficiation, briquetting, carbonization, fluidized bed combustion), Sasol's production of chemical feedstocks from coal, mining methods, and the coal requirements of the electric and chemical industries.

  14. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  15. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content. (In Polish)

  16. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content.

  17. 78 FR 71592 - National Coal Council

    Science.gov (United States)

    2013-11-29

    ... DEPARTMENT OF ENERGY National Coal Council AGENCY: Department of Energy, Office of Fossil Energy..., notice is hereby given that the National Coal Council (NCC) will be renewed for a two-year period. The... matters relating to coal issues. Additionally, the renewal of the National Coal Council has been...

  18. Appalachian clean coal technology consortium

    International Nuclear Information System (INIS)

    Kutz, K.; Yoon, Roe-Hoan

    1995-01-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A ampersand E firms working in the Appalachian coal fields. This approach is consistent with President Clinton's initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force

  19. Coal supply shortage - buyers beware

    Energy Technology Data Exchange (ETDEWEB)

    Moth, M; Phillips, K

    1988-08-01

    Since the commencement of 1988, the world coal market has witnessed a number of quite remarkable shifts and realignments that have ostensibly resulted from import demand surges, notably in Europe and the Pacific Rim but perhaps more significantly also from constraints on supply, most obviously in Australia but also seen elsewhere in the PRC, Colombia, Poland, and South Africa. Consequently, this has left the USA as the only remaining reliable surplus supplier of high volume quality steam and metallurgical coals to the world market. Importantly, it has to be recognised that these existing supply/demand factors will not disappear overnight. What has been a very strong buyers' market for coal throughout at least the last six years is now no longer the case. Coal purchasers around the globe have to be prepared for an extended and indeed a refreshing period of 'seller power' with scarcity of supply and higher coal prices forecast to extend well into next year and maybe even longer. The message for coal importers who have not yet woken up to the new order of things is very clear, 'today is possibly already too late to secure coal purchases for delivery in 1988 because many exporters report they are sold out. But more important with tight supply expected to prevail, buyers should be securing their purchases now for 1989 imports requirements and delivery'. 2 figs.

  20. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  1. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  2. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  3. Surface chemical problems in coal flotation

    Science.gov (United States)

    Taylor, S. R.; Miller, K. J.; Deurbrouck, A. W.

    1981-02-01

    As the use of coal increases and more fine material is produced by mining and processing, the need for improved methods of coal beneficiation increases. While flotation techniques can help meet these needs, the technique is beset with many problems. These problems involve surface chemical and interfacial properties of the coal-mineral-water slurry systems used in coal flotation. The problems associated with coal flotation include non-selectivity, inefficient reagent utilization, and excessive variablity of results. These problems can be broadely classified as a lack of predictability. The present knowledge of coal flotation is not sufficient, in terms of surface chemical parameters, to allow prediction of the flotation response of a given coal. In this paper, some of the surface chemical properties of coal and coal minerals that need to be defined will be discussed in terms of the problems noted above and their impact on coal cleaning.

  4. Data for generation of all Tables and Figures for AIMS-ES publication in 2016 pertaining to dry sorbent injection of trona for acid gas control

    Data.gov (United States)

    U.S. Environmental Protection Agency — emissions data and removal efficiencies for coal combustion utilizing PM control devices and dry sorbent injection of trona specifically for acid gas control. This...

  5. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  6. CO2-ECBM and CO2 Sequestration in Polish Coal Seam – Experimental Study

    Directory of Open Access Journals (Sweden)

    Paweł Baran

    2014-01-01

    Originality/value: The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.

  7. Thermodynamic model for swelling of unconfined coal due to adsorption of mixed gases

    NARCIS (Netherlands)

    Liu, J.; Peach, C.J.; Zhou, Hongwei; Spiers, C.J.

    2015-01-01

    Permeability evolution in coal seams during CO2-Enhanced Coalbed Methane (ECBM) production is strongly influenced by swelling/shrinkage effects related to sorption and desorption of both CO2 and CH4. Other gases, such as N2, have also been proposed for injection in ECBM operations. In addition,

  8. Decrease in emissions of nitric oxides during burning of Kuznetsk hard coal

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gedike, I.A.; Lobov, G.V.

    1983-01-01

    Results are presented of introducing and studying the plan for gradual combustion of Kuznetsk hard coals on a BKZ-210-140 F type boiler. Supply of 16-18% theoretically necessary air through the nozzle of the tertiary injection made it possible to reduce 1.5-fold the emissions of nitric oxides without reducing the economy of the furnace process.

  9. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    discovery. The outcrops found in 2009 amount to approximately 8 m of sediment including a coal seam of 2 m thickness. More outcrops and additional coal deposits most certainly are to be found, pending further fieldwork. The deposits are Middle Jurassic, Callovian, in age and were deposited in a floodplain...... environment related to meandering river channels. Spores and pollen in the lower fluvial deposits reflect abundant vegetation of ferns along the river banks. In contrast, a sparse spore and pollen flora in the coals show a mixed vegetation of ferns and gymnosperms. Based on proximate and petrographic analyses...

  10. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  11. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  12. Coal transportation road damage

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.; Pawlowski, J.A.

    1994-01-01

    Heavy trucks are primarily responsible for pavement damage to the nation's highways. In this paper we evaluate the pavement damage caused by coal trucks. We analyze the chief source of pavement damage (vehicle weight per axle, not total vehicle weight) and the chief cost involved (the periodic overlay that is required when a road's surface becomes worn). This analysis is presented in two stages. In the first section we present a synopsis of current economic theory including simple versions of the formulas that can be: used to calculate costs of pavement wear. In the second section we apply this theory to a specific example proximate to the reference environment for the Fuel Cycle Study in New Mexico in order to provide a numerical measure of the magnitude of the costs

  13. Distilling shale and coal

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H; Young, G

    1923-01-09

    In a process of recovering oil from shale or coal the material is ground and may be subjected to a cleaning or concentrating process of the kind described in Specification 153,663 after which it is distilled in a furnace as described in Specification 13,625/09 the sections of the furnace forming different temperature zones, and the rate of the passage of the material is regulated so that distillation is complete with respect to the temperature of each zone, the whole distillation being accomplished in successive stages. The vapors are taken off at each zone and superheated steam may be passed into the furnace at suitable points and the distillation terminated at any stage of the process.

  14. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  15. Coal distillation plant

    Energy Technology Data Exchange (ETDEWEB)

    Overton, P C

    1937-05-20

    To fractionally condense the vapours derived from the distillation of coal or shale, an apparatus comprises a low temperature carbonisation retort having a plurality of differently heating zones therein which connect with a manifold in which said gas oil vapours can expand. A dephlegmator, cold water jacketted and centrally air heated, causes the heavier matters of the vapours to settle out and the lighter oil gas vapours are conveyed to the bottom of an electrically operated fractionating apparatus comprising a column furnished with a plurality of compartments each heated by electrical elements connected to source of current by lead wires. Annular launders in the compartments collect the derived liquids at the various levels and deliver same by pipes to separate sump while pipe at head of column draws off incondensible gases for return to retort.

  16. Distilling coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Bussey, C C

    1916-07-17

    In the extraction of vovolatile ingredients from coal, shale, lignite, and other hydrocarbonaceous materials by passing through the material a heating-agent produced by burning at the base of the charge a portion of the material from which the volatile ingredients have been extracted, the temperature of the heating agent is maintained constant by continuously removing the residue from the bottom of the apparatus. The temperature employed is 800/sup 0/F or slightly less, so as to avoid any breaking-down action. As shown the retort is flared downwardly, and is provided at the base with a fireplace, which is in communication with the interior of the retort through flues fitted with screens and dampers. Beneath the bottom of the retort is mounted a movable grate carried on endless sprocket chains, which are preferably set so that the grate inclines downwardly towards the coke, etc.

  17. Coal mine site reclamation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Coal mine sites can have significant effects on local environments. In addition to the physical disruption of land forms and ecosystems, mining can also leave behind a legacy of secondary detrimental effects due to leaching of acid and trace elements from discarded materials. This report looks at the remediation of both deep mine and opencast mine sites, covering reclamation methods, back-filling issues, drainage and restoration. Examples of national variations in the applicable legislation and in the definition of rehabilitation are compared. Ultimately, mine site rehabilitation should return sites to conditions where land forms, soils, hydrology, and flora and fauna are self-sustaining and compatible with surrounding land uses. Case studies are given to show what can be achieved and how some landscapes can actually be improved as a result of mining activity.

  18. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jie Wang; Chunqi Li; Kinya Sakanishi; Tetsuya Nakazato; Hiroaki Tao; Toshimasa Takanohashi; Takayuki Takarada; Ikuo Saito [National Institute Advanced Industrial Science and Technology (AIST), Ibaraki (Japan). Energy Technology Research Institute

    2005-09-01

    A sub-bituminous Wyodak coal (WD coal) and a bituminous Illinois No. 6 coal (IL coal) were thermally extracted with 1-methylnaphthalene (1-MN) and N-methyl-2-pyrrolidone (NMP) to produce clean extract. A mild pretreatment with acetic acid was also carried out. Major and trace inorganic elements in the raw coals and resultant extracts were determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES), flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS), and cold vapor atomic absorption spectrometry (CV-AAS). It was found that the extraction with 1-MN resulted in 73-100% reductions in the concentration of Li, Be, V, Ga, As, Se, Sr, Cd, Ba, Hg, and Pb. The extraction with NMP yielded more extract than that with 1-MN, but it retained more organically associated major and trace metals in the extracts. In the extraction of WD coal with NMP, the acid pretreatment not only significantly enhanced the extraction yield but also significantly reduced the concentrations of alkaline earth elements such as Be, Ca, Mg, Sr, and Ba in the extract. In addition, the modes of occurrence of trace elements in the coals were discussed according to their extraction behaviors. 30 refs., 2 figs., 5 tabs.

  19. Prototype plant for nuclear process heat (PNP) - operation of the pilot plant for hydrogasification of coal

    International Nuclear Information System (INIS)

    Bruengel, N.; Dehms, G.; Fiedler, P.; Gerigk, H.P.; Ruddeck, W.; Schrader, L.; Schumacher, H.J.

    1988-04-01

    The Rheinische Braunkohlenwerke AG developed the process of hydrogasification of coal in a fluidized bed for generation of SNG. On basis of test results obtained in a semi-technical pilot plant of a through-put of 250 kg/h dried coal a large pilot plant was erected processing 10 t/h dried brown coal. This plant was on stream for about 14700 h, of which about 7800 h were with gasifier operation; during this time about 38000 t of dried brown coal of the Rhenish district were processed containing 4 to 25% of ash. At pressures of 60 to 120 bar and temperatures of 800 to 935 0 C carbon conversion rates up to 81 percent and methane amounts of 5000 m 3 (STP)/h were reached. The decisive parameter for methane generation was the hydrogen/coal-ratio. Even at high moisture contents, usually diminishing the methane yield from the coal essentially, by high hydrogen/coal-ratios high methane yields could be obtained. The gasifier itself caused no troubles during the total time operation. Difficulties with the original design of the residual char cooler could be overcome by change-over from water injection to liquid carbon dioxide. The design of the heat recovery system proved well. Alltogether so the size increasement of the gasifier from the semi-technical to the large pilot plant as well as the harmonization of gas generation and gas refining was proved. (orig.) With 20 refs., 20 tabs., 81 figs [de

  20. Coal distribution, January--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-17

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. This issue presents information for January through June 1990. Coal distribution data are shown (in tables 1--34) by coal-producing state of origin, consumer use, method of transportation, and state of destination. 6 figs., 34 tabs.