WorldWideScience

Sample records for pulsed-laser aluminum welds

  1. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    International Nuclear Information System (INIS)

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  2. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    In this paper, some research and develop-ment activities within pulsed laser welding technology at the Tech-nical University of Denmark will be described. The laser group at the Insti-tute for Manufacturing Technology has nearly 20 years of experience in laser materials process-ing. Inter......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...

  3. Energy losses estimation during pulsed-laser seam welding

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Hana; Havelková, M.; Chmelíčková, H.

    2014-01-01

    Roč. 45, č. 3 (2014), s. 1116-1121 ISSN 1073-5615 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : laser welding * pulsed-laser * Nd:YAG laser Subject RIV: JP - Industrial Processing Impact factor: 1.461, year: 2014

  4. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  5. A thermal model for nanosecond pulsed laser ablation of aluminum

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-07-01

    Full Text Available In order to simulate the nanosecond pulsed laser ablation of aluminum, a novel model was presented for the target ablation and plume expansion. The simulation of the target ablation was based on one-dimensional heat conduction, taking into account temperature dependent material properties, phase transition, dielectric transition and phase explosion. While the simulation of the plume expansion was based on one-dimensional gas-dynamical equation, taking into account ionization, plume absorption and shielding. By coupling the calculations of the target ablation and plume expansion, the characteristics of the target and plume were obtained. And the calculated results were in good agreement with the experimental data, in terms of ablation threshold and depth within the fluence range of the tested laser. Subsequently, investigations were carried out to analyze the mechanisms of nanosecond pulsed laser ablation. The calculated results showed that the maximum surface temperature remained at about 90% of the critical temperature (0.9Tc due to phase explosion. Moreover, the plume shielding has significant effects on the laser ablation, and the plume shielding proportion increase as the laser fluence increasing. The ambient pressure belows 100 Pa is more suitable for laser ablation, which can obtained larger ablation depth.

  6. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  7. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  8. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    International Nuclear Information System (INIS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-01-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  9. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baladi, Arash [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Sarraf Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Engineering Department, Tarbiat Modares University, Jalal Al Ahmad, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  10. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  11. Numerical and experimental evaluation of residual strains induced by pulsed laser welding

    International Nuclear Information System (INIS)

    Touvrey, C.; Bruyere, V.; Namy, P.

    2014-01-01

    The aim of the present study is to compare the residual strains induced by different welding processes during the assembly of two Ti6Al4V thin sheets. Several welding configurations and two means (pulsed laser and continuous one) are tested. The first part of the study intends to experimentally quantify strains induced by laser-matter interaction when one of the plates can freely bend. In this configuration the residual stresses are minimum, and consequently the strains measurement constitute a good indicator of the mechanical evolution. The displacements are in-situ reported thanks to a mechanical sensor. The second part of the study is dedicated to the numerical modeling of the processes. Unfortunately, the model is not completely predictive and appears to be oversimplified to describe the measured distortion. As it appears difficult to model the laser-matter interaction (especially in the case of many impacts recovering), we have adopted an equivalent approach to simulate the thermal evolution within the work pieces. An optimization procedure has been developed to determine an equivalent thermal flux, which leads to a melted zone shape in good agreement with experimental evaluations. The thermo-mechanical problem is computed by means of the finite elements software COMSOL Multiphysics. The results are compared to experimental data (displacement measurements) throughout the complete simulation. We plan to apply the complete model for more complex geometries, involving the generation of residual stresses. (authors)

  12. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  13. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process

    International Nuclear Information System (INIS)

    Robert, Y.

    2007-09-01

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  14. Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa; Ma, Shengnan; Zhang, Yue

    2017-06-01

    This paper experimentally investigates the relationship between laser keyhole characteristics on the porosity formation during pulsed laser-GTA welding of magnesium alloy. Based on direct observations during welding process, the influences of laser keyhole state on the porosity formation were studied. Results show that the porosities in the joint are always at the bottom of fusion zone of the joint, which is closely related to the keyhole behavior. A large depth to wide ratio always leads to the increase of porosity generation chance. Keeping the keyhole outlet open for a longer time benefits the porosity restriction. Overlap of adjacent laser keyhole can effectively decrease the porosity generation, due to the cutting effect between adjacent laser keyholes. There are threshold overlap rate values for laser keyholes in different state.

  15. Interpretation of aluminum-alloy weld radiography

    Science.gov (United States)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  16. Effect of focusing condition on molten area characteristics in micro-welding of borosilicate glass by picosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, I.H.W.; Okamoto, Y.; Okada, A.; Takekuni, T. [Okayama University, Graduate School of Natural Science and Technology, Okayama (Japan); Sakagawa, T. [Kataoka Corporation, Yokohama (Japan)

    2016-05-15

    The characteristics of the molten area are attributed not only by laser energy condition but also the focusing condition. In this study, a picosecond pulsed laser of 1064 nm in wavelength and 12.5 ps in pulse duration was used as a laser source for joining glass material. Influence of focusing condition on micro-welding of glasses was experimentally investigated by using an objective lens with and without spherical aberration correction, and its molten area was characterized. The usage of objective lens with spherical aberration correction led to a larger molten area inside the bulk material of glass even under the same pulse energy, which related to the efficient micro-welding of glass materials. In addition, an optical system with the spherical aberration correction led to a stable absorption of laser energy inside the bulk glass material, stabilizing the shape of molten area, which resulted in the reliable weld joint. On the other hand, breaking strength of the specimens with spherical aberration correction was higher than that without spherical aberration correction. Therefore, it is concluded that the focusing condition with spherical aberration correction led to the larger and stable molten area, which resulted in higher joining strength in micro-welding of glass materials. (orig.)

  17. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  18. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  19. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  20. Analysis of Pulsed Laser Welding Parameters Effect on Weld Geometry of 316L Stainless Steel using DOE

    Directory of Open Access Journals (Sweden)

    M. R. Pakmanesh

    2018-03-01

    Full Text Available In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.

  1. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  2. Stoichiometry and characterization of aluminum oxynitride thin films grown by ion-beam-assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zabinski, J.S. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Hu, J.J. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)], E-mail: Jianjun.Hu@WPAFB.AF.MIL; Bultman, J.E. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Pierce, N.A. [Propulsion Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Voevodin, A.A. [Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2008-07-31

    Oxides are inherently stable in air at elevated temperatures and may serve as wear resistant matrices for solid lubricants. Aluminum oxide is a particularly good candidate for a matrix because it has good diffusion barrier properties and modest hardness. Most thin film deposition techniques that are used to grow alumina require high temperatures to impart crystallinity. Crystalline films are about twice as hard as amorphous ones. Unfortunately, the mechanical properties of most engineering steels are degraded at temperatures above 250-350 deg. C. This work is focused on using energetic reactive ion bombardment during simultaneous pulsed laser deposition to enhance film crystallization at low temperatures. Alumina films were grown at several background gas pressures and temperatures, with and without Ar ion bombardment. The films were nearly stoichiometric except for depositions in vacuum. Using nitrogen ion bombardment, nitrogen was incorporated into the films and formed the Al-O-N matrix. Nitrogen concentration could be controlled through selection of gas pressure and ion energy. Crystalline Al-O-N films were grown at 330 deg. C with a negative bias voltage to the substrate, and showed improved hardness in comparison to amorphous films.

  3. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    Science.gov (United States)

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  4. Influence of repetitive pulsed laser irradiation on the surface characteristics of an aluminum alloy in the melting regime

    International Nuclear Information System (INIS)

    Choi, Sung Ho; Jhang, Kyung Young

    2015-01-01

    We have investigated the influence of repetitive near-infrared (NIR) pulsed laser shots in the melting regime on the surface characteristics of an aluminum 6061-T6 alloy. Characteristics of interest include surface morphology, surface roughness, and surface hardness in the melted zone as well as the size of the melted zone. For this study, the proper pulse energy for inducing surface melting at one shot is selected using numerical simulations that calculate the variation in temperature at the laser beam spot for various input pulse energies in order to find the proper pulse energy for raising the temperature to the melting point. In this study, 130 mJ was selected as the input energy for a Nd:YAG laser pulse with a duration of 5 ns. The size of the melted zone measured using optical microscopy (OM) increased logarithmically with an increasing shot number. The surface morphology observed by scanning electron microscopy (SEM) clearly showed a re-solidified microstructure evolution after surface melting. The surface roughness and hardness were measured by atomic force microscopy (AFM) and nano-indentation, respectively. The surface roughness showed almost no variation due to the surface texturing after laser shots over 10. The hardness inside the melted zone was lower than that outside the zone because the β'' phase was transformed to a β phase or dissolved into a matrix.

  5. Modeling aluminum-lithium alloy welding characteristics

    Science.gov (United States)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  6. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  7. High excitation of the species in nitrogen–aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    International Nuclear Information System (INIS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    A reactive nitrogen–aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N 2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N 2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N 2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen–aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis. - Highlights: • ECR discharge and pulsed laser ablation generate highly excited ECR–PLA plasma. • The expansion of PLA plasma results in excitation enhancement of ECR plasma species. • The ECR plasma leads to excitation prolongation of PLA plasma species. • The ECR–PLA plasma emits strong emissions from a variety of excited species. • The ECR–PLA plasma maintains high vibrational–rotational temperatures for a long time

  8. Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy

    Directory of Open Access Journals (Sweden)

    Irina Loginova

    2017-12-01

    Full Text Available The effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of the new heat-treatable, wieldable, cryogenic Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy were investigated. The optimum parameters of pulsed laser welding were found. They were 330–340 V in voltage, 0.2–0.25 mm in pulse overlap with 12 ms duration, and 2 mm/s speed and ramp-down pulse shape. Pulsed laser welding without and with Al-5Mg filler metal led to the formation of duplex (columnar and fine grains as-cast structures with hot cracks and gas porosity as defects in the weld zone. Using Al-5Ti-1B filler metal for welding led to the formation of the fine grain structure with an average grain size of 4 ± 0.2 µm and without any weld defects. The average concentration of Mg is 2.8%; Mn, 0.2%; Zr, 0.1%; Sc, 0.15%; and Ti, 2.1% were formed in the weld. The ultimate tensile strength (UTS of the welded alloy with AlTiB was 260 MPa, which was equal to the base metal in the as-cast condition. The UTS was increased by 60 MPa after annealing at 370 °C for 6 h that was 85% of UTS of the base alloy.

  9. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  10. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  11. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    Science.gov (United States)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  12. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    Science.gov (United States)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  13. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  14. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  15. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    Science.gov (United States)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  16. Diode laser welding of aluminum to steel

    International Nuclear Information System (INIS)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-01-01

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  17. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  18. Narrow groove gas metal-arc welding of aluminum

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1975-01-01

    The Gas Metal-Arc (GMA) welding process is explained and the equipment used described with an analysis of power supply function and the action of the arc, followed by discussion of general applications and problems. GMA braze welding of beryllium is then described, as is the development of a special high purity filler wire and a narrow deep groove joint design for improved weld strength in beryllium. This joint design and the special wire are applied in making high strength welds in high strength aluminum for special applications. High speed motion pictures of the welding operation are shown to illustrate the talk. (auth)

  19. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E., E-mail: povar@ihed.ras; Levashov, Pavel R.

    2017-02-28

    Highlights: • We model double-pulse laser ablation of aluminum using microscopic and macroscopic approaches. • Both methods show decrease in depth of crater with increasing delay between pulses. • Both methods reveal the plume temperature growth with the increasing delay. • Good agreement between results is a step towards the development of combined model. - Abstract: We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  20. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    2013-08-01

    Sterling, R.J. Steel, C.-O. Pettersson. “Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel.” Mater...MICROSTRUCTURAL CHARACTERIZATION OF FRICTION STIR WELDED ALUMINUM-STEEL JOINTS By ERIN ELIZABETH PATTERSON A thesis submitted in...for his work producing the dissimilar weld samples used in this study. Without his work, this project would not have been possible. I would also

  1. Optimum welding condition of 2017 aluminum similar alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Morikawa, K. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Fujishiro, Y.; Yoshida, M. [Sumitomo Metal Technology Ltd., Hyogo (Japan)

    2002-07-01

    Usefulness of the statistical analysis for judging optimization of the friction welding conditions was investigated by using 2017 aluminum similar alloy, where many samples under fixed welding conditions were friction welded and analyzed statistically. In general, selection of the optimum friction welding conditions for similar materials is easy. However, it was not always the case for 2017 aluminum alloy. For optimum friction welding conditions of this material, it is necessary to apply relatively larger upset pressure to obtain high friction heating. Joint efficiencies obtained under the optimum friction welding conditions showed large shape parameter (m value) of Weibull distribution as well as in the dissimilar materials previously reported. The m value calculated on the small number of data can be substituted for m value on the 30 data. Therefore, m value is useful for practical use in the factory for assuming the propriety of the friction welding conditions. (orig.)

  2. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    International Nuclear Information System (INIS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-01-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow

  3. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-10-01

    Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  4. Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts

    Science.gov (United States)

    Ishikuro, Tomoaki; Matsuoka, Shin-Ichi

    This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.

  5. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  6. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  7. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process; Simulation numerique du soudage du TA6V par laser YAG impulsionnel: caracterisation experimentale et modelisation des aspects thermomecanique associees a ce procede

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Y

    2007-09-15

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  8. Microhardness Testing of Aluminum Alloy Welds

    Science.gov (United States)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  9. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  10. Electromagnetic hammer removes weld distortions from aluminum tanks

    Science.gov (United States)

    Schwinghamer, R. J.

    1965-01-01

    Distortions around weld areas on sheet-aluminum tanks and other structures are removed with a portable electromagnetic hammer. The hammer incorporates a coil that generates a controlled high-energy pulsed magnetic field over localized areas on the metal surface.

  11. Continuous internal channels formed in aluminum fusion welds

    Science.gov (United States)

    Gault, J.; Sabo, W.

    1967-01-01

    Process produces continuous internal channel systems on a repeatable basis in 2014-T6 aluminum. Standard machining forms the initial channel, which is filled with tungsten carbide powder. TIG machine fusion welding completes formation of the channel. Chem-mill techniques enlarge it to the desired size.

  12. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  13. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  14. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    Directory of Open Access Journals (Sweden)

    He Peng

    2017-04-01

    Full Text Available The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations.

  15. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    OpenAIRE

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying

    2010-01-01

    Abstract: The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The ...

  16. The investigation of typical welding defects for 5456 aluminum alloy friction stir welds

    International Nuclear Information System (INIS)

    Chen Huabin; Yan Keng; Lin Tao; Chen Shanben; Jiang Chengyu; Zhao Yong

    2006-01-01

    The external factors on the friction stir welding defects are so abundant that the experiments of friction stir welding were conducted for 5456 aluminum alloy. With the changes of the tool tilt angle and material condition, defects can be generated. These defects can be conventional ones (lack of penetration or voids), or lazy S, which are unique to friction stir welding. However, the origin of the defects remains an area of uncertainty. In this study, an attempt has been made to investigate the formation of these defects. The typical welding defects of friction stir welding joint for 5456 aluminum alloy were analyzed and discussed, respectively, by using optical microscopy (OM), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscope (SEM). The microscopic examination of the nugget zone and fracture location of the weld confirms that the tilt angle can change the plastic material flow patterns in the stir zone and accordingly control the weld properties. In addition, the oxide layer from the initial butt surface during FSW is dispersed at the grain boundary. These A1 2 O 3 particles are actually the major cause of failure of the joint

  17. Fracture toughness of steel--aluminum deformation welds

    International Nuclear Information System (INIS)

    Albright, C.E.

    1978-11-01

    A study of the fracture toughness (in this case, G/sub Ic/) of steel--aluminum deformation welds using a specially developed double cantilever beam fracture toughness specimen is presented. Welds made at 350 0 C were heat treated at 360, 380, 400, 420, and 440 0 C. An intermetallic reaction product layer of Fe 2 Al 5 is formed at the steel--aluminum interface with increasing heat treating temperature and time by a process of nucleation and growth of discrete particles. A transition in toughness from a higher average G/sub Ic/ value (6097 N/m) to a very low average G/sub Ic/ value (525 N/m) is observed. The decrease in toughness is accompanied by an increase in Fe 2 Al 5 particle diameter from 4 to 8 μm. Failure at the higher toughness values is characterized by ductile rupture through the aluminum. At the lower toughness values, failure occurs between the aluminum and the Fe 2 Al 5 reaction product layer. A void layer forming by a vacancy condensation mechanism in the aluminum adjacent to the Fe 2 Al 5 is shown to cause the embrittlement

  18. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  19. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    Science.gov (United States)

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  20. Aluminum and stainless steel tubes joined by simple ring and welding process

    Science.gov (United States)

    Townhill, A.

    1967-01-01

    Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.

  1. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    Science.gov (United States)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  2. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  3. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  4. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    . The improvement obtained is shown to be due to the development of a secondary bond in the joint beside the weld nugget increasing the total weld area. The application of powder additive is especially feasible, when using welding machines with insufficient current capacity for producing the required nugget size......In order to ensure good quality joints between aluminum sheets by resistance spot welding, a new approach involving the addition of metal powder to the faying surfaces before resistance heating is proposed. Three different metal powders (pure aluminum and two powders corresponding to the alloys AA....... In such cases the best results are obtained with pure aluminum powder....

  5. Microstructural and mechanical properties of pure aluminum, 5083 and 7075 alloys joined by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Selim Sarper [Celal Bayar Univ., Manisa, Muradiye (Turkey)

    2012-07-01

    In this study, microstructural and mechanical properties of pure aluminum, 5083 and 7075 alloys joined by friction stir welding were investigated. Hardness, tensile, bending and impact tests were applied to the welded samples. In addition, optical and SEM tests were carried out. The effects of welding speed on microstructure and mechanical properties were investigated in these materials. Then, the optimal conditions for friction stir welding were determined for pure aluminum, 5083 and 7075 alloys. The maximum hardness was observed for 7075 while the minimum hardness was observed for pure aluminum. (orig.)

  6. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    Science.gov (United States)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  7. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  8. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    International Nuclear Information System (INIS)

    Kumar, A.; Sundarrajan, S.

    2009-01-01

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties

  9. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  10. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  11. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  12. Development and modeling of hot tearing test in TIG welding of aluminum alloy 6056

    OpenAIRE

    Niel , Aurélie; Fras , Gilles; Deschaux-Beaume , Frédéric; Bordreuil , Cyril

    2010-01-01

    International audience; TIG welding process is widely used in the aeronautic industry. However, the increase of productivity which generally require an increase of welding speed is limited by the appearance of defects, such as hot tearing. This study focuses on the analysis of hot tearing in TIG welding on a 6056 aluminum alloy, used in aircraft manufacturing. Thanks to the developpement of an original hot tearing test and to numerical simulation of welding process, the influence of various p...

  13. Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils

    Science.gov (United States)

    Pakmanesh, M. R.; Shamanian, M.

    2018-02-01

    In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.

  14. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  15. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

    Science.gov (United States)

    Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.

    2016-01-01

    The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

  16. High-strength laser welding of aluminum-lithium scandium-doped alloys

    Science.gov (United States)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  17. Process for optimizing titanium and zirconium additions to aluminum welding consumables

    International Nuclear Information System (INIS)

    Dvornak, M.J.; Frost, R.H.

    1992-01-01

    This patent describes a process for manufacturing an aluminum welding consumable. It comprises: creating an aluminum melt; adding to the aluminum melt solid pieces of a master alloy, comprising aluminum and a weld-enhancing additive to form a mixture, wherein the weld-enhancing additive being a material selected from the group consisting of titanium and zirconium, so that the weld-enhancing additive exists in the alloy prior to addition to the melt in the form of intermetallic particles relatively large in size and small in number, and after addition to the melt the weld-enhancing additive exists in the form of fractured intermetallic particles of refined size having dissolved fractured interfaces, casting the mixture into a chill mold to form an ingot; reducing the ingot to rods of rough wire dimension by cold rolling; annealing the reduced rods; and drawing the rods into wire

  18. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    Science.gov (United States)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  19. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    Science.gov (United States)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  20. Experimental Investigation on Electric Current-Aided Laser Stake Welding of Aluminum Alloy T-Joints

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-11-01

    Full Text Available In the present study, aluminum alloy T-joints were welded using the laser stake-welding process. In order to improve the welding quality of the T-joints, an external electric current was used to aid the laser stake-welding process. The effects of the process parameters on the weld morphology, mechanical properties, and microstructure of the welded joints were analyzed and discussed in detail. The results indicate that the aided electric current should be no greater than a certain maximum value. Upon increasing the aided electric current, the weld width at the skin and stringer faying surface obviously increased, but there was an insignificant change in the penetration depth. Furthermore, the electric current and pressing force should be chosen to produce an expected weld width at the faying surface, whereas the laser power and welding speed should be primarily considered to obtain an optimal penetration depth. The tensile shear specimens failed across the faying surface or failed in the weld zone of the skin. The specimens that failed in the weld of the skin could resist a higher tensile shear load compared with specimens that failed across the faying surface. The microstructural observations and microhardness results demonstrated that the tensile shear load capacity of the aluminum alloy welded T-joint was mainly determined by the weld width at the faying surface.

  1. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  2. Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.

    2017-10-01

    Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.

  3. Upgrading weld quality of a friction stir welded aluminum alloys AMG6

    Science.gov (United States)

    Chernykh, I. K.; Vasil'ev, E. V.; Matuzko, E. N.; Krivonos, E. V.

    2018-01-01

    In the course of introduction of FSW technology into the industry there is a keen interest in this process; there are issues such as how does joining take place, what is the structure of the joint, and where there are dangerous zones. The objective of this research is to obtain information about the structure of the joint, what are the temperatures that arise during the joining, what strength is apply to the tool when joining the material, what tensile strength of joint, and where fracture tended to occur. Specimens were produced at different modes of welding at a tool rotation speed of 315 to 625 rpm and tool travel speed of 40 to 125 mm/min. During the experiment, the strength applied to the tool was measured, which reached 800016000 N (Fz) and 400-1400 N (Fx) and the temperature on the surface of the tool, which is in the range 250-400°C. Before the welding process the tool was heated to a temperature in the range of 100-250 degrees, but the tensile strength is not had a tangible impact. The tensile strength is about 80 % of that of the aluminum alloy base metal tensile strength, and fracture tended is occur not at the line of joint but follow the shape of the tool. In the transverse cross section of a FSW material there is a microstructural regions such as weld nugget, thermomechanically affected zone and heat-affected zone with parent material.

  4. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  5. Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

    Science.gov (United States)

    Malikov, A. G.

    2017-12-01

    At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.

  6. The microstructure of aluminum A5083 butt joint by friction stir welding

    International Nuclear Information System (INIS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-01-01

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected

  7. The microstructure of aluminum A5083 butt joint by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Jasri, M. A. H. M.; Afendi, M. [School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh, 02600, Arau, Perlis (Malaysia); Ismail, A. [UniKL MIMET, JalanPantaiRemis, 32200, Lumut, Perak (Malaysia); Ishak, M. [Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 02600, Pekan, Pahang (Malaysia)

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  8. Technique for in-place welding of aluminum backed up by a combustible material

    Science.gov (United States)

    Spagnuolo, A. C.

    1971-01-01

    Welding external aluminum jacket, tightly wrapped around inner layer of wood composition fiberboard, in oxygen free environment prevents combustion and subsequent damage to underlying fiberboard. Technique also applies to metal cutting in similar assemblies without disassembly to remove combustible materials from welding heat proximity.

  9. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  10. Friction welding of A 6061 aluminum alloy and S45C carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, T. [Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya (Japan); Kawata, S. [Post Graduate Student, Nagoya Univ., Nagoya (Japan)

    2004-07-01

    Many researches for friction welding of aluminum with either carbon steel or stainless steel have been carried out. From those results, it is concluded that the greatest problem is the formation of brittle intermetallic compounds at weld interface. However, it is not clearly demonstrated the effect of friction welding parameters on the formation of intermetallic compounds. This research purposes are to evaluate the formation of intermetallic compounds and to investigate the effect of friction welding parameters on the strength of welded joint. For these purposes, A6061 aluminum alloy and S45C carbon steel were used with a continuous drive vertical friction welding machine. Tensile test results revealed that the maximum tensile strength was achieved at extremely short friction time and high upset. The joint strength reached 92% of the tensile strength of A6061 base metal. Tensile strength of friction welding was increasing with increasing upset pressure when friction time 1sec. However, tensile properties were deteriorated with increasing friction time. It was observed that the amount of formed intermetallic compound was increasing with increasing friction time at weld interface. Partly formed intermetallic compound on weld interface were identified when friction time 1 sec. However, intermetallic compound layer were severely developed with longer friction time at weld interface. It was concluded that intermetallic compound layer deteriorated the tensile properties of weld joints. (orig.)

  11. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  12. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  13. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    International Nuclear Information System (INIS)

    Pastor, M.; Zhao, H.; DebRoy, T.

    2000-01-01

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  14. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  15. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  16. Effect of Mg and Cu on mechanical properties of high-strength welded joints of aluminum alloys obtained by laser welding

    Science.gov (United States)

    Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.

    2017-09-01

    Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.

  17. Evaluation the Mechanical Properties of Shot Peened TIG Welded Aluminum Sheets

    Directory of Open Access Journals (Sweden)

    Ahmed Ameed Zain Al-Abideen

    2017-04-01

    Full Text Available A tungsten inert gas (TIG welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15 min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum. The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.

  18. Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine

    Science.gov (United States)

    Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah

    2018-05-01

    The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.

  19. Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification

    International Nuclear Information System (INIS)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW)

  20. Strain hardening and damage in 6xxx series aluminum alloy friction stir welds

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    A friction stir weld in 6005A-T6 aluminum alloy has been prepared and analyzed by micro-hardness measurements, tensile testing and scanning electron microscopy (SEM). The locations of the various weld zones were determined by micro-hardness indentation measurements. The flow behavior of the various...... zones of the weld was extracted using micro-tensile specimens cut out parallel to the welding direction. The measured material properties and weld topology were then introduced in a fully coupled micro-mechanical finite element model, accounting for nucleation and growth of voids as well as void shape...... evolution. The model shows satisfactory preliminary results in predicting the tensile behaviour of the weld and the true strain at fracture....

  1. Study of 2219 aluminum alloy using direct current A-TIG welding

    Science.gov (United States)

    Li, Hui; Zou, Jiasheng

    2017-07-01

    Direct current A-TIG (DCEN A-TIG) welding using special active agent had eliminated the pores and the oxidation of 2219 high-strength aluminum alloy in welding. Addition of AlF3-25% LiF active agent to DCEN A-TIG welding and arc morphology showed a trailing phenomenon. However, the change in arc morphology was not remarkable when AlF3-75% LiF active agent was added. Addition of AlF3-75% LiF active agent can refine the grain size of DCEN A-TIG joint. The mechanical properties of the weld were optimal at 10% AlF3-75% LiF active agent. Compared with AC TIG and AC A-TIG welding, DCEN A-TIG welding yielded better results for 2219 Al alloy.

  2. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  3. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ji Young [Technical Research Center, Hyundai Steel Company, Dangjin (Korea, Republic of); Sohn, Yong Ho [Dept. of Materials Science and Engineering, University of Central Florida, Orlando (United States); Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-10-15

    Lightweight metals have been used to manufacture the body panels of cars to reduce the weight of car bodies. Typically, aluminum sheets are welded together, with a focus on weld quality assurance. A weld quality prediction system for the laser welding of aluminum was developed in this research to maximize welding production. The behavior of the plasma was also analyzed, dependent on various welding conditions. The light intensity of the plasma was altered with heat input and wire feed rate conditions, and the strength of the weld and sensor signals correlated closely for this heat input condition. Using these characteristics, a new algorithm and program were developed to evaluate the weld quality. The design involves a combinatory algorithm using a neural network model for the prediction of tensile strength from measured signals and a fuzzy multi-feature pattern recognition algorithm for the weld quality classification to improve predictability of the system.

  4. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes

    International Nuclear Information System (INIS)

    Yu, Ji Young; Sohn, Yong Ho; Park, Young Whan; Kwak, Jae Seob

    2016-01-01

    Lightweight metals have been used to manufacture the body panels of cars to reduce the weight of car bodies. Typically, aluminum sheets are welded together, with a focus on weld quality assurance. A weld quality prediction system for the laser welding of aluminum was developed in this research to maximize welding production. The behavior of the plasma was also analyzed, dependent on various welding conditions. The light intensity of the plasma was altered with heat input and wire feed rate conditions, and the strength of the weld and sensor signals correlated closely for this heat input condition. Using these characteristics, a new algorithm and program were developed to evaluate the weld quality. The design involves a combinatory algorithm using a neural network model for the prediction of tensile strength from measured signals and a fuzzy multi-feature pattern recognition algorithm for the weld quality classification to improve predictability of the system

  5. Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding

    Directory of Open Access Journals (Sweden)

    Carter Hamilton

    2018-05-01

    Full Text Available Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium η phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier–Preston (GP and Guinier–Preston–Bagaryatsky (GPB zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS. Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.

  6. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  7. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090

    International Nuclear Information System (INIS)

    Lin, D.C.; Wang, G.-X.; Srivatsan, T.S.

    2003-01-01

    In this technical note, the formation and presence of a zone of equiaxed grains (EQZ) along the fusion boundary of welded aluminum-lithium alloy 2090 using filler metals containing zirconium and lithium is presented and discussed. However, no EQZ was evident in welded joints of alloy 2090 using the commercial filler metals: aluminum alloy 2319 and 4145. Under identical conditions, aluminum-lithium alloy 2090 was fusion welded using several new filler metals containing various amounts of zirconium and lithium. Results reveal an increase in the width of the zone of equiaxed grains with an increase in zirconium and lithium content in the filler metal. A viable mechanism for the formation of equiaxed grains and its relationship to filler metal composition is highlighted

  8. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    Science.gov (United States)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  9. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    Science.gov (United States)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  11. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  12. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate

    International Nuclear Information System (INIS)

    Xu Weifeng; Liu Jinhe

    2009-01-01

    Effect of welding parameters on the microstructure and pitting corrosion of different positions along the thickness of weld nugget zone in friction stir welded 2219-O aluminum alloy plate was investigated using scanning electron microscopy (SEM), polarization experiment and electrochemical impedance tests (EIS). It was found that the material presents significant passivation and the top has best corrosion resistance compared to the bottom and base material. Corrosion resistance decreases with the increase of traverse speed from 60 to 100 mm/min at rotary speed 400 rpm. Corrosion resistance at rotary speed 600 rpm is lower than that at 500 rpm.

  13. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  14. Study of Weld Imperfections on Thin Aluminum Tubes According To ISO 10042

    CERN Document Server

    Rizkallah, Rabel

    2014-01-01

    The following report presents the work done as part of my summer student internship at CERN in the EN/MME group, and is divided into two parts. Part I of the report is a continuation of the work started previously by the student Quentin Drouhet, which aims at studying and classifying welding imperfections on various materials of small thicknesses. Drouhet worked on the welding imperfections found on thin Stainless Steel plates of thicknesses of 2 and 6 millimeters, welded using the GTAW (or TIG welding) process. My job was to conduct a similar study on thin Aluminum tubes welded using this same process. Part II of the report will introduce a new method for defect analysis that is still not available at CERN: the micro-tomographic testing

  15. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  16. Tensile strength and fatigue strength of 6061 aluminum alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, H.; Tsujino, R. [Osaka Inst. of Tech., Asahi-ku Osaka (Japan); Sawai, T. [Osaka Sangyo Univ., Daito (Japan); Yamamoto, Y. [Setsunan Univ., Neyagawa (Japan); Ogawa, K. [Osaka Prefecture Univ., Sakai (Japan); Suga, Y. [Keio Univ., Kohoku-ku, Yokohama (Japan)

    2002-07-01

    Friction welding of 6061 aluminum alloy was carried out in order to examine the relationship between deformation heat input in the upset stage and joint performance. The joint performance was evaluated by tensile testing and fatigue testing. Stabilized tensile strength was obtained when the deformation heat input in the upset stage exceeded 200 J/s. Weld condition at the weld interface and the width of softened area affected fatigue strength more than tensile strength. That is, when the weld condition at the weld interface is good and the softened area is wide, fatigue strength increases. On the other hand, when the weld condition at the weld interface is good and the softened area is narrow, and when the weld condition at the weld interface is somewhat poor in spite of the wide softened area, fatigue strength decreases. The fatigue limit obtained by the fatigue testing revealed that, when the deformation heat input in the upset stage exceeded a certain value, sound joints could be produced. (orig.)

  17. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  18. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Science.gov (United States)

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  19. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  20. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    Science.gov (United States)

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg 17 Al 12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  1. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  2. Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

    Science.gov (United States)

    Seo, Bosung; Song, Kuk Hyun; Park, Kwangsuk

    2018-05-01

    Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

  3. Ductile damage development in friction stir welded aluminum (AA2024) joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile damage development in a friction stir welded aluminum joint subjected to tension is analyzed numerically by FE-analysis, based on a total Lagrangian formulation. An elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids is applied. Main focus...

  4. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    Science.gov (United States)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  5. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    Science.gov (United States)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  6. Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm

    Science.gov (United States)

    Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal

    2017-08-01

    To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.

  7. Welding of Aluminum Alloys to Steels: An Overview

    Science.gov (United States)

    2013-08-01

    and deformations are a few examples of the unwanted consequences which somehow would lead to brittle fracture, fatigue fracture, shape instability...was made under the copper tips of the spot welding machine. The fatigue results showed higher fatigue strength of the joints with transition layer...kHz ultrasonic butt welding system with a vibration source applying eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction

  8. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys

    International Nuclear Information System (INIS)

    Rao, H.M.; Yuan, W.; Badarinarayan, H.

    2015-01-01

    Highlights: • Lap-shear failure load of ∼2.5 kN was achieved in dissimilar Mg to Al spot welds. • Failure load depends on both welding geometrical features and IMCs formation. • Thin and discontinuous IMCs formed in stir zone are beneficial for weld strength. • Low heat input and good material mixing/interlocking is essential for high strength. - Abstract: Friction stir spot welding was applied to dissimilar cast magnesium (Mg) alloy AM60B and wrought aluminum (Al) alloy 6022-T4 under various welding conditions. The influence of tool rotation rate and shoulder plunge depth on lap-shear failure load was examined. Welds were made at four different tool rotation rates of 1000, 1500, 2000 and 2500 revolution per minute (rpm) and various tool shoulder plunge depths from 0 mm to 0.9 mm. The cross section of each weld exhibited the formation of intermetallic compounds (IMCs) in the stir zone. An increase in tool rotation rate decreased the width of the stir zone and resulted in lower lap-shear failure loads. The stir zone width increased and interlocking of IMCs was observed with an increase in tool shoulder plunge depth at 1000 rpm. High lap-shear failure loads were achieved in welds having a large stir zone width with formation of discontinuous IMCs at the tip of the interfacial hook. An average lap-shear failure load of 2.5 kN was achieved for welds made at 1000 rpm and 0.9 mm shoulder plunge. The present study suggests that the mechanical properties of friction stir spot welded dissimilar alloys are greatly influenced by the stir zone width, interfacial hooks and IMCs which are all weld process dependent

  9. Effect of zirconium addition on welding of aluminum grain refined by titanium

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2011-01-01

    Aluminum and its alloys solidify in large grains columnar structure which tends to reduce their mechanical behaviour and surface quality. Therefore, they are industrially grain refined by titanium or titanium + boron. Furthermore, aluminum oxidizes in ordinary atmosphere which makes its weldability difficult and weak. Therefore, it is anticipated that the effect of addition of zirconium at a weight percentages of 0.1% (which proved to be an effective grain refiner on the weldability of aluminum grain refined by Ti) is worthwhile investigating. This formed the objective of this research work. In this paper, the effect of zirconium addition at a weight percentage of 0.1%, which corresponds to the peritctic limit on the aluminum-zirconium phase diagram, on the weldability of aluminum grain refined by Ti is investigated. Rolled sheets of commercially pure aluminum, Al grain refined Ti of 3 mm thickness were welded together using Gas Tungsten Arc Welding method (GTAW), formerly known as TIG. A constant air gap was maintained at a constant current level, 30 ampere AC, was used because it removes the oxides of the welding process under the same process parameters. Metallographic examination of weldments of the different combinations of aluminum and its microalloys at the heat affected zone, HAZ, and base metal was carried out and examined for width, porosity, cracks and microhardness. It was found that grain refining of commercially pure aluminum by Ti resulted in enhancement of its weldability. Similarly, addition of zirconium to Al grain refined by Ti resulted in further enhancement of the weldment. Photomicrographs of the HAZ regions are presented and discussed. (author)

  10. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  11. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    Science.gov (United States)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  12. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    Science.gov (United States)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  13. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  14. Improving Mechanical Properties of PVPPA Welded Joints of 7075 Aluminum Alloy by PWHT

    Directory of Open Access Journals (Sweden)

    Guowei Li

    2018-03-01

    Full Text Available In this study, 7075 aluminum alloy with a thickness of 10 mm was successfully welded with no obvious defects by pulsed variable polarity plasma arc (PVPPA welding. The mechanical properties of PVPPA welded joints have been researched by post weld heat treatment (PWHT. The results indicate that the heat treatment strongly affects the mechanical properties of the welded joints. The tensile strength and the microhardness of the welded joints gradually improved with the increase of the solution temperature. With the increase of the solution time, the tensile strength, and microhardness first dramatically increased and then decreased slightly. The best tensile strength of 537.5 MPa and the microhardness of 143.7 HV were obtained after 490 °C × 80 min + 120 °C × 24 h, and the strength was nearly 91.2% of that of the parent metal, and increased about 35% compared with as-welded. The improvement of strength and microhardness was mainly due to the precipitation of η′ phase.

  15. Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Khodaverdizadeh, H.; Mahmoudi, A.; Nazari, E.

    2012-01-01

    Highlights: ► Range of parameters for defect-free friction stir welded AA 6061-T4 was reached. ► A model was developed for predicting UTS and EL of friction stir welded AA 6061-T4. ► The maximum values of UTS and EL of joints were estimated by developed model. ► The optimum values of FSW process parameters were determined. -- Abstract: In this investigation response surface methodology based on a central composite rotatable design with three parameters, five levels and 20 runs, was used to develop a mathematical model predicting the tensile properties of friction stir welded AA 6061-T4 aluminum alloy joints at 95% confidence level. The three welding parameters considered were tool rotational speed, welding speed and axial force. Analysis of variance was applied to validate the predicted model. Microstructural characterization and fractography of joints were examined using optical and scanning electron microscopes. Also, the effects of the welding parameters on tensile properties of friction stir welded joints were analyzed in detail. The results showed that the optimum parameters to get a maximum of tensile strength were 920 rev/min, 78 mm/min and 7.2 kN, where the maximum of tensile elongation was obtained at 1300 rev/min, 60 mm/min and 8 kN.

  16. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  17. Study of aluminum content in a welding metal by thermoelectric measurements

    Science.gov (United States)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  18. Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Abdulstaar, Mustafa A., E-mail: mustafa.abdulstaar@gmail.com [Institute of Material Science and Engineering, Clausthal University of Technology, Agricolastr. 6, 38678 Clausthal-Zellerfeld (Germany); Al-Fadhalah, Khaled J. [Department of Mechanical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Wagner, Lothar [Institute of Material Science and Engineering, Clausthal University of Technology, Agricolastr. 6, 38678 Clausthal-Zellerfeld (Germany)

    2017-04-15

    The current study examined the effect of microstructure variation on the development of mechanical properties in friction stir welded joints of 6061-T6 aluminum alloy, which were subsequently processed by shot peening (SP). Following to FSW, fatigue specimens were extracted perpendicularly to the welding direction. Surface Skimming to 0.5 mm from crown and root sides of the joint was made and SP was later applied on the two sides using ceramic shots of two different Almen intensities of 0.18 mmA and 0.24 mmA. Microstructural examination by electron back scattered diffraction (EBSD) indicated variation in the grain refinement of the weld zone, with coarsest grains (5 μm) at the crown side and finest grains (2 μm) at the root side. Reduction of microhardness to 60 HV occurred in the weld zone for samples in FSW condition. Application of SP promoted significant strain hardening at the crown side, with Almen intensities of 0.24 mmA providing maximum increase in microhardness to 120 HV. On the contrary, only a maximum microhardness of 75 HV was obtained at the root side. The difference in strain hardening capability at the two sides was strongly dependent on grain size. The two Almen intensities produced similar distribution of compressive residual stresses in the subsurface regions that led to enhance the fatigue strength to the level of base metal for N ≥ 10{sup 5} cycles. Yet, the increase in fatigue strength was more pronounced with increasing Almen intensity to 0.24 mmA, demonstrating further enhancement by strain hardening. - Highlights: • Grain refinement was observed after friction stir welding of AA 6061-T6. • Reduction in microhardness and fatigue strength were obtained after welding. • Variation in grain refinement led to different hardening behavior after peening. • Shot peening induced beneficial compressive residual stresses. • Shot peening and surface skimming markedly improved the fatigue performance.

  19. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution

    International Nuclear Information System (INIS)

    Xu Weifeng; Liu Jinhe; Zhu Hongqiang

    2010-01-01

    The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.

  20. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    Science.gov (United States)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  1. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  2. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    Science.gov (United States)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  3. Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper

    International Nuclear Information System (INIS)

    Zhang, Jingqing; Shen, Yifu; Yao, Xin; Xu, Haisheng; Li, Bo

    2014-01-01

    Highlights: • 6061-T6 Al and pure Cu were successfully underwater friction stir lap welded. • The underwater weld was analyzed via comparing with the classical weld. • The oxidation of Cu was prevented via the external water. • The amount of Al–Cu intermetallic was decreased by the external water. • The thickness of Al–Cu diffusion interlayer was decreased by the external water. - Abstract: Friction stir welding (classical FSW) is considered to offer advantages over the traditional fusion welding techniques in terms of dissimilar welding. However, some challenges still exist in the dissimilar friction stir lap welding of the aluminum/copper (Al/Cu) metallic couple, among which the formation of the Al–Cu intermetallic compounds is the major problem. In the present research, due to the fact that the formation and growth of the intermetallic are significantly controlled by the thermal history, the underwater friction stir welding (underwater FSW) was employed for fabricating the weld, and the weld obtained by underwater FSW (underwater weld) was analyzed via comparing with the weld obtained under same parameters by classical FSW (classical weld). In order to investigate the effect of the external water on the thermal history, the K-type thermocouple was utilized to measure the weld temperature, and it is found that the water could decrease the peak temperature and shorten the thermal cycle time. The XRD results illustrate that the interface of the welds mainly consist of the Al–Cu intermetallic compounds such as CuAl 2 and Cu 9 Al 4 together with some amounts of Al and Cu, and it is also found that the amount of the intermetallic in the underwater weld is obvious less than in the classical weld. The SEM images and the EDS line scan results also illustrate that the Al–Cu diffusion interlayer at the Al–Cu interface of the underwater weld was obviously thinner than that of the classical weld

  4. Effect of heat treatment on the properties of laser-beam welded rheo-cast F357 aluminum

    CSIR Research Space (South Africa)

    Theron, M

    2012-02-01

    Full Text Available Semi-solid metal rheo-cast F357 aluminum plates were joined by autogenous Nd:YAG laser welding and were welded in either the as-cast (F) condition, T4 temper or T6 temper condition. The weldability of this age-hardenable Al–7%Si–0.6%Mg casting alloy...

  5. Microstructure, mechanical behavior and corrosion properties of friction stir welded aluminum alloys used in the aerospace industry

    OpenAIRE

    Alfaro Mercado, Ulises

    2011-01-01

    Friction stir welding (FSW) has been identified as “key” technology for the production of primary aerospace structures, being able to substitute conventional riveted airframes. FSW is a solid state welding process that avoids any problems caused by the solidification of the melted weld pool. Besides the production of high quality similar joints from high strength aluminum alloys, it allows for joining materials of different metallurgical characteristics. However, problems concerning the corro...

  6. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    Science.gov (United States)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s-1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  7. Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum

    Science.gov (United States)

    2015-11-01

    strength Al, with tough, ductile , weld joints may provide improved protection and crash safety by means of a rigid vehicle structure. This...characteristics and ballistic protection, with V50 statistics of 5083 and 7039 aluminum and RHA steel . Aberdeen Proving Ground (MD): Army Research...633. 9. McQueen H, Leo P, Cerri E. Al-Zn-Mg for extrusion– hot workability. In TMS 2009, Al Alloys: Fabrication, Characterization and Applications II

  8. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient at the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.

  9. An Experimental Evaluation of Electron Beam Welded Thixoformed 7075 Aluminum Alloy Plate Material

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2017-12-01

    Full Text Available Two plates of thixoformed 7075 aluminum alloy were joined using Electron Beam Welding (EBW. A post-welding-heat treatment (PWHT was performed within the semi-solid temperature range of this alloy at three temperatures, 610, 617 and 628 °C, for 3 min. The microstructural evolution and mechanical properties of EB welded plates, as well as the heat-treated specimens, were investigated in the Base Metal (BM, Heat Affected Zone (HAZ, and Fusion Zone (FZ, using optical microscopy, Scanning Electron Microscopy (SEM, EDX (Energy Dispersive X-ray Analysis, and Vickers hardness test. Results indicated that after EBW, the grain size substantially decreased from 67 µm in both BM and HAZ to 7 µm in the FZ, and a hardness increment was observed in the FZ as compared to the BM and HAZ. Furthermore, the PWHT led to grain coarsening throughout the material, along with a further increase in hardness in the FZ.

  10. Role of Tool Shoulder End Features on Friction Stir Weld Characteristics of 6082 Aluminum Alloy

    Science.gov (United States)

    Mugada, Krishna Kishore; Adepu, Kumar

    2018-03-01

    Understanding the temperature generation around the tool shoulder contact is one of the important aspects of the friction stir welding process. In the present study, the effects of various tool shoulder end feature on the temperature and mechanical properties of the 6082 aluminum alloy were investigated. The experimental results show that the axial force during the welding is considerably reduced by using tools with shoulder end features. The detailed observation revealed that around the tool shoulder contact, the amount of heat generation is higher between trialing edge (TE) to retreating side-leading edge corner (RS-LE) counter clockwise direction and lower between RS-LE to TE clockwise direction. Out of the four shoulder end featured tools, the welds produced with ridges shoulder tool resulted in superior properties with significantly lower axial force (approximately 32%) compared to plane shoulder tool.

  11. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    Science.gov (United States)

    Zaid, A. I. O.

    2014-06-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment.

  12. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A. I. O.

    2013-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1 percentage (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Tau i+Beta on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Tau i+Beta or Zr resulted in enhancement of the weldment. (author)

  13. Effect of zirconium addition on welding of aluminum grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Zaid, A I O

    2014-01-01

    Aluminum oxidizes freely in ordinary atmosphere which makes its welding difficult and weak, particularly it solidifies in columnar structure with large grains. Therefore, it is anticipated that the effect of addition of some grain refiners to its melt before solidification is worth while investigating as it may enhance its weldabilty and improve its mechanical strength. In this paper, the effect of addition of zirconium at a weight of 0.1% (which corresponds to the peretictic limit on the aluminum-zirconium base phase diagram) to commercially pure aluminum, grain refined by Ti+B on its weldability, using gas tungsten arc welding, GTAW, method which was formerly known as TIG. A constant current level of 30 AC Ampere was used because it removes the oxides during the welding process. Metallographic examination of the weldments of the different combinations of Al with Al and Al with its microalloys: in the heat affected zone, HAZ, and away from it was carried out and examined for HAZ width, porosity, cracks and microhardness. It was found that grain refining by Ti+B or Zr resulted in enhancement of the weldment

  14. Application of slip-band visualization technique to tensile analysis of laser-welded aluminum alloy

    Science.gov (United States)

    Muchiar, -; Yoshida, Sanichiro J.; Widiastuti, Rini; Kusnowo, A.; Takahashi, Kunimitsu; Sato, Shunichi

    1997-03-01

    Recently we have developed a new optical interferometric technique capable of visualizing slip band occurring in a deforming solid-state object. In this work we applied this technique to a tensile analysis of laser-welded aluminum plate samples, and successfully revealed stress concentration that shows strong relationships with the tensile strength and the fracture mechanism. We believe that this method is a new, convenient way to analyze the deformation characteristics of welded objects and evaluate the quality of welding. The analysis has been made for several types of aluminum alloys under various welding conditions, and has shown the following general results. When the penetration is deep, a slip band starts appearing at the fusion zone in an early stage of the elastic region of the strain-stress curve and stays there till the sample fractures at that point. When the penetration is shallow, a slip band appears only after the yield point and moves vigorously over the whole surface of the sample till a late stage of plastic deformation when the slip band stays at the fusion zone where the sample eventually fractures. When the penetration depth is medium, some intermediate situation of the above two extreme cases is observed.

  15. Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys

    Science.gov (United States)

    Hamilton, C.; Kopyściański, M.; Dymek, S.; Węglowska, A.; Pietras, A.

    2018-03-01

    Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.

  16. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization

    International Nuclear Information System (INIS)

    Taban, Emel; Gould, Jerry E.; Lippold, John C.

    2010-01-01

    Joining of dissimilar materials is of increasing interest for a wide range of industrial applications. The automotive industry, in particular, views dissimilar materials joining as a gateway for the implementation of lightweight materials. Specifically, the introduction of aluminum alloy parts into a steel car body requires the development of reliable, efficient and economic joining processes. Since aluminum and steel demonstrate different physical, mechanical and metallurgical properties, identification of proper welding processes and practices can be problematic. In this work, inertia friction welding has been used to create joints between a 6061-T6 aluminum alloy and a AISI 1018 steel using various parameters. The joints were evaluated by mechanical testing and metallurgical analysis. Microstructural analyses were done using metallography, microhardness testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray elemental mapping, focused ion beam (FIB) with ultra high resolution SEM and transmission electron microscopy (TEM) in TEM and STEM modes. Results of these analysis first suggested that joint strengths on the order of 250 MPa could be achieved. In addition, failures were seen in the plasticized layer on the aluminum side of the joint. Further, bond lines were characterized by a thin layer of formed Al-Fe intermetallic. This intermetallic layer averaged roughly 250 nm thick and compositionally appears related to the FeAl and Fe 2 Al 5 phases.

  17. Corrosion evaluation of multi-pass welded nickel–aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process

    International Nuclear Information System (INIS)

    Sabbaghzadeh, Behnam; Parvizi, Reza; Davoodi, Ali; Moayed, Mohammad Hadi

    2014-01-01

    Highlights: • Corrosion of GTA welded nickel–aluminum bronze (C95800) was studied. • Drastic microstructural changes occurred during the welding operations. • The β′ and α phases acts as anode and cathode, correspondingly, in weld region. • A few nanoamperes couple current was measured in ZRA test as galvanic corrosion. • Corrosion resistance of weld parts could not be weakened in marine environments. - Abstract: In this research, the corrosion behavior of a gas tungsten arc welded nickel–aluminum bronze (NAB) alloy is investigated by DC and AC electrochemical techniques in 3.5% sodium chloride solution. Regarding the electrochemical impedance spectroscopy and potentiodynamic results, uniform corrosion resistance of instantly immersed weld and base samples are almost analogous and increased (more in weld region) during the immersion times. Moreover, zero resistant ammeter results demonstrated that the few nanoampere galvanic currents are attributed to microstructural and morphological differences between these two regions. Therefore, the welding procedure could not deteriorate the general corrosion resistance of the restored damaged NAB parts operating in marine environments

  18. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  19. Evaluation of occupational exposure to toxic metals released in the process of aluminum welding.

    Science.gov (United States)

    Matczak, Wanda; Gromiec, Jan

    2002-04-01

    The objective of this study was to evaluate occupational exposure to welding fumes and its elements on aluminum welders in Polish industry. The study included 52 MIG/Al fume samples and 18 TIG/Al samples in 3 plants. Air samples were collected in the breathing zone of welders (total and respirable dust). Dust concentration was determined gravimetrically, and the elements in the collected dust were determined by AAS. Mean time-weighted average (TWA) concentrations of the welding dusts/fumes and their components in the breathing zone obtained for different welding processes were, in mg/m3: MIG/Al fumes mean 6.0 (0.8-17.8), Al 2.1 (0.1-7.7), Mg 0.2 (TIG/Al fumes 0.7 (0.3-1.4), Al 0.17 (0.07-0.50). A correlation has been found between the concentration of the main components and the fume/dust concentrations in MIG/Al and TIG/Al fumes. Mean percentages of the individual components in MIG/Al fumes/dusts were Al: 30 (9-56) percent; Mg: 3 (1-5.6) percent; Mn: 0.2 (0.1-0.3) percent; Cu: 0.2 (welding methods, the nature of welding-related operations, and work environment conditions.

  20. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  1. Heat input effect of friction stir welding on aluminum alloy AA 6061-T6 welded joint

    Czech Academy of Sciences Publication Activity Database

    Sedmak, A.; Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Tadić, S.; Djurdjević, A. A.; Čeković, I. R.; Dončeva, E.

    2016-01-01

    Roč. 20, č. 2 (2016), s. 637-641 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : friction stir welding * defect * heat input * maximum temperature Subject RIV: JQ - Machines ; Tools Impact factor: 1.093, year: 2016 http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361500147D.pdf

  2. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  3. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of Post Weld Heat Treatment on Microstructure and Mechanical Properties of Submerged Friction Stir Welded 7A04 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    HAO Ya-xin

    2016-06-01

    Full Text Available 7A04 aluminum alloy plate was jointed by submerged friction stir welding(SFSW, and welded joints were treated (Post Weld Heat Treatment, PWHT, and the effect of post weld heat treatment on the microstructure and mechanical properties in SFSW was investigated. The results show that PWHT joints exhibit dispersively distributed fine precipitates phase morphology, are significantly superior than the feature of the small amount of precipitates with dispersed distribution in SFSW joints. Compared with SFSW joints, the mechanical properties of joints are improved significantly by PWHT. The average hardness of the weld joints nugget zone is increased by 39.7HV, and the tensile strength is increased by 67MPa, reaches 96.1% of the base material, strain hardening capacity of the joints is also enhanced, the tensile fracture exhibits mixed fracture feature of microporous polymerization and cleavage.

  5. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Jeon, GeunHong; Oh, IkHyun; Ro, ChanSeung

    2012-01-01

    Highlights: ► GTAW assisted hybrid friction stir welding (HFSW) has been carried out for dissimilar butt joint. ► Mechanical strength of dissimilar butt joint by HFSW and FSW has been investigated and compared. ► Microstructure of dissimilar butt joint by HFSW and FSW has been investigated and compared. -- Abstract: The aim of this research is to evaluate the potential for using the gas tungsten arc welding (GTAW) assisted hybrid friction stir welding (HFSW) process to join a stainless steel alloy (STS304) to an aluminum alloy (Al6061) in order to improve the weld strength. The difference in mechanical and microstructural characteristics of dissimilar joint by friction stir welding (FSW) and HFSW has been investigated and compared. Transverse tensile strength of approximately 93% of the aluminum alloy (Al6061) base metal tensile strength is obtained with HFSW, which is higher than the tensile strength of FSW welds. This may be due to the enhanced material plastic flow and partial annealing effect in dissimilar materials due to preheating of stainless steel surface by GTAW, resulting in significantly increased elongation of welds. The results indicate that HFSW that integrates GTAW preheating to FSW is advantageous in joining dissimilar combinations compared to conventional FSW.

  6. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints

    International Nuclear Information System (INIS)

    Shen, Zhikang; Yang, Xinqi; Zhang, Zhaohua; Cui, Lei; Li, Tielong

    2013-01-01

    Highlights: ► There is a correlation between the void in the weld and the joint strength. ► The preferable mechanical properties can be obtained by lowering rotational speed. ► The alclad has an adverse effect on the mechanical properties. -- Abstract: In this paper, the microstructure and mechanical properties of 7075-T6 aluminum alloy joints joined by refill friction stir spot welding (RFSSW) were investigated. The keyhole was refilled successfully, and the microstructure of the weld exhibited variations in the grain sizes in the width and the thickness directions. There existed defects (hook, voids, bonding ligament, etc.) associated to the material flow in the weld. Mechanical properties of the joint have been investigated in terms of hardness and tensile/shear and cross-tension test, and the fracture mechanisms were observed by SEM (scanning electron microscope). The hardness profile of the weld exhibited a W-shaped appearance in the macroscopic level, which reached the minimum at the boundary of the sleeve and the clamping ring. The variation laws between tensile/shear and cross-tension strength and processing parameters were rather complicated. The void in the weld played an important role in determining the strength of the joint. On the whole, the preferable strength can be obtained at lower rotational speed. Shear fracture mode was observed under tensile–shear loadings, and nugget debonding, plug type fracture (on the upper sheet) and plug type fracture (on the lower sheet) modes were observed under cross-tension loadings. It was also observed that the main feature affecting the mechanical properties of the joint is the alclad between the upper and lower sheets and the connecting qualities between the stir zone and thermo-mechanically affected zone.

  7. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  8. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys

    International Nuclear Information System (INIS)

    Zhao, Yong; Lu, Zhengping; Yan, Keng; Huang, Linzhao

    2015-01-01

    Highlights: • Aluminum and magnesium alloys were joined by underwater friction stir welding. • Underwater FSW was conducted to improve properties of joint with lower heat input. • Microstructures and mechanical properties of dissimilar joint were investigated. • Intermetallic compounds developed in the fracture interface were analyzed. • Fracture features of the tensile samples were analyzed. - Abstract: Formation of intermetallic compounds in the stir zone of dissimilar welds affects the mechanical properties of the joints significantly. In order to reduce heat input and control the amount and morphological characteristics of brittle intermetallic compounds underwater friction stir welding of 6013 Al alloy and AZ31 Mg alloy was carried out. Microstructures, mechanical properties, elements distribution, and the fracture surface of the joints were analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, etc. The result shows that sound dissimilar joint with good mechanical properties can be obtained by underwater friction stir welding. Al and Mg alloys were stirred together and undergone the process of recrystallization, forming complex intercalated flow patterns in the stir zone. Tensile strength of the dissimilar joint was up to 152.3 MPa. Maximum hardness (142HV) appeared in the middle of the centerline of the specimen. Intermetallic compounds layer consisting of Al 3 Mg 2 and Mg 17 Al 12 formed in the Al/Mg interface and resulted in the fracture of the joint

  9. Influence of friction stir welding parameters on titanium-aluminum heterogeneous lap joining configuration

    Science.gov (United States)

    Picot, Florent; Gueydan, Antoine; Hug, Éric

    2017-10-01

    Lap joining configuration for Friction Stir Welding process is a methodology mostly dedicated to heterogeneous bonding. This welding technology was applied to join pure titanium with pure aluminum by varying the rotation speed and the movement speed of the tool. Regardless of the process parameters, it was found that the maximum strength of the junction remains almost constant. Microstructural observations by means of Scanning Electron Microscopy and Energy Dispersive Spectrometry analysis enable to describe the interfacial join and reveal asymmetric Cold Lap Defects on the sides of the junction. Chemical analysis shows the presence of one exclusive intermetallic compound through the interface identified as TiAl3. This compound is responsible of the crack spreading of the junction during the mechanical loading. The original version of this article supplied to AIP Publishing contained an accidental inversion of the authors, names. An updated version of this article, with the authors names formatted correctly was published on 20 October 2017.

  10. Friction stir spot welding of 2024-T3 aluminum alloy with SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Laali [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this study, the Friction stir spot welding (FSSW) of 2024-T3 aluminum alloy with 1.6 mm thickness was investigated. The effects of the silicon carbide (SiC) nanoparticles on the metallurgical and mechanical properties were discussed. The effects of particles on tension shear and wear tests were also investigated. The process was conducted at a constant rotational speed of 1000 rpm. Results showed that adding SiC nanoparticles to the weld during FSSW had a major effect on the mechanical properties. In fact, the addition of nanoparticles as barriers prevented grain growth in the Stir zone (SZ). The data obtained in the tensile-shear and wear tests showed that tensile-shear load and wear resistance increased with the addition of SiC nanoparticles, which was attributed to the fine grain size produced in the SZ.

  11. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    Science.gov (United States)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  12. Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Shinichi, E-mail: tashiro@jwri.osaka-u.ac.jp; Miyata, Minoru; Tanaka, Manabu

    2011-08-01

    A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  13. The effect of thermal treatments on the corrosion behavior of friction stir welded 7050 and 7075 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, J.; Pollock, G.; Mahoney, M. [Rockwell Scientific, Camino dos Rios, Thousand Oaks, CA (United States)

    2003-07-01

    The rapid thermal cycle generated during friction stir welding (FSW) produces a gradient of microstructures and precipitate distributions in the weld heat affected zone (HAZ) and the thermo mechanical affected zone (TMAZ). Metallurgical transformations associated with such heating and cooling become complex under these nonequilibrium conditions, producing unstable microstructures, which cause unpredictable changes in properties relative to the parent alloy. Our work has shown that the composition changes caused by the nucleation and coarsening of precipitates during FSW produce a sensitized microstructure in 7050 and 7075 aluminum alloys. This paper describes the deleterious effects on the corrosion behavior of 7050 and 7075 aluminum alloys resulting from FSW and the effects of pre- and post- weld heat treatments on the corrosion properties of the welded material. (orig.)

  14. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  15. Effect of water-cooling treatment times on properties of friction stir welded joints of 7N01-T4 aluminum alloy

    Science.gov (United States)

    Zhang, T. H.; Wang, Y.; Fang, X. F.; Liang, P.; Zhao, Y.; Li, Y. H.; Liu, X. M.

    2018-02-01

    Due to the deformation caused by residual stress in the welding process, welded components need treatment to reduce welding distortion. In this paper, several different times of flame-heating and water-cooling treatment were subjected to the friction stir welding joints of 15mm thick 7N01P-T4 aluminum alloy sheets to study the microstructure variation of friction stir welding joints of 7N01P-T4 aluminum alloy, and to analyze the effect on micro-hardness, tensile and fracture mechanical properties. This investigation will be helpful to optimize treatment methods and provide instruction on industrial production.

  16. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  17. Microstructure and Mechanical Properties of Three-Layer TIG-Welded 2219 Aluminum Alloys with Dissimilar Heat Treatments

    Science.gov (United States)

    Zhang, Dengkui; Li, Quan; Zhao, Yue; Liu, Xianli; Song, Jianling; Wang, Guoqing; Wu, Aiping

    2018-05-01

    2219-C10S and 2219-CYS aluminum alloys are 2219 aluminum alloys with different heat treatment processes, and they have been widely used in the aerospace industry. In the present study, 2219-C10S and 2219-CYS aluminum alloys were butt-welded by three-layer tungsten inert gas arc welding (with the welding center of the third layer shifted toward the CYS side), and the microstructure characteristics and mechanical properties of the welded joint were investigated. The lamellar θ' phases, the bulk or rod θ phases, and the coarse rod-shaped or pancake-shaped Al-Cu-Fe-Mn phases coexisted in the two aluminum alloys. The Cu content of the α-Al matrix and the distribution of eutectic structures of different welding layers in the weld zone (WZ) were varied, implying that the segregation degrees of the Cu element were different due to the different welding thermal cycles in different welding layers. The microhardness values of the CYS side were much higher than those of the C10S side in each region on both sides of the joint. The tensile test deformation was concentrated mainly in the regions of WZ and the over aged zone (OAZ), where the microhardness values were relatively low. The main deformation concentrated region was transferred from the CYS side to the C10S side with the increase in the tensile load during the tensile test. The fracture behavior of the tensile test showed that the macroscopic crack initiated near the front weld toe had gone through the crack blunt region, the shear fracture region of the partially melted zone (PMZ), and the shear fracture region of OAZ. Meanwhile, the fracture characteristics gradually evolved from brittle to ductile. The concentrated stress and the dense eutectic structure in the region near the front weld toe of the C10S side contributed to the fracture of the joint. The shift of the welding center of the third layer to the CYS side resulted in two effects: (i) the microhardness values from the middle layer to the top layer in the

  18. Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile

    Science.gov (United States)

    Lou, Shumei; Wang, Yongxiao; Liu, Chuanxi; Lu, Shuai; Liu, Sujun; Su, Chunjian

    2017-08-01

    In continuous extrusions of aluminum profiles, the thickness of the billet butt and the length of the discarded extrudate containing the transverse weld play key roles in reducing material loss and improving product quality. The formation and final distribution of the billet butt and transverse weld depend entirely on the flow behavior of the billet skin material. This study examined the flow behavior of the billet skin material as well as the formation and evolution of the billet butt and the transverse weld in detail through numerical simulation and a series of experiments. In practical extrusions, even if the billet skin is removed by lathe turning shortly before extrusion, billet skin impurities are still distributed around the transverse weld and in the billet butt. The thickness of the scrap billet butt and the length of the discarded extrudate containing the transverse weld can be exactly predicted via simulation.

  19. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  20. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    Science.gov (United States)

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  1. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin, E-mail: zmwang@mail.hust.edu.cn; Zeng, Xiaoyan

    2015-01-30

    Highlights: • Spectroscopic properties of fiber laser induced Al plasma plume are measured. • The plume is usually a metal vapor dominated weakly ionized plasma. • The plume is a strongly ionized plasma after laser power is higher than 5 kW. • Plasma shielding effect must be considered after laser power reaches 5 kW. • Plasma shielding effect is dominated by inverse bremsstrahlung absorption. - Abstract: To understand the laser–matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  2. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-01-01

    Aluminum 1060 and titanium alloy Ti–6Al–4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: ► FSW with cutting pin was successfully employed to form Al/Ti lap joint. ► Swirl-like structures formed due to mechanical mixing were found at the interface. ► High-strength joints fractured at Al suffered thermal cycle were produced.

  3. A metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30)

    International Nuclear Information System (INIS)

    Esmaeili, A.; Givi, M.K. Besharati; Rajani, H.R. Zareie

    2011-01-01

    Highlights: → Brass and aluminum 1050 are joined for the first time through Friction Stir welding. → Welding parameters are optimized to obtain a sound joint. → The ultimate tensile strength of the sound joint reaches 80% of aluminum base metal. → The effect of interfacial intermetallic compounds on mechanical properties is probed. → CuZn, Cu9Al4 and CuAl2 form the majority of observed intermetallic compounds. - Abstract: In this research, the effect of Friction Stir welding parameters on mechanical and metallurgical properties of aluminum 1050/brass (70%Cu-30%Zn) joints was investigated. Optical microscopy, SEM, X-ray diffraction analysis and EDS analysis were used to probe microstructures and chemical compositions. In order to examine mechanical properties, besides hardness test, tensile strength of the welds was measured. The main parameters in this study were the tool rotational speed, offset, welding speed, and depth of the sinking pin. The maximum ultimate tensile strength of the joint reached in this research was 80% of the base metal (aluminum). Results show that the optimum parameters will yield a defect free joint arisen from a suitable material flow and a narrow multilayer intermetallic compound at interface in addition to a composite structure in the stir zone which all result in a strong joint. Also, by leaving the optimized condition, occurrence of large brass fragments and weld defects lower weld strength besides shifting fracture path from interface to the stir zone. Also, according to the results, using low rotation speed is accompanied by disappearance of interfacial intermetallic layer, whereas fast rotation will thicken this layer. Moreover, severe mechanical twining is observed in TMAZ of brass which leads to high values of hardness in this region.

  4. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  5. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  6. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: zhilihuhit@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2014-06-01

    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  7. An integrated multiphysics model for friction stir welding of 6061 Aluminum alloy

    Directory of Open Access Journals (Sweden)

    M Nourani

    2016-09-01

    Full Text Available This article presents a new, combined ‘integrated’- ‘multiphysics’ model of friction stir welding (FSW where a set of governing equations from non-Newtonian incompressible fluid dynamics, conductive and convective heat transfer, and plain stress solid mechanics have been coupled for calculating the process variables and material behaviour both during and after welding. More specifically, regarding the multiphysics feature, the model is capable of simultaneously predicting the local distribution, location and magnitude of maximum temperature, strain, and strain rate fields around the tool pin during the process; while for the integrated (post-analysis part, the above predictions have been used to study the microstructure and residual stress field of welded parts within the same developed code. A slip/stick condition between the tool and workpiece, friction and deformation heat source, convection and conduction heat transfer in the workpiece, a solid mechanics-based viscosity definition, and the Zener-Hollomon- based rigid-viscoplastic material properties with solidus cut-off temperature and empirical softening regime have been employed. In order to validate all the predicted variables collectively, the model has been compared to a series of published case studies on individual/limited set of variables, as well as in-house experiments on FSW of aluminum 6061.

  8. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    Science.gov (United States)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  9. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  10. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  11. Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing

    International Nuclear Information System (INIS)

    Sridharan, Niyanth; Wolcott, Paul; Dapino, Marcelo; Babu, S.S.

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique. In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system. The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys. It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface.

  12. 3-dimensional numerical analysis of friction stir welding of copper and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Aleagha, M. E. Aalami; Hadi, Behzad; Shahbazi, Mohammad Ali [Dept. of Mechanical Engineering, School of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-08-15

    A time dependent Eulerian thermal/material flow model of friction stir welding was developed and applied to the dissimilar joining of pure copper and aluminum 1050-H16 alloy to investigate the maximum penetration of base metals. Thermal and material flow analysis was done with the assumed velocity field in the stir zone and considering a thermal source of energy obtained from the both Coulomb type of friction and the loss of shear stress in a non-Newtonian viscous behavior of metal flow. The developed model was used to estimate temperature gradient and penetration of material under three different conditions of tool offset and compared with the experimental results. The model shows that the penetration of the base metals is closely related to tool offset. In all of the cases, the metal fixed in the advancing side is copper. Nevertheless, when considering tool offset in the copper side and also when considering tool offset in the aluminum side, penetrating metals are copper and aluminum, respectively. Also, the model shows that the maximum temperature achieved in the base metals significantly depends on the tool offset.

  13. An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints

    International Nuclear Information System (INIS)

    Hatamleh, Omar; Rivero, Iris V.; Swain, Shayla E.

    2009-01-01

    In this investigation the residual stresses generated from friction stir welded (FSW) 2195 aluminum-lithium alloy joints were characterized. The results derived from this research revealed significant levels of tensile residual stresses at the surface and throughout the thickness of the FSW samples. Furthermore, residual stress relaxation at the surface and throughout the thickness of the samples was assessed for laser peened friction stir welded aluminum-lithium joints. To do so the samples were cycled several times at a constant amplitude load. The results indicated that most of the relaxation for the surface residual stresses took place during the first cycle of loading. Also, residual stresses relaxation throughout the thickness of the welded region of unpeened samples significantly exceeded the relaxation exhibited by the laser peened samples.

  14. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  15. Advanced Process Possibilities in Friction Crush Welding of Aluminum, Steel, and Copper by Using an Additional Wire

    Science.gov (United States)

    Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.

    2017-12-01

    Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.

  16. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    Science.gov (United States)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  17. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    Science.gov (United States)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  18. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.

    2007-01-01

    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  19. A pulsed laser polarization monitor for PEP

    International Nuclear Information System (INIS)

    Prescott, C.

    1975-01-01

    Back scattered circularly polarized laser photons are considered as a monitor for electron beam polarization. The up-down asymmetry of up to 10 percent can be measured using a wire ionization chamber with submillimeter resolution. With a pulsed laser backgrounds are to expected to be large

  20. Effect of Rotation Rate on Microstructure and Properties of Underwater Friction Stir Welded 7A04-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WANG Wen

    2017-10-01

    Full Text Available Underwater friction stir welding (FSW on 7A04-T6 aluminum alloy plates was carried out, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the minimum hardness of underwater FSW joints is located in the thermo-mechanically affected zone. The hardness of welded joints at the high rotation rate of 950r/min exhibits W-shaped distribution, and the average hardness value in the nugget zone is higher than that of welded joints at the low rotation rate of 475, 600, 750r/min. When the rotation rate increases from 475r/min to 750r/min with a constant welding speed of 235mm/min, the precipitated phases in the nugget zone gradually become coarse, and the ultimate tensile strength coefficient of the joint decreases from 89.71% to 82.33%; when rotation rate increases to 950r/min, the precipitated phases dissolve into aluminum matrix during welding, and age after welding. This produces the fine and homogeneous dispersed phases, which results in an increase of the strength coefficient to 89.04% and a certain enhancement of strain hardening capacity and elongation for the joints. All the tensile fracture surfaces exhibit the mixed characteristics of microporous polymerization and cleavage fracture.

  1. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    International Nuclear Information System (INIS)

    Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L.

    2015-01-01

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming

  2. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    Science.gov (United States)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  3. Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy

    Science.gov (United States)

    Das, Jayashree; Robi, P. S.; Sankar, M. Ravi

    2018-04-01

    The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.

  4. Laser welding of aluminum alloy sheet test%铝合金薄板激光焊接试验

    Institute of Scientific and Technical Information of China (English)

    王中林; 杨晟; 石金发

    2011-01-01

    The purpse of Technology testing is to find a relatively economical and practical method of laser welding of aluminum alloy for the modem industrial assembly technology to provide new ideas to promote productivity improvement and cost reduction. Analyzed the characteristics of aluminum alloy laser welding technology, technical difficulties and Solutions, recording using 300W single - beam laser welding of aluminum alloy with the relevant parameters and tile welding effect, to build dual - beam laser welding test platform for high - power dual - beam and record the total about 500W into two beams of laser welding and related parameters during the test. By laser and argon arc welding test mixture. On the part of the welded samples were quantitatively analyzed. After analysis, made of aluminum alloy laser welding technology improvements.%工艺试验的目的是寻求相对经济实用的铝合金激光焊接方法,为现代工业装配生产提供新的工艺思路,促进生产效率的提升和成本的降低。分析了铝合金激光焊接的工艺特性、技术难点和解决思路,记录利用300W激光对铝合金进行单光束焊接的有关参数和焊接效果,搭建双光束激光焊接试验平台,记录较高功率双光束和总量约500W激光分成双光束焊接试验过程及有关参数。进行了激光、氩弧混合焊接试验。对部分焊接样品进行了定量分析。经过分析研究,提出了铝合金激光焊接工艺改进意见。

  5. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    Science.gov (United States)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

  6. A Microstructural Evaluation of Friction Stir Welded 7075 Aluminum Rolled Plate Heat Treated to the Semi-Solid State

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2018-01-01

    Full Text Available Two rolled plates of 7075 aluminum alloy were used as starting material. The plates were welded using a simultaneous double-sided friction stir welding (FSW process. One way of obtaining feedstock materials for Semi-solid processing or thixoforming is via deformation routes followed by partial melting in the semi-solid state. As both the base plate materials and the friction weld area have undergone extensive deformation specimens were subjected to a post welding heat-treatment in the semi-solid range at a temperature of 628 °C, for 3 min in order to observe the induced microstructural changes. A comparison between the microstructural evolution and mechanical properties of friction stir welded plates was performed before and after the heat-treatment in the Base Metal (BM, the Heat Affected Zone (HAZ, the Thermomechanically Affected Zone (TMAZ and the Nugget Zone (NZ using optical microscopy, Scanning Electron microscopy (SEM and Vickers hardness tests. The results revealed that an extremely fine-grained structure, obtained in the NZ after FSW, resulted in a rise of hardness from the BM to the NZ. Furthermore, post welding heat-treatment in the semi-solid state gave rise to a consistent morphology throughout the material which was similar to microstructures obtained by the thixoforming process. Moreover, a drop of hardness was observed after heat treatment in all regions as compared to that in the welded microstructure.

  7. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  8. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Allison, P.G. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Rushing, T.; Garcia, L. [Engineering Research and Development Center, Army Corps of Engineers, Vicksburg, MS 39180 (United States)

    2016-01-27

    In this work, experiments were conducted to quantify structure-property relations of low-cycle fatigue behavior of dissimilar friction stir welding (FSW) of AA6061-to-AA7050 high strength aluminum alloys. In addition, a microstructure-sensitive fatigue model is employed to further elucidate cause-effect relationships. Experimental strain-controlled fatigue testing revealed an increase in the cyclic strain hardening and the number-of cycles to failure as the tool rotational speed was increased. At higher applied strain amplitudes (>0.3%), the corresponding stress amplitude increased and the plastic strain amplitude decreased, as the number of cycles increased. However, at 0.2% strain amplitude, the plastic strain decreased until it was almost negligible. Inspection of the hysteresis loops demonstrated that at low strain amplitudes, there was an initial stage of strain hardening that increased until it reached a maximum strain hardening level, afterwards a nearly perfect elastic behavior was observed. Under fully-reversed fatigue loading, all samples failed at the region between the heat-affected and thermomechanically-affected zones. Inspection of the fractured surfaces under scanning electron microscopy revealed that the cracks initiated at either the crown or the root surface of the weld, and from secondary intermetallic particles located near the free surface of the weld. Lastly, a microstructure-sensitive multistage fatigue model was employed to correlate the fatigue life of the dissimilar FSW of AA6061-to-AA7050 considering microstructural features such as grain size, intermetallic particles and mechanical properties.

  9. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy

    Science.gov (United States)

    Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye

    2018-05-01

    A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.

  10. Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy

    Science.gov (United States)

    Kang, Suk Hoon; Han, Heung Nam; Oh, Kyu Hwan; Cho, Jae-Hyung; Lee, Chang Gil; Kim, Sung-Joon

    2009-12-01

    The material flow and crystallographic orientation in aluminum alloy sheets joined by friction stir welding (FSW) were investigated by electron back scattered diffraction (EBSD). The microstructure and microtexture of the material near the stir zone was found to be influenced by the rotational behavior of the tool pin. It was found that, during FSW, the forward movement of the tool pin resulted in loose contact between the tool pin and the receding material at the advancing side. This material behavior inside the joined aluminum plates was also observed by an X-ray micrograph by inlaying a gold marker into the plates. As the advancing speed of the tool increases at a given rotation speed, the loose contact region widens. As the microtexture of the material near the stir zone is very close to the simple shear texture on the basis of the frame of the tool pin in the normal and tangent directions, the amount of incompletely rotated material due to the loose contact could be estimated from the tilt angle of the shear texture in the pole figure around the key hole.

  11. Multi-Track Friction Stir Lap Welding of 2024 Aluminum Alloy: Processing, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Shengke Zou

    2016-12-01

    Full Text Available Friction stir lap welding (FSLW raises the possibility of fabricating high-performance aluminum components at low cost and high efficiency. In this study, we mainly applied FSLW to fabricate multi-track 2024 aluminum alloy without using tool tilt angle, which is important for obtaining defect-free joint but significantly increases equipment cost. Firstly, systematic single-track FSLW experiments were conducted to attain appropriate processing parameters, and we found that defect-free single-track could also be obtained by the application of two-pass processing at a rotation speed of 1000 rpm and a traverse speed of 300 mm/min. Then, multi-track FSLW experiments were conducted and full density multi-track samples were fabricated at an overlapping rate of 20%. Finally, the microstructure and mechanical properties of the full density multi-track samples were investigated. The results indicated that ultrafine equiaxed grains with the grain diameter about 9.4 μm could be obtained in FSLW samples due to the dynamic recrystallization during FSLW, which leads to a yield strength of 117.2 MPa (17.55% higher than the rolled 2024-O alloy substrate and an elongation rate of 31.05% (113.84% higher than the substrate.

  12. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels

    International Nuclear Information System (INIS)

    Haghshenas, M.; Abdel-Gwad, A.; Omran, A.M.; Gökçe, B.; Sahraeinejad, S.; Gerlich, A.P.

    2014-01-01

    Highlights: • Successful lap joints of Al 5754 sheet to coated DP600 and 22MnB5 steels. • Negligible effect of welding speed on mechanical properties of Al 5754/22MnB5 joints. • Lower strength of Al 5754/22MnB5 joints compared with Al 5754/DP600 joints. - Abstract: In the present paper friction stir-induced diffusion bonding is used for joining sheets of 5754 aluminum alloy to coated high strength steels (DP600 and 22MnB5) by promoting diffusion bonding in an overlap configuration. Mechanical performance and microstructures of joints were analyzed by overlap shear testing, metallography, and X-ray diffraction. Our results show that the strength of joint is dependent upon tool travel speed and the depth of the tool pin relative to the steel surface. The thickness and types of intermetallic compounds formed at the interface play a significant role in achieving a joint with optimum performance. That is, the formation of high aluminum composition intermetallic compounds (i.e. Al 5 Fe 2 ) at the interface of the friction stir lap joint appeared to have a more negative effect on joint strength compared to the presence of high iron composition intermetallic phases (i.e. FeAl). This is in agreement with previously reported findings that FeAl intermetallic can improve the fracture toughness and interface strength in Al/St joints

  13. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  14. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  15. Pulsed laser damage to optical fibers

    International Nuclear Information System (INIS)

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-01-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace

  16. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  17. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  18. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    Science.gov (United States)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  19. The investigation of abnormal particle-coarsening phenomena in friction stir repair weld of 2219-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu

    2011-01-01

    Highlights: → Defective friction stir welds were repaired by overlapping FSW technique. → Abnormal Al 2 Cu-coarsening phenomena were found in 2219-T6 friction stir repair weld. → Three formation mechanisms were proposed for reasonable explanations. -- Abstract: The single-pass friction stir weld of aluminum 2219-T6 with weld-defects was repaired by overlapping friction stir welding technique. However, without any post weld heat treatment process, it was found that the phenomena of abnormal particle-coarsening of Al 2 Cu had occurred in the overlapping friction stir repair welds. The detecting results of non-destructive X-ray inspection proved that not only one group of repair FSW process parameters could lead to occurrence of the abnormal phenomena. And the abnormally coarsened particles always appeared on the advancing side of repair welds rather than the retreating side where the fracture behaviors occurred after mechanical tensile testing. The size of the biggest particle lying in the dark bands of 'Onion-rings' was more than 150 μm. After the related investigation by scanning electron microscope and X-ray energy spectrometer, three types of formation mechanisms were proposed for reasonably explaining the abnormal phenomenon: Aggregation Mechanism, Diffusion Mechanisms I and II. Aggregation Mechanism was according to the motion-laws of stir-pin. Diffusion Mechanisms were based on the classical theories of precipitate growth in metallic systems. The combined action of the three detailed mechanisms contributed to the abnormal coarsening behavior of Al 2 Cu particles in the friction stir repair weld.

  20. Joining of Cu-Mg-Mn Aluminum Alloy with Linear Friction Welding

    OpenAIRE

    A. Medvedev; V. Bychkov; A. Selivanov; Yu. J. Ershova; B. Bolshakov; I.V. Alexаndrov; F. F. Musin

    2014-01-01

    Al-Cu-Mg-Mn alloy samples were joined together with linear friction welding in two conditions, as is, without pretreatment, and after etching the welding interface. The effect of the welding interface condition was evaluated based on microstructure analysis, microhardness and tensile testing at room temperature. Also, the temperature distribution during welding was estimated with an analytical one-dimensional heat conduction model of the welding process and welding process data

  1. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu; Hu, Weiye

    2011-01-01

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al 2 Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  2. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yao [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Wenjing [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xie Jijia [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Sun Shouguang [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Liang [College of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Qian Ye; Meng Yuan [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei Yujie, E-mail: yujie_wei@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Welding zones by GTAW and GMAW are softer than the parent material Al5083. Black-Right-Pointing-Pointer GTAW for Al5083 are mechanically more reliable than that welded by GMAW. Black-Right-Pointing-Pointer GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  3. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    International Nuclear Information System (INIS)

    Liu Yao; Wang Wenjing; Xie Jijia; Sun Shouguang; Wang Liang; Qian Ye; Meng Yuan; Wei Yujie

    2012-01-01

    Highlights: ► Welding zones by GTAW and GMAW are softer than the parent material Al5083. ► GTAW for Al5083 are mechanically more reliable than that welded by GMAW. ► GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  4. Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of AA2024-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    A. W. El-Morsy

    2018-02-01

    Full Text Available In this work, the effects of rotational and traverse speeds on the 1.5 mm butt joint performance of friction stir welded 2024-T4 aluminum alloy sheets have been investigated. Five rotational speeds ranging from 560 to 1800 rpm and five traverse speeds ranging from 11 to 45 mm/min have been employed. The characterization of microstructure and the mechanical properties (tensile, microhardness, and bending of the welded sheets have been studied. The results reveal that by varying the welding parameters, almost sound joints and high performance welded joints can be successfully produced at the rotational speeds of 900 rpm and 700 rpm and the traverse speed of 35 mm/min. The maximum welding performance of joints is found to be 86.3% with 900 rpm rotational speed and 35 mm/min traverse speed. The microhardness values along the cross-section of the joints show a dramatic drop in the stir zone where the lowest value reached is about 63% of the base metal due to the softening of the welded zone caused by the heat input during joining.

  5. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    OpenAIRE

    Alves, Eder Paduan; Piorino Neto, Francisco; An, Chen Ying; Silva, Euclides Castorino da

    2012-01-01

    Abstract: The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materiais: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained...

  6. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  7. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition

    Science.gov (United States)

    Wu, Dongsheng; Hua, Xueming; Huang, Lijin; Zhao, Jiang

    2018-03-01

    The droplet escape condition in laser welding is established in this paper. A three-dimensional numerical model is developed to study the weld pool convection and spatter formation at full penetration during the fiber laser welding of 5083 aluminum alloy. It is found that when laser power is 9 kW, the bottom of the keyhole is dynamically opened and closed. When the bottom of the keyhole is closed, the molten metal at the bottom of the back keyhole wall flows upwards along the fusion line. When the bottom of the keyhole is opened, few spatters can be seen around the keyhole at the top surface, two flow patterns exists in the rear part of the keyhole: a portion of molten metal flows upwards along the fusion line, other portion of molten metal flows to the bottom of the keyhole, which promote the spatter formation at the bottom of the keyhole rear wall.

  8. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    Science.gov (United States)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  9. Molecular dynamics study of lubricant depletion by pulsed laser heating

    Science.gov (United States)

    Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.

    2018-05-01

    In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.

  10. Pulsed laser deposition—invention or discovery?

    International Nuclear Information System (INIS)

    Venkatesan, T

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high T c superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology. (paper)

  11. Influence of shielding gas on the mechanical and metallurgical properties of DP-GMA-welded 5083-H321 aluminum alloy

    Science.gov (United States)

    Koushki, Amin Reza; Goodarzi, Massoud; Paidar, Moslem

    2016-12-01

    In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0.1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.

  12. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  13. Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys

    Science.gov (United States)

    Ibrahim, Ahmed

    2002-01-01

    This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.

  14. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    Science.gov (United States)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  15. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy

    Science.gov (United States)

    Wang, Jin; Wang, Hui-Ping; Wang, Xiaojie; Cui, Haichao; Lu, Fenggui

    2015-03-01

    This paper investigates hot cracking rate in Al fiber laser welding under various process conditions and performs corresponding process optimization. First, effects of welding process parameters such as distance between welding center line and its closest trim edge, laser power and welding speed on hot cracking rate were investigated experimentally with response surface methodology (RSM). The hot cracking rate in the paper is defined as ratio of hot cracking length over the total weld seam length. Based on the experimental results following Box-Behnken design, a prediction model for the hot cracking rate was developed using a second order polynomial function considering only two factor interaction. The initial prediction result indicated that the established model could predict the hot cracking rate adequately within the range of welding parameters being used. The model was then used to optimize welding parameters to achieve cracking-free welds.

  16. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    quality. An experimental study of the influence of pretreatment on weld quality in RSW of AA1050 sheets with three thicknesses, comparing welding of as-received sheet with pretreated sheet by either pickling in NaOH or glass-blasting were investigated. Different weld settings were applied with low...

  17. Detection of diamond in ore using pulsed laser Raman spectroscopy

    CSIR Research Space (South Africa)

    Lamprecht, GH

    2007-10-01

    Full Text Available is necessary for correcting for fluorescence of minerals and diamond itself. Various pulsed laser wavelengths from 266 to 1064 nm were used, as well as cw lasers for comparison. Wavelength scans of the regions of interest, indicated that pulsed lasers at 532...

  18. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding

    International Nuclear Information System (INIS)

    Ma, Junjie; Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-01-01

    Highlights: • Defect-free two-pass laser partially penetrated lap joint of galvanized steel to aluminum was achieved. • The thickness of the Al-rich intermetallic compounds could be controlled by optimal parameters. • The dynamic behavior of the molten pool and keyhole were monitored by a high speed charge-coupled device camera. • The presence of zinc in the intermetallic compounds could improve the strength of the lap joints. - Abstract: A welding procedure based on using two-pass laser scans is introduced for dissimilar joining of overlapped galvanized high-strength dual-phase (DP) steel DP590 to aluminum alloy (AA) 6061 sheets. The first pass is based on a defocused laser spot that scans across the top of the two overlapped sheets and heats the zinc coating at the faying surface to be melted and partially vaporized, while the second pass is executed with a focused laser spot in order to perform the welding. Completely defect-free galvanized steel to aluminum lap joints were obtained by using this two-pass laser welding procedure. An on-line machine vision system was applied to monitor the keyhole dynamics during the laser welding process. An energy-dispersive X-ray spectroscopy (EDS) was carried out to determine the atomic percent of zinc, aluminum, and iron in the galvanized steel to aluminum lap joints. Mechanical testing and micro-hardness test were conducted to evaluate the mechanical properties of the galvanized steel to aluminum lap joints. The experimental results showed that the lap joint of galvanized steel to aluminum obtained by the two-pass laser welding approach had a higher failure value than those joints obtained when the zinc at the faying surface was mechanically removed under the same welding speed and laser power

  19. Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Y. Kambouz

    2014-02-01

    Full Text Available The assemblies welded by Friction Stir Welding have a major advantage which is the absence of a metal filler. This process contributes to the welding of materials that are known to be difficult to weld using the conventional techniques often employed in the field of transport, for example in the automobile body by applying a spot welding. The numerical modeling of this type of process is complex, not only in terms of the variety of physical phenomena which must be considered, but also because of the experimental procedure that must be followed in order to verify and validate numerical predictions. In this work, a finite element model is proposed in order to simulate the crack propagation under monotonic loading in different areas of the weld seam of a strain hardening CT-50 aluminum alloy 5251H14 specimen.

  20. Nondestructive Evaluation of the Friction Weld Process on 2195/2219 Grade Aluminum

    Science.gov (United States)

    Suits, Michael W.; Clark, Linda S.; Cox, Dwight E.

    1999-01-01

    In 1996, NASA's Marshall Space Flight Center began an ambitious program designed to find alternative methods of repairing conventional TIG (Tungsten Inert Gas) welds and VPPA (Variable Polarity Plasma Arc) welds on the Space Shuttle External Tank without producing additional heat-related anomalies or conditions. Therefore, a relatively new method, invented by The Welding Institute (TWI) in Cambridge, England, called Friction Stir Welding (FSW), was investigated for use in this application, as well as being used potentially as an initial weld process. As with the conventional repair welding processes, nondestructive evaluation (NDE) plays a crucial role in the verification of these repairs. Since it was feared that conventional NDE might have trouble with this type of weld structure (due to shape of nugget, grain structure, etc.) it was imperative that a complete study be performed to address the adequacy of the NDE process. This paper summarizes that process.

  1. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    Science.gov (United States)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  2. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    Science.gov (United States)

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may

  3. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  4. Selected Welding Techniques, Part 2

    National Research Council Canada - National Science Library

    1964-01-01

    Partial contents: CONVENTIONAL WELD JOINTS VERSUS BUTT JOINTS IN 1-INCH ALUMINUM PLATE, SPECIAL WELD JOINT PREPARATION, UPSET METAL EDGES FOR INCREASED WELD JOINT STRENGTH, OUT-OF-POSITION WELDING OF HEAVY GAGE...

  5. Crack imaging by pulsed laser spot thermography

    International Nuclear Information System (INIS)

    Li, T; Almond, D P; Rees, D A S; Weekes, B

    2010-01-01

    A surface crack close to a spot heated by a laser beam impedes lateral heat flow and produces alterations to the shape of the thermal image of the spot that can be monitored by thermography. A full 3D simulation has been developed to simulate heat flow from a laser heated spot in the proximity of a crack. The modelling provided an understanding of the ways that different parameters affect the thermal images of laser heated spots. It also assisted in the development of an efficient image processing strategy for extracting the scanned cracks. Experimental results show that scanning pulsed laser spot thermography has considerable potential as a remote, non-contact crack imaging technique.

  6. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  7. Pulsed laser radiation therapy of skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  8. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  9. Numerical Simulation of Mechanical Property of Post Friction Stir Weld Artificial Ageing of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WAN Zhenyu

    2017-08-01

    Full Text Available KWN model was used to establish the precipitation evolution model of friction stir welding of Al-Mg-Si alloy. The yield strength was divided into three parts:the contribution from grain size, the contribution from solid solution and the contribution from the precipitations. Based on this model, the yield strength and hardness of friction stir weld was predicted. The effect of post weld artificial ageing on mechanical properties of friction stir weld was further investigated. The results indicate that longer holding time can be beneficial to the recovery of mechanical properties in the stirring zone. Higher temperature can lead to quick recovery of mechanical properties in the stirring zone, but when the holding temperature is higher than 200℃, longer holding time can lead the base metal softened, which is harmful to the service of friction stir welds. The mechanical property in the heat affected zone cannot be improved by post weld artificial ageing.

  10. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Moore, T. J.

    1975-01-01

    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  11. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended

  12. Using X-ray Diffraction to Assess Residual Stresses in Laser Peened and Welded Aluminum

    Science.gov (United States)

    2011-12-01

    inch thick. The chemical composition of this plate material is: magnesium 4.7, manganese 0.9, iron 0.20, silicon 0.10, chromium 0.08, zinc 0.03...19. The plates were clamped to the welding table using L-shaped clamps. The welded areas were surface ground to remove any slag and debris.[1] 28

  13. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    Science.gov (United States)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  14. Studies of localized corrosion in welded aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.; Nunes, A. C.

    1995-01-01

    Localized corrosion in welded samples of 2219-T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

  15. Effect of Sleeve Plunge Depth on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welding of 2198 Aluminum Alloy

    Science.gov (United States)

    Yue, Yumei; Shi, Yao; Ji, Shude; Wang, Yue; Li, Zhengwei

    2017-10-01

    Refill friction stir spot welding (RFSSW) is a new spot welding technology, by which spot joint without keyhole can be obtained. In this work, RFSSW was used to join 2-mm-thick 2198-T8 aluminum alloy sheets and effects of the sleeve plunge depth on microstructure and lap shear properties of the joints were mainly discussed. Results showed that when using small plunge depths of 2.4 and 2.6 mm, joints showed good formation and no defects were observed. Incomplete refilling defect was observed with increasing plunge depth due to material loss during welding. Size of the grains at sleeve-affected zone (SAZ) is smaller than that at the pin-affected zone, and the size becomes bigger with increasing the plunge depth. More secondary phase particles can be observed at SAZ with increasing the sleeve plunge depth. The lap shear failure load firstly increased and then decreased with increasing the sleeve plunge depth. The maximum failure load of 9819 N was attained with plug fracture mode when using 2.6 mm. Fracture morphologies show ductile fracture mode.

  16. Microstructural Characteristics and Mechanical Properties of Friction Stir Spot Welded 2A12-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Huijie Liu

    2013-01-01

    Full Text Available 2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ, thermal mechanically affected zone (TMAZ, and heat affected zone (HAZ. The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.

  17. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    at different ambient gas pressures using an adiabatic expansion model. ... Pulsed laser; plasma expansion; plasma ionization; plume dimension. 1. ...... De A, Shakhatov V A, Pascale De O 2001 Optical emission spectroscopy and modeling of.

  18. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  19. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  20. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    structures in Finland; (b) manufacture of Al-Mg-Si-based alloy 181 FSW-joined bullet- train cabins in Japan; (c) fabrication of 182 Al-Cu-based alloy...Simonsen, Visualisation of Material 857Flow in an Autogenous Friction Stir Weld, Proc. 1st International 858Symp. FSW, Thousand Oaks, CA, 1999 85928...A.P. Reynolds, Visualization of Material Flow in an Autogenous 860Friction Stir Weld, Sci. Technol. Weld. Join., 2000, 5, p 120–124 86129. T.U. Seidel

  1. Effects of Friction Stir Welding on Corrosion Behaviors of AA2024-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ales Steve Korakan

    2017-01-01

    Full Text Available In this work, the corrosion behavior of welded joints of AA2024-T4 Al alloy produced by friction stir welding process has been investigated. Tests were performed in an aerated 3.5% NaCl aqueous solution with pH = 7 at 20±2°C. Corrosion rate and corrosion morphology of weld regions were evaluated and compared to those of the parent metal. The microstructure of weld nugget, thermomechanical affected zone, heated affected zone, and parent metal were analyzed using scanning electron microscopy and energy dispersive spectroscopy. It was observed that corrosion initiated at FSW related spots and the sizes of local corrosion increased with time.

  2. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys

    International Nuclear Information System (INIS)

    Khodir, Saad Ahmed; Shibayanagi, Toshiya

    2008-01-01

    The present study focuses on the microstructure and mechanical properties of dissimilar joints of 2024-T3 Al alloy to 7075-T6 Al alloy produced by friction stir welding. Effects of welding speed and fixed location of base metals on microstructures, hardness distributions, and tensile properties of the welded joints were investigated. SEM-EDS analysis revealed that the stir zone contains a mixed structure and onion ring pattern with a periodic change of grain size as well as a heterogeneous distribution of alloying elements. The maximum tensile strength of 423.0 MPa was achieved for the joint produced at welding speed of 1.67 mm/s when 2024 Al alloy was located on the advancing side

  3. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  4. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    International Nuclear Information System (INIS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-01-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl 2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting

  5. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  6. Mechanical Properties Of AA 6061-T6 Aluminum Alloy Friction Stir Welds

    Directory of Open Access Journals (Sweden)

    Asmaa M. Abdullah

    2015-06-01

    Full Text Available The different parameters on mechanical and microstructural properties of aluminium alloy 6061-T6 Friction stir-welded (FSW joints were investigated in the present study. Different welded specimens were produced by employing variable rotating speeds and welding speeds. Tensile strength of the produced joints was tested at room temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and analyzed by means of brinell hardness number . Besides to thess tests the bending properties investigated and showed good results in some specimen and not in onother the mamximum stress was 240 N/mm2 at rotational speed 1500 rpm and weld speed 50 mm/min , while the maximum stress at 1250 rpm and 75 mm/min 94 N/mm2 , hardness results shwed lower values in heat affected and nugget zones than the base metal with improving of hardness at 1500 rpm, 75 mm/min .

  7. Intergranular corrosion following friction stir welding of aluminum alloy 7075-T651

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, J.B.; Mahoney, M.W.; Pollock, G.; Rhodes, C.G.

    1999-12-01

    Friction stir welding (FSW), a relatively new solid-state joining process, is used to join Al alloys of all compositions, including alloys essentially considered unweldable. This study focused on microstructures in FSW Al alloy 7075-T651 (AA 7075-T651 [UNS 97075-T651]), an alloy not commonly fusion welded, and the resultant corrosion susceptibility. Although the heat input associated with FSW was relatively low and the time at temperature was short compared to fusion welding, localized microstructures, chemical segregation, and precipitate distributions were created that generally are not present in parent metal AA 7075-T651. Typically, in the weld and heat affected zone (HAZ), the times at peak temperature were short, cooling was relatively rapid, and peak temperatures were {lt} {approx}500 C. Accordingly, a corresponding microstructural gradient developed from the weld nugget into the unaffected parent metal with the precipitate distribution in and around grain boundaries reflecting this temperature excursion. Some of these microstructures, when exposed to a corrosive environment, showed selective grain boundary attack and a decrease in the pitting potential relative to the parent metal. A characterization of the microstructure and localized chemistry differences within the weld zones suggested that the decrease in corrosion resistance correlated with a depletion of Cu within the grain boundaries and precipitate-free zones. These results provided evidence that the lowered resistance to intergranular corrosion following FSW of AA 7075-T651 was caused by a difference in pitting potentials.

  8. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  9. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  10. The "Lazy S" Feature in Friction Stir Welding of AA2099 Aluminum -Lithium Alloy

    National Research Council Canada - National Science Library

    Klages, Holli K

    2007-01-01

    The addition of Lithium to Aluminum-Lithium (Al-Li) alloys results in reduced density as well as increased stiffness and strength, and so these materials are attractive for selected aerospace structures...

  11. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    Science.gov (United States)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  12. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  13. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    Science.gov (United States)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  14. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-10-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  15. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  16. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  17. Welding of a neutron high-flux reactor made of aluminum

    International Nuclear Information System (INIS)

    Zinser, P.; Schupp, N.

    1996-01-01

    The HFR300 of the Institute ''Max von Laue - Paul Langevin (ILL)'' at Grenoble was found to be damaged by a number of serious defects which could not be made good by repair work, so that a new reactor had to be installed. Some of the welding tasks performed so far in this installation are explained. (orig./MM) [de

  18. Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianbin [College of Automotive Collaborative Innovation Center, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044 (China); Yuan, Xinjian, E-mail: xinjianyuan@yahoo.com [College of Materials Science and Engineering, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044 (China); Hu, Zhan; Sun, Changzheng; Zhang, Yanxin; Zhang, Yuxuan [College of Materials Science and Engineering, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044 (China)

    2016-10-15

    The microstructure and mechanical properties of resistance-spot-welded A5052 aluminum alloy and DP 600 dual-phase steel joint were studied. The fusion zone (FZ) and heat-affected zone (HAZ) of DP 600 exhibited lath martensite and ferrite-martensite structures, respectively. The microstructure of FZ and HAZ in the A5052 side was composed of cellular crystals and the boundary region of FZ exhibited a columnar crystal morphology. A Fe{sub 2}Al{sub 5} intermetallic compound (IMC) layer with 3.3 μm thickness was found adjacent to the DP 600 side, whereas a needle-shaped Fe{sub 4}Al{sub 13} IMC layer with length of 0.67 μm to 15.8 μm was found adjacent to the aluminum alloy side. The maximum tensile shear load of the A5052/DP 600 joint was 5.5 KN, with a corresponding molten nugget diameter of 6.3 mm. The fracture morphology of the optimized A5052/DP 600 joint was mainly an elongated dimple fracture accompanied by cleavage fracture. - Highlights: •A5052 and DP 600 with large gaps in properties were investigated by RSW. •The microstructures of RSW joints in DP 600/A5052 were examined detailedly. •The micro/macro-characteristics and strength relations of joints were analyzed.

  19. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    Science.gov (United States)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  20. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  1. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  2. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  3. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  4. Acute effects of pulsed-laser irradiation on the arterial wall

    Science.gov (United States)

    Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise

    1992-08-01

    Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p vascular injury.

  5. Numerical Simulation of Temperature Distribution and Material Flow During Friction Stir Welding 2017A Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Mimouni Oussama

    2016-01-01

    Full Text Available This study describes the use of fluid dynamic code, FLUENT to model the flow of metal in the AA2017A case around the welding tool pin (FSW. A standard threaded tool profile is used for the analysis of phenomena during welding such as heat generation and flow of the material are included. The main objective is to gain a better understanding of the flow of material around a tool. The model showed a large number of phenomena similar to those of the real process. The model has also generated a sufficient amount of heat, which leads to a good estimate of the junction temperature. These results were obtained using a viscosity which is near the solidus softening.

  6. Microstructural analysis of cracks generated during welding of 2195 aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1994-01-01

    This research summarizes a series of studies conducted at Marshall Space Flight Center to characterize the properties of 2195 Al-Li alloy. 2195 Al-Li alloy, developed by Martin Marietta laboratories, is designated as a replacement of 2219 Al-Cu alloy for the External Tank (E.T.) of the space shuttle. 2195 Al-Li alloy with its advantage of increased strength per weight over its predecessor, 2219 Al-Cu alloy, also challenges current technology. 2195 Al-Li has a greater tendency to crack than its predecessor. The present study began with the observation of pore formation in 2195 Al-Li alloy in a thermal aging process. In preliminary studies, Talia and Nunes found that most of the two pass welds studied exhibited round and crack-like porosity at the weld roots. Furthermore, the porosity observed was associated with the grain boundaries. The porosity level can be increased by thermal treatment in the air. A solid state reaction proceeding from dendritic boundaries in the weld fusion zone was observed to correlate with the generation of the porosity.

  7. Pulsed-laser deposited ZnO for device applications

    NARCIS (Netherlands)

    King, S.L.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    The study investigates the growth by pulsed-laser deposition (PLD) of ZnO thin films for the eventual incorporation into piezo-electric actuators and other sensors being developed at the University of Twente. All films are purely c-axis oriented, and results are presented which suggest the

  8. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R; Walling, R; Price, D; Guethlein, G; Stewart, R; Libby, S; Graziani, F; Levatin, J [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  9. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  10. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  11. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability...

  12. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  13. Pulsed laser stereophotography of plasmas and dynamically moving surfaces

    International Nuclear Information System (INIS)

    Paisley, D.L.

    1987-01-01

    A pulsed laser is used as a light source for illuminating the surface of a dynamic event of 3 mm//μs. At a predetermined time during the dynamic action, a stereo camera is used to record a pair of images of the dynamically moving surface. The stereoimage pair can be quantified for surface contour

  14. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  15. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  16. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    Directory of Open Access Journals (Sweden)

    Anas M. Atieh

    2018-05-01

    Full Text Available Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only, high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments.

  17. Determination of elemental composition of coffee using UV-pulsed laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Gondal, M. A.; Baig, Umair; Dastageer, M. A.; Sarwar, Mohsin

    2016-01-01

    A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBS signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.

  18. Determination of elemental composition of coffee using UV-pulsed laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M. A., E-mail: magondal@kfupm.edu.sa; Baig, Umair; Dastageer, M. A.; Sarwar, Mohsin [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, P.O Box 5047, Dhahran 31261 (Saudi Arabia)

    2016-06-10

    A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBS signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.

  19. Method for welding beryllium

    Science.gov (United States)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  20. Method for welding beryllium

    International Nuclear Information System (INIS)

    Dixon, R.D.; Smith, F.M.; O'Leary, R.F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs

  1. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    Science.gov (United States)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned

  2. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  3. Correlation of Weld Appearance with Microstructure and Mechanical Properties of 2024-T4 Aluminum Alloy Welded by Fiber Laser with Filler Wire

    Directory of Open Access Journals (Sweden)

    XU Fei

    2017-11-01

    Full Text Available Two typical cross-section of welds, including nail shape and near X shape, are obtained in the process of fiber laser welding 2024-T4 Al alloy with filler wire. The correlations of the two weld appearances and other elements (such as microstructure, microhardness, and joint's tensile properties were analyzed. The results show that the weld with near X shape cross-section during the welding process is more stable than that with nail shape cross-section, and the welding spatter of the former is smaller than that of the latter. The microstructure of the weld zone is columnar grains and equiaxed grains, the columnar grains are formed near the fusion line and growing along the vertical direction of the fusion line, the equiaxed grains are distributed in the center of the weld zone. The secondary dendrite of the grains in the center of the weld with nail shape cross-section grows better, and gradually forms to equiaxed dendrite, while the grains size of the weld with near X shape cross-section is relatively finer, exhibiting equiaxed cellular grain. Compared with the joint with nail shape cross-section of the weld, the joint with near X shape cross-section of the weld have some different characteristics, the precipitation strengthening phase θ(Al2Cu content in weld zone of the latter is more than that of the former, the average microhardness value of the weld zone of the latter is higher than that of the former, the softening phenomenon of heat affect zone (HAZ of the latter is weaker than that of the former, and the joint's tensile strength and plasticity of the latter are lower than that of the former slightly.

  4. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  5. A Case Study for the Welding of Dissimilar EN AW 6082 and EN AW 5083 Aluminum Alloys by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Sefika Kasman

    2016-12-01

    Full Text Available The aim of this study is to investigate the effect of keeping constant the tool rotational speed to the welding speed ratio (υ ratio on the mechanical properties of the dissimilar friction stir welding of EN AW6082-T6 and EN AW5083-H111. Two different pins shaped as triangular and pentagonal were associated with the constant υ ratio. From the tensile test results, it was found that the υ ratio does not create an evident change in the weld joint strength. The small cavity- and tunnel-type defects were observed at the nugget zone and located on the advancing side of the pin. These defects caused a decrease in the strength and elongation of the weld joint. The most important inference obtained from the experimental results is that if the υ ratio is kept constant, the weld joint strength for each weld does not correspond to a constant value.

  6. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.T., E-mail: jiasqq1225@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Chen, J.F.; Zhou, J.Y.; Ge, M.Z.; Lu, Y.L.; Li, X.L. [School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China)

    2015-10-28

    7075 aluminum alloy weldments were processed by an intensive process known as laser shock peening (LSP), meanwhile its stress corrosion behaviors were observed by scanning electron microscopy (SEM) and slow strain rate tensile (SSRT) tests. Results showed that the effect of LSP on corrosion behavior of the joint was fairly useful and obvious. With LSP, the elongation, time of fracture and static toughness after the SSRT test were improved by 11.13%, 20% and 100%, respectively. At the same time, the location of the fracture also changed. LSP led to a transition of the fracture type from transgranular to intergranular The reasons for these enhancements of the joint on corrosion behavior were caused by microstructure, residual stress, micro-hardness, and fracture appearance.

  7. Selective photoionization of isotopic atoms with pulsed lasers

    International Nuclear Information System (INIS)

    Dai Changjian

    1994-01-01

    The dynamics of isotopically selective interactions between the radiation of three pulsed lasers and atoms with a four-levels scheme has been studied. Starting from the time-dependent Schroedinger equation with the rotating-wave approximation, authors applied Sylvester theorem to the dynamic equations associated with near-and off-resonant excitations, respectively. Authors obtained the explicit expressions for the four-levels occupation probabilities. The analytic treatment explored the properties of coherent oscillations occurred in the atomic excitation processes with intense monochromatic lasers. The conditions under which the population inversion takes place are derived from near-resonant excitations. The criteria to select the basic parameters of pulsed lasers involved in the process are also provided

  8. Pulsed laser-induced SEU in integrated circuits

    International Nuclear Information System (INIS)

    Buchner, S.; Kang, K.; Stapor, W.J.; Campbell, A.B.; Knudson, A.R.; McDonald, P.; Rivet, S.

    1990-01-01

    The authors have used a pulsed picosecond laser to measure the threshold for single event upset (SEU) and single event latchup (SEL) for two different kinds of integrated circuits. The relative thresholds show good agreement with published ion upset data. The consistency of the results together with the advantages of using a laser system suggest that the pulsed laser can be used for SEU/SEL hardness assurance of integrated circuits

  9. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  10. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  11. Thermal Effect of Pulsed Laser on Human Skin

    OpenAIRE

    N. C. Majumdar; V. K. Kochhar

    1985-01-01

    An attempt has been made to derive from theoretical considerations, some idea about safety limits of exposure with regard to radiant energy skin burns. This may be regarded as a preliminary enquiry in respect of thermal tissue damage by pulsed laser radiation, since the effects of isolated single pulses from ruby laser only have been considered. The study needs to be extended to other wavelengths as well as to trains of pulses.

  12. Pulse laser ablation at water-air interface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  13. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  14. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  15. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  16. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  17. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  18. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  19. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  20. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  1. Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution

    Science.gov (United States)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2010-12-01

    The stress corrosion cracking (SCC) behavior of AA2219 aluminum alloy in the as-welded (AW) and repair-welded (RW) conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using the slow strain rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both BM and welded joints. The results show that the ductility ratio ( ɛ NaCl/( ɛ air)) of the BM was close to one (0.97) and reduced to 0.9 for the AW joint. This value further reduced to 0.77 after carrying out one repair welding operation. However, the RW specimen exhibited higher ductility than the single-weld specimens even in 3.5 wt pct NaCl solution. SSRT results obtained using pre-exposed samples followed by post-test metallographic observations clearly showed localized pitting corrosion along the partially melted zone (PMZ), signifying that the reduction in ductility ratio of both the AW and RW joints was more due to mechanical overload failure, caused by the localized corrosion and a consequent reduction in specimen thickness, than due to SCC. Also, the RW joint exhibited higher ductility than the AW joint both in air and the environment, although SCC index (SI) for the former is lower than that of the latter. Fractographic examination of the failed samples, in general, revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy. Microstructural examination and polarization tests further demonstrate grain boundary melting along the PMZ, and that provided the necessary electrochemical condition for the preferential cracking on that zone of the weldment.

  2. Dependence of fracture toughness of molybdenum laser welds on dendritic spacing and in situ titanium additions

    International Nuclear Information System (INIS)

    Jellison, J.L.

    1979-01-01

    The fracture toughness of molybdenum welds has been improved by in situ gettering of oxygen by means of physically deposited titanium. The addition of titanium suppressed brittle intergranular fracture. Pulsed laser welds (both Nd:YAG and CO 2 ) exhibited superior toughness to that of continuous wave CO 2 laser welds. Also, welds of vacuum arc remelted grades were tougher than those of sintered molybdenum. However, weld toughness could not be correlated with either oxygen or carbon content

  3. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure-Property Relationship of a Strongly Bonded Interface

    Science.gov (United States)

    Liu, Bert; Vivek, Anupam; Presley, Michael; Daehn, Glenn S.

    2018-03-01

    The ability to weld high-strength aluminum to high-strength steel is highly desired for vehicle lightweighting but difficult to attain by conventional means. In this work, vaporizing foil actuator welding was used to successfully weld four Al/Fe combinations consisting of high-strength alloys: AA5052-H32, AA6111-T4, DP980, and 22MnB5. Flyer velocities up to 727 m/s were reached using 10 kJ input energy. In lap-shear testing, samples primarily failed in base aluminum near the aluminum's native strength, showing that the welds were stronger than a base metal and that the base metal was not significantly weakened by the welding process. A particularly strong weld area was studied by transmission electron microscopy to shed light on the microstructural features of strong impact welds. It was found to be characterized by a continuously bonded, fully crystalline interface, extremely fine (nanoscale) grains, mesoscopic as well as microscopic wavy features, and lack of large continuous intermetallic compounds.

  4. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  5. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  6. Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651aluminum alloy

    International Nuclear Information System (INIS)

    Sohn, Hye Jeong; Haryadi, Gunawan Dwi; Kim, Seon Jin

    2014-01-01

    The statistical aspects of fatigue crack growth life of base metal (BM), weld metal (WM) and heat affected zone (HAZ) in friction stir welded (FSWed) 7075-T651 aluminum alloy has been studied by Weibull statistical analysis. The fatigue crack growth tests were performed at room temperature on ASTM standard CT specimens under three different constant stress intensity factor range controls. The main objective of this paper is to investigate the effects of statistical aspects of fatigue crack growth life on stress intensity factor ranges and material properties, namely BM, WM and HAZ specimens. In this work, the Weibull distribution was employed to estimate the statistical aspects of fatigue crack growth life. The shape parameter of Weibull distribution for fatigue crack growth life was significantly affected by material properties and the stress intensity factor range. The scale parameter of WM specimen exhibited the lowest value at all stress intensity factor ranges.

  7. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium

    International Nuclear Information System (INIS)

    Rao, H.M.; Ghaffari, B.; Yuan, W.; Jordon, J.B.; Badarinarayan, H.

    2016-01-01

    The microstructure and lap-shear behaviors of friction stir linear welded wrought Al alloy AA6022-T4 to cast Mg alloy AM60B joints were examined. A process window was developed to initially identify the potential process conditions. Multitudes of welds were produced by varying the tool rotation rate and tool traverse speed. Welds produced at 1500 revolutions per minute (rpm) tool rotation rate and either 50 mm/min or 75 mm/min tool traverse speed displayed the highest quasi-static failure load of ~3.3 kN per 30 mm wide lap-shear specimens. Analysis of cross sections of untested coupons indicated that the welds made at these optimum welding parameters had negligible microvoids and displayed a favorable weld geometry for the cold lap and hook features at the faying surface, compared to welds produced using other process parameters. Cross sections of the tested coupons indicated that the dominant crack initiated on the advancing side and progressed through the weld nugget, which consists of intermetallic compounds (IMC). This study demonstrates the feasibility of welding wrought Al and cast Mg alloy via friction stir linear welding with promising lap-shear strength results.

  8. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Rao, H.M. [Research & Development Division, Hitachi America Ltd., Farmington Hills, MI 48335 (United States); Ghaffari, B. [Research and Advanced Engineering, Ford Motor Company, Dearborn, MI 48121 (United States); Yuan, W., E-mail: wei.yuan@hitachi-automotive.us [Research & Development Division, Hitachi America Ltd., Farmington Hills, MI 48335 (United States); Jordon, J.B. [Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Badarinarayan, H. [Research & Development Division, Hitachi America Ltd., Farmington Hills, MI 48335 (United States)

    2016-01-10

    The microstructure and lap-shear behaviors of friction stir linear welded wrought Al alloy AA6022-T4 to cast Mg alloy AM60B joints were examined. A process window was developed to initially identify the potential process conditions. Multitudes of welds were produced by varying the tool rotation rate and tool traverse speed. Welds produced at 1500 revolutions per minute (rpm) tool rotation rate and either 50 mm/min or 75 mm/min tool traverse speed displayed the highest quasi-static failure load of ~3.3 kN per 30 mm wide lap-shear specimens. Analysis of cross sections of untested coupons indicated that the welds made at these optimum welding parameters had negligible microvoids and displayed a favorable weld geometry for the cold lap and hook features at the faying surface, compared to welds produced using other process parameters. Cross sections of the tested coupons indicated that the dominant crack initiated on the advancing side and progressed through the weld nugget, which consists of intermetallic compounds (IMC). This study demonstrates the feasibility of welding wrought Al and cast Mg alloy via friction stir linear welding with promising lap-shear strength results.

  9. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  10. Aluminum 6060-T6 friction stir welded butt joints: fatigue resistance with different tools and feed rates

    International Nuclear Information System (INIS)

    Baragetti, S.; D'Urso, G.

    2014-01-01

    The fatigue behavior of AA6060-T6 friction stir welded butt joints was investigated. The joints were produced by using both a standard and a threaded tri-flute cylindrical-tool with flat shoulder. The friction stir welding process was carried out using different feed rates. Preliminary tensile tests, micrograph analyses and hardness profile measurements across the welds were carried out. Welded and unwelded fatigue samples were tested under axial loading (R = 0.1) with upper limits of 10 4 and 10 5 cycles, using threaded and unthreaded (standard) tools at different feed rates. The best tensile and fatigue performance was obtained using the standard tool at low feed rate.

  11. Experimental investigation of the degree of weakening in structural notch area of 7075-T6 aluminum alloy sheet welded with the RFSSW method

    Directory of Open Access Journals (Sweden)

    Kubit Andrzej

    2017-01-01

    Full Text Available The paper presents the methodology of the research determining the degree of weakening of the welded sheet obtained by the refill friction stir spot welding (RFSSW method. The considered weakness is the effect of a structural notch resulting from penetration by the tool. RFSSW technology is a relatively new method of joining metals, which can successfully provide an alternative to resistance welding or riveting - traditionally used methods of joining thin-walled structures in the aerospace and automotive industries. The study presented in the paper focuses on the overlapping of sheet metal with 7075-T6 aluminum alloy combined in the configuration: 1.6 mm top sheet and 0.8 mm bottom sheet. Joints were assembled following the following process parameters: Welding time 1.5 s, the tool plunge depth in the range of 1.5 ÷ 1.9 mm, and the spindle speed of 2600 rpm. The analysis of the microstructure of joints revealed that along the edge of the tool path a structural notch is formed, the size and shape of which depend on the parameters applied. The paper describes the study consisting in punching the welded area along the formed notch in the upper sheet. The punching process was performed on a universal testing machine and the punching force was measured during the test. Based on the force value, the degree of sheet weakening in the notched area was determined. The smallest weakening was observed in joints made with the smallest tool depth, i.e. 1.5 mm, whereas the biggest weakening was obtained for tool depth of 1.9 mm. The load applied to the joints was equal to 5290N and 7585N respectively.

  12. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets

    International Nuclear Information System (INIS)

    Salari, Emad; Jahazi, Mohammad; Khodabandeh, Alireza; Ghasemi-Nanesa, Hadi

    2014-01-01

    Highlights: • Successful lap joint friction stir welding of AA5456 with two different tempers. • New stepped conical threaded pin for FSW of lap joints is introduced. • Investigated interactions between tool geometry and mechanical properties. • Microstructure and fracture surface analysis of dissimilar lap welds. - Abstract: Friction stir welding of AA5456 aluminum alloy in lap joint configuration is with two different tempers, T321 and O, and different thicknesses, 5 mm and 2.5 mm was investigated. The influences of tool geometry and various rotational speeds on macrostructure, microstructure and joint strength are presented. Specifically, four different tool pin profiles (a conical thread pin, a cylindrical–conical thread pin, a stepped conical thread pin and Flared Triflute pin tool) and two rotational speeds, 600 and 800 rpm, were used. The results indicated that, tool geometry influences significantly material flow in the nugget zone and accordingly control the weld mechanical properties. Of particular interest is the stepped conical threaded pin, which is introduced for the first time in the present investigation. Scanning electron microscopy investigation of the fracture location of samples was carried out and the findings correlated with tool geometry features and their influences on material flow and tension test results. The optimum microstructure and mechanical properties were obtained for the joints produced with the stepped conical thread pin profile and rotational speed of 600 rpm. The characteristics of the nugget zone microstructure, hooking height, and fracture location of the weld joints were used as criteria to quantify the influence of processing conditions on joint performance and integrity. The results are interpreted in the framework of physical metallurgy properties and compared with published literature

  13. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  14. Pulsed laser deposition of ITO thin films and their characteristics

    International Nuclear Information System (INIS)

    Zuev, D. A.; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-01-01

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10 −4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

  15. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  16. Phase selection during pulsed laser annealing of manganese

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Peercy, P.S.; Perepezko, J.H.

    1986-01-01

    Pulsed (25 ns) laser-induced heating of the α phase of Mn is found to be sufficiently rapid to bypass solid-state transformation to the high-temperature β, γ, and delta allotropes and thus produce melts that are calculated to be undercooled by approx. 120 K with respect to the equilibrium melting temperature of the delta phase. Nucleation of the γ phase in this highly undercooled melt is observed for sufficiently long melt durations. The experiments thus demonstrate that pulsed laser-induced melting of metals with allotropes permits the study of nucleation and growth in highly undercooled melts with calculable temperatures

  17. Thin solid films deposited by pulsed laser ablating spray

    International Nuclear Information System (INIS)

    Song Guangle

    2002-01-01

    The fabricating technique of thin solid films deposited by pulsed laser ablating spray is a new technique. The background from which it came into being and the process of its evolution were briefly described. According to relative documents, basic principle of the technique was dwelt on. Based on the latest documents, the status quo, including the studying abroad and home, was discussed in detail. The advantages, shortcomings, prospect of its utility, the significance of studying as well as critic problems were summarized. Some proposal was suggested

  18. Defects in zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Francis C.C., E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Zilan; Ping Ho, Lok; Younas, M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Su, S.C. [Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631 (China); Shan, C.X. [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4–2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  19. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    International Nuclear Information System (INIS)

    Bahrami, Mohsen; Helmi, Nader; Dehghani, Kamran; Givi, Mohammad Kazem Besharati

    2014-01-01

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results

  20. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Mohsen, E-mail: Mohsen.bahrami@aut.ac.ir [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Helmi, Nader [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Dehghani, Kamran [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Centre of Excellence in Smart Structures and Dynamical Systems (Iran, Islamic Republic of); Givi, Mohammad Kazem Besharati [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-02-10

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results.

  1. Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Lali; Taheri, Morteza; Khodabandeh, Alireza [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The main purpose of this study was to investigate the effect of welding parameters on the failure mode and stir zone characteristics of aluminum alloy 2024-T3 joined by friction stir spot welding. The welding parameters in this work are tool rotational speed, plunge depths of shoulder, and pin geometry. In accordance with the methods of previous investigations, the rotational speeds were set to 630 rpm to 2000 rpm. Two pin geometries with concave shoulder were used: triangular and cylindrical. The plunge depths of the shoulder were 0.3, 0.5 and 0.7 mm. The shoulder diameter and pin height for both geometries were 14 and 2.4 mm, respectively. The diameter of the cylindrical and triangular pins was 5 mm. Results show that the parameters mentioned earlier influence fracture mode under tension shear loading. Two different fracture modes were observed during the examinations. Low-penetration depths and low-rotational speeds lead to shear fracture, whereas high values of these factors cause the tension-shear fracture mode. Fracture of the lower sheet sometimes occurs at high rotational speeds.

  2. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    Science.gov (United States)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  3. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Maleki, E

    2015-01-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters. (paper)

  4. Improving Joint Formation and Tensile Properties of Dissimilar Friction Stir Welding of Aluminum and Magnesium Alloys by Solving the Pin Adhesion Problem

    Science.gov (United States)

    Liu, Zhenlei; Ji, Shude; Meng, Xiangchen

    2018-03-01

    Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.

  5. A Correlation between the Ultimate Shear Stress and the Thickness Affected by Intermetallic Compounds in Friction Stir Welding of Dissimilar Aluminum Alloy–Stainless Steel Joints

    Directory of Open Access Journals (Sweden)

    Florent Picot

    2018-03-01

    Full Text Available In this work, Friction Stir Welding (FSW was applied to join a stainless steel 316L and an aluminum alloy 5083. Ranges of rotation and translation speeds of the tool were used to obtain welding samples with different heat input coefficients. Depending on the process parameters, the heat generated by FSW creates thin layers of Al-rich InterMetallic Compound (IMC mainly composed of FeAl3, identified by energy dispersive spectrometry. Traces of Fe2Al5 were also depicted in some samples by X-ray diffraction analysis and transmission electron microscopy. Monotonous tensile tests performed on the weld joint show the existence of a maximum mechanical resistance for a judicious choice of rotation and translation speeds. It can be linked to an affected zone of average thickness of 15 µm which encompass the presence of IMC and the chaotic mixing caused by plastic deformation in this area. A thickness of less than 15 µm is not sufficient to ensure a good mechanical resistance of the joint. For a thickness higher than 15 µm, IMC layers become more brittle and less adhesive due to high residual stresses which induces numerous cracks after cooling. This leads to a progressive decrease of the ultimate shear stress supported by the bond.

  6. X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Ungar, Tomas; Feng, Zhili; Kenik, Edward A.; Clausen, B.

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10 14 m -2 and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10 15 m -2 and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation

  7. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  8. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Oktar, F.N.; Stan, G.E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I.N.

    2013-01-01

    Highlights: ► HA coatings synthesized by pulsed laser deposition. ► Comparative study of commercial vs. animal origin materials. ► HA coatings of animal origin were rougher and more adherent to substrates. ► Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical–chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  9. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    Science.gov (United States)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  10. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  11. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  12. In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Brown, D.W.; Clausen, B.; An, Ke; Choo, Hahn; Hubbard, Camden R.; David, Stan A.

    2007-01-01

    The evolution of temperature and thermal stresses during friction stir welding of Al6061-T6 was investigated by means of in-situ, time-resolved neutron diffraction technique. A method is developed to deconvolute the temperature and stress from the lattice spacing changes measured by neutron diffraction. The deep penetration capability of neutrons made it possible for the first time to obtain the temperature and thermal stresses inside a friction stir weld

  13. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    Science.gov (United States)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  14. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  15. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  16. UV pulsed laser deposition of magnetite thin films

    International Nuclear Information System (INIS)

    Parames, M.L.; Mariano, J.; Rogalski, M.S.; Popovici, N.; Conde, O.

    2005-01-01

    Magnetite thin films were grown by pulsed laser deposition in O 2 reactive atmosphere from Fe 3 O 4 targets. The ablated material was deposited onto Si(1 0 0) substrates at various temperatures up to 623 K. The temperature dependence of structure and stoichiometry was investigated by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). The XRD results show that films grown between 483 and 623 K are obtained as pure phase magnetite with an estimated average crystallite size increasing from 14 to 35 nm, respectively. This is in agreement with the CEMS spectra analysis, indicating isomer shift and internal field values for both the T d and O h sites close to those reported for the bulk material and a random orientation of the magnetic moments. The influence of the deposition temperature on the estimated Fe (9-x)/3 O 4 stoichiometry is related to an increase in the vacancy concentration from 483 to 623 K

  17. Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth

    International Nuclear Information System (INIS)

    Guan, Y F; Pearce, R C; Simpson, M L; Rack, P D; Melechko, A V; Hensley, D K

    2008-01-01

    We present a pulsed laser dewetting technique that produces single nickel catalyst particles from lithographically patterned disks for subsequent carbon nanofiber growth through plasma enhanced chemical vapor deposition. Unlike the case for standard heat treated Ni catalyst disks, for which multiple nickel particles and consequently multiple carbon nanofibers (CNFs) are observed, single vertically aligned CNFs could be obtained from the laser dewetted catalyst. Different laser dewetting parameters were tested in this study, such as the laser energy density and the laser processing time measured by the total number of laser pulses. Various nickel disk radii and thicknesses were attempted and the resultant number of carbon nanofibers was found to be a function of the initial disk dimension and the number of laser pulses

  18. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  19. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  20. Testing of a femtosecond pulse laser in outer space

    Science.gov (United States)

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  1. Stimulated brillouin backscatter of a short-pulse laser

    International Nuclear Information System (INIS)

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-01-01

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x' = x - V g t, t' = t, where V g is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency)

  2. Photoacoustic tweezers with a pulsed laser: theory and experiments

    International Nuclear Information System (INIS)

    Zharov, V P; Malinsky, T V; Kurten, R C

    2005-01-01

    A novel noninvasive optical technique for manipulating particles and cells is presented that utilizes laser-generated forces in an absorbing medium surrounding the particles or cells. In this technique, a laser pulse creates near-object acoustic waves, which during interaction with the objects lead to then being moved or trapped. The main optical schemes are considered, and a theory is presented for this new optical tool, namely photoacoustic (PA) tweezer with pulsed laser. The magnitudes of forces acting on polystyrene particles suspended in water were estimated as a function of the particles' properties for circular and ring geometries of the laser beam. Results of our preliminary experiments demonstrated proof that the manipulation, trapping and even rotation of cells is possible with PA tweezers

  3. Pulsed laser deposition of high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  4. Effects of an external magnetic field in pulsed laser deposition

    Science.gov (United States)

    García, T.; de Posada, E.; Villagrán, M.; Ll, J. L. Sánchez; Bartolo-Pérez, P.; Peña, J. L.

    2008-12-01

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe 12O 19 target with and without the presence of a nonhomogeneous magnetic field of μ0H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  5. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  6. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  7. Investigation into triggering lightning with a pulsed laser

    International Nuclear Information System (INIS)

    Schubert, C.W. Jr.; Lippert, J.R.

    1979-01-01

    Theoretical and experimental considerations for the triggering of lightning with a high-power pulsed laser are discussed. The mechanisms of laser-induced clean air breakdown, aerosol breakdown, and channel heating over a long path for the purpose of initiating and possibly guiding lightning are reviewed. It is shown that long path (of the order of one kilometer) ionization through laser-induced clean air breakdown is theoretically possible. Channel heating over a long path appears possible, but requires prohibitive energies. Indications are that long path ionization can be enhanced by taking advantage of the significantly reduced power requirements for aerosol breakdown. The Mt. Baldy, New Mexico, experimental test site for 1978 to 1979 experiments and triggering attempts is briefly described

  8. Interaction of intense ultrashort pulse lasers with clusters

    International Nuclear Information System (INIS)

    Petrov, G. M.; Davis, J.

    2008-01-01

    The dynamics of clusters composed of different material irradiated by a high-intensity ultrashort pulse laser was studied using a fully relativistic three-dimensional molecular dynamics model. Key parameters of the cluster evolution such as particle positions, energy absorption, and cluster explosion were simulated. By a direct comparison of these parameters for clusters of equal initial radius but made of different material (deuterium, neon, argon, and xenon), the main stages and attributes of cluster evolution were elucidated. The simulations showed that clusters made of different material act alike, especially those of heavy elements. Clusters made of heavy elements (neon, argon, and xenon) differentiate from clusters made of light elements (deuterium) by the magnitude of the absorbed energy per cluster and the final mean energy of exploding ions. What most distinguishes clusters composed of different material is the amount of emitted radiation and its spectral range

  9. Growth modes of pentacene films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, G.; Kuzma, M.; Virt, I.; Sagan, P.; Rudyj, I.

    2011-01-01

    Thin pentacene films were deposited on KCl and ITO/glass substrates by the pulsed laser deposition method (PLD) using a YAG:Nd 3+ laser with a second harmonic (λ = 532 nm). We compared the structure of the layer on differently oriented substrates with respect to the pentacene plasma plume - vertical and parallel orientation. The structure of the layers formed was examined using SEM, RHEED and THEED methods. The lattice parameters of the layer deposited on KCl were determined from THEED pattern (a = 5.928 A, b 7.874 A, c = 14,98 A, α = 76.54 o , β 75.17 o , γ = 89.20 o ). The preferred direction [11-bar 0] of the layer growth on KCl substrate was addressed. The effect of the substrate orientation results in a different growth mode of the layers.

  10. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  11. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  12. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  13. Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints

    International Nuclear Information System (INIS)

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Gerlich, A.P.

    2015-01-01

    Highlights: • Tool geometry, rotation and travel speeds show great effect on the microstructure stability of FSW joint. • Increasing rotation and travel speeds resulted in increasing the tensile strength and ductility of the joints. • Better intermixing between Al/Mg alloys was obtained by tapered threaded pin. • A mechanical interlocking mechanism proposed for higher ductility and superior tensile properties in FSW joints. - Abstract: Lap joint friction stir welding (FSW) between dissimilar AZ31B and Al 6061 alloys sheets was conducted using various welding parameters including tool geometry, rotation and travel speeds. Tapered threaded pin and tapered pin tools were applied to fabricate FSW joints, using different rotation and travel speeds. Metallurgical investigations including X-ray diffraction pattern (XRD), optical microscopy images (OM), scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM–EDS) and electron probe microanalysis (EPMA) were used to characterize joints microstructures made with different welding parameters. Intermetallic phases were detected in the weld zone (WZ). Various microstructures were observed in the stir zone which can be attributed to using different travel and rotation speeds. Mechanical evaluation including lap shear fracture load test and microhardness measurements indicated that by simultaneously increasing the tool rotation and travel speeds, the joint tensile strength and ductility reached a maximum value. Microhardness studies and extracted results from stress–strain curves indicated that mechanical properties were affected by FSW process. Furthermore, phase analyses by XRD indicated the presence of intermetallic compounds in the weld zone. Finally, in the Al/Mg dissimilar weld, fractography studies showed that intermetallic compounds formation in the weld zone had an influence on the failure mode

  14. Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Scaffidi, Jon; Pearman, William; Carter, J. Chance; Colston, Bill W. Jr.; Angel, S. Michael

    2004-01-01

    Despite the large neutral atomic and ionic emission enhancements that have been noted in collinear and orthogonal dual-pulse laser-induced breakdown spectroscopy, the source or sources of these significant signal and signal-to-noise ratio improvements have yet to be explained. In the research reported herein, the combination of a femtosecond preablative air spark and a nanosecond ablative pulse yields eightfold and tenfold material removal improvement for brass and aluminum, respectively, but neutral atomic emission is enhanced by only a factor of 3-4. Additionally, temporal correlation between enhancement of material removal and of atomic emission is quite poor, suggesting that the atomic-emission enhancements noted in the femtosecond-nanosecond pulse configuration result in large part from some source other than simple improvement in material removal

  15. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  16. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  17. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    Science.gov (United States)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  18. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    Science.gov (United States)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  19. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    Science.gov (United States)

    2011-01-01

    expensive post-weld machining; and (g) low 102 environmental impact . However, some disadvantages of the 103 FSW process have also been identified such as (a...material. Its 443 density and thermal properties are next set to that of AISI- H13 , 444 a hot-worked tool steel, frequently used as the FSW-tool 445

  20. Laser beam welding of titanium additive manufactured parts

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the

  1. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.; Choi, Joshua J.; Bian, Kaifu; Fitting Kourkoutis, Lena; Smilgies, Detlef-M.; Thompson, Michael O.; Hanrath, Tobias

    2011-01-01

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC

  2. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  3. Short Pulsed Laser Methods for Velocimetry and Thermometry in High Enthalpy Facilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A suite of pulsed laser diagnostics is proposed for studying aspects of planetary entry and Earth atmospheric reentry in arc jets. For example, dissociation of...

  4. Particulate generation during pulsed laser deposition of superconductor thin films

    International Nuclear Information System (INIS)

    Singh, R.K.

    1993-01-01

    The nature of evaporation/ablation characteristics during pulsed laser deposition strongly controls the quality of laser-deposited films. To understand the origin of particulates in laser deposited films, the authors have simulated the thermal history of YBa 2 Cu 3 O 7 targets under intense nanosecond laser irradiation by numerically solving the heat flow equation with appropriate boundary conditions. During planar surface evaporation of the target material, the sub-surface temperatures were calculated to be higher than the surface temperatures. While the evaporating surface of the target is constantly being cooled due to the latent heat of vaporization, subsurface superheating occurs due to the finite absorption depth of the laser beam. Sub-surface superheating was found to increase with decreasing absorption coefficient and thermal conductivity of the target, and with increasing energy density. The superheating may lead to sub-surface nucleation and growth of the gaseous phase which can expand rapidly leading to microexplosions and ''volume expulsion'' of material from the target. Experiments conducted by the authors and other research groups suggest a strong relation between degree of sub-surface superheating and particle density in laser-deposited films

  5. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    Kare, J.

    1990-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10 4 K, 10 2 atmospheres, 10 7 w/cm 2 ) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  6. History and current status of commercial pulsed laser deposition equipment

    International Nuclear Information System (INIS)

    Greer, James A

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm 2 up to 10 m 2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R and D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications. (paper)

  7. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  8. Power neodymium-glass amplifier of a repetitively pulsed laser

    International Nuclear Information System (INIS)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-01-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ∼40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ∼3.2, the linear gain ∼0.031 cm -1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm -3 . The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  9. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    Science.gov (United States)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a ``super pressing'' state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  10. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  11. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  12. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  13. Design of high power solid-state pulsed laser resonators

    International Nuclear Information System (INIS)

    Narro, R.; Ponce, L.; Arronte, M.

    2009-01-01

    Methods and configurations for the design of high power solid-state pulsed laser resonators, operating in free running, are presented. For fundamental mode high power resonators, a method is proposed for the design of a resonator with joined stability zones. In the case of multimode resonators, two configurations are introduced for maximizing the laser overall efficiency due to the compensation of the astigmatism induced by the excitation. The first configuration consists in a triangular ring resonator. The results for this configuration are discussed theoretically, showing that it is possible to compensate the astigmatism of the thermal lens virtually in a 100%; however this is only possible for a specific pumping power. The second configuration proposes a dual-active medium resonator, rotated 90 degree one from the other around the optical axis, where each active medium acts as an astigmatic lens of the same dioptric power. The reliability of this configuration is corroborated experimentally using a Nd:YAG dual-active medium resonator. It is found that in the pumping power range where the astigmatism compensation is possible, the overall efficiency is constant, even when increasing the excitation power with the consequent increase of the thermal lens dioptric power. (Author)

  14. Pulsed laser planarization of metal films for multilevel interconnects

    International Nuclear Information System (INIS)

    Tuckerman, D.B.; Schmitt, R.L.

    1985-05-01

    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 μs) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO 2 dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 μs, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO 2 (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 μm surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs

  15. Morphological changes in skin tumors caused by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moskalik, K G; Lipova, V A; Neyshtadt, E L

    1979-01-01

    Morphological changes induced by treating melanomas, basaloma and flatcell skin cancers with a pulsed neodymium laser at 1060 nm, pulse length 1 msec and energy 250 to 500 J/cm/sup 2/, were studied using impressions and scrapings from the affected area. Nuclear pyknosis, nuclear and cellular elongation, vacuolization, frequent complete loss of cytoplasm, particulaly in the zone of direct irradiation, and loss of cellular structure were seen. These dystrophic changes increased with closeness to the zone of direct irradiation, culminating in necrosis. Formed and decomposed blood elements and melanin accumulated in the intracellular spaces, due to disruption of capillaries and small arteries and veins. Fewer and more aggregated melanoblasts were found after melanoma irradiation. Nuclear chromatin fusion, cytoplasmic changes and altered cell shape were observed. Basaloma cells were clustered and elongated after irradiation, with many fibrous structures and loss of cellular elements. Cytoplasmic vacuolization and lysis, bare nuclei, karyolysis, karyorrhexis and karyopyknosis were seen in corneous flat-cell cancer. In the few cases in which malignant cells were found under the scab from the first treatment the procedure was repeated. The morphological changes induced by pulsed laser irradiation are very similar to electrocoagulation necrosis, but are more localized. The ability of low and middle energy lasers to induce thrombosis and coagulation in vascular walls reduced the probability of hematogenic tumor cell dissemination. Cytological examination is highly effective in determining the degree of radical skin cancer healing due to laser treatment. 12 references, 2 figures.

  16. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  17. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  18. Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Yufeng Sun

    2016-10-01

    Full Text Available The ultrafine grained (UFGed 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after five cycles, were friction stir butt welded to 2 mm thick 6061-T6 Al alloy plates at a different revolutionary pitch that varied from 0.5 to 1.25 mm/rev. In the stir zone, the initial nano-sized lamellar structure of the UFGed 1050 Al alloy plate transformed into an equiaxial grain structure with a larger average grain size due to the dynamic recrystallization and subsequent grain growth. However, an equiaxial grain structure with a much smaller grain size was simultaneously formed in the 6061 Al alloy plates, together with coarsening of the precipitates. Tensile tests of the welds obtained at different welding speeds revealed that two kinds of fracture modes occurred for the specimens depending on their revolutionary pitches. The maximum tensile strength was about 110 MPa and the fractures were all located in the stir zone close to the 1050 Al side.

  19. Laser beam welding of titanium additive manufactured parts

    OpenAIRE

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the layered manufacturing process. This study shows that due to these deficiencies more energy per unit weld length is required to obtain a similar keyhole geometry for titanium AM parts. It is also demon...

  20. Inorganic nanocomposite films with polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition

    Science.gov (United States)

    Darwish, Abdalla M.; Sarkisov, Sergey S.; Mele, Paolo; Saini, Shrikant; Moore, Shaelynn; Bastian, Tyler; Dorlus, Wydglif; Zhang, Xiaodong; Koplitz, Brent

    2017-08-01

    We report on the new class of inorganic nanocomposite films with the inorganic phase hosting the polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition of the inorganic target material and matrix assisted pulsed laser evaporation of the polymer (MBMT-PLD/MAPLE). We used the exemplary nanocomposite thermoelectric films of aluminum-doped ZnO known as AZO with the nanofillers made of poly(methyl methacrylate) known as PMMA on various substrates such as SrTiO3, sapphire, fused silica, and polyimide. The AZO target was ablated with the second harmonic (532 nm) of the Nd:YAG Q-switched laser while PMMA was evaporated from its solution in chlorobenzene frozen in liquid nitrogen with the fundamental harmonic (1064 nm) of the same laser (50 Hz pulse repetition rate). The introduction of the polymer nanofillers increased the electrical conductivity of the nanocomposite films (possibly due to the carbonization of PMMA and the creation of additional channels of electric current) three times and reduced the thermal conductivity by 1.25 times as compared to the pure AZO films. Accordingly, the increase of the thermoelectric figure-of merit ZT would be 4 times. The best performance was observed for the sapphire substrates where the films were the most uniform. The results point to a huge potential of the optimization of a broad variety of optical, opto-electronic, and solar-power nanocomposite inorganic films by the controllable introduction of the polymer nanofillers using the MBMT-PLD/MAPLE method.

  1. Study of local-zone microstructure, strength and fracture toughness of hybrid laser-metal-inert-gas-welded A7N01 aluminum alloy joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaomin, E-mail: xmwang991011@163.com [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Bo [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Mingxing; Huang, Cui [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Chen, Hui [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China)

    2017-03-14

    Mechanical properties of hybrid laser-metal-inert-gas-welded A7N01-T5 aluminum alloy joints were studied by using local samples that were extracted from the base metal (BM), heat-affected zone (HAZ), and fusion zone (FZ) of the joint to investigate the triangular relationship of microstructure, strength and fracture toughness of the local zones. The BM had the highest yield strength, ultimate tensile strength (UTS) and lowest elongation, which contrasts with the FZ. The yield strength of the HAZ is lower than that of the BM, whereas its UTS is very close to that of the BM, and its elongation is higher than that of the BM. The fracture toughness of the three local zones decreased as HAZ>BM>FZ. To analyze differences in local mechanical behavior, the detailed microstructure of the three local zones was studied by optical microscopy and electron backscattered diffraction, whereas the fracture surface and precipitation were studied by scanning and transmission electron microscopy. The variation of grain size, especially the morphology and distribution of strengthening phase in HAZ in welding process is the key factor that leads to its different mechanical properties from that of BM, which can be elucidated by different dislocation mechanism, sheared mechanism or Orowan mechanism. The as-cast microstructure and second-phase particles that segregate between dendritic branches provide the FZ with the lowest yield strength and UTS. The factors including area fraction of the precipitates, the difference of strength between the matrix and the grain boundaries, the precipitate-free zone along grain boundaries, as well as the grain boundaries angle are taken into account to explain the difference of fracture toughness among BM, HAZ and FZ, and their fracture modes.

  2. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  3. Investigation of ultrashort-pulsed laser on dental hard tissue

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2007-02-01

    Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.

  4. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  5. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  6. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    Science.gov (United States)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  7. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  8. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  9. Hypericin and pulsed laser therapy of squamous cell cancer in vitro.

    Science.gov (United States)

    Bublik, Michael; Head, Christian; Benharash, Peyman; Paiva, Marcos; Eshraghi, Adrian; Kim, Taiho; Saxton, Romaine

    2006-06-01

    This in vitro study compares continuous wave and pulsed laser light at longer wavelengths for activation of the phototoxic drug hypericin in human cancer cells. Two-photon pulsed laser light now allows high-resolution fluorescent imaging of cancer cells and should provide deeper tissue penetration with near infrared light for improved detection as well as phototoxicity in human tumors. Cultured Seoul National University (SNU)-1 tumor cells from a squamous cell carcinoma (SCC) were incubated with hypericin before photoirradiation at four laser wavelengths. Phototoxicity of hypericin sensitized SCC cells was measured by dimethyl thiazoldiphenyl (MTT) tetrazolium bromide cell viability assays and by confocal fluorescence microscopy via 532-nm and infrared two-photon pulsed laser light. Phototoxic response increased linearly with hypericin dose of 0.1-2 microM, light exposure time of 5-120 sec, and pulsed dye laser wavelengths of 514-593 nm. Light energy delivery for 50% cell phototoxicity (LD50) response was 9 joules at 514 nm, 3 joules at 550 nm, and less than 1 joule at the 593 nm hypericin light absorption maxima. Fluorescence confocal microscopy revealed membrane and perinuclear localization of hypericin in the SNU cells with membrane damage seen after excitation with visible 532 nm continuous wave light or two-photon 700-950 nm picosecond pulsed laser irradiation. Hypericin may be a powerful tumor targetting drug when combined with pulsed laser light in patients with recurrent head and neck SCC.

  10. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  11. Pulsed laser deposition of aluminum-doped ZnO films at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Thestrup Nielsen, Birgitte

    2004-01-01

    Conducting, transparent films of aluminium-doped ZnO (AZO) have been produced at the laser wavelength 355 nm. The most critical property, the electric resistivity, is up to a factor of 8 above that for films produced at shorter wavelengths. In contrast, the transmission of visible light through...

  12. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    Science.gov (United States)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  13. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  14. Growth and annealing effect of SrTiO{sub 3} thin films grown by pulsed laser deposition using fourth harmonic Nd:YAG pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Koji; Fujiwara, Takumi; Yokota, Akinobu; Nakamura, Motonori; Yoshimoto, Ken' ichi [National Institute of Technology, Asahikawa College, 2-2-1-6 Shunkodai, Asahikawa 071-8142 (Japan)

    2017-06-15

    SrTiO{sub 3} homoepitaxial films were grown by pulsed laser deposition (PLD) using a fourth harmonic Nd:YAG pulsed laser. The substrate temperature was kept constant at 600, 700, or 800 C. The laser energy was set at 9-25 mJ on the polycrystal SrTiO{sub 3} target. Post-procedure annealing was performed in the air for 24 h. The X-ray diffraction measurement results showed that the lattice constant of the film was only 0.010 Aa larger than that of the substrate and was not dependent on the annealing temperature. We demonstrated the possibility of growing near-stoichiometric SrTiO{sub 3} film by PLD using an Nd:YAG laser. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  16. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin....... The concentration of lysozyme in the ice matrix apparently does not play any significant role for the morphology of the film. The morphology obtained with MAPLE has been compared with results for direct laser irradiation of a pressed lysozyme sample (i.e. pulsed laser deposition (PLD)). (C) 2007 Elsevier B.V. All...

  17. The capability of pulsed laser radiation for cutting band saws hardening

    Directory of Open Access Journals (Sweden)

    Marinin Evgeny

    2017-01-01

    Full Text Available The article deals with the possibilities of pulsed laser radiation for hardening the band saws. The regimes of pulsed laser hardening the band saws of 1 mm thick made of tool steel 9CrV are grounded theoretically and experimentally tested. Selected and justified modes of treatment harden in the autohardening mode without additional heat removal. The results of the experimental research of microhardness are presented and formed as a result of processing of the microstructure. Selected modes increase the microhardness of the surface to 8500 MPa and form ultra highly dispersed structure in the surface layer characterized by high resistance to abrasion.

  18. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang

    2017-01-01

    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed...

  19. Development of short pulse laser pumped x-ray lasers

    International Nuclear Information System (INIS)

    Dunn, J; Osterheld, A L; Hunter, J R; Shlyaptsev, V N

    2000-01-01

    X-ray lasers have been extensively studied around the world since the first laboratory demonstration on the Novette laser at LLNL in 1984 [l]. The characteristic properties of short wavelength, high monochromaticity, collimation and coherence make x-ray lasers useful for various applications. These include demonstrations of biological imaging within the water window, interferometry of laser plasmas and radiography of laser-heated surfaces. One of the critical issues has been the high power pump required to produce the inversion. The power scaling as a function of x-ray laser wavelength follows a -k4 to law. The shortest x-ray laser wavelength of ∼ 35 (angstrom) demonstrated for Ni-like All was at the limit of Nova laser capabilities. By requiring large, high power lasers such as Nova, the shot rate and total number of shots available have limited the rapid development of x-ray lasers and applications. In fact over the last fifteen years the main thrust has been to develop more efficient, higher repetition rate x-ray lasers that can be readily scaled to shorter wavelengths. The recent state of progress in the field can be found in references. The objective of the project was to develop a soft x-ray laser (XRL) pumped by a short pulse laser of a few joules. In effect to demonstrate a robust, worlung tabletop x-ray laser at LLNL for the first time. The transient collisional scheme as proposed by Shlyaptsev et al [8, 9] was the candidate x-ray laser for study. The successful endeavour of any scientific investigation is often based upon prudent early decisions and the choice of this scheme was both sound and fruitful. It had been demonstrated very recently for Ne-like Ti at 326 A using a small tabletop laser [10] but had not yet reached its full potential. We chose this scheme for several reasons: (a) it was a collisional-type x-ray laser which has been historically the most robust; (b) it had the promise of high efficiency and low energy threshold for lasing; (c) the

  20. Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Römer, G.R.B.E.; Bor, T.; Ogieglo, W.; Klein Gunnewiek, M.; Lenferink, A.; Otto, C.; Skolski, J.Z.P.; Grob, F.; Lange, D.F. de; Huis in 't Veld, A.J.

    2013-01-01

    Ultra-short pulsed laser sources, with pulse durations in the ps and fs regime, are commonly exploited for cold ablation. However, operating ultra-short pulsed laser sources at fluence levels well below the ablation threshold allows for fast and selective thermal processing. The latter is especially

  1. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  2. Pulsed laser deposition in Twente: from research tool towards industrial deposition

    NARCIS (Netherlands)

    Blank, David H.A.; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    After the discovery of the perovskite high Tc superconductors in 1986, a rare and almost unknown deposition technique attracted attention. Pulsed laser deposition (PLD), or laser ablation as it was called in the beginning, became popular because of the possibility to deposit complex materials, like

  3. Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

    NARCIS (Netherlands)

    Doeswijk, L.M.; de Moor, Hugo H.C.; Rogalla, Horst; Blank, David H.A.

    2002-01-01

    Since most commercially available solar cells are still made from silicon, we are exploring the introduction of passivating qualities in oxides, with the potential to serve as an antireflection coating. Pulsed laser deposition (PLD) was used to deposit TiO2 and SrTiO3 coatings on silicon substrates.

  4. Pulsed-laser studies on the free-radical polymerization kinetics of styrene in microemulsion

    NARCIS (Netherlands)

    Manders, L.G.; Herk, van A.M.; German, A.L.; Sarnecki, J.; Schomäcker, R.; Schweer, J.

    1993-01-01

    A mean value of 339 L mol-1 s-1 was obtained for the propagation const. derived from pulsed-laser polymn. (PLP) of styrene in aq. AOT microemulsions. For accurate detns., simulations accounting for the esp. high radical concn. after the laser pulse in microemulsions were recommended. PLP with

  5. The effect of benzyl alcohol on pulsed laser polymerization of styrene and methylmethacrylate

    NARCIS (Netherlands)

    O'Driscoll, K.F.; Monteiro, M.J.; Klumperman, B.

    1997-01-01

    The homo- and copolymerizations of styrene (STY) and methylmethacrylate (MMA) have been studied in the presence of several levels of benzyl alcohol (BA). From pulsed laser polymerizations it has been found that the apparent propagation rate constant increased with increasing BA for all systems. In

  6. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  7. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  8. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  9. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  10. Field emission study of pulsed laser deposition of gold on clean and oxidized tungsten tip

    Czech Academy of Sciences Publication Activity Database

    Plšek, Jan

    2014-01-01

    Roč. 292, FEB 2014 (2014), s. 717-725 ISSN 0169-4332 R&D Projects: GA MŠk LH13022 Institutional support: RVO:61388955 Keywords : nanoparticles * nucleation and growth * pulsed laser deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014

  11. Deposition of zinc oxide thin films by reactive pulsed laser ablation

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Zemek, Josef; Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Roč. 252, - (2006), s. 4604-4609 ISSN 0169-4332 Grant - others:NATO-CNR Outreach Fellowships Programm 2001(XE) 219.34 Institutional research plan: CEZ:AV0Z10100521 Keywords : reactive pulsed laser deposition * zinc oxide * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.436, year: 2006

  12. Pulsed laser deposited KY3F10: Ho3+ thin films: Influence of target to substrate

    CSIR Research Space (South Africa)

    Debelo, NG

    2017-04-01

    Full Text Available The influence of target to substrate distance (dts) on the structural, morphological and photoluminescence (PL) properties of commercially obtained KY3F10 : Ho3+ phosphor thin films prepared by pulsed laser deposition is investigated for dts values...

  13. Numerical analysis of short-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2010-10-01

    Full Text Available Thin metal film subjected to a short-pulse laser heating is considered. The hyperbolic two-temperature model describing the temporal andspatial evolution of the lattice and electrons temperatures is discussed. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  14. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    Science.gov (United States)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  15. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  16. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Thin lysozyme films have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix irradiated by laser light at 355 nm above the absorption threshold of the protein. A significant part of the lysozyme molecules are transferred to the film without...

  17. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin

    2014-01-01

    The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE...

  18. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE...

  19. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, Peter

    2007-01-01

    Thin lysozyme films of thickness up to more than 100 nm have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix. Analysis of the films demonstrates that a significant part of the lysozyme molecules is transferred to the substrate without...

  20. Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser

    Czech Academy of Sciences Publication Activity Database

    Pira, P.; Burian, T.; Kolpaková, A.; Tichý, M.; Kudrna, P.; Daniš, S.; Juha, Libor; Lančok, Ján; Vyšín, Luděk; Civiš, Svatopluk; Zelinger, Zdeněk; Kubát, Pavel; Wild, J.

    2014-01-01

    Roč. 47, č. 40 (2014), 1-6 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP108/11/1312 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : XUV laser * pulsed laser deposition * Langmuir probe * plasma plume Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014

  1. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  2. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Kupenko, I., E-mail: kupenko@esrf.fr; Strohm, C. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France); McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Glazyrin, K. [Photon Science, DESY, D-22607 Hamburg (Germany); Vasiukov, D.; Aprilis, G. [Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, D-95440 Bayreuth (Germany); Chumakov, A. I.; Rüffer, R. [ESRF-The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9 (France)

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  3. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  4. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  5. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  6. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  7. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  8. High Quality Zinc Oxide Thin films and Nanostructures Prepared by Pulsed Laser Deposition for Photodetectors

    KAUST Repository

    Flemban, Tahani H.

    2017-01-01

    is attributed to defect/impurity bands mediated by Gd dopants. In this dissertation, I study the effects of Gd concentration, oxygen pressure using pulsed laser deposition (PLD), and thermal annealing on the optical and structural properties of undoped and Gd

  9. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  10. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting

    International Nuclear Information System (INIS)

    Zhang Duanming; Li, Li; Li Zhihua; Guan Li; Tan Xinyu

    2005-01-01

    A non-Fourier conduction model with heat source term is presented to study the target temperature evolvement when the target is radiated by high power (the laser intensity is above 10 9 w/cm 2 ) and ultra short (the pulse width is less than 150 ps) pulsed laser. By Laplace transform, the analytical expression of the space- and time-dependence of temperature is derived. Then as an example of aluminum target, the target temperature evolvement is simulated. Compared with the results of Fourier conduction model and non-Fourier model without heat source term, it is found that the effect of non-Fourier conduction is notable and the heat source plays an important role during non-Fourier conduction which makes surface temperature ascending quickly with time. Meanwhile, the corresponding physical mechanism is analyzed theoretically

  11. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  12. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Chand, Subhash; Kumar, Rajender

    2014-01-01

    Highlights: • The Ni/n-ZnO/p-Si/Al heterojunction diodes are fabricated by pulsed laser deposition. • The band gap of the deposit ZnO films was found to be 3.43 eV. • Forward I–V data of Ni/n-ZnO/p-Si/Al hetrojunction are interpreted in terms of thermionic emission–diffusion mechanism. • The C–V characteristics of the Ni/n-ZnO/p-Si/Al hetrojunction diode are measured in the temperature range 80–300 K. • The barrier height of Ni/n-ZnO/p-Si/Al hetrojunction diode is also calculated from C–V measurements. - Abstract: The ZnO thin films are grown on the p-Si for the heterojunction fabrication by pulsed laser deposition method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) plane as preferred direction. High purity vacuum evaporated nickel and aluminum metals were used to make contacts to the n-ZnO and p-Si, respectively. The current–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al hetero structure measured over the temperature range 80–300 K have been studied on the basis of thermionic emission diffusion mechanism. The equivalent Schottky barrier height and diode ideality factor are determined by fitting of measured current–voltage data in to thermionic diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al heterojunction diode are also studied over wide temperature range. From the measured capacitance–voltage data the built in voltage and impurity concentration in n-type ZnO is estimated

  13. Investigation of Y2O3 distribution in the welded joints of the fast reactor fuel claddings made of oxide dispersion strengthened steel

    International Nuclear Information System (INIS)

    Tabakin, E.M.; Kuz'min, S.V.; Ivanovich, Yu.V.; Ukai, Sh.; Kaito, T.; Seki, M.

    2007-01-01

    The study results of Y 2 O 3 distribution in welded joints of claddings from oxide dispersion strengthened steel produced by the technique of powder metallurgy are given in this paper. Change of content and distribution uniformity of yttrium oxide in welds in comparison with metal shell is the result of using flash welding of thin-walled fuel claddings. It is shown that concentration and yttrium oxide distribution uniformity in the cross section of weld, made by pulse laser welding is more high as compared with argon-arc welding [ru

  14. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  15. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  16. Study on Pores in Ultrasonic‐Assisted TIG Weld of  Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Qihao Chen

    2017-02-01

    Full Text Available Ultrasonic‐assisted tungsten inert gas welding was carried out on a thin plate of 2195 Al‐Li alloy, and the characteristics of the weld pores were analyzed in terms of their size and porosity. The effects of welding speed and ultrasonic power on the porosity and size of the pores were investigated. The pores were found to occur primarily adjacent to the surface of the weld. The porosity decreased and the size increased with a decrease in welding speed. The effect of ultrasonic power on the characteristics of the pores was different from that of the welding speed. The porosity and size of the pores decreased and then increased with an increase in ultrasonic power. A relationship was found between the transient cavitation intensity and the characteristics of pores. An increasing transient cavitation intensity results in a decrease in the porosity and size of pores when the transient cavitation intensity is lower. However, it can result in an increase in the porosity and pore size when the transient cavitation intensity further increases. Finally, the influencing mechanism of cavitation on welding pores was discussed.

  17. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  18. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  19. Photoluminescence of Eu-doped LiYF4 thin films grown by pulsed laser deposition and matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Stokker-Cheregi, F; Matei, A; Dinescu, M; Secu, C E; Secu, M

    2014-01-01

    Matrix-assisted pulsed laser evaporation (MAPLE) has been investigated as an alternative to the pulsed laser deposition (PLD) technique for Eu 3+ -doped crystalline LiYF 4 thin-films deposition. MAPLE assumes laser ablation of a frozen target made of the material of interest diluted in a solvent, rather than that of a bulk target, of either pressed powder or single crystal, used in the case of PLD. Our approach stems from the assumption that laser ablation of a frozen dilute target would result in thin films with improved morphology, as compared to PLD. Indeed, we find that roughness values of samples obtained by the MAPLE technique are four times lower than in the case of PLD. A lower transmittance was noticed for PLD obtained layers with respect to those grown by MAPLE due to strong scattering of light by the morphological defects. Photoluminescence spectra are showing characteristic Eu 3+ -ion luminescence bands at 578, 591, 612, 650 and 698 nm ( 5 D 0  →  7 F J ); crystal field splitting of the bands indicates dopant ions incorporation in the host material during transfer by either PLD or MAPLE. (paper)

  20. A 1J LD pumped Nd:YAG pulsed laser system

    Science.gov (United States)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  1. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  2. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    International Nuclear Information System (INIS)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Terashima, Kazuo; Sasaki, Takehiko

    2011-01-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm 2 ; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO 2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp 3 -hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO 2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO 2 is proposed as a practical method for synthesizing diamondoids.

  3. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  4. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  5. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    Toftmann, B.; Papantonakis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, J.; Johansen, P.M.; Haglund, R.F.

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  6. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    Science.gov (United States)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  7. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W; Decker, Ulrich; Rauschenbach, Bernd

    2015-01-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ∼21% and 3–4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications. (paper)

  8. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  9. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  10. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  11. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.

    2004-01-01

    -PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates......A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR...... were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  12. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  13. Temporal analysis of reflected optical signals for short pulse laser interaction with nonhomogeneous tissue phantoms

    International Nuclear Information System (INIS)

    Trivedi, Ashish; Basu, Soumyadipta; Mitra, Kunal

    2005-01-01

    The use of short pulse laser for minimally invasive detection scheme has become an indispensable tool in the technological arsenal of modern medicine and biomedical engineering. In this work, a time-resolved technique has been used to detect tumors/inhomogeneities in tissues by measuring transmitted and reflected scattered temporal optical signals when a short pulse laser source is incident on tissue phantoms. A parametric study involving different scattering and absorption coefficients of tissue phantoms and inhomogeneities, size of inhomogeneity as well as the detector position is performed. The experimental measurements are validated with a numerical solution of the transient radiative transport equation obtained by using discrete ordinates method. Thus, both simultaneous experimental and numerical studies are critical for predicting the optical properties of tissues and inhomogeneities from temporal scattered optical signal measurements

  14. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.

    2011-09-27

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC films relative to bulk-like PbSe films. We found that laser pulse fluences in the range of 30 to 200 mJ/cm2 create a processing window of opportunity where the NC film morphology goes through interesting transformations without large-scale coalescence of the NCs. NC coalescence can be mitigated by depositing a thin film of amorphous silicon (a-Si) on the NC film. Remarkably, pulsed laser annealing of the a-Si/PbSe NC films crystallized the silicon while NC morphology and translational order of the NC film are preserved. © 2011 American Chemical Society.

  15. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  16. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  17. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  18. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, Mohamed N.; Khan, M. A.; Alshareef, Husam N.

    2013-01-01

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent

  19. Pulse laser induced change in thermal radiation from a single spherical particle on thermally bad conducting surface : an analytical solution

    International Nuclear Information System (INIS)

    Moksin, M.M.; Grozescu, V.I.; Yunus, W.M.M.; Azmi, B.Z.; Talib, Z.A.; Wahab, Z.A.

    1996-01-01

    A relatively simple analytical expression was derived that provided a description of the radius and thermal properties of a single particle from the change in grey body radiation emission subsequent to pulse laser heating of the particle

  20. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.; Boulfrad, Samir; Jabbour, Ghassan E.; Doghè che, Elhadj Hadj

    2014-01-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass

  1. New results in pulsed laser deposition of poly-methyl-methacrylate thin films

    International Nuclear Information System (INIS)

    Cristescu, R.; Socol, G.; Mihailescu, I.N.; Popescu, M.; Sava, F.; Ion, E.; Morosanu, C.O.; Stamatin, I.

    2003-01-01

    Thin organic films based on poly-methyl-methacrylate (PMMA) polymer have been obtained by pulsed laser deposition (PLD) on silicon substrates. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy (RS). We observed that the film composition and structure depend on the laser fluence and on the temperature of the substrate during deposition

  2. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    OpenAIRE

    O. Van Overschelde; G. Guisbiers; R. Snyders

    2013-01-01

    Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA) in de-ionized water. Excimer laser (248 nm) operating at low fluence (F ∼ 1 J/cm2) was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the cen...

  3. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang

    2010-01-01

    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  4. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  5. Axisymmetric modeling of ultrashort-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2011-10-01

    Full Text Available The hyperbolic two-temperature model is used in order to describe the heat propagation in metal film subjected to an ultrashort-pulse laser heating. An axisymmetric heat soureceewith Gaussian temporeal and spatial distributions has been taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  6. Peculiarities of biological effect of pulsed laser radiation and 60Co γ rays on microorganisms

    International Nuclear Information System (INIS)

    Petin, V.G.; Rusina, L.K.; Sebrant, Yu.V.; Baranov, V.Yu.; Malyuta, D.D.; Nyz'ev, V.G.

    1978-01-01

    The sensitivity of yeast cells of different ploidy and bacterial cells of different strains to pulsed laser radiation and combined action of laser and ionizing radiation has been studied. Laser preirradiation of yeast cells did not change the cell sensitivity to the ionizing radiation. The biological effect was non-additive after the exposure to sequence of pulses in comparison with the exposure to a single pulse. The failure of cell reproductive ability after laser irradiation was irrepairable

  7. Silver-doped layers of implants prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Mikšovský, Jan; Jurek, Karel; Čejka, Z.; Kopeček, Jaromír

    2013-01-01

    Roč. 1, č. 7 (2013), s. 59-61 ISSN 2327-5219 R&D Projects: GA AV ČR KAN300100801 Institutional support: RVO:68378271 Keywords : thin layer * silver * titanium alloy * steel * pulsed laser deposition * adhesion * implant Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scirp.org/journal/PaperInformation.aspx?paperID=40308#.UvECAfu5dHA

  8. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per....... The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  9. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  10. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madison E. [Univ. of Florida, Gainesville, FL (United States)

    2017-05-20

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  11. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen

    the preparation of ultrathin seed layers in the first stage of the deposition process is often envisaged to control the growth and physical properties of the subsequent coating. This work suggests that the limitations of conventional pulsed laser deposition (PLD), performed at moderate temperature (400°C......10 layers with a thickness of 4 nm, 13 nm and 22 nm, respectively, grown on Mg(100), were studied by atomic force microscopy and X-ray reflectometry....

  12. Pulsed laser deposition of Cu-Sn-S for thin film solar cells

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Bosco, Edoardo

    Thin films of copper tin sulfide were deposited from a target of the stoichiometry Cu:Sn:S ~1:2:3 using pulsed laser deposition (PLD). Annealing with S powder resulted in films close to the desired Cu2SnS3 stoichiometry although the films remained Sn rich. Xray diffraction showed that the final...... films contained both cubic-phase Cu2SnS3 and orthorhombic-phase SnS...

  13. Hydrating behavior of Mg-based nano-layers prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wioniewski, Z; Bystrzycki, J; Mroz, W; Jastrzabski, C

    2009-01-01

    The hydriding behavior of Mg with TiO 2 and Si nanolayers prepared by the pulsed laser deposition (PLD) was studied. The phase structure, chemical composition and hydriding properties of the obtained Mg-based nanolayers were investigated by the XRD, TEM, AFM, RS, SIMS and the volumetric Sievert method. It was shown that PLD is an excellent technique for producing the complex structures based on Mg. Both, the kinetic and destabilization topics were investigated in this paper.

  14. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  15. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica

    1998-12-01

    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  16. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  17. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  18. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations

  19. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    International Nuclear Information System (INIS)

    Uccello, A.; Maffini, A.; Dellasega, D.; Passoni, M.

    2013-01-01

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results

  20. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied