WorldWideScience

Sample records for pulsed squeezed light

  1. All-fibre source of amplitude squeezed light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Markus; Marquardt, Christoph; Heersink, Joel; Gaber, Tobias; Wietfeld, Andre; Leuchs, Gerd; Andersen, Ulrik L [Institut fuer Optik, Information und Photonik, Max-Planck Forschungsgruppe Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, 91058, Erlangen (Germany)

    2004-08-01

    An all-fibre source of amplitude squeezed solitons utilizing the self-phase modulation in an asymmetric Sagnac interferometer is experimentally demonstrated. The asymmetry of the interferometer is passively controlled by an integrated fibre coupler, allowing for the optimization of the noise reduction. We have carefully studied the dependence of the amplitude noise on the asymmetry and the power launched into the Sagnac interferometer. Qualitatively, we find good agreement between the experimental results, a semi-classical theory and earlier numerical calculations (Schmitt et al 1998 Phys. Rev. Lett. 81 2446). The stability and flexibility of this all-fibre source makes it particularly well suited to applications in quantum information science.

  2. Correlation measurement of squeezed light

    DEFF Research Database (Denmark)

    Krivitsky, Leonid; Andersen, Ulrik Lund; Dong, R.

    2009-01-01

    We study the implementation of a correlation measurement technique for the characterization of squeezed light which is nearly free of electronic noise. With two different sources of squeezed light, we show that the sign of the covariance coefficient, revealed from the time-resolved correlation data......, is witnessing the presence of squeezing in the system. Furthermore, we estimate the degree of squeezing using the correlation method and compare it to the standard homodyne measurement scheme. We show that the role of electronic detector noise is minimized using the correlation approach as opposed to homodyning...

  3. Squeezed light in optomechanical systems

    DEFF Research Database (Denmark)

    Harris, G. I.; Taylor, M. A.; Hoff, Ulrich Busk

    2012-01-01

    Squeezed light enhanced optomechanical measurements are demonstrated in both intra-cavity and biological contexts, with respective enhancements of 1.0 and 2.7 dB. Quantum enhanced microrheology of the cytoplasm of a yeast cell is thereby realized.......Squeezed light enhanced optomechanical measurements are demonstrated in both intra-cavity and biological contexts, with respective enhancements of 1.0 and 2.7 dB. Quantum enhanced microrheology of the cytoplasm of a yeast cell is thereby realized....

  4. 30 years of squeezed light generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Gehring, Tobias; Marquardt, Christoph

    2016-01-01

    Squeezed light generation has come of age. Significant advances on squeezed light generation have been made over the last 30 years—from the initial, conceptual experiment in 1985 till today’s top-tuned, application-oriented setups. Here we review the main experimental platforms for generating...... quadrature squeezed light that have been investigated in the last 30 years....

  5. Adaptive phase estimation with squeezed thermal light

    DEFF Research Database (Denmark)

    Berni, A. A.; Madsen, Lars Skovgaard; Lassen, Mikael Østergaard

    2013-01-01

    Summary form only given. The use of quantum states of light in optical interferometry improves the precision in the estimation of a phase shift, paving the way for applications in quantum metrology, computation and cryptography. Sub-shot noise phase sensing can for example be achieved by injecting...... investigate the performances of such protocol under the realistic assumption of thermalization of the probe state. Indeed, adaptive phase estimation schemes with squeezed states and Bayesian processing of homodyne data have been shown to be asymptotically optimal in the pure case, thus approaching the quantum...... Cramér-Rao bound. In our protocol we take advantage of the enhanced sensitivity of homodyne detection in proximity of the optimal phase which maximizes the homodyne Fisher information. A squeezed thermal probe state (signal) undergoes an unknown phase shift. The first estimation step involves...

  6. Integrated source of broadband quadrature squeezed light

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund

    2015-01-01

    An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...... the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output...

  7. Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals

    Science.gov (United States)

    Chen, Chao-Hsiang

    Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi

  8. Coherent light squeezing states within a modified microring system

    Science.gov (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Amiri, I. S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  9. Coherent light squeezing states within a modified microring system

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM. When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  10. Anomalous Quantum Correlations of Squeezed Light

    Science.gov (United States)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  11. The POLIS interferometer for ponderomotive squeezed light generation

    Energy Technology Data Exchange (ETDEWEB)

    Calloni, Enrico [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Conte, Andrea [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); De Laurentis, Martina, E-mail: martina.delaurentis@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Naticchioni, Luca [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); Puppo, Paola [INFN, Sezione di Roma1 (Italy); Ricci, Fulvio [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy)

    2016-07-11

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  12. Luminescence and squeezing of a superconducting light-emitting diode

    Science.gov (United States)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  13. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  14. Quantum correlations induced by multiple scattering of quadrature squeezed light

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2006-01-01

    Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...... fluctuations of the total transmission or reflection. In contrast, no pronounced spatial quantum correlations appear in the quadrature amplitudes where excess noise above the shot noise level is found....

  15. Coherent interference effects and squeezed light generation in optomechanical systems

    Science.gov (United States)

    Qu, Kenan

    My Ph.D. dissertation is on the fundamental effects in optomechanical systems (OMS) and their important applications. The OMS are based on the possibility of the mechanical motion produced by few photons incident on the mechanical device. This dissertation presents several applications of the OMS in the area of storage of light in long-lived phonons, single mode optomechanical Ramsey interferometry, and generation of large amount of squeezing in the output radiation. The long-lived phonons can be monitored and controlled via optical means as was experimentally demonstrated. To show this, I develop the theory of transient electromagnetically induced transparency (EIT). For further applications like state transfer, especially over very different frequency regimes, I consider double-cavity OMS, where the two cavities can correspond to different spectral domains, yet the state transfer is possible via phonons. The state transfer is based on a new effect, electromagnetically induced absorption (EIA), where one uses a second control field from the other cavity to produce an absorption peak inside the EIT window. All these involve the interference of various path ways via which a final state is reached. The following chapter shows how Fano-like interference can arise in OMS. A Fano asymmetry parameter for OMS was defined. The last two chapters deal with the question if OMS can be efficient generators of squeezed light. I show by blue and red tuning the two cavities in a double-cavity OMS, one can generate effectively a two-mode parametric interaction which yields two-mode squeezed output with the squeezing magnitude of the order of 10dB. This requires a bath temperature of 10mK. Such temperatures obtained by using Helium dilution refrigerator are routinely used with superconducting OMS. The major part of this dissertation is devoted to the dispersive optomechanical interaction. However, the interaction can also be dissipative, where the mechanical displacement modulates

  16. Interaction of a quantum well with squeezed light: Quantum-statistical properties

    International Nuclear Information System (INIS)

    Sete, Eyob A.; Eleuch, H.

    2010-01-01

    We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.

  17. Encoding qubits into oscillators with atomic ensembles and squeezed light

    Science.gov (United States)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  18. Applications of quantum electro-optic control and squeezed light

    International Nuclear Information System (INIS)

    Lam, P.K.

    2000-01-01

    Full text: The control theory of electronic feedback or feedforward is a topic well understood by many scientists and engineers. With many of the modern equipment relying on automation and robotics, an understanding of this classical control theory is a common requisite for many technologists. In the field of optics, electronic control theory is also commonly used in many situations. From the temperature controlling of laser systems, the auto-alignment of optical elements, to the locking of optical resonators, all make use of electronic control theory in their operations. In this talk, we present the use the control theory in the context of quantum optics. In much the same as its classical counterpart, the 'quantum electro-optic' control loop consists simply of an optical beam splitter, a detector and an electro-optic modulator. This simple system, however, can offer many interesting applications when used in combination with nonclassical states of light. One well-known example of non-classical light is that of the squeezed state of light. A light beam is referred to as being amplitude 'squeezed' when its amplitude has less noise when compared to that of a coherent light state. In fact, the field fluctuation of such light states in some sense lower that the field fluctuation of the photonic vacuum state. Yet another interesting non-classical light state is the so-called 'Einstein-Podolsky-Rosen' entangled pair. This consists of two beams of light, each of which has properties that are highly dependent on each other. Using both the quantum electro-optic control loops and these light states, we demonstrate schemes which allow us to perform noiseless optical amplification, quantum non-demolition measurement and quantum teleportation. These schemes may be important building blocks to the realisation of future quantum communications and quantum information networks

  19. A gravitational wave detector operating beyond the quantum shot-noise limit: Squeezed light in application

    Directory of Open Access Journals (Sweden)

    Schnabel Roman

    2013-08-01

    Full Text Available This contribution reviews our recent progress on the generation of squeezed light [1], and also the recent squeezed-light enhancement of the gravitational wave detector GEO 600 [2]. GEO 600 is currently the only GW observatory operated by the LIGO Scientific Collaboration in its search for gravitational waves. With the help of squeezed states of light it now operates with its best ever sensitivity, which not only proves the qualification of squeezed light as a key technology for future gravitational wave astronomy but also the usefulness of quantum entanglement.

  20. Light squeezing through arbitrarily shaped plasmonic channels and sharp bends

    International Nuclear Information System (INIS)

    Alu, Andrea; Engheta, Nader

    2008-01-01

    We propose a mechanism for optical energy squeezing and anomalous light transmission through arbitrarily-shaped plasmonic ultranarrow channels and bends connecting two larger plasmonic metal-insulator-metal waveguides. It is shown how a proper design of subwavelength optical channels at cutoff, patterned by plasmonic implants and connecting larger plasmonic waveguides, may allow enhanced resonant transmission inspired by the anomalous properties of epsilon-near-zero (ENZ) metamaterials. The resonant transmission is shown to be only weakly dependent on the channel length and its specific geometry, such as possible presence of abruptions and bends

  1. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  2. Light squeezing in optical parametric amplification beyond the ...

    Indian Academy of Sciences (India)

    of the medium the squeezing effect is increased, the same property we have obtained in our present study. ... classical case [2,9], the introduction of the idler mode from the rare side of the medium, a2(0), is necessary to ... ever, in contrast with the coherent state, the combination mode has unequal uncertainty. 0. 0.02. 0.04.

  3. Light squeezing in optical parametric amplification beyond the ...

    Indian Academy of Sciences (India)

    The variances have different signs for a range of values of and their variations are in opposite directions. We also show that this property is strongly dependent on the relative refractive index of the medium (). It is worth mentioning that the relative index dependency is not an explicit feature in squeezing of OPA under ...

  4. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  5. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  6. Fidelity of Quantum Teleportation for Single-Mode Squeezed State Light

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Xiang; XIE Chang-De; PENG Kun-Chi

    2005-01-01

    @@ The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for the nonclassical state teleportation is different from that for coherent state. F = 1/2 is no longer the rigorous boundary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement of an Einstein-Podolsky-Rosen (EPR) beam used for teleportation and the parameters of the system are given,the fidelity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the fidelity is, and the lower the classical limitation of fidelity is. The dependence of the optimum gain for teleporting a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important references for designing experimental systems of teleporting a non-classical state and judging the quality of the teleported quantum state.

  7. Quantum Squeezing

    International Nuclear Information System (INIS)

    Zubairy, Suhail

    2005-01-01

    Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the

  8. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    Science.gov (United States)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  9. Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael

    2007-01-01

    Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described

  10. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    Science.gov (United States)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  11. NATO Advanced Research Workshop on Squeezed and Non-classical Light

    CERN Document Server

    Pike, E; Squeezed and Non-classical Light

    1988-01-01

    The recent generation in the laboratory of phase squeezed and intensity squeezed light beams has brought to fruition the theoretical predictions of such non-classical phenomena which have been made and developed in recent years by a number of workers in the field of quantum optics. A vigorous development is now underway of both theory and experiment and the first measurements have been coi:Jfirmed and extended already in some half dozen laboratories. Although the fields of application of these novellight sources are as yet somewhat hazy in our minds and some inspired thinking is required along these lines, the pace and excitement of the research is very clear. It is to he hoped that the new possibilities of: making measurements below the quantum shot noise lirnit which is made possible by these squeezed states of light willlead to further fundamental advances in the near future. In this NATO ARW a number of the leaders in the field met in the extremely pleasant surroundings of Cortina d'Ampezzo and th...

  12. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  13. Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator

    OpenAIRE

    Predojevic, Ana

    2009-01-01

    La luz comprimida (squeezed light) es uno de los componentes importantes de los experimentos de memorias cuánticas. Un almacenamiento eficientede la luz comprimida en una colectividad de átomos exige que la luz (comprimida) sea resonante a la línea espectral de absorción. El láser de diodopuede acceder a una amplia clase de líneas espectrales dado al amplio rango de longitudes de onda accesibles. Por lo tanto, el uso de fuentes de luz comprimida basadas en láseres de diodo ampliaría el número...

  14. Quantum squeezed light for probing mitochondrial membranes and study of neuroprotectants

    International Nuclear Information System (INIS)

    Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K.

    2005-01-01

    We report a new nanolaser technique for measuring characteristics of human mitochondria. Because mitochondria are so small, it has been difficult to study large populations using standard light microscope or flow cytometry techniques. We recently discovered a nano-optical transduction method for high-speed analysis of submicron organelles that is well suited to mitochondrial studies. This ultrasensitive detection technique uses nano-squeezing of light into photon modes imposed by the ultrasmall organelle dimensions in a semiconductor biocavity laser. In this paper, we use the method to study the lasing spectra of normal and diseased mitochondria. We find that the diseased mitochondria exhibit larger physical diameter and standard deviation. This morphological differences are also revealed in the lasing spectra. The diseased specimens have a larger spectral linewidth than the normal, and have more variability in their statistical distributions

  15. Green bright squeezed light from a cw periodically poled KTP second harmonic generator

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2002-01-01

    We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using qu...... reduction is greater than what could be expected using normal birefringence phase matched KTP with the same experimental parameters. Excellent agreement between experiment and theory is found. (C)2002 Optical Society of America....... quasi phase matching (QPM) and more importantly QPM allows access to higher valued elements of the nonlinear tensor than is possible under the constraint of birefringence phase matching. We observe a noise reduction of 13% below the shot noise limit in the generated second harmonic field. This noise...

  16. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  17. Slow-light pulses in moving media

    International Nuclear Information System (INIS)

    Fiurasek, J.; Leonhardt, U.; Parentani, R.

    2002-01-01

    Slow light in moving media reaches a counterintuitive regime when the flow speed of the medium approaches the group velocity of light. Pulses can penetrate a region where a counterpropagating flow exceeds the group velocity. When the counterflow slows down, pulses are reflected

  18. Interaction between two stopped light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Hsin, E-mail: yhchen920@gmail.com; Lee, Meng-Jung, E-mail: yhchen920@gmail.com; Hung, Weilun, E-mail: yhchen920@gmail.com; Yu, Ite A., E-mail: yu@phys.nthu.edu.tw [Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Ying-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yong-Fan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-03-05

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10{sup 9}. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.

  19. Interaction between two stopped light pulses

    International Nuclear Information System (INIS)

    Chen, Yi-Hsin; Lee, Meng-Jung; Hung, Weilun; Yu, Ite A.; Chen, Ying-Cheng; Chen, Yong-Fan

    2014-01-01

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10 9 . With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons

  20. Superposition of number and squeezed states of the quantized light field

    International Nuclear Information System (INIS)

    De Brito, A.L.; Marques, G.A.; Baseia, B.; Dias, H.

    1998-01-01

    A recent paper in the literature (Mod. Phys. Lett. B, 9 (1995) 1673) introduced the Intermediate Number Squeezed State (INSS) of the quantized radiation field interpolating between the number state (n) and the squeezed-coherent state (z, α), exhibiting various nonclassical properties. Here, it's introduced an alternative state, interpolating between those limiting states and show that nonclassical effects in this new intermediate state can be greater than those exhibited by the INSS, depending on the values of the interpolating parameters. Although constituting an application of a general approach (Nuovo Cimento D, 18 (1996) 425), it concludes another case in the literature (Phys. Scr., 55 (1997) 179) as a particularisation of this

  1. Light pulse shapes from plastic scintillators

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1977-01-01

    A detailed study of the light pulse shape from the binary NE 111 and the ternary Pilot U, Naton 136, KL 236, NE 102A, NE 104 and NE 110 plastic scintillators was performed by the single photon method using XP 1021 and C 31024 photomultipliers. The analysis of the shape of the light pulses determined experimentally for several samples of different dimensions gave the following conclusions. The original light pulse shape from the binary NE 111 scintillator, as measured with a 5 mm thick polished sample is described analytically by the convolution integral of a Gaussian and an exponential function. The Gaussian function may reflect a deexcitation of several higher levels of the solvent molecules excited by nuclear particles preceding an intermolecular energy transfer in the scintillator. It may introduce a rather important limitation of the speed of plastic scintillators as the standard deviation of the Gaussian function is equal to 0.2 ns. The light pulse shape from the ternary plastics is described by the convolution integral of a Gaussian and two exponential functions. The Gaussian function presents the rate of energy transfer from nuclear particles to the primary solute as in the binary plastics. The exponential functions describe the energy transfer from the primary solute to the wavelength shifter and the final emission of the light. (Auth.)

  2. Period and pulse duration with "strobe" lights

    Science.gov (United States)

    Birriel, Jennifer

    2016-01-01

    Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.

  3. Long-pulse Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Moselund, Peter M.

    A Supercontinuum (SC) is a broad spectrum generated from a narrow light source through non-linear effects. This thesis describes SC generation based on 1064 nm ps pulses in PCF fibres. We investigate how the SC spectrum can be modified and intensity noise reduced by feeding back part of the SC...

  4. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.

    Science.gov (United States)

    Yang, Wenhai; Shi, Shaoping; Wang, Yajun; Ma, Weiguang; Zheng, Yaohui; Peng, Kunchi

    2017-11-01

    We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.

  5. Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer.

    Science.gov (United States)

    Vahlbruch, Henning; Chelkowski, Simon; Hage, Boris; Franzen, Alexander; Danzmann, Karsten; Schnabel, Roman

    2005-11-18

    We report on the experimental combination of three advanced interferometer techniques for gravitational wave detection, namely, power recycling, detuned signal recycling, and squeezed field injection. For the first time, we experimentally prove the compatibility of especially the latter two. To achieve a broadband nonclassical sensitivity improvement, we applied a filter cavity for compensation of quadrature rotation. The signal-to-noise ratio was improved by up to 2.8 dB beyond the coherent state's shot noise. The complete setup was stably locked for arbitrary times and characterized by injected single-sideband modulation fields.

  6. Unconventional Use of Intense Pulsed Light

    OpenAIRE

    Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S.

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hype...

  7. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  8. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  9. Plasma devices for focusing extreme light pulses

    International Nuclear Information System (INIS)

    Fuchs, J.; Gonoskov, A.A.; Nakatsutsumi, M.; Nazarov, W.; Quere, F.; Sergeev, A.M.; Yan, X.Q.

    2014-01-01

    Since the inception of the laser, there has been a constant push toward increasing the laser peak intensity, as this has lead to opening the exploration of new territories, and the production of compact sources of particles and radiation with unprecedented characteristics. However, increasing the peak laser intensity is usually performed by enhancing the produced laser properties, either by lowering its duration or increasing its energy, which involves a great level of complexity for the laser chain, or comes at great cost. Focusing tightly is another possibility to increase the laser intensity, but this comes at the risk of damaging the optics with target debris, as it requires their placement in close proximity to the interaction region. Plasma devices are an attractive, compact alternative to tightly focus extreme light pulses and further increase the final laser intensity. (authors)

  10. Side effects from intense pulsed light

    DEFF Research Database (Denmark)

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F

    2017-01-01

    BACKGROUND AND OBJECTIVE: Intense pulsed light (IPL) is a mainstream treatment for hair removal. Side effects after IPL are known, but risk factors remain to be investigated. The objective of this study was to assess the contribution of skin pigmentation, fluence level, and ultraviolet radiation...... stacking of 46 J/cm2. Areas were subsequently randomized to no UVR or single solar-simulated UVR exposure of 3 Standard Erythema Dose at 30 minutes or 24 hours after IPL. Each area had a corresponding control, resulting in 15 treatment sites. Follow-up visits were scheduled up to 4 weeks after IPL. Outcome...... measures were: (i) blinded clinical skin reactions; (ii) objectively measured erythema and pigmentation; (iii) pain measured by visual analog scale (VAS); (iv) histology (H&E, Fontana-Masson); and (v) mRNA-expression of p53. RESULTS: Fifteen subjects with FST II-IV completed the protocol. IPL induced...

  11. Slow light pulse propagation in dispersive media

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei

    2009-01-01

    broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All...... rights reserved....

  12. Unconventional Use of Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    D. Piccolo

    2014-01-01

    Full Text Available According to the literature, intense pulsed light (IPL represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne, due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases, port-wine stain (PWS (10 cases, disseminated porokeratosis (10 cases, pilonidal cyst (3 cases, seborrheic keratosis (10 cases, hypertrophic scar (5 cases and keloid scar (5 cases, Becker’s nevus (2 cases, hidradenitis suppurativa (2 cases, and sarcoidosis (1 case. Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator’s experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre. Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  13. Unconventional use of intense pulsed light.

    Science.gov (United States)

    Piccolo, D; Di Marcantonio, D; Crisman, G; Cannarozzo, G; Sannino, M; Chiricozzi, A; Chimenti, S

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hypertrophic scar (5 cases) and keloid scar (5 cases), Becker's nevus (2 cases), hidradenitis suppurativa (2 cases), and sarcoidosis (1 case). Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator's experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre). Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  14. Propagation of coherent light pulses with PHASE

    Science.gov (United States)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  15. Observation of squeezed light and quantum description of the macroscopical body movement

    International Nuclear Information System (INIS)

    Bykov, V.P.

    1992-01-01

    The possibility of a nondemolition measurement (observation) of macroscopical objects in widely distributed quantum mechanical states arises from the fact of the squezzed light observation. Macroscopical bodies -bodies of classical mechanics - are usually in states with narrow wave packets. It is shown that the absence of macroscopical bodies in widely distributed states is due to the focusing influence of the body's gravity field on its wave packet. An evidence that the gravity is essential in the classic limit of quantum mechanics is given. (author). 14 refs, 7 figs

  16. Finger blood content, light transmission, and pulse oximetry errors.

    Science.gov (United States)

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.

  17. The Second International Workshop on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S.; Manko, V. I.

    1993-01-01

    This conference publication contains the proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations held in Moscow, Russia, on 25-29 May 1992. The purpose of this workshop was to study possible applications of squeezed states of light. The Workshop brought together many active researchers in squeezed states of light and those who may find the concept of squeezed states useful in their research, particularly in understanding the uncertainty relations. It was found at this workshop that the squeezed state has a much broader implication than the two-photon coherent states in quantum optics, since the squeeze transformation is one of the most fundamental transformations in physics.

  18. Manipulating the retrieved width of stored light pulses

    International Nuclear Information System (INIS)

    Chen Yongfan; Wang Shihhao; Wang Changyi; Yu, Ite A.

    2005-01-01

    We have systematically studied the method proposed by Patnaik et al. [Phys. Rev. A 69, 035803 (2004)] that manipulates the retrieval of stored light pulses. The measured probe pulse width of the retrieval is inversely proportional to the intensity of the reading field. We also show that the method does not introduce any phase shift or jump into the retrieved pulses. Our study demonstrates that the distortion at the output of the light storage can be corrected by manipulating the retrieval process and the phase information of the stored pulses can remain intact during the process

  19. Use of the squeezed (sub-Poisson) state of light in small-signal detection with preamplification upon four-wave mixing

    International Nuclear Information System (INIS)

    Kozlovskii, Andrei V

    2007-01-01

    The scheme of an active interferometer for amplification of small optical signals for their subsequent photodetection is proposed. The scheme provides a considerable amplification of signals by preserving their quantum-statistical properties (ideal amplification) and also can improve these properties under certain conditions. The two-mode squeezed state of light produced upon four-wave mixing, which is used for signal amplification, can be transformed to the non-classical state of the output field squeezed in the number of photons. The scheme is phase-sensitive upon amplification of the input coherent signal. It is shown that in the case of the incoherent input signal with the average number of photons (n s )∼1, the amplification process introduces no additional quantum noise at signal amplification as large as is wished. A scheme is also proposed for the cascade small-signal amplification ((n s )∼1) in the coherent state producing the amplified signal in the squeezed sub-Poisson state, which can be used for the high-resolution detection of weak and ultraweak optical signals. (quantum optics)

  20. Intense Pulsed Light (IPL) in Aesthetic Dermatology

    Science.gov (United States)

    Pytras, B.; Drozdowski, P.; Zub, K.

    2011-08-01

    Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.

  1. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  2. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  3. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  4. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  5. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  6. Heralded source of bright multi-mode mesoscopic sub-Poissonian light

    DEFF Research Database (Denmark)

    Iskhakov, Timur; Usenko, V. C.; Andersen, Ulrik Lund

    2016-01-01

    In a direct detection scheme, we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric downconversion. Applying postselection, we conditionally prepared a sub-Poissonian state of light containing 6.3 . 105 photons per pulse on the average...

  7. Amplitude and phase control of attosecond light pulses

    International Nuclear Information System (INIS)

    Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan; Persson, Anders; Svanberg, Sune; Wahlstroem, Claes-Goeran; L'Huillier, Anne; Mairesse, Yann; Salieres, Pascal; Gaarde, Mette B.; Schafer, Kenneth J.

    2005-01-01

    We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms

  8. Generation of an incident focused light pulse in FDTD.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  9. SiPM response to long and intense light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy prospekt 53, Moscow (Russian Federation); Arodzero, A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); RadiaBeam Technologies Inc., 1717 Stewart St., Santa Monica, CA 90404 (United States); Lanza, R.C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Welsch, C.P. [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom)

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 10{sup 5}–10{sup 6}. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  10. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  11. Workshop on Squeezed States and Uncertainty Relations

    International Nuclear Information System (INIS)

    Han, D.; Kim, Y.S.; Zachary, W.W.

    1992-02-01

    The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory

  12. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  13. Focusing of atoms with spatially localized light pulses

    International Nuclear Information System (INIS)

    Helseth, Lars Egil

    2002-01-01

    We theoretically study the focusing of atoms using strongly localized light pulses. It is shown that when inhomogenously polarized light is focused at high angular apertures, one may obtain useful potentials for atom focusing. Here we analyze the case of pulsed light potentials for red- and blue-detuned focusings of atoms. In particular, we show that the atomic beam aperture must be stopped considerably down in order to reduce the sidelobes of the atomic density, which is similar to the situation often encountered in conventional optics. It is suggested that an annular aperture in front of the atomic beam could be useful for increasing the resolution, at the cost of a lower atomic density

  14. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  15. Electrical pulse burnout testing of light-emitting diodes

    International Nuclear Information System (INIS)

    Kalma, A.H.; Fischer, C.J.

    1975-01-01

    Electrical pulse burnout thresholds were measured in GaAs, GaAsP, and GaP light-emitting diodes (LEDs) by studying the degradation in light output and the change in I-V characteristics both during the pulse and in the steady state. Pulse widths ranging from a few hundred nsec to 100 μsec were used. Light output degradation was the most sensitive parameter and was used to determine the thresholds. Just above threshold, damage is caused by an increase in generation-recombination current in the space-charge retion. This current is non-radiative and the light output drops, but the damage is not catastrophic. At higher power, the junction burns through and shunt resistance paths are formed which more drastically degrade the light output. The experimental data match reasonably with the theoretical Wunsch--Bell/Tasca model if a burnout area of 1 / 10 the junction area is assumed. Both the adiabatic term (At -1 ) and the heat flow term (Bt - /sup 1 / 2 /) contribute in all devices, and the equilibrium term (C) contributes in some GaAsP devices. The scatter in the data for GaAs devices is greater than that for GaAsP devices, apparently because the former types have a significant fraction of mavericks with lower-than-normal thresholds. The use of LEDs to examine electrical pulse burnout is advantageous because the light output is quite sensitive to damage and the combined measurement of optical and electrical properties provides additional information about the mechanisms involved

  16. Simulations and experiments on polarization squeezing in optical fiber

    DEFF Research Database (Denmark)

    Corney, J.F.; Heersink, J.; Dong, R.

    2008-01-01

    We investigate polarization squeezing of ultrashort pulses in optical fiber, over a wide range of input energies and fiber lengths. Comparisons are made between experimental data and quantum dynamical simulations to find good quantitative agreement. The numerical calculations, performed using both...... effects cause a marked deterioration of squeezing at higher energies and longer fiber lengths. We also calculate the optimum fiber length for maximum squeezing....

  17. PLZT light transmittance memory driven with an asymmetric voltage pulse

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  18. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...... in preoperative UV-exposed mice (p=0.94) and from 22 to 23 weeks in pre- and postoperative UV-exposed mice (p=0.11). IPL rejuvenation of lightly pigmented skin did not induce pigmentary changes (p=1.00). IPL rejuvenation of UV-pigmented skin resulted in an immediate increased skin pigmentation and a subsequent...

  19. Fast light pulse measurements and temporal fluctuations in photomultipliers

    International Nuclear Information System (INIS)

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  20. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  1. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    devices have been sold directly to consumers for treatment in the home. In this review, we outline the principles underlying laser and IPL technologies and undertake an evidence-based assessment of the short- and long-term efficacy of the different devices available to the practising dermatologist...... pulsed light (IPL, 590-1200 nm), are available and used widely for such procedures in dermatological/clinical settings under proper supervision. Patient selection and appropriate fluence settings are managed by professionals to maximize efficacy while minimizing adverse events. In the past 5 years, LHR...

  2. Dissipative light-bullets in the filamentation of femtosecond pulses

    International Nuclear Information System (INIS)

    Porras, M.A.; Gonzalo, I.

    2010-01-01

    Complete text of publication follows. With the growing interest in filamentation in solid and liquid media, the regime of filamentation with anomalous dispersion is receiving more attention. In this work we show that basics aspects of the filament dynamics in this regime can be explained in terms of a novel type of light-bullet, which is not of solitary or of conical types, but a wave-packet that maximizes the energy dissipation into the medium while remaining localized and stationary in propagation. We first show that a nonlinear optical medium at a given carrier wave length at which dispersion is anomalous, supports 'dissipative' light-bullets, i.e., waves localized in space and time and that propagate without change as a result of a balance between nonlinear compression and nonlinear absorption. Among them, the particular dissipative light-bullet with the highest possible dissipation is unique in a given medium, in the sense that all its properties are fixed by the properties of the medium at the carrier wave length. In this light-bullet, self-focusing continuously transports energy towards the pulse center by an amount that just compensates for the nonlinear losses. Figure 1(a) shows the radial profiles of the dissipative light-bullets that maximizes energy dissipation for several orders of multi-photon absorption responsible for the nonlinear losses. We have also found that this dissipative light-bullet tends to be spontaneously formed in the filamentary dynamics in media with anomalous dispersion. Figure 1(b) shows the peak intensity, the total energy and losses of a pulse that undergoes self-focusing and filamentation in an ideal medium with only Kerr nonlinearity and multi-photon absorption. This simple model reproduces the particularly long filament 'segments' and the 'burst' observed in experiments and in more accurate simulations. The peak intensity in the filament is identical to that of the dissipative light-bullet with maximum dissipation, and the

  3. Control of Squeezed States

    OpenAIRE

    Bloch, Anthony M.; Rojo, Alberto G.

    2000-01-01

    In this paper we consider the classical and quantum control of squeezed states of harmonic oscillators. This provides a method for reducing noise below the quantum limit and provides an example of the control of under-actuated systems in the stochastic and quantum context. We consider also the interaction of a squeezed quantum oscillator with an external heat bath.

  4. Light Dependent Resistance as a Sensor in Spectroscopy Setups Using Pulsed Light and Compared with Electret Microphones

    Directory of Open Access Journals (Sweden)

    Daniel Acosta-Avalos

    2006-05-01

    Full Text Available Light-dependent resistances (LDR are cheap light sensors. A less known lightdetector is the electret microphone, whose electret membrane functions as a perfectabsorber, but only detects pulsed light. The aim of this study was to analyze the use of aLDR and an electret microphone as a light sensor in an optical spectroscopy system usingpulsed light. A photoacoustic spectroscopy setup was used, substituting the photoacousticchamber by the light sensor proposed. The absorption spectra of two different liquids wereanalyzed. The results obtained allow the recommendation of the LDR as the first choice inthe construction of cheap homemade pulsed light spectroscopy systems.

  5. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    Science.gov (United States)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  6. Wigner function and tomogram of the excited squeezed vacuum state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Fan Hongyi

    2007-01-01

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new

  7. Wigner function and tomogram of the excited squeezed vacuum state

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiangguo [Department of Physics, Liaocheng University, Shandong Province 252059 (China); Wang Jisuo [Department of Physics, Liaocheng University, Shandong Province 252059 (China)]. E-mail: jswang@lcu.edu.cn; Fan Hongyi [Department of Physics, Liaocheng University, Shandong Province 252059 (China); CCAST (World Laboratory), P.O. Box 8730, 100080 Beijing (China)

    2007-01-29

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new.

  8. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  9. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset.

    Science.gov (United States)

    Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S

    2014-01-01

    Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.

  10. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-01-01

    Full Text Available Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL and continuous light accelerated corneal collagen crosslinking (cl-ACXL with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA with 8 minutes (1 sec. on/1 sec. off of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA, corneal topography and aberrometry (CSO EyeTop, Florence, Italy, corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany, endothelial cells count (I-Conan Non Co Robot, and in vivo scanning laser confocal microscopy (Heidelberg, Germany at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment.

  11. Comparative Study Between Intense Pulsed Light IPLAND Pulsed Dye Laser In The Treatment Of Striae Distensae

    International Nuclear Information System (INIS)

    El-Khalafawy, Gh.M.K.A.

    2013-01-01

    Pulsed dye laser (PDL) and Intense Pulsed Light (IPL) have been used to treat Striae Distensae (SD). Thirty patients with age ranging from 14 - 42 years were included in this study. Twenty patients were treated on one side of their bodies with PDL and on the other side with IPL while seven patients were treated on both sides by IPL and three patients were treated on both sides by PDL for five sessions with four weeks interval between sessions. Skin biopsies were stained with H and E, Masson Trichrome, Orcein, Alcian blue and anti-collagen I Α1. After both PDL and IPL treatments striae width was decreased and the texture was improved in a highly significant manners where P value was 0.001. Collagen expression was increased in a highly significant manner and P values were <0.001 and 0.004 after PDL and IPL treatments respectively. However, PDL induced expression of collagen I in a highly significant manner compared to the treatment with IPL where P values were <0.001 and 0.193 respectively. Striae rubra gave a superior response with either PDL or IPL compared to striae alba which was evaluated clinically by the width, color and texture, although the histological changes could not verify this consequence. Both PDL and IPL can enhance the clinical picture of striae through collagen stimulation therapeutic modalities

  12. Squeezing-enhanced optomechanical transduction sensitivity

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Harris, Glen I.; Madsen, Lars Skovgaard

    2013-01-01

    mechanical systems. Following the proposal of Caves we have experimentally proven the applicability of squeezed light-enhanced interferometric displacement detection in the domain of micromechanical oscillators. The technique has previously been demonstrated for table-top interferometer setups and GW...

  13. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    Science.gov (United States)

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  14. Effects of dispersion and longitudinal chromatic aberration on the focusing of isodiffracting pulsed Gaussian light beam

    International Nuclear Information System (INIS)

    Deng Dongmei; Guo Hong; Han Dingan; Liu Mingwei; Li Changfu

    2005-01-01

    Taking into account the dispersion and the longitudinal chromatic aberration (LCA) of the material of the lens, focusing of isodiffracting pulsed Gaussian light beam through single lens is analyzed. The smaller the cycle number of the isodiffracting pulsed Gaussian light beam is, the higher the order of the material dispersion should be considered

  15. Photon statistics, antibunching and squeezed states

    International Nuclear Information System (INIS)

    Leuchs, G.

    1986-01-01

    This paper attempts to describe the status and addresses future prospects of experiments regarding photon antibunching, and squeezed states. Light correlation is presented in the framework of classical electrodynamics. The extension to quantized radiation fields is discussed and an introduction to the basic principles related to photon statistics, antibunching and squeezed states are presented. The effect of linear attenuation (beam splitters, neutral density filters, and detector quantum efficiency) on the detected signal is discussed. Experiments on the change of photon statistics by the nonlinear interaction of radiation fields with matter are described and some experimental observations of antibunching and sub-Poissonian photon statistics in resonance fluorescence and with possible schemes for the generation and detection of squeezed states are examined

  16. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiji; Takimoto, Tetsuya; Tosa, Kazuya; Kakue, Takashi [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Awatsuji, Yasuhiro, E-mail: awatsuji@kit.ac.jp [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Nishio, Kenzo [Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Ura, Shogo [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Kubota, Toshihiro [Kubota Holography Laboratory, Corporation, Nishihata 34-1-609, Ogura, Uji 611-0042 (Japan)

    2011-08-01

    We succeeded in recording and observing femtosecond light pulse propagation as a form of moving picture by means of light-in-flight recording by holography using a rewritable holographic material, for the first time. We used a femtosecond pulsed laser whose center wavelength and duration were 800 nm and {approx}120 fs, respectively. A photo-conductor plastic hologram was used as a rewritable holographic material. The femtosecond light pulse was collimated and obliquely incident to the diffuser plate. The behavior of the cross-section between the collimated femtosecond light pulse and the diffuser plate was recorded on the photo-conductor plastic hologram. We experimentally obtained a spatially and temporally continuous moving picture of the femtosecond light pulse propagation for 58.3 ps. Meanwhile, we also investigated the rewritable performance of the photo-conductor plastic hologram. As a result, we confirmed that ten-time rewriting was possible for a photo-conductor plastic hologram.

  17. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2014-12-01

    Full Text Available Mariana G Figueiro, Barbara Plitnick, Mark S Rea Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study and on delaying circadian phase (field study. Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour. The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting. Keywords: circadian phase, dim light melatonin onset, light through closed eyelids, blue light, sleep

  18. Pump-beam-instability limits to Raman-gain-doublet ''fast-light'' pulse propagation

    International Nuclear Information System (INIS)

    Stenner, Michael D.; Gauthier, Daniel J.

    2003-01-01

    We investigate the behavior of a system for generating ''fast-light'' pulses in which a bichromatic Raman pumping beam is used to generate optical gain at two frequencies and a region of anomalous dispersion between them. It is expected that increasing the gain will increase the pulse advancement. However, as the gain increases, the pumping field becomes increasingly distorted, effectively limiting the pulse advancement. We observe as much as 12% of the input pump power converted to orthogonal polarization, broadening of the initially bichromatic pump field (25 MHz initial frequency separation) to more than 2.5 GHz, and a temporal collapse of the pump beam into an erratic train of sub-500-ps pulses. The instability is attributed to the combined effects of the cross modulation instability and stimulated Raman scattering. Extreme distortion of an injected pulse that should (absent the instability) experience an advancement of 21% of its width is observed. We conclude that the fast-light pulse advancement is limited to just a few percent of the pulse width using this pulse advancement technique. The limitation imposed by the instability is important because careful study of the information velocity in fast-light pulses requires that pulse advancement be large enough to distinguish the velocities of different pulse features. Possible methods for achieving pulse advancement by avoiding the distortion caused by the instability are discussed

  19. Observation of squeezed states with strong photon-number oscillations

    International Nuclear Information System (INIS)

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-01

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  20. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum

    Directory of Open Access Journals (Sweden)

    D. M. Toyli

    2016-07-01

    Full Text Available We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

  1. Nth-powered amplitude squeezing in fan-states

    CERN Document Server

    Duc, T M

    2002-01-01

    Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.

  2. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  3. Properties of squeezed Schroedinger cats

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Omar, Z.M.

    1995-09-01

    In this article we investigate some statistical properties of the even and odd squeezed (squeezed Schroedinger cat) states. The quasi-probability distribution functions especially W(α) and Q(α) are calculated and discussed for these states. The phase distribution function is discussed. A generation scheme is proposed for either the squeezed generalized Schroedinger cat, or the squeezed number state. (author). 35 refs, 5 figs

  4. Effect of the light spectrum of various substrates for inkjet printed conductive structures sintered with intense pulsed light

    International Nuclear Information System (INIS)

    Weise, Dana; Mitra, Kalyan Yoti; Ueberfuhr, Peter; Baumann, Reinhard R.

    2015-01-01

    In this work, the novel method of intense pulsed light (IPL) sintering of a nanoparticle silver ink is presented. Various patterns are printed with the Inkjet technology on two flexible foils with different light spectra. One is a clear Polyethylenterephthalat [PET] foil and the second is a light brownish Polyimide [PI] foil. The samples are flashed with different parameters regarding to pulse intensity and pulse length. Microscopic images are indicating the impact of the flashing parameters and the different light spectra of the substrates on the sintered structures. Sheet and line resistance are measured and the conductivity is calculated. A high influence of the property of the substrate with respect to light absorption and thermal conductivity on the functionality of printed conductive structures could be presented. With this new method of IPL sintering, highly conductive inkjet printed silver patterns could be manufactured within milliseconds on flexible polymeric foils without damaging the substrate

  5. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  6. Pump-dump iterative squeezing of vibrational wave packets.

    Science.gov (United States)

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  7. Light storage in a doped solid enhanced by feedback-controlled pulse shaping

    International Nuclear Information System (INIS)

    Beil, F.; Buschbeck, M.; Heinze, G.; Halfmann, T.

    2010-01-01

    We report on experiments dealing with feedback-controlled pulse shaping to optimize the efficiency of light storage by electromagnetically induced transparency (EIT) in a Pr 3+ :Y 2 SiO 5 crystal. A learning loop in combination with an evolutionary algorithm permits the automatic determination of optimal temporal profiles of intensities and frequencies in the driving laser pulses (i.e., the probe and coupling pulses). As a main advantage, the technique finds optimal solutions even in the complicated multilevel excitation scheme of a doped solid, involving large inhomogeneous broadening. The learning loop experimentally determines optimal temporal intensity profiles of the coupling pulses for a given probe pulse. The optimized intensity pulse shapes enhance the light-storage efficiency in the doped solid by a factor of 2. The learning loop also determines a fast and efficient preparation pulse sequence, which serves to optically prepare the crystal prior to light-storage experiments. The optimized preparation sequence is 5 times faster than standard preparation sequences. Moreover, the optimized preparation sequence enhances the optical depth in the medium by a factor of 5. As a consequence, the efficiency of light storage also increases by another factor of 3. Our experimental data clearly demonstrate the considerable potential of feedback-controlled pulse shaping, applied to EIT-driven light storage in solid media.

  8. The magnetohydrodynamic squeeze film

    International Nuclear Information System (INIS)

    Hamza, E.A.

    1987-06-01

    The motion of an electrically conducting fluid film squeezed between two parallel disks in the presence of a magnetic field applied perpendicular to the disks is studied. Analytic solutions through use of a regular perturbation scheme are obtained. The results show that the electromagnetic forces increase the load carrying capacity considerably. (author). 5 refs, 10 figs, 3 tabs

  9. Phase squeezed states

    International Nuclear Information System (INIS)

    Chizhov, A.V.; Paris, M.G.A.

    1998-01-01

    Phase squeezed states of a single mode radiation field have been introduced as eigenstates of a linear combination of lowering and raising operators. The explicit expression in the Fock basis has been obtained and some relevant properties have been illustrated. (author)

  10. Thermalization of squeezed states

    International Nuclear Information System (INIS)

    Solomon, Allan I

    2005-01-01

    Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate Hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization)

  11. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    Science.gov (United States)

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  12. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  13. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  14. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    International Nuclear Information System (INIS)

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  15. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  16. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers

    DEFF Research Database (Denmark)

    Dong, R.; Heersink, J.; Corney, J.

    2008-01-01

    We report new experiments on polarization squeezing using ultrashort photonic pulses in a single pass of a birefringent fiber. We measure what is to our knowledge a record squeezing of -6.8 +/- 0.3 dB in optical fibers which when corrected for linear losses is -10.4 +/- 0.8 dB. The measured polar...

  17. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  18. Effect of nonlinear crystal thickness on the parameters of the autocorrelator of femtosecond light pulses

    International Nuclear Information System (INIS)

    Masalov, Anatolii V; Chudnovsky, Aleksandr V

    2004-01-01

    It is shown that the finite thickness of the second-harmonic crystal distorts the results of measurements in nonlinear autocorrelators intended for measuring the durations and fields of femtosecond light pulses mainly due to dispersive broadening (or compression) of the pulses being measured, as well as due to the group velocity mismatch between the fundamental and sum-frequency pulses. The refractive index dispersion of the crystal, scaled by half its thickness, distorts the pulse duration to a certain extent depending on its initial chirp and thus determines the width of the energy distribution recorded in the autocorrelator. As the crystal thickness increases, the group velocity mismatch leads to a transformation of the recorded distribution from the correlation function of intensity to the squared modulus of the field correlation function. In the case of Gaussian pulses, such a transformation does not affect significantly the recorded distribution. Errors of pulse duration measurements are estimated. (nonlinear optical phenomena)

  19. Light electric transformer to transform the size of particles contained in a gas flow into electrical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Berber, V.A.; Zolotenko, V.A.; Naguev, E.N.; Pavlov, V.V.; Sokolov, V.E.; Syromyatnikov, A.N.; Eremenko, A.I.

    1979-08-09

    The equipment measures the air dust. The aerosol flow is hence irradiated with a convergent light bundle. Using mirrors and mechanically operable screens, it is possible to divert part of the light onto a photo receiver to produce electric pulses of the dispersly composed aerosols and another part onto a former for standardized light pulses. The accuracy of the measurement is increased by the stability of the standardized light pulses.

  20. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shuang Qiu

    Full Text Available There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior. In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS. Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.

  1. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  2. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  3. Squeezing survival and transfer in single and double electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Ding, J L; Hou, B P; Wang, S J

    2010-01-01

    We investigate the propagation and storage of a squeezed vacuum as the probe light in a collection of N four-level tripod configuration atoms under the condition of single or double electromagnetically induced transparency (EIT). The squeezing of the probe light is well preserved in both the single transparency channel and the double transparency one. On the other hand, the effects of the ground state dephasing rates on the propagation and storage of the squeezed vacuum are investigated. It is found that the maximum squeezing at the transparency points is suppressed by the dephasing rates in single or double EIT. Meanwhile, the mapping of the squeezing of the probe light onto the atomic ground coherences or onto the two atomic dark-state polaritons is also studied. In the absence of the Langevin atomic noise, the quasi-ideal squeezing transfer between the squeezed vacuum and the atomic ground coherences or the dark-state polaritons can be realized in such a system. When considering the Langevin atomic noise, the quantum characteristics of the atomic coherences at resonance are submerged by the Langevin noise, while in the scenario of the dark-state polariton, it is found that squeezing transfer onto one polariton is damaged, but the squeezing transfer onto the other polariton survives even in the presence of the Langevin noise.

  4. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  5. Pulsed, all solid-state light source in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Andersen, Martin; Johansson, Sandra

    We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser.......We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser....

  6. Non-collinear configuration for dichromatic squeezing

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, A.; Bondani, M. [Como Univ. (Italy). Dipt. di Scienze Chimiche Fisiche e Matematiche; Mauro D' Ariano, G.; Paris, M.G.A. [Como Univ. (Italy). Dipt. di Scienze Chimiche Fisiche e Matematiche; Quantum Optics Group, Unita INFM and Dipt. di Fisica ' Alessandro Volta' , Univ. di Pavia (Italy)

    2001-02-01

    We propose a non-collinear experimental scheme for the joint generation of two amplitude-squeezed beams at the frequencies {omega}{sub 1} and {omega}{sub 2}, fundamental and second harmonics of a Nd:YAG laser pulse. The scheme consists of two successive steps, both involving second-order non-linear interactions in {beta}-BaB{sub 2}O{sub 4} non-linear crystals. One of the output beams show subPoissonian photon statistics, and this allows to use photodetection instead of homodyne detection for diagnostics. (orig.)

  7. Non-collinear configuration for dichromatic squeezing

    International Nuclear Information System (INIS)

    Andreoni, A.; Bondani, M.

    2001-01-01

    We propose a non-collinear experimental scheme for the joint generation of two amplitude-squeezed beams at the frequencies ω 1 and ω 2 , fundamental and second harmonics of a Nd:YAG laser pulse. The scheme consists of two successive steps, both involving second-order non-linear interactions in β-BaB 2 O 4 non-linear crystals. One of the output beams show subPoissonian photon statistics, and this allows to use photodetection instead of homodyne detection for diagnostics. (orig.)

  8. Controlled light localisation and nonlinear-optical interactions of short laser pulses in holey fibres

    International Nuclear Information System (INIS)

    Fedotov, Andrei B; Zheltikov, Aleksei M; Golovan', Leonid A; Kashkarov, Pavel K; Tarasevitch, A P; Podshivalov, Alexey A; Alfimov, Mikhail V; Ivanov, Anatoliy A; Beloglazov, V I; Haus, J W; Linde, D von der

    2001-01-01

    The influence of the structure of holey-fibre cladding on the effective waveguide mode area and the spectral broadening of femtosecond pulses of titanium-sapphire and forsterite lasers is experimentally studied. These experiments demonstrate that the increase in the air-filling fraction of the holey-fibre cladding may substantially enhance the spectral broadening of laser pulses due to the increase in the degree of light localisation in the fibre core. (femtosecond technologies)

  9. Efficacy of intense pulse light therapy and tripple combination cream versus intense pulse light therapy and tripple combination cream alone in epidermal melasma treatment

    International Nuclear Information System (INIS)

    Shakeeb, N.; Noor, S.M.; Paracha, M.M.; Ullah, G.

    2018-01-01

    Objective:To compare the efficacy of intense pulse light therapy (IPL) and triple combination cream (TCC) versus intense pulse light therapy and triple combination cream alone in epidermal melasma treatment, downgrading MASI score to more than 10. Study Design:Randomized controlled trial. Place and Duration of Study:Dermatology Department, Lady Reading Hospital, Peshawar, from August 2014 to January 2015. Methodology:Patients of 18-45 years were included in the study with Fitzpatrick skin type II-V. Sample of 96 patients was divided in to three groups of 32 each, through consecutive (non-probability) sampling method. Detailed history was taken, Woods Lamp Examination done, and melasma area and severity index (MASI) score was calculated. TCC had to be applied daily at night for two months by group A patients while group B was consigned for IPL therapy fortnightly, and those in group C were given both for two months. Efficacy was compared by recalculating MASI score at treatment end as well as at follow-up after 4 weeks, using Chi-square test with significance at p < 0.05. Results:Male and female patients were 10 (31.2%) and 22 (68.8%) in group A, 7 (21.9%) and 25 (78.1%) in group B, while in group C were 12 (37.5%) and 20 (62.5%). The average age was 28.70 +8.70 years. MASI score reduction was achieved in 22 (68.8%) patients in group A; whereas, in 20 (62.5%) and 30(93.8%) patients in group B and C, respectively. Efficacy-wise distribution was significant (p=0.009). Conclusion:Intense pulse light therapy and triple combination cream are more efficacious in epidermal melasma treatment than intense pulse light therapy and triple combination cream alone. (author)

  10. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  11. A broadband Soleil-Babinet compensator for ultrashort light pulses

    Science.gov (United States)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-12-01

    This letter reports a novel design for a broadband Soleil-Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil-Babinet compensator based on a MgF2/ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths.

  12. A broadband Soleil–Babinet compensator for ultrashort light pulses

    International Nuclear Information System (INIS)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-01-01

    This letter reports a novel design for a broadband Soleil–Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil–Babinet compensator based on a MgF 2 /ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths. (letter)

  13. Higher-order amplitude squeezing of photons propagating through a semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    Photon amplitude K th power squeezing is studied when the coherent photon propagates through a semiconductor containing the exciton. If the exciton is prepared initially in a coherent state, the photon may become amplitude K th power squeezed. It is shown that, in the short-time limit, the photon squeezing in the P direction does not appear at all while that in the X direction is possible for all the amplitude power K. In the latter case, the amount of squeezing is larger for higher power K. Dependences on all the system parameters as well as on the output light detection moment are investigated in detail. (author). 14 refs, 8 figs

  14. Fifth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)

    1998-01-01

    The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.

  15. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  16. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    Science.gov (United States)

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  17. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    NARCIS (Netherlands)

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  18. The intense pulsed light systems : new treatment possibilities for vascular, pigmented lesions and hair removal

    NARCIS (Netherlands)

    C.A. Schroeter (Careen)

    2004-01-01

    textabstractGiven all of the differences in between laser and IPLS devices and the need for additional information in IPLS treatment applications, the aim of this study was to evaluate new treatment possibilities using Intense Pulsed Light Sources and to address the following questions: 1. What

  19. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Science.gov (United States)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  20. Pulsed-ultrasound tagging of light in living tissues

    Science.gov (United States)

    Lev, Aner; Rubanov, E.; Pomerantz, Ami; Sfez, Bruno G.

    2004-07-01

    Ultrasound can be used in order to locally modulate, or tag, light in a turbid medium. This tagging process is made possible due to the extreme sensitivity of laser speckle distribution to minute changes within the medium. This hybrid technique presents several advantages compared to all-optical tomographic techniques, in that the image resolution is fixed by the ultrasound focus diameter. To our best knowledge, only in vitro experiments have been performed, either on tissue-like phantoms or meat. However a strong difference exists between these sample and living tissues. In living tissues, different kind of liquids flow through the capillaries, strongly reducing the sspeckle autocorrelation time. We have performed experiments on both mice and humans, showing that the autocorrelation time is much shorter than what was previously thought. We show however that it is possible to obtain signal with acceptable signal to noise ratio down to a few cm depth. We will also discuss the origin and characteristics of the speckle noise.

  1. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    Directory of Open Access Journals (Sweden)

    Jan Kisielewski

    2017-05-01

    Full Text Available We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001 substrates. Pt buffers were grown at room temperature (RT and at 750°C (high temperature, HT. The samples were irradiated with a broad range of light energy densities (up to film ablation using two different single pulse irradiation sources: (i 40 fs laser with 800 nm wavelength and (ii 3 ns laser-plasma source of extreme ultraviolet (EUV with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  2. Attempts to use pulsed light as an emerging technology for inactivation of mould naturally present on rye

    Directory of Open Access Journals (Sweden)

    NICOLETA ARON MAFTEI

    2011-12-01

    Full Text Available Pulsed light technology was used to inactivate moulds, naturally present on rye. The experiments were performed on samples containing 3.5·104 CFU/g and 4.3·103 CFU/g. Treatments of different duration (5, 10, 15, 20, 30, and 40 pulses at intensity of 0.4 J·cm-2 per pulse were applied and mould inactivation was evaluated. Besides confirming the utilisation of pulsed light as decontamination method for cereals, this work contributes with new information regarding the effects of the spectral range of pulsed light, proving that the whole UV range of the spectrum accounts for the lethal effect against moulds. This research supports pulsed light as emerging technology in food preservation.

  3. Supersqueezed states from squeezed states

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1992-01-01

    Using super-Baker-Campbell-Hausdorff relations on the elements of the supergroup OSP(2/2), we derive the supersqueeze operator and the supersqueezed states, which are the supersymmetric generalization of the squeezed states of the harmonic oscillator

  4. Long-pulsed Nd: YAG laser and intense pulse light-755 nm for idiopathic facial hirsutism: A comparative study

    Directory of Open Access Journals (Sweden)

    Arpit Shrimal

    2017-01-01

    Full Text Available Background: Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. Aim: The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm and intense pulse light (IPL-755 nm in management of idiopathic facial hirsutism. Settings and Design: Open-labelled, randomly allocated experimental study. Subjects and Methods: The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Statistical Analysis: Chi-square test was used in Medcalc® version 9.0 and the test of significance was taken to be P75% reduction in hair after six sessions in Group A was seen in fourteen (93.33% out of fifteen patients, whereas in Group B, it was seen only in three (16.66% out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Conclusions: Long-pulsed Nd: YAG Laser (1064 nm is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  5. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Science.gov (United States)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  6. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  7. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  8. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    Directory of Open Access Journals (Sweden)

    Felix Pyatkov

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

  9. Qutrit squeezing via semiclassical evolution

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Dinani, Hossein Tavakoli; Medendorp, Zachari E D; Guise, Hubert de

    2011-01-01

    We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians nonlinear in the generators of su(3) algebra. A simplest model of such a nonlinear evolution is analyzed in terms of semiclassical evolution of the SU(3) Wigner function. (paper)

  10. The LHC, de-squeezed

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    Rare processes like the Higgs production require maximizing the number of proton collisions. This is done by squeezing the beams to very small sizes. However, interesting physics processes also happen when beams are not squeezed at interaction points. Last week, a dedicated run showed that the LHC is a record-breaking machine also with de-squeezed beams.   This figure shows an online hit map of one of the ATLAS/ALFA detectors. The narrow elliptical shape is the typical signal produced by elastically scattered protons. The removal of the background (central bulge) is a challenge for both experiments. The beam squeezing parameter is known by experts as beta-star (ß*): the smaller the ß*, the stronger the squeezing. To obtain as many collisions as possible in the heart of the experiments, the ß* at full energy is 0.60 m – that is, beams are squeezed to very small beam sizes. This maximizes the rate of proton collisions as required for rare process...

  11. Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure

    Science.gov (United States)

    Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang

    2018-03-01

    We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.

  12. Generation of Attosecond Light Pulses from Gas and Solid State Media

    Directory of Open Access Journals (Sweden)

    Stefanos Chatziathanasiou

    2017-03-01

    Full Text Available Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec = 10−18 s time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.

  13. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  14. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  15. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds

    OpenAIRE

    Tomašević I.

    2015-01-01

    Intense light pulses (ILP) are an emerging processing technology, which has a potential to decontaminate food products. The light generated by ILP lamps consists of a continuum broadband spectrum from deep UV to the infrared, especially rich in UV range below 400 nm, which is germicidal. Evaluation of the effect of intense light pulses (ILP) on sensory quality of meat, game and poultry was performed using two kinds of red meat (beef and pork), two kinds of ...

  16. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  17. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  18. Quantum Phonon Optics: Squeezing Quantum Noise in the Atomic Displacements.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have investigated(X. Hu and F. Nori, Physical Review B, in press; preprints.) coherent and squeezed quantum states of phonons. Squeezed states are interesting because they allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of phonon vacuum states. We have studiedfootnotemark[1] the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach and also a method based on the three-phonon anharmonic interaction. Our focus here is on the first approach. We have diagonalized the polariton Hamiltonian and calculated the corresponding expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators (the later is the phonon analog of the electric field operator for photons). Our results shows that squeezing of quantum fluctuations in the atomic displacements can be achieved with appropriate initial states of both photon and phonon fields. The degree of squeezing is directly related to the crystal susceptibility, which is indicative of the interaction strength between the incident light and the crystal.

  19. Fourth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)

    1996-01-01

    The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.

  20. Light qubit storage and retrieval using macroscopic atomic ensembles

    International Nuclear Information System (INIS)

    Sherson, J.; Soerensen, A. S.; Polzik, E. S.; Fiurasek, J.; Moelmer, K.

    2006-01-01

    We present an experimentally feasible protocol for the complete storage and retrieval of arbitrary light states in an atomic quantum memory using the Faraday interaction between light and matter. Our protocol relies on multiple passages of a single light pulse through the atomic ensemble without the impractical requirement of kilometer-long delay lines between the passages. A time-dependent interaction strength enables the storage and retrieval of states with arbitrary pulse shapes. The fidelity approaches unity exponentially without squeezed or entangled initial states, as illustrated by calculations for a photonic qubit

  1. Studying Intense Pulsed Light Method Along With Corticosteroid Injection in Treating Keloid Scars

    OpenAIRE

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-01-01

    Background: Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Objective: Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. Materials and Methods: 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with co...

  2. Photodynamic Therapy Activated by Intense Pulsed Light in the Treatment of Nonmelanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    Domenico Piccolo

    2018-02-01

    Full Text Available Photodynamic therapy (PDT with topical 5-aminolevulinic acid (ALA or methyl aminolevulinate (MAL has proven to be a highly effective conservative method for the treatment of actinic keratosis (AK, Bowen’s disease (BD, and superficial basal cell carcinoma (sBCC. PDT is traditionally performed in association with broad-spectrum continuous-wave light sources, such as red or blue light. Recently, intense pulsed light (IPL devices have been investigated as an alternative light source for PDT in the treatment of nonmelanoma skin cancers (NMSC. We herein report our observational findings in a cohort of patients with a diagnosis of AK, sBCC, and BD that is treated with MAL-PDT using IPL, as well as we review published data on the use of IPL-PDT in NMSC.

  3. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    OpenAIRE

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced t...

  4. Effect of pulsed laser light in patients with dry eye syndrome.

    Science.gov (United States)

    Guilloto Caballero, S; García Madrona, J L; Colmenero Reina, E

    2017-11-01

    The objective of this study was to determine the clinical benefits of pulsed light therapy for the treatment of Dry Eye Syndrome (DES) due to the decrease in aqueous tear production (aqueous deficient DES) and/or excessive tear evaporation (evaporative DES) due to Meibomian Gland Dysfunction (MGD). A study was conducted on 72 eyes corresponding to 36 patients with DES. Out of these 72 eyes, 60 underwent refractive surgery (48 with femtosecond laser, 6 were operated with a mechanical microkeratome, and 6 with refractive photo-keratectomy[RPK], 6 treated with phacoemulsification, and 6 with no previous surgical treatment. Pulsed laser light (Intense Pulsed Light Regulated [IRPL ® ]) was use to stimulate the secretion of the Meibomian glands during 4 sessions, one every 15 days. Patients with aqueous deficient DES did not show any improvement. Eyes with no previous surgery and those treated with phacoemulsification and PRK had a favourable outcome. On the other hand, less conclusive results were observed in the eyes treated with excimer laser. This treatment could be very helpful to treat evaporative DES produced by MGD. On the other hand, it is not helpful for those cases related to an isolated damage in the aqueous phase, or the mucin phase. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    OpenAIRE

    Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.

    2018-01-01

    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an an...

  6. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    Science.gov (United States)

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  7. What are squeezed states really like

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1984-01-01

    The simple harmonic oscillator and some quantum mechanics are reviewed. Then a special case of the squeezed states, the coherent states, is discussed. Next, the coherent states are described from the operator formalism. The squeezed states are described from the Schroedinger point of view, and their properties are discussed. Harmonic motion and coherent and squeezed states are discussed for general potentials. Then the (harmonic oscillator) squeezed states are discussed from the operator point of view and some of their mathematical properties

  8. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Science.gov (United States)

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Squeezed colour states in gluon jet

    Science.gov (United States)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  10. Parametric generation of high-energy 14.5-fs light pulses at 1.5 mum.

    Science.gov (United States)

    Nisoli, M; Stagira, S; De Silvestri, S; Svelto, O; Valiulis, G; Varanavicius, A

    1998-04-15

    High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.

  11. Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window

    Science.gov (United States)

    Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up

    2018-05-01

    Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.

  12. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    International Nuclear Information System (INIS)

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  13. Squeezing via two-photon transitions

    Science.gov (United States)

    Savage, C. M.; Walls, D. F.

    1986-05-01

    The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.

  14. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  15. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    International Nuclear Information System (INIS)

    Ankjaergaard, C.; Jain, M.; Kalchgruber, R.; Lapp, T.; Klein, D.; McKeever, S.W.S.; Murray, A.S.; Morthekai, P.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved optically stimulated luminescence (TR-OSL), and these signals can be mathematically described as a sum of 4 exponential components (a, b, c, d). The slowest component, d, increases with the duration of the light pulse as expected from the exponential model. The stimulation temperature dependence experiment suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model cannot be rejected definitively.

  16. Case histories of intense pulsed light phototherapy in dermatology - the HPPL™ and IFL™ technologies

    Directory of Open Access Journals (Sweden)

    Alessandro Martella

    2017-06-01

    Full Text Available The intense pulsed light (IPL and laser technologies are widely used for skin rejuvenation and for treating several dermatological disorders such as skin dyschromia and acne, and for non-ablative dermal remodeling of rhytides and hypertrophic scars. Technological evolution is rapid. The High Power Pulsed Light™ [HPPL™] and Incoherent Fast Light™ technologies [IFL™, Novavision Group S.p.A., 20826 Misinto (MB, Italy] are recent innovations in the field of IPL technologies; IFL™ is a further evolution of the already advanced HPPL™ system. The paper presents a selection of case histories of dermatological lesions treated with the HPPL™ and IFL™ technologies. All study materials were appropriately peer-reviewed for ethical problems.

  17. Annealing characteristics of SiO2-Si structures after incoherent light pulse processing

    International Nuclear Information System (INIS)

    Sieber, N.; Klabes, R.; Voelskow, M.; Fenske, F.

    1982-01-01

    The behaviour of oxide charges and interface charges in boron implanted and non-implanted SiO 2 -Si structures as well as the electrical activation of the dopants by the action of incoherent light pulses was studied. Depth profiles of electrically active boron ions are presented for different annealing conditions as measured by the pulsed C-V method. It can be concluded that exposure of MOS structures to intense radiation of flash lamps does not increase the fixed charge and the fast state density at the SiO 2 -Si interface if optimal annealing conditions (energy densities) are employed. Low dose boron implanted silicon can be electrically activated without diffusion or segregation of dopants

  18. INACTIVATION OF PATHOGENIC BACTERIA USING PULSED UV-LIGHT AND ITS APPLICATION IN WATER DISINFECTION AND QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    M. K. Sharifi-Yazdi H. Darghahi

    2006-09-01

    Full Text Available The lethality of pulsed ultra-violet (UV rich light for the inactivation of pathogenic bacteria has been investigated. A low pressure xenon filled flash lamps that produced UV intensities have been used. The pulsed operation of the system enable the release of electrical energy stored in the capacitor into the flash lamp within a short time and produces the high current and high peak power required for emitting the intense UV flash. The flash frequency was adjusted to one pulse per second. Several types of bacteria were investigated for their susceptibility to pulsed UV illumination. The treated bacterial populations were reduced and determined by direct viable counts. Among the tested bacteria Pseudomonas aeruginosa was the most susceptible to the pulsed UV- light with a 8 log10 cfu/ml reduction after 11 pulses, while the spores of Bacillus megaterium was the most resistant and only 4 log10 cfu/ml reduction achieved after 50 pulses of illumination. The results of this study demonstrated that pulsed UV- light technology could be used as an effective method for the inactivation, of pathogenic bacteria in different environments such as drinking water.

  19. Self-compression of spatially limited laser pulses in a system of coupled light-guides

    Science.gov (United States)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.

  20. Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device

    Science.gov (United States)

    Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali

    2018-04-01

    Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage (I-V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.

  1. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    Science.gov (United States)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  2. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.

  3. Representation-free description of light-pulse atom interferometry including non-inertial effects

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, Stephan, E-mail: stephan.kleinert@uni-ulm.de [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Kajari, Endre; Roura, Albert [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Schleich, Wolfgang P. [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Texas A& M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A& M University College Station, TX 77843-4242 (United States)

    2015-12-30

    Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

  4. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  5. Pulsed Ultraviolet Light Reduces Immunoglobulin E Binding to Atlantic White Shrimp (Litopenaeus setiferus Extract

    Directory of Open Access Journals (Sweden)

    Si-Yin Chung

    2011-06-01

    Full Text Available Pulsed ultraviolet light (PUV, a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa, and to attenuate immunoglobulin E (IgE binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus extract was treated with PUV (3 pulses/s, 10 cm from light source for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.

  6. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    International Nuclear Information System (INIS)

    Hamedi, H R; Ruseckas, J; Juzeliūnas, G

    2017-01-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N -type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell–Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system. (paper)

  7. How to Measure Squeeze Out

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Physics Dept.

    2016-09-01

    Squeeze out happen when the expanding central fireball flows around a large surface flux tube in a central Au-Au collision at RHIC. We model such an effect in a flux tube model. Two particle correlations with respect to the v2 axis formed by the soft fireball particles flowing around this large flux tube is a way of measuring the effect.

  8. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    Science.gov (United States)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In

  9. Intense pulsed light vs. long-pulsed dye laser treatment of telangiectasia after radiotherapy for breast cancer: a randomized split-lesion trial of two different treatments

    DEFF Research Database (Denmark)

    Nymann, P.; Hedelund, L.; Hædersdal, Merete

    2009-01-01

    Background Chronic radiodermatitis is a common sequela of treatment for breast cancer and potentially a psychologically distressing factor for the affected women. Objectives To evaluate the efficacy and adverse effects of treatments with a long-pulsed dye laser (LPDL) vs. intense pulsed light (IPL......); the interventions were randomly assigned to left/right or upper/lower halves. Primary end-points were reduction in telangiectasia, patient satisfaction and preferred treatment. Secondary end-points were pain and adverse effects. Efficacy was registered by blinded photographic evaluations 3 months after the final...

  10. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  11. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese

    Directory of Open Access Journals (Sweden)

    De-Jia Huang

    2016-03-01

    Full Text Available This study was conducted to investigate the effect of nocturnal light pulses (NLPs on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day, whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05 the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05 than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime.

  12. A new method for multi-channel Fabry-Perot spectroscopy of light pulses in the nanosecond regime

    International Nuclear Information System (INIS)

    Behn, R.

    1975-01-01

    The demand for powerful multichannel spectrometers raised, e.g., in laser scattering plasma diagnostics, gave rise to the question if it would not be possible to avoid the light losses occuring in the use of multichannel Fabry-Perot spectrometers. These losses can be avoided with the technique presented here. The reflected light is collected and fed back to the interferometer at a different angle. It can thus be recovered for registration in another spectral channel. This method is particularly suitable for the investigation of short light pulses. A spectrum can thus be scanned step by step with full utilization of the transit time of the light pulse. In addition to light recovery, there is another advantage in that only one detector is used for multichannel analysis, thus eliminating calibration problems. In the annex to the report, emission spectres of different dye laser versions are presented and explained. (orig./GG) [de

  13. EDITORIAL: Squeeze transformation and optics after Einstein

    Science.gov (United States)

    Kim, Young S.; Man'ko, Margarita A.; Planat, Michel

    2005-12-01

    With this special issue, Journal of Optics B: Quantum and Semiclassical Optics contributes to the celebration of the World Year of Physics held in recognition of five brilliant papers written by Albert Einstein in 1905. There is no need to explain to the readers of this journal the content and importance of these papers, which are cornerstones of modern physics. The 51 contributions in this special issue represent current trends in quantum optics —100 years after the concept of light quanta was introduced. At first glance, in his famous papers of 1905, Einstein treated quite independent subjects—special relativity, the nature and statistical properties of light, electrodynamics of moving bodies and Brownian motion. We now know that all these phenomena are deeply related, and these relations are clearly shown in many papers in this issue. Most of the papers are based on the talks and poster contributions from participants of the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'05), which took place in Besançon, France, 2-6 May, 2005. This was the continuation of a series of meetings, originating with the first workshops organized by Professor Y S Kim at the University of Maryland, College Park, USA, in 1991 and by Professor V I Man'ko at the Lebedev Physical Institute, Moscow in 1992. One of the main topics of ICSSUR'05 and this special issue is the theory and applications of squeezed states and their generalizations. At first glance, one could think that this subject has no relation to Einstein's papers. However, this is not true: the theory of squeezed states is deeply related to special relativity, as far as it is based on the representations of the Lorentz group (see the paper by Kim Y S and Noz M E, S458-S467), which also links the current concepts of entanglement and decoherence with Lorentz-covariance. Besides, studies of the different quantum states of light imply, after all, the study of photon (or photo

  14. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    Science.gov (United States)

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  15. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60

    Directory of Open Access Journals (Sweden)

    Xuezhi Zhang

    2012-05-01

    Full Text Available The development of alternative casting processes is essential for the high demand of light weight magnesium components to be used in the automotive industry, which often contain different section thicknesses. Squeeze casting with its inherent advantages has been approved for the capability of minimizing the gas porosity in magnesium alloys. For advanced engineering design of light magnesium automotive applications, it is critical to understand the effect of section thickness on mechanical properties of squeeze cast magnesium alloys. In this study, magnesium alloy AM60 with different section thicknesses of 6, 10 and 20 mm squeeze cast under an applied pressure of 30 MPa was investigated. The prepared squeeze cast AM60 specimens were tensile tested at room termperature. The results indicate that the mechanical properties including yield strength (YS, ultimate tensile strength (UTS and elongation (A decrease with an increase in section thickness of squeeze cast AM60. The microstructure analysis shows that the improvement in the tensile behavior of squeeze cast AM60 is primarily attributed to the low-gas porosity level and fine grain strucuture which result from the variation of cooling rate of different section thickness. The numerical simulation (Magmasoft? was employed to determine the solidification rates of each step, and the simulated results show that the solidification rate of the alloy decreases with an increase in the section thickness. The computed solidification rates support the experimental observation on grain structural development.

  16. Sixth International Conference on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)

    2000-01-01

    These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.

  17. Temporal reflectance from a light pulse irradiated medium embedded with highly scattering cores

    International Nuclear Information System (INIS)

    Hsu Peifeng; Lu Xiaodong

    2007-01-01

    This paper presents a new approach to utilize ultrashort pulsed laser for optical diagnostics with numerical simulations. The method is based on the use of ultrafast pulses with a pulsewidth selected according to the probed medium's radiative property and/or size. Our previous work in nonhomogeneous media has shown that the resulting time-resolved reflectance signal will have a unique characteristic: it will show a direct correlation of ballistic photon travel time and interface location, which is in between different layers or nonhomogeneous regions. The premise is based on utilizing the medium's structural information carried by the ballistic and snake photons without being masked by the diffuse photons. In this study, the space-time correlation is further explored in the case of minimally scattered photons from a large scattering coefficient core region embedded within a less-scattering medium. Time-resolved reflectance signals of the single scattering core and multiple scattering cores within a three-dimensional medium demonstrate the concept and illustrate the additional effect due to the scattered photons from the core region. A unique temporal signal profile's correlation at various detector positions with respect to the scattering core is explained in detail. The result has important implications. This approach will lead to a much simpler and more precise determination of the probed medium's composition or structure. Due to the large computational requirement to obtain the physical details of the light pulse propagation inside highly scattering multi-dimensional media, the reverse Monte-Carlo method is used. The potential applications of the method include non-destructive diagnostics, optical imaging, and remote sensing of underwater objects

  18. Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon

    International Nuclear Information System (INIS)

    Escorcia-Garcia, J; Sarracino MartInez, O; Agarwal, V; Gracia-Jimenez, J M

    2009-01-01

    The fabrication of porous silicon photonic structures using lightly doped, p-type, silicon wafers (resistivity: 14-22 Ω cm) by pulsed anodic etching is reported. The optical properties have been found to be strongly dependent on the duty cycle and frequency of the applied current. All the interfaces of the single layered samples were digitally analysed by calculating the mean interface roughness (R m ). The interface roughness was found to be maximum for the sample with direct current. The use of a duty cycle above 50%, in a certain range of frequencies, is found to reduce the interface roughness. The optical properties of some microcavities and rugate filters are investigated from the optimized parameters of the duty cycle and frequency, using the current densities of 10, 90 and 150 mA cm -2 .

  19. The stability of vacuum phototriodes to varying light pulse loads and long term changes in response.

    CERN Document Server

    Hobson, Peter

    2012-01-01

    Mesh anode Vacuum Phototriodes (VPTs) are radiation resistant, single gain-stage photomultipliers which are designed to operate in a strong quasi-axial magnetic field. These VPTs are used in the endcap electromagnetic calorimeter of the CMS experiment at the CERN LHC to detect scintillation light from lead tungstate crystals. Short term dynamic response changes occur because of pulse rate variations during normal LHC operation cycles. Over the longer term the effect of increasing integrated charge taken from the photocathode causes an overall degradation of response. We have investigated these effects over time periods exceeding two years of simulated operation and discuss the implications for the long term performance of the VPTs in CMS.

  20. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  1. Studying intense pulsed light method along with corticosteroid injection in treating keloid scars.

    Science.gov (United States)

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-02-01

    Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with corticosteroid intralesional injection using 450 to 1200 NM filter, Fluence 30-40 J/cm2, pulse duration of 2.1-10 ms and palsed delay 10-40 ms with an interval of three weeks. To specify the recovery consequences and complication rate and to determine features of the lesion, the criteria specified in the study of Eroll and Vancouver scar scale were used. The level of clinical improvement, color improvement and scar height was 89.1%, 88.8% and 89.1% respectively. The incidence of complications (1 telangiectasia case, 7 hyperpigmentation cases and 2 atrophy cases) following treatment with IPL was 11.6%. Moreover, the participants' satisfaction with IPL method was 88.8%. This study revealed that a combined therapy (intralesional corticosteroid injection + IPL) increases the recovery level of hypertrophic and keloid scars. It was also demonstrated that this method had no significant side effect and patients were highly satisfied with this method.

  2. The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Tao; He Guang-Qiang; Ren Li-Jie; Zeng Gui-Hua

    2011-01-01

    This paper investigates an analytical expression of teleportation fidelity in the teleportation scheme of a single mode of electromagnetic field. The fidelity between the original squeezed coherent state and the teleported one is expressed in terms of the squeezing parameter r and the quantum channel parameter (two-mode squeezed state) p. The results of analysis show that the fidelity increases with the increase of the quantum channel parameter p, while the fidelity decreases with the increase of the squeezing parameter r of the squeezed state. Thus the coherent state (r = 0)is the best quantum signal for continuous variable quantum teleportation once the quantum channel is built.

  3. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  4. Parsing polarization squeezing into Fock layers

    DEFF Research Database (Denmark)

    Mueller, Christian R.; Madsen, Lars Skovgaard; Klimov, Andrei B.

    2016-01-01

    photon number do the methods coincide; when the photon number is indefinite, we parse the state in Fock layers, finding that substantially higher squeezing can be observed in some of the single layers. By capitalizing on the properties of the Husimi Q function, we map this notion onto the Poincare space......, providing a full account of the measured squeezing....

  5. Toward a compact fibered squeezing parametric source.

    Science.gov (United States)

    Brieussel, Alexandre; Ott, Konstantin; Joos, Maxime; Treps, Nicolas; Fabre, Claude

    2018-03-15

    In this work, we investigate three different compact fibered systems generating vacuum squeezing that involve optical cavities limited by the end surface of a fiber and by a curved mirror and containing a thin parametric crystal. These systems have the advantage to couple squeezed states directly to a fiber, allowing the user to benefit from the flexibility of fibers in the use of squeezing. Three types of fibers are investigated: standard single-mode fibers, photonic-crystal large-mode-area single-mode fibers, and short multimode fibers taped to a single-mode fiber. The observed squeezing is modest (-0.56  dB, -0.9  dB, -1  dB), but these experiments open the way for miniaturized squeezing devices that could be a very interesting advantage in scaling up quantum systems for quantum processing, opening new perspectives in the domain of integrated quantum optics.

  6. Quadrature measurements of a bright squeezed state via sideband swapping

    DEFF Research Database (Denmark)

    Schneider, J.; Glockl, O.; Leuchs, G.

    2009-01-01

    The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency...... of a bright quantum state by transferring the sideband modes under interrogation to a vacuum state and subsequently measuring the quadrature via homodyne detection. The scheme is implemented experimentally, and it is successfully tested with a bright squeezed state of light....

  7. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    International Nuclear Information System (INIS)

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  8. High-Wattage Pulsed Irradiation of Linearly Polarized Near-Infrared Light to Stellate Ganglion Area for Burning Mouth Syndrome

    Directory of Open Access Journals (Sweden)

    Yukihiro Momota

    2014-01-01

    Full Text Available The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS and to assess the efficacy of the stellate ganglion area irradiation (SGR on BMS using differential time-/frequency-domain parameters (D parameters. Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

  9. Mechanism of redox reactions induced by light and electron pulse in solutions of mixed ligand iron(II) complex cyanides

    International Nuclear Information System (INIS)

    Horvath, A.; Szoeke, J.; Wojnarovits, L.

    1991-01-01

    Redox reactions induced by light and electron pulse have been studied in aqueous solutions of mixed ligand iron(II) complex cyanides. The short lived intermediates have been identified by time resolved specroscopy, the results of detailed kinetic analysis have been discussed. (author) 6 refs.; 3 figs.; 2 tabs

  10. Degradation kinetics of aflatoxin B1 and B2 in filter paper and rough rice by using pulsed light irradiation

    Science.gov (United States)

    Rough rice is susceptible to contamination by aflatoxins, which are highly toxic, mutagenic and carcinogenic compounds. To develop aflatoxin degradation technology for rice with the use of pulsed light (PL) treatment, the objective of this study was to investigate the degradation characters of aflat...

  11. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  12. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  13. Control of the inversionless gain and refractive index in a V-type atom via squeezed vacuum and quantum interference

    International Nuclear Information System (INIS)

    Anton, M.A.; Calderon, Oscar G.; Carreno, F.

    2004-01-01

    In this paper we analyze the steady-state populations and gain lineshape of a V-type three-level atom with a closely spaced excited doublet. The atom is driven by a strong coherent field, a weak probe, and a single broadband squeezed vacuum. We focus our attention in the interplay between the quantum interference and the squeezed field on the probe gain. It is shown that the relative phases between the two coherent fields and the squeezed field play an important role in the optical properties of the atom. Specifically, we find that the probe can experience gain without population inversion for proper values of the parameters characterizing the squeezed field and in the absence of incoherent pumping. The system can be tailored to exhibit multiple dispersion regimes accompanied by negligible gain or absorption over a large bandwidth, a desirable feature for obtaining propagation of pulses with negligible distortion

  14. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  15. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  16. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation

    DEFF Research Database (Denmark)

    Jorgensen, G.F.; Hedelund, L.; Haedersdal, M.

    2008-01-01

    Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids......, and symmetrical split-face photodamage were included in the study. Subjects received a series of three treatments at 3-week intervals with half-face LPDL (V-beam Perfecta, 595 nm, Candela Laser Corporation) and half-face IPL (Ellipse Flex, Danish Dermatologic Development); the interventions being randomly...... assigned to left and right sides. Primary end-points were telangiectasias, irregular pigmentation and preferred treatment. Secondary end-points were skin texture, rhytids, pain, and adverse effects. Efficacy was evaluated by patient self-assessments and by blinded clinical on-site and photographic...

  17. Intense Pulsed Light: Friend or Foe? Molecular Evidence to Clarify Doubts.

    Science.gov (United States)

    Ferreira, Liliana; Vitorino, Rui; Neuparth, Maria João; Rodrigues, David; Gama, Adelina; Faustino-Rocha, Ana I; Ferreira, Rita; Oliveira, Paula A

    2018-02-01

    Intense pulsed light (IPL) has been extensively applied in the field of dermatology and aesthetics; however, the long-term consequences of its use are poorly unknown, and to the best of our knowledge there is no study on the effect of IPL in neoplastic lesions. In order to better understand the molecular mechanisms underlying IPL application in the skin, we used an animal model of carcinogenesis obtained by chemical induction with 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Institute of Cancer Research (ICR) mice were administered DMBA and/or TPA and treated with IPL. Skin was evaluated by histopathology and 2DE-blot-MS/MS analysis. Our data evidenced an inflammatory response and a metabolic remodeling of skin towards a glycolytic phenotype after chronic exposure to IPL, which was accomplished by increased oxidative stress and susceptibility to apoptosis. These alterations induced by IPL were more notorious in the DMBA sensitized skin. Keratins and metabolic proteins seem to be the more susceptible to oxidative modifications that might result in loss of function, contributing for the histological changes observed in treated skin. Data highlight the deleterious impact of IPL on skin phenotype, which justifies the need for more experimental studies in order to increase our understanding of the IPL long-term safety. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Light ion beam experiments with pinch reflex diodes on KfK's pulse generator KALIF

    International Nuclear Information System (INIS)

    Bluhm, H.; Buth, L.; Bohnel, K.; Harke, W.; Hoppe, P.; Karow, H.U.; Rusch, D.; Schulken, H.; Singer, J.

    1985-01-01

    The authors report on intense LI beam experiments currently performed with pinch reflex ion diodes on 2 ohms/1.4 TW-pulse generator KALIF (Karlsruhe Light Ion Facility). The goals of this work are the generation of highly focussed LI beams of well-defined ion composition, and the undertaking of beam-target experiments. The experimental studies with axial 6 cm phi-pinch reflex proton diodes have been aiming at the focussing characteristics of the diode, and at the ion species composition of the beam. Experiments have been performed using different diode geometries (anode/cathode/beam window foil shapes), and different anode return current paths, respectively. A variety of diagnostique techniques have been used in these studies: Electron pinch phenomena in the diode are observed by static and by gated X-ray cameras. Beam diagnostiques is based on measuring in the vacuum feed the electric parameters of the diode (electron and ion currents, diode voltage) on probing the ion composition and ion energy in the beam (by use of a Thomson Parabola spectrometer), and on the investigation of the beam focus (by use of different techniques: shadow box analysis, α-pin hole imaging, nuclear activation methods). Measurements of beam stopping power of ion beam-heated thin targets are underway using a streaked ion energy-spectrometer. The results obtained so far in these experimental efforts are presented

  19. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  20. Intense pulsed light therapy for the treatment of evaporative dry eye disease.

    Science.gov (United States)

    Vora, Gargi K; Gupta, Preeya K

    2015-07-01

    Evaporative dry eye disease is one of the most common types of dry eye. It is often the result of chronic meibomian gland dysfunction (MGD) and associated ocular rosacea. Evaporative dry eye and MGD significantly reduce patient's quality of life. Traditional treatments, such as artificial tears, warm compresses, and medications, such as topical cyclosporine, azithromycin, and oral doxycycline, provide some relief; however, many patients still suffer from dry eye symptoms. Intense pulsed light (IPL) therapy, which has been used extensively in dermatology to treat chronic skin conditions, is a relatively new treatment in ophthalmology for patients with evaporative dry eye disease. There are very few studies published on the use of IPL in patients with dry eye disease. The present review describes the theoretical mechanisms of IPL treatment of MGD and ocular rosacea. Personal clinical experience and recently presented data are reported as well. IPL therapy has promising results for evaporative dry eye patients. There are statistically significant improvements in clinical exam findings of dry eye disease. More importantly, patients report subjective improvement in their symptoms. More research is needed in this area to help understand the mechanism of dry eye disease and how it can be effectively treated.

  1. Outcomes of intense pulsed light therapy for treatment of evaporative dry eye disease.

    Science.gov (United States)

    Gupta, Preeya K; Vora, Gargi K; Matossian, Cynthia; Kim, Michelle; Stinnett, Sandra

    2016-08-01

    To determine the clinical outcomes of intense pulsed light (IPL) therapy for the treatment of evaporative dry eye disease (DED). Multicentre cohort study. Patients with a diagnosis of meibomian gland dysfunction (MGD) and dry eye presenting to the ophthalmology clinic at either the Duke Eye Center, Durham, NC, or Matossian Eye Associates' private practice in Pennington, NJ, and Doylestown, PA. Clinical data were reviewed from 100 patients with diagnosis of MGD and DED who underwent IPL therapy from September 2012 through December 2014 at 1 of 2 centres (Duke Eye Center or Matossian Eye Associates). Demographics, clinical history, examination findings (eyelid and facial vascularity, eyelid margin edema, meibomian gland oil flow, and quality score-all graded on a scale of 0 to 4), tear break up time (TBUT), and ocular surface disease index (OSDI) scoring data were collected from each visit. On average, patients underwent 4 IPL sessions. There was significant decrease in scoring of lid margin edema (mean = -0.3; range -1.5 to 0), facial telangiectasia (mean = -0.7; range -2.5 to 0), lid margin vascularity (mean = -1.2; range -2.5 to 0), meibum viscosity (mean = -1.1; range -3 to 0), and OSDI score (mean = -9.6), all with p treatment for patients with evaporative DED. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  2. Light curve and pulse profile of the x-ray pulsar Vela X-1

    International Nuclear Information System (INIS)

    Nagase, Fumiaki; Hayakawa, Satio; Makino, Fumiyoshi; Sato, Naohisa; Makishima, Kazuo.

    1983-01-01

    The following properties of the X-ray binary pulsar Vela X-1 are presented by reference to its observations in March 1980. The light curve shows a high state and a low state in the first and second halves of an orbital period, respectively, but they may rather be defined as a soft state and hard state, respectively, since the intensity above 9 keV does not appreciably change between these two states. The energy spectra in these states indicate the presence of circumstellar absorption. The pulse profiles at high (9-22 keV) and low (1-9 keV) energies are different, indicating the absorption by cold matter which is probably in the accretion column. The absorber which is responsible for the soft and hard states is attributed to the stellar wind whose flow pattern is consistent with that obtained from optical absorption spectra. The orbital period is obtained by a combined analysis of X-ray data since 1972. No appreciable change of the period gives a constraint on the dynamical behavior of the binary system. (author)

  3. Treatment of hypertrophic scars and keloids using intense pulsed light (IPL).

    Science.gov (United States)

    Erol, O Onur; Gurlek, Ali; Agaoglu, Galip; Topcuoglu, Ela; Oz, Hayat

    2008-11-01

    Keloids and hypertrophic scars are extremely disturbing to patients, both physically and psychologically. This study prospectively assessed the safety and efficacy of intense pulsed light (IPL) on scars originating from burns, trauma, surgery, and acne. Hypertrophic scars in 109 patients, originating from surgical incisions (n = 55), traumatic cuts (traffic accidents) (n = 24), acne scars (n = 6), keloids (n = 5), and burns (n = 19), were treated using an IPL Quantum device. Treatment was administered at 2-4-week intervals, and patients received an average of 8 treatments (range = 6-24). Using digital photographs, Changes in scar appearance were assessed by two physicians who were blinded to the study patients and treatments. The photographs were graded on a scale of 0 to 4 (none, minimal, moderate, good, excellent) for improvement in overall clinical appearance and reduction in height, erythema, and hardness. An overall clinical improvement in the appearance of scars and reductions in height, erythema, and hardness were seen in the majority of the patients (92.5%). Improvement was excellent in 31.2% of the patients, good in 25.7%, moderate in 34%, and minimal in 9.1%. Over half the patients had good or excellent improvement. In the preventive IPL treatment group, 65% had good to excellent improvement in clinical appearance. Patient satisfaction was very high. This study suggests that IPL is effective not only in improving the appearance of hypertrophic scars and keloids regardless of their origin, but also in reducing the height, redness, and hardness of scars.

  4. The Retrospective Evaluation of the Efficacy and Safety of IPL (Intense Pulse Light in Hair Removal

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2012-06-01

    Full Text Available Background and Design: There are numerous therapeutic methods for hair removal with various success rates. The aim of this study was to evaluate the efficacy of Intense Pulse Light (IPL method for hair removal.Materials and Methods: Ninety patients, who applied for their unwanted hair, were included in the study. IPL was applied to the face, neck, axillary areas, bikini line, sternal area, periareolar areas, and upper and lower extremities. An IPL device (L900 A&M, France was used for hair removal. The results were evaluated according to the clinical improvement (0-25%, 25-50%, 50-75%, 75% and more and patients? satisfaction (very satisfied, satisfied, less satisfied, not satisfied. All results were analyzed using Chi-square test and statistical analysis was performed by SPSS 15.0 for Windows. Results: There were eighty-eight female (97.8% and two male (2.2% patients. The mean age of the patients was 33.62±11.11 (15- 55 years. 13.3% of patients had polycystic ovary syndrome. The mean number of treatments was 6.5 (min-max= 2-11. 53.2% of patients had 50-75% clinical response and 53.2% of patients were satisfied. There were no side effects except mild erythema. Conclusion: We observed that IPL for hair removal was safe and moderately effective in our patients.

  5. Intense pulsed light for photo-rejuvenation and freckles of middle eastern skin

    International Nuclear Information System (INIS)

    El Bedewi, A.F.

    2003-01-01

    Facial ageing is a gradual process which could be due to intrinsic and extrinsic causes and it ultimately results in the appearance of activity induced tissue ptosis, wrinkles, epidermal and dermal artoply, dryness, senile lentigo, flushing, telangiectasia and enlarged pores. Moreover, freckles are frequently seen on the face and other sun exposed areas and it is characterized with incrreased melanin in the epidermis. Intense Pulsed Light (IPL)is the latest technology for selective photo-thermolysis as a non-ablative photo-rejuvenation. Thirty-four patients of age ranging between 35- 70 years with skin type ranging between III-V with or without freckles were treated with 3-5 sessions of IPL. Three weeks intervals were considered between every two succesive session. Irradiation wavelength was controlled using cutoff filters ranging from 535 to 580 nmwith a fluence of 25-35 j/cm-2. Significant improvement was demonstrated after 6 months by computerized image analysis compared with the baseline. IPL was found to be effective and saf treatment for fine wrinkles, facial freckles, telangiectasia, flushing as well as post-inflammatory hyper-pigmentation with a high satisfactory level and a relatively afew adverse effects

  6. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  7. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  8. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media

    International Nuclear Information System (INIS)

    Lu Xiaodong; Hsu Peifeng

    2005-01-01

    This paper presents a follow-up study of our previous work on the reverse Monte Carlo solution of transient radiation transport in the homogeneous media. In this study, the method is extended to consider nonhomogeneous media, which exist in many practical problems. The transport process of ultra-short light pulse propagation inside the non-emitting, absorbing, and anisotropically scattering multi-layer media is studied. Although only one-dimensional geometry is treated here, the method is applicable and easy to extend to multi-dimensional geometries. In multi-layer media, the time-resolved reflectance exhibits a direct correlation between the signal magnitude and the travel time to the layer interface if the ballistic photons encounter a strongly scattering layer. Furthermore, it is found that even with a symmetric radiative property distribution in a three-layer medium, the reflectance and transmittance signals do not converge at long time when the mid-layer is optically thick. The long time slope of the temporal signal does not provide the specificity required for an inverse analysis parameter as stipulated by earlier studies

  9. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  10. Quantum nondemolition squeezing of a nanomechanical resonator

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander

    2005-03-01

    We discuss squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wavepacket center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  11. Response of YBa2Cu3O7-δ grain-boundary junctions to short light pulses

    International Nuclear Information System (INIS)

    Kaplan, S.B.; Chi, C.C.; Chaudhari, P.; Dimos, D.; Gross, R.; Gupta, A.; Koren, G.

    1991-01-01

    The electrical response of a single YBa 2 Cu 3 O 7-δ grain-boundary junction to visible light pulses was measured. Using an autocorrelation technique with picosecond laser pulses, no fast voltage transients were observed with the junction biased just above its critical current. Apparently, there are no relaxation times in the range of 7 ps to 14 ns. Using direct time-domain measurement with nanosecond pulses, three types of junction response were recorded: a nonexponential decay of 11 μs (90 to 10 % time) at temperatures near T c ; an inverse-time dependence of the order of 0.3 μs (100 to 50 % time) in the temperature range of 4.2 to 15 K; and an exponential decay time of 0.15 μs with the sample immersed in superfluid helium

  12. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  13. Pulsed lasers versus continuous light sources in capillary electrophoresis and fluorescence detection studies: Photodegradation pathways and models

    International Nuclear Information System (INIS)

    Boutonnet, Audrey; Morin, Arnaud; Petit, Pierre; Vicendo, Patricia; Poinsot, Véréna; Couderc, François

    2016-01-01

    Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10–5000 nM), Tamra (10–5000 nM) and tryptophan (1–200 μM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence. - Highlights: • No linear calibration curves are obtained in CE/Pulsed-LIF detection. • Photodegradation and photodimerisation are responsible of this non linearity. • A mathematical model of this phenomenon is presented. • 7 hydroxycoumarin in CE/LIF is used to verify the

  14. Magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Wang Junfeng; Cheng Ze; Ping Yunxia; Wan Jinyin; Zhang Yanmin

    2006-01-01

    In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system

  15. Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) - concept, construction and first tests

    Science.gov (United States)

    Kadlubowski, S.; Sawicki, P.; Sowinski, S.; Rokita, B.; Bures, K. D.; Rosiak, J. M.; Ulanski, P.

    2018-01-01

    Time-resolved pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is an effective method for rapidly generating free radicals and other transient species in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. When used for polymer solutions, pulse radiolysis can be coupled with light-scattering detection, creating a powerful tool for kinetic and mechanistic analysis of processes like degradation or cross-linking of macromolecules. Changes in the light scattering intensity (LSI) of polymer solutions are indicative of alterations in the molecular weight and/or in the radius of gyration, i.e., the dimensions and shape of the macromolecules. In addition to other detection methods, LSI technique provides a convenient tool to study radiation-induced alterations in macromolecules as a function of time after the pulse. Pulse radiolysis systems employing this detection mode have been so far constructed to follow light scattered at a single angle (typically the right angle) to the incident light beam. Here we present an advanced pulse radiolysis & multi-angle light-scattering-intensity system (PR-MALLS) that has been built at IARC and is currently in the phase of optimization and testing. Idea of its design and operation is described and preliminary results for radiation-induced degradation of pullulan as well as polymerization and crosslinking of poly(ethylene glycol) diacrylate are presented. Implementation of the proposed system provides a novel research tool, which is expected to contribute to the expansion of knowledge on free-radical reactions in monomer- and polymer solutions, by delivering precise kinetic data on changes in molecular weight and size, and thus allowing to formulate or verify reaction mechanisms. The proposed method is

  16. Waveguide quantum electrodynamics in squeezed vacuum

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  17. A novel water-assisted pulsed light processing for decontamination of blueberries.

    Science.gov (United States)

    Huang, Yaoxin; Chen, Haiqiang

    2014-06-01

    Sample heating and shadowing effect have limited the application of pulsed light (PL) technology for decontamination of fresh produce. In this study, a novel setup using water-assisted PL processing was developed to overcome these limitations. Blueberries inoculated with Escherichia coli O157:H7 or Salmonella were either treated with PL directly (dry PL treatment) or immersed in agitated water during the PL treatment (wet PL treatment) for 5-60 s. Although both pathogens were effectively inactivated by the dry PL treatments, the appearance of the blueberries was adversely affected and a maximum temperature of 64.8 °C on the blueberry surface was recorded. On the other hand, the visual appearance of blueberries remained unchanged after wet PL treatments and sample heating was significantly reduced. The wet PL treatments were more effective than chlorine washing on inactivating both pathogens. After a 60-s wet PL treatment, the populations of E. coli O157:H7 inoculated on calyx and skin of blueberries were reduced by 3.0 and >5.8 log CFU/g, respectively. Salmonella on blueberry calyx and skin was reduced by 3.6 and >5.9 log CFU/g, respectively. No viable bacterial cells were recovered from the water used in the wet PL treatments, demonstrating that this setup could prevent the risk of cross-contamination during fresh produce washing. Our results suggest that this new water-assisted PL treatment could be a potential non-chemical alternative (residue free) to chlorine washing since it is both more effective and environmentally friendly than chlorine washing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effectiveness of Intense Pulsed Light treatment in solar lentigo: a retrospective study

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2014-03-01

    Full Text Available Intense Pulsed Light (IPL; is a light system of 500-1200 nm wavelength which is used for the treatment of hair removal, hyperpigmentation, non-ablative skin resurfacing and superficial vascular lesions. The mechanism of action is thought to be the focal epidermal coagulation due to selective photothermolysis in the epidermal keratinocytes and melanocytes. A variety of laser systems can be used in the treatment of lsolar entigo. The aim of this study is to investigate the effectiveness of IPL in solar lentigo. Materials and Methods: The archives of Cosmetology Unit retrospectively reviewed for the patients with the diagnosis of solar lentigo from March 2007 to November 2010. There were 139 files of patients who were diagnosed as solar lentigo clinically and dermoscopically and treated by IPL (L900 a & m IPL. Informed consent was taken from all patients. Among them, 42 patients who had come to controls regularly and had photographed before and after treatment included into the study. Results: A total of 52 lesions of 42 female and 1 male patient included into the study. Patients’ mean age was 42±9.6 years, ranging between 33 to 88. Of the lesions, 27 lesions(51.9% were on cheek, 7 lesions (13.5% were on zygoma, 6 lesions (11.5% were on chin, 4 lesions (7.7% were on hands, 4 lesions (7.7% were on forehead, 2 lesions(3.8% were on nose, 2 lesions (3.8% were on forearm. The mean number of sessions was 3.28 ranging between 1 and 7. After treatment, improvement was over 75% in 57,7% lesions, 50-75% in 17.3% of the lesions, 25-50% in 17.3% of the lesions, under 25% in 7.7% of the lesions. Conclusion: According to the results of our work, IPL can be accepted as an effective, cheap and safety method in terms of its side effects in treatment of solar lentigo.

  19. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  20. The Sensory Quality of Meat, Game, Poultry, Seafood and Meat Products as Affected by Intense Light Pulses: A Systematic Review

    OpenAIRE

    Tomasevic, Igor; Rajkovic, Andreja

    2015-01-01

    The effect of intense light pulses (ILP) on sensory quality of 16 different varieties of meat, meat products, game, poultry and seafood are reviewed. Changes induced by ILP are animal species, type of meat product and fluences applied dependent. ILP significantly deteriorates sensory quality of cooked meat products. It causes less change in the sensory properties of dry cured than cooked meat products while fermented sausage is least affected. The higher fluence applied significantly changes ...

  1. Localisation of light and spectral broadening of femtosecond laser pulses in a fibre with a minimal-microstructure cladding

    International Nuclear Information System (INIS)

    Zheltikov, Aleksei M; Zhou, Ping; Temnov, V V; Tarasevitch, A P; Linde, D von der; Kondrat'ev, Yu N; Shevandin, V S; Dukel'skii, K V; Khokhlov, A V; Bagayev, S N; Smirnov, Valerii B

    2002-01-01

    Microstructure optical fibres with a cladding consisting of a single cycle of air holes and the minimum core diameter of 1 μm have been fabricated and studied. Guided modes supported by this fibre are characterised by a high light localisation degree and display the C 6ν point-group spatial symmetry of the transverse field distribution. A high refractive index step between the core and the cladding in the created fibres strongly confines the light field in the fibre core. The spectral broadening of low-power femtosecond laser pulses in the fibre of this type is experimentally studied. (nonlinear optical phenomena)

  2. Thermographic analysis of photodynamic therapy with intense pulsed light and needle-free injection photosensitizer delivery: an animal study

    Science.gov (United States)

    Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.

    2018-02-01

    The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.

  3. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    Science.gov (United States)

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, Pvs. pretreatment) was significantly (Pvs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (PDark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  4. EDITORIAL: Squeezed states and uncertainty relations

    Science.gov (United States)

    Jauregue-Renaud, Rocio; Kim, Young S.; Man'ko, Margarita A.; Moya-Cessa, Hector

    2004-06-01

    This special issue of Journal of Optics B: Quantum and Semiclassical Optics is composed mainly of extended versions of talks and papers presented at the Eighth International Conference on Squeezed States and Uncertainty Relations held in Puebla, Mexico on 9-13 June 2003. The Conference was hosted by Instituto de Astrofísica, Óptica y Electrónica, and the Universidad Nacional Autónoma de México. This series of meetings began at the University of Maryland, College Park, USA, in March 1991. The second and third workshops were organized by the Lebedev Physical Institute in Moscow, Russia, in 1992 and by the University of Maryland Baltimore County, USA, in 1993, respectively. Afterwards, it was decided that the workshop series should be held every two years. Thus the fourth meeting took place at the University of Shanxi in China and was supported by the International Union of Pure and Applied Physics (IUPAP). The next three meetings in 1997, 1999 and 2001 were held in Lake Balatonfüred, Hungary, in Naples, Italy, and in Boston, USA, respectively. All of them were sponsored by IUPAP. The ninth workshop will take place in Besançon, France, in 2005. The conference has now become one of the major international meetings on quantum optics and the foundations of quantum mechanics, where most of the active research groups throughout the world present their new results. Accordingly this conference has been able to align itself to the current trend in quantum optics and quantum mechanics. The Puebla meeting covered most extensively the following areas: quantum measurements, quantum computing and information theory, trapped atoms and degenerate gases, and the generation and characterization of quantum states of light. The meeting also covered squeeze-like transformations in areas other than quantum optics, such as atomic physics, nuclear physics, statistical physics and relativity, as well as optical devices. There were many new participants at this meeting, particularly

  5. Squeezing and entanglement in doubly resonant, type II, second-harmonic generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2003-01-01

    We investigate, theoretically, the generation of bright and vacuum-squeezed light as well as entanglement in intracavity, type II, phase-matched second-harmonic generation. The cavity in which the crystal is embedded is resonant at the fundamental frequency but not at the second-harmonic frequenc...

  6. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  7. LHC Report: Freshly squeezed beams!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    After careful validation of  new machine settings, the LHC was ready for higher luminosity operation. New luminosity records have been set, but the operations team continues to wrestle with machine availability issues.   The commissioning of the squeeze to a ß* of 1 m in ATLAS and CMS described in the last Bulletin took until Wednesday, 7 September to complete. In order to validate the new set-up, beam losses were provoked in a controlled way with low intensity beams. The distribution of beam loss around the machine in these tests is known as a loss map. The loss maps showed that the collimation system is catching the large majority of beam losses as it should, and that the machine was ready for us to ramp the number of bunches back up and go to physics production. The ramp-up of the number of bunches went smoothly with fills at 264, 480, and 912 bunches on the way back to the machine’s previous record of 1380 bunches (first fill on Friday, 9 Se...

  8. Porous squeeze-film flow

    KAUST Repository

    Knox, D. J.

    2013-11-14

    © 2013 © The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation, an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage.

  9. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  10. Human phase response curve to a 1 h pulse of bright white light

    Science.gov (United States)

    St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2012-01-01

    The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633

  11. Squeezed bispectrum in the δ N formalism: local observer effect in field space

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Yuichiro [Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Vennin, Vincent, E-mail: yuichiro.tada@ipmu.jp, E-mail: vincent.vennin@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2017-02-01

    The prospects of future galaxy surveys for non-Gaussianity measurements call for the development of robust techniques for computing the bispectrum of primordial cosmological perturbations. In this paper, we propose a novel approach to the calculation of the squeezed bispectrum in multiple-field inflation. With use of the δ N formalism, our framework sheds new light on the recently pointed out difference between the squeezed bispectrum for global observers and that for local observers, while allowing one to calculate both. For local observers in particular, the squeezed bispectrum is found to vanish in single-field inflation. Furthermore, our framework allows one to go beyond the near-equilateral ('small hierarchy') limit, and to automatically include intrinsic non-Gaussianities that do not need to be calculated separately. The explicit computational programme of our method is given and illustrated with a few examples.

  12. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    Science.gov (United States)

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  13. An informal teaching of light and lasers through the CSIR-NLC PULSE programme

    CSIR Research Space (South Africa)

    Shikwambana, L

    2012-07-01

    Full Text Available The PULSE programme of the CSIR relates to the public understanding of laser science and engineering and the awareness of laser science and engineering to schools and tertiary institutions....

  14. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  15. The effect of pulse rate on VPT response and the use of an LED light to improve stability

    CERN Document Server

    Dawn, Elizabeth Leslie

    2009-01-01

    The Endcap Electromagnetic Calorimeter of the CMS detector at the LHC uses vacuum phototriodes (VPTs), which operate in the full 3.8T magnetic field of the experiment, to detect the scintillation light from the lead tungstate crystals. Initial measurements of the variation in response of VPTs, induced by sudden changes in the illuminating light pulse rate, prompted the inclusion of a dedicated stability pulser based on light emitting diodes (LEDs). The response of production VPTs, under simulated LHC operating conditions, has been investigated in three independent studies: in-situ tests with the installed endcaps at CERN, and separate VPT studies by groups at the University of Virginia, USA and Brunel University, UK. In this work, results are presented which demonstrate the expected stability of the VPTs during normal LHC operation, with a proposed regime for operating the stability pulser to minimise variations in response.

  16. Effect of a novel low-energy pulsed-light device for home-use hair removal.

    Science.gov (United States)

    Alster, Tina S; Tanzi, Elizabeth L

    2009-03-01

    Removal of unwanted hair is the most popular skin treatment worldwide. Over the past decade, various lasers and light sources for epilation have been advocated for use in an office setting, although most people continue to treat unwanted hair with a variety of temporary physical methods (e.g., waxing, shaving) in a home setting, presumably due to cost and convenience factors. To evaluate the safety and efficacy of a low-energy pulsed-light device intended for home-use hair removal. Twenty women (skin phototypes I-IV) with dark terminal hair in nonfacial sites (axilla, forearms, inguinal region, legs) self-administered three treatments at 2-week intervals using a handheld intense-pulsed-light device. Matched untreated skin sites were also studied. Hair counts and clinical photographs were obtained pretreatment and at 1, 3, and 6 months after the third treatment. Side effects and patient satisfaction scores were recorded. All patients showed a positive clinical response to treatment, with reduction of unwanted hair. No reduction of hair was noted in untreated matched areas. Hair counts were reduced 37.8% to 53.6% 6 months after the three treatments. Skin region influenced clinical response, with lower legs exhibiting greater hair reduction than arms and inguinal and axillary areas. Mild erythema was experienced in 25% of patients, but no other side effects or complications were encountered. Patient satisfaction scores were high, with all patients stating that they would purchase the device for future home use. CONCLUSIONS Low-energy pulsed light can be applied safely and effectively for at-home hair removal in a variety of nonfacial locations and skin phototypes I-IV.

  17. Relationship between squeezing and entangled state transformations

    CERN Document Server

    Fan Hong Yi

    2003-01-01

    We show that c-number dilation transform in the Einstein-Podolsky-Rosen (EPR) entangled state, i.e. vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 , eta sub 2 /mu) (or vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 /mu, eta sub 2)), maps onto a kind of one-sided two-mode squeezing operator exp left brace i lambda/2(P sub 1 + P sub 2)(Q sub 1 + Q sub 2) - lambda/2 right brace, (or exp left brace i lambda/2(P sub 1 - P sub 2)(Q sub 1 - Q sub 2) - lambda/2 right brace). Using the IWOP technique, we derive their normally ordered form and construct the corresponding squeezed states. In doing so, some new relationship between squeezing and entangled state transformation is revealed. The dynamic Hamiltonian for such a kind of squeezing evolution is derived. The properties and application of the one-sided squeezed state are briefly discussed. These states can also be obtained with the use of a beam splitter.

  18. Versatile Gaussian probes for squeezing estimation

    Science.gov (United States)

    Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo

    2017-05-01

    We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.

  19. LHC Report: Preparing for a tighter squeeze

    CERN Multimedia

    Jan Uythoven for the LHC Team

    2011-01-01

    The LHC is resuming operation after a planned period of machine development followed by a technical stop. The beams returned last Friday, in the evening of 2 September, and preparations are now being made to squeeze the beams further at the collision points, aiming for new luminosity records.   To obtain as many collisions as possible in the heart of the experiments, the beams are squeezed to very small beam sizes. The beam squeezing parameter is known by experts as beta-star: the smaller the ß*, the stronger the squeezing. During the machine development period that started on 24 August, tests were made for the high-luminosity experiments ATLAS and CMS with ß* values of 1 m instead of the 1.5 m used previously. Unfortunately these tests were only partially successful, as some of the beam was lost during the squeezing process. It is thought that the beam losses were caused by the collimators, which were moved closer to the beam, and by the reduced crossing angle of the beams at ...

  20. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  1. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-01-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10 -9 s≥ pulse width τ≥1 fs=10 -15 s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for τ and numerical aperture of the focusing lens (0.1≤X NA ≤1.2). At X NA =0.8, rapid deterioration of the focused intensity distribution is observed at τ=1.2 fs. This happens because a 750-nm optical pulse with τ=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source

  2. Comparative evaluation of long pulse Alexandrite laser and intense pulsed light systems for pseudofolliculitis barbae treatment with one year of follow up.

    Science.gov (United States)

    Leheta, Tahra M

    2009-01-01

    Existing remedies for controlling pseudofolliculitis barbae (PFB) are sometimes helpful; however the positive effects are often short lived. The only definitive cure for PFB is permanent removal of the hair follicle. Our aim was to compare the efficacy of the Alexandrite laser with the intense pulsed light system in the treatment of PFB and to follow up the recurrence. Twenty male patients seeking laser hair removal for the treatment of PFB were enrolled in this study. One half of the face was treated with the long-pulse Alexandrite laser and the other half was treated with the IPL system randomly. The treatment outcome and any complications were observed and followed up for one year. All patients exhibited a statistically significant decrease in the numbers of papules. Our results showed that the Alexandrite-treated side needed seven sessions to reach about 80% improvement, while the IPL-treated side needed 10-12 sessions to reach about 50% improvement. During the one year follow up period, the Alexandrite-treated side showed recurrence in very minimal areas, while the IPL-treated side showed recurrence in bigger areas. Our results showed that both systems might improve PFB but Alexandrite laser was more effective at reducing PFB than IPL.

  3. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Science.gov (United States)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  4. Squeezed State Caused by Inverse of Photon Creation Operator

    International Nuclear Information System (INIS)

    Xu Xuefen

    2006-01-01

    Using the photon creation operator's eigenstate theory we derive the normally ordered expansion of inverse of the squeezed creation operator. It turns out that using this operator a kind of excitation on the squeezed vacuum states can be formed.

  5. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    Science.gov (United States)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  6. Analysis of chromatic dispersion compensation by measuring time domain optical spectrum distribution of light pulse; Hikari pulse chu no hacho jikan bunpu sokutei ni yoru bunsan hosho gijutsu no hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.; Kurono, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-01

    A large number of single mode fibers (SMF) for 1.3 {mu}m light are installed in electric power communication facilities. On the other hand, light of 1.5 {mu}m band is being used more in the capacity increasing technology to minimize transmission loss. If this is applied to the current SMF, waveform distortion is generated due to wavelength dispersion, thus the transmission speed and distance are limited. In order to evaluate quantitatively the effects of a wavelength dispersion compensating technology, a method was developed to derive time change in each wavelength component in light pulse. No sufficient wavelength separation is possible if permeation bandwidth of a wavelength filter is wider than the wavelength width of the light pulse. Therefore, a method was developed to derive time change in the wavelength components in the light pulse from small difference in the measured light waveforms after transmission when the central wavelength of a wavelength variable filter is varied. It was possible from comparing the method to derive the wavelength dispersion amount and the dispersion compensation amount. Since the method reveals simultaneously the distribution of strength against wavelength and time contained in light pulse, the method is advantageous in elucidating compensation limit and causes for compensation errors. The effectiveness of the method was verified by a 1.5-{mu}m light transmission test. 14 refs., 26 figs., 2 tabs.

  7. Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens.

    Science.gov (United States)

    Farrell, H P; Garvey, M; Cormican, M; Laffey, J G; Rowan, N J

    2010-05-01

    To investigate critical electrical and biological factors governing the efficacy of pulsed light (PL) for the in vitro inactivation of bacteria isolated from the clinical environment. Development of this alternative PL decontamination approach is timely, as the incidence of health care-related infections remains unacceptably high. Predetermined cell numbers of clinically relevant Gram-positive and Gram-negative bacteria were inoculated separately on agar plates and were flashed with lamp discharge energy (range 3.2-20 J per pulse), the amount of pulsing applied (range 0-60 pulses) and the distance between light source and treatment surface (range 8-20 cm) used. Greater decontamination levels were achieved using a combination of higher lamp discharge energies, increased number of pulses and shorter distances between treatment surface and the xenon light source. Levels of microbial sensitivity also varied depending on the population type, size and age of cultures treated. Production of pigment pyocynanin and alginate slime in mucoid strains of Pseudomonas aeruginosa afforded some protection against lethal action of PL; however, this was evident only by using a combination of reduced amount of pulsing at the lower lamp discharge energies tested. A clear pattern was observed where Gram-positive bacterial pathogens were more resistant to cidal effects of PL compared to Gram negatives. While negligible photoreactivation of PL-treated bacterial strains occurred after full pulsing regimes at the different lamp discharge energies tested, some repair was evident when using a combination of reduced pulsing at the lower lamp discharge energies. Strains harbouring genes for multiple resistances to antibiotics were not significantly more resistant to PL treatments. Slight temperature rises (lamp discharge energies. Presence of organic matter on treatment surface did not significantly affect PL decontamination efficacy, nor did growth of PL-treated bacteria on selective agar

  8. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    Science.gov (United States)

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  9. Graphene Squeeze-Film Pressure Sensors.

    Science.gov (United States)

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  10. Secure quantum key distribution using squeezed states

    International Nuclear Information System (INIS)

    Gottesman, Daniel; Preskill, John

    2001-01-01

    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e r =1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel

  11. Nonlinear Squeeze Film Dampers without Centralized Springs

    Directory of Open Access Journals (Sweden)

    Zhu Changsheng

    2000-01-01

    Full Text Available In this paper, the bifurcation behavior of a flexible rotor supported on nonlinear squeeze film dampers without centralized springs is analyzed numerically by means of rotor trajectories, Poincar maps, bifurcation diagrams and power spectra, based on the short bearing and cavitated film assumptions. It is shown that there also exist two different operations (i.e., socalled bistable operations in some speed regions in the rotor system supported on the nonlinear squeeze film dampers without centralized springs. In the bistable operation speed regions, the rotor system exhibits synchronous, sub-synchronous, sub-super-synchronous and almost-periodic as well as nonperiodic motions. The periodic bifurcation behaviors of the rotor system supported on nonlinear squeeze film dampers without centralized springs are very complex and require further investigations.

  12. Planar quantum squeezing and atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Q. Y.; Drummond, P. D.; Reid, M. D. [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  13. Enhancing photon squeezing one leviton at a time

    Science.gov (United States)

    Ferraro, D.; Ronetti, F.; Rech, J.; Jonckheere, T.; Sassetti, M.; Martin, T.

    2018-04-01

    A mesoscopic device in the simple tunnel junction or quantum point contact geometry emits microwaves with remarkable quantum properties, when subjected to a sinusoidal drive in the GHz range. In particular, single and two-photon squeezing as well as entanglement in the frequency domain have been reported. By revising the photoassisted noise analysis developed in the framework of electron quantum optics, we present a detailed comparison between the cosine drive case and other experimentally relevant periodic voltages such as rectangular and Lorentzian pulses. We show that the latter drive is the best candidate in order to enhance quantum features and purity of the outgoing single and two-photon states, a noteworthy result in a quantum information perspective.

  14. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  15. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...... computer....

  16. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  17. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study.

    Science.gov (United States)

    Toyos, Rolando; McGill, William; Briscoe, Dustin

    2015-01-01

    The purpose of this study was to determine the clinical benefits of intense-pulsed-light therapy for the treatment of dry-eye disease caused by meibomian gland dysfunction (MGD). MGD is the leading cause of evaporative dry eye disease. It is currently treated with a range of methods that have been shown to be only somewhat effective, leading to the need for advanced treatment options. A retrospective noncomparative interventional case series was conducted with 91 patients presenting with severe dry eye syndrome. Treatment included intense-pulsed-light therapy and gland expression at a single outpatient clinic over a 30-month study. Pre/post tear breakup time data were available for a subset of 78 patients. For all patients, a specially developed technique for the treatment of dry eye syndrome was applied as a series of monthly treatments until there was adequate improvement in dry eye syndrome symptoms by physician judgment, or until patient discontinuation. Primary outcomes included change in tear breakup time, self-reported patient satisfaction, and adverse events. Physician-judged improvement in dry eye tear breakup time was found for 68 of 78 patients (87%) with seven treatment visits and four maintenance visits on average (medians), and 93% of patients reported post-treatment satisfaction with degree of dry eye syndrome symptoms. Adverse events, most typically redness or swelling, were found for 13% of patients. No serious adverse events were found. Although preliminary, study results of intense-pulsed-light therapy treatment for dry eye syndrome caused by meibomian gland dysfunction are promising. A multisite clinical trial with a larger sample, treatment comparison groups, and randomized controlled trials is currently underway.

  18. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  19. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    International Nuclear Information System (INIS)

    Pabst, Stefan Ulf

    2013-04-01

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO 2 is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  20. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Energy Technology Data Exchange (ETDEWEB)

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  1. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  2. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role......Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  3. Pulsed laser light forces cancer cells to absorb anticancer drugs--the role of water in nanomedicine.

    Science.gov (United States)

    Sommer, Andrei P; Zhu, Dan; Mester, Adam R; Försterling, Horst-Dieter

    2011-06-01

    Anticancer drugs executing their function intracellularly enter cancer cells via diffusive processes. Complementary to these slow processes, cells can be forced to incorporate drugs by convection - a more efficient transport process. Transmembrane convection is induced by moderately intense pulsed laser light (or light emitting diodes) changing the structure of nanoscopic water layers in cells. This is a fundamental difference with the method of photodynamic therapy. In a model system we demonstrate that a total irradiation time of one minute is sufficient to completely inhibit proliferation of cancer cells. Transmembrane convection protects healthy cells from extended chemotherapy exposure, could be exploited to overcome multidrug resistance, and is a promising new tool in a variety of therapies as well as in skin rejuvenation.

  4. Pulsed vs. CW low level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome)

    Science.gov (United States)

    Barolet, Daniel

    2012-03-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynaud's phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.

  5. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  6. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier

    International Nuclear Information System (INIS)

    Liu Kui; Cui Shu-Zhen; Yang Rong-Guo; Zhang Jun-Xiang; Gao Jiang-Rui

    2012-01-01

    We experimentally demonstrate that HG 01 (Hermit—Gauss) and HG 10 squeezed states can be generated simultaneously in an optical parametric amplifier. The HG 01 mode is a bright squeezed state and the HG 10 mode is a vacuum squeezed state. The squeezing of the HG 01 mode is −2.8 dB, and the squeezing of the HG 10 mode is −1.6 dB. We also demonstrate that the output field is also continuous-variable entanglement with orbital angular momentum. (general)

  7. Squeezing of Collective Excitations in Spin Ensembles

    DEFF Research Database (Denmark)

    Kraglund Andersen, Christian; Mølmer, Klaus

    2012-01-01

    We analyse the possibility to create two-mode spin squeezed states of two separate spin ensembles by inverting the spins in one ensemble and allowing spin exchange between the ensembles via a near resonant cavity field. We investigate the dynamics of the system using a combination of numerical an...

  8. Squeezing more from a quantum nondemolition measurement

    DEFF Research Database (Denmark)

    Buchler, B.C.; Lam, P.K.; Bachor, H.A.

    2002-01-01

    We use a stable, 5 dB, amplitude squeezed source for a quantum nondomolition (QND) experiment. The performance of our QND system is enhanced by an electro-optic feedforward loop which improve,, the signal transfer efficiency. At best, we measure a total signal transfer of 1.81 and conditional var...

  9. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  10. Tubes, Mono Jets, Squeeze Out and CME

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-23

    Glasma Flux Tubes, Mono Jets with squeeze out flow around them plus the Chiral Magnetic Effect(CME) are physical phenomenon that generate two particle correlation with respect to the reaction plane in mid-central 20% to 30% Au-Au collision √sNN = 200.0 GeV measured at RHIC.

  11. Squeezing corrections to the Bloch equations

    International Nuclear Information System (INIS)

    Abundo, M.; Accardi, L.

    1991-01-01

    The general analysis of quantum noise shows that a squeezing noise can produce quadratic nonlinearities in the Langevin equations leading to the Bloch equations. These quadratic nonlinearities are governed by the imaginary part of the off-diagonal terms of the covariance of the noise (the squeezing terms) and imply a correction to the usual form of the Bloch equations. Here the case of spin-one nuclei subjected to squeezing noises of particular type is studied numerically. It is shown that the corrections to the Bloch equations, suggested by the theory, to the behaviour of the macroscopic nuclear polarization in a scale of times of the order of the relaxation time can be quite substantial. In the equilibrium regime, even if the qualitative behaviour of the system is the same (exponential decay), the numerical equilibrium values predicted by the theory are consistently different from those predicted by the usual Bloch equation. It is suggested that this difference might be used to test experimentally the observable effects of squeezing noises

  12. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Jain, Mayank; Kalchgruber, R.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved opti......The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time...... suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model...... cannot be rejected definitively....

  13. Evaluation of the Safety and Effectiveness of Intense Pulsed Light in the Treatment of Meibomian Gland Dysfunction

    Directory of Open Access Journals (Sweden)

    Xiaodan Jiang

    2016-01-01

    Full Text Available Purpose. This study aims to explore the safety and efficacy of a novel treatment-intense pulsed light (IPL in MGD eyes. Methods. This study is a prospective and open label study. Forty eyes of 40 MGD patients were recruited in the study and received 4 consecutive IPL treatments on day 1, day 15, day 45, and day 75. Ten ocular surface symptoms were evaluated with a subjective face score at every visit. Best spectacle corrected visual acuity, intraocular pressure (IOP, conjunctival injection, upper and lower tear meniscus height (TMH, tear break-up time (TBUT, corneal staining, lid margin and meibomian gland assessments, and meibography were also recorded at every visit, as well as the adverse effects on the eye and ocular surface. Results. Significant improvements were observed in single and total ocular surface symptom scores, TBUT, and conjunctival injection at all the visits after the initial IPL treatment (P<0.05. Compared to baseline, the signs of eyelid margin, meibomian gland secretion quality, and expressibility were significantly improved at every visit after treatments. There was no regional and systemic threat observed in any patient. Conclusion. Intense pulsed light (IPL therapy is a safe and efficient treatment in relieving symptoms and signs of MGD eyes.

  14. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    Science.gov (United States)

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  15. Impact of High-Power Pulsed Light on Microbial Contamination, Health Promoting Components and Shelf Life of Strawberries

    Directory of Open Access Journals (Sweden)

    Irina Buchovec

    2013-01-01

    Full Text Available The aim of this work is to evaluate the impact of high-power pulsed light (HPPL on the microbial control and nutritional properties of strawberries. Berries were treated with HPPL and afterwards analyzed in terms of microbial contamination, shelf life extension, antioxidant capacity, firmness, total phenolic, total anthocyanin and ascorbic acid content, and colour. Results indicate that the decontamination of strawberries by HPPL was significant compared to control. Naturally distributed mesophilic bacteria on the surface of strawberries were inactivated by 2.2 log, and inoculated Bacillus cereus and Listeria monocytogenes were inactivated by 1.5 and 1.1 log, respectively. Yeasts/microfungi distributed on the surface of strawberries were inactivated by 1 log. The shelf life of treated strawberries was extended by 2 days. The increase of temperature on the surface of fruit never exceeded 42 °C. No significantly important differences were observed in total phenolic, total anthocyanin and ascorbic acid content, and antioxidant capacity of strawberry fruits before and after pulsed light treatment. Moreover, no impact on the strawberry colour or firmness was found after HPPL treatment. In conclusion, HPPL is fast, effective, non-thermal and environmentally friendly technique which can be applied for microbial control of strawberries.

  16. Intense, broadband, pulsed I-R source at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Williams, G.P.

    1984-01-01

    We describe a broadband (1 μm to 1 mm) synchrotron radiation infrared source, pulsed each 20 to 180 nseconds and delivering about 10 15 photons/sec/1% bandpass into f10 optics. The source size is diffraction limited. This source is thus 100 to 1000 times brighter than a 2000 0 K black body, very stable and capable of being used for calibration

  17. Deterministic secure communications using two-mode squeezed states

    International Nuclear Information System (INIS)

    Marino, Alberto M.; Stroud, C. R. Jr.

    2006-01-01

    We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state

  18. May the variable magnetic field and pulse red light induce synergy effects in respiratory burst of neutrophils in vitro?

    International Nuclear Information System (INIS)

    Nawrocka - Bogusz, H; Jaroszyk, F

    2011-01-01

    We investigated the effect of the red light (R) (630 nm), magnetic field (MF) and magnetic field combined with the red light (MF+R) upon reactive oxygen species (ROS) production by neutrophils in vitro. The object of the research was hydrogen peroxide (H 2 O 2 ) formation during neutrophils respiratory burst or within steady-state. Blood from healthy volunteers was used for the purpose of the study. Flow cytometry method, using transformation of DCFH-DA (2'7'-dichlorofluorescin diacetate) to the fluorescent DCF (2'7'-dichlorofluorescin), was used for estimation of hydrogen peroxide production. The variable magnetic field of ELF range of the mean induction equals 26.7(μT), the red light at the energy density of 1.17(J/cm 2 ) and their combination were applied for 30 minutes each. The fundamental frequency of pulses was 180÷ 195 Hz. A statistically significant decrease of H 2 O 2 production by neutrophils was observed. The level of the decrease was in the range of 10-30% and was dependent on the kind of applied physical factors and whether neutrophils were stimulated or not. The observation showed that the variable magnetic field combined with red light do not induce the synergy effect.

  19. Study of the character of the effect of various squeezing out agents on the squeezing out process

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    Results are examined of the study of the process of squeezing out petroleum with water with additives of a chemical reagent as a multifactor experiment, carried out in laboratory conditions. The tests were carried out in inactive petroleum of the Mishkin deposits. In the capacity of the squeezing out agents, water, solutions of caustic soda, and acetic acid were used. The basic factors, affecting the process of waterless squeezing out, included porosity, permeability in respect to gas, water saturation, pressure gradient, volume of the injection of the squeezing out agent were selected. The waterless coefficient of squeezing out also shows an effect on the complete coefficient of squeezing out. As a result of the study of the paired connections, corresponding coefficients of the regression equations and correlation coefficient were produced. The difference according to the forms of the connection between the various squeezing out agent were analyzed.

  20. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light

    Science.gov (United States)

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-01

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.

  1. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Science.gov (United States)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  2. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  3. Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Mogensen, Mette; Banzhaf, Christina

    2013-01-01

    Vascular malformations commonly occur in the facial region, and can be associated with significant stigma and embarrassment. Studies have shown that even recommended light-based treatments do not always result in complete clearance. This indicates the need for more accurate pre-treatment assessment...... the vessels, which may indicate edema or insufficient coagulation. (2) Hyperreflective signals within the lumen of the vessels, compatible with the expected irreversible microthrombus formation in the vessels. OCT imaging is capable of real-time assessment of tissue damage during light and laser treatment...

  4. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    Science.gov (United States)

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comment on ''Generation of Electromagnetic Pulses from Plasma Channels Induced by Femtosecond Light Strings''

    International Nuclear Information System (INIS)

    Shvets, Gennady; Kaganovich, Igor; Startsev, Edward

    2002-01-01

    In a recent Letter, Cheng et al. calculated/predicted several new effects: that (a) fraction of the short laser pulse momentum can be imparted to plasma electrons via collisional damping of the laser, thereby exciting a long-lived (longer than an oscillation period) plasma wave, which (b) gives rise to a spatially uniform dipole moment of a plasma, which (c) emits far-field narrow-band radiation at the plasma frequency omega subscript ''p'' over the recombination time of the plasma. We claim that the calculation of the effect (a) is in error and the predicted effects (b,c) do not occur as described. In fact, predicted narrow-band emission at omega subscript ''p'' would not occur even if the momentum transfer and the dipole excitation were calculated correctly

  6. Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Richter, P; Maros, I; Balazs, L

    2008-01-01

    Operation of a Xe dielectric barrier discharge lamp producing 147-172 nm VUV radiation is investigated both theoretically and experimentally. Xe gas pressure varies between 100 and 300 mbar, and the glass body of the lamp is coated with LAP (green) phosphor to convert radiation into the visible part of the spectrum. Simulation results predict improved discharge efficiencies reaching 67% when excited by a fast rise-time, short pulse (∼200 ns) driving waveform. In this case most power deposited into the plasma efficiently produces Xe 2 * excimers, while other energy dissipation processes (ion heating, e-Xe elastic collision) are kept at a low rate. Simulation and experimental results are compared in terms of discharge efficacy and show good agreement. A lamp efficacy value as high as 80 lm W -1 is demonstrated experimentally

  7. Characterization of FBK SiPMs under illumination with very fast light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tarolli, A., E-mail: tarolli@fbk.e [Fondazione Bruno Kessler (FBK), Trento (Italy); Dalla Betta, G.-F. [University of Trento and INFN, Trento (Italy); Melchiorri, M.; Piazza, A.; Pancheri, L.; Piemonte, C.; Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    A characterization of the response of SiPMs and SPADs produced at FBK-IRST Trento stimulated with fast laser pulses is presented. The tests were aimed at studying both the intrinsic timing proprieties (of SiPMs and SPADs) using the time-correlated single-photon counting technique and the dynamic range (of SiPMs). Measurements were carried out on devices with different cell size, namely, from 40x40 to 100x100 {mu}m{sup 2}. Concerning the timing resolution, all the devices exhibit a value less than 150 psec FWHM. The dynamic range of SiPMs shows a response linearity which is in line with the theory describing these devices.

  8. Characterization of FBK SiPMs under illumination with very fast light pulses

    International Nuclear Information System (INIS)

    Tarolli, A.; Dalla Betta, G.-F.; Melchiorri, M.; Piazza, A.; Pancheri, L.; Piemonte, C.; Zorzi, N.

    2010-01-01

    A characterization of the response of SiPMs and SPADs produced at FBK-IRST Trento stimulated with fast laser pulses is presented. The tests were aimed at studying both the intrinsic timing proprieties (of SiPMs and SPADs) using the time-correlated single-photon counting technique and the dynamic range (of SiPMs). Measurements were carried out on devices with different cell size, namely, from 40x40 to 100x100 μm 2 . Concerning the timing resolution, all the devices exhibit a value less than 150 psec FWHM. The dynamic range of SiPMs shows a response linearity which is in line with the theory describing these devices.

  9. Quantum key distribution with a single photon from a squeezed coherent state

    International Nuclear Information System (INIS)

    Matsuoka, Masahiro; Hirano, Takuya

    2003-01-01

    Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation

  10. Generalization of the Davydov Ansatz by squeezing

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, Frank; Werther, Michael [Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden (Germany); Chen, Lipeng; Zhao, Yang [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    We propose an extension of the Davydov Ansatz employing displaced squeezed states in the oscillator Hilbert space. The Dirac–Frenkel variational principle is used to derive the modified equations for the variational parameters. First numerical studies of the dynamics of the spin-boson model with a single bosonic degree of freedom reveal an overall improvement of the results as compared to the standard Davydov Ansatz.

  11. Baryon asymmetry, inflation and squeezed states

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-01-01

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry

  12. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Science.gov (United States)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  13. The effect of pulsed IR-light on the rheological parameters of blood in vitro.

    Science.gov (United States)

    Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna

    2014-01-01

    In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.

  14. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    OpenAIRE

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2017-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty...

  15. Reduction of quantum noise in the Michelson interferometer by use of squeezed vacuum states

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    We develop further the unified model for treating photon-counting and radiation-pressure fluctuations in the Michelson interferometer with input of squeezed vacuum state. The dependence of the quantum fluctuations on the phase of the input light is calculated. The analysis is restricted to a single-mode interferometer, but generalized in a way that includes both harmonic-oscillator and floating mirrors. We compare our results with those of other authors

  16. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics

    Science.gov (United States)

    Rashid, Muddassar; Tufarelli, Tommaso; Bateman, James; Vovrosh, Jamie; Hempston, David; Kim, M. S.; Ulbricht, Hendrik

    2016-12-01

    We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.

  17. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  18. Using the Transient Response of WO3 Nanoneedles under Pulsed UV Light in the Detection of NH3 and NO2

    Directory of Open Access Journals (Sweden)

    Oriol Gonzalez

    2018-04-01

    Full Text Available Here we report on the use of pulsed UV light for activating the gas sensing response of metal oxides. Under pulsed UV light, the resistance of metal oxides presents a ripple due to light-induced transient adsorption and desorption phenomena. This methodology has been applied to tungsten oxide nanoneedle gas sensors operated either at room temperature or under mild heating (50 °C or 100 °C. It has been found that by analyzing the rate of resistance change caused by pulsed UV light, a fast determination of gas concentration is achieved (ten-fold improvement in response time. The technique is useful for detecting both oxidizing (NO2 and reducing (NH3 gases, even in the presence of different levels of ambient humidity. Room temperature operated sensors under pulsed UV light show good response towards ammonia and nitrogen dioxide at low power consumption levels. Increasing their operating temperature to 50 °C or 100 °C has the effect of further increasing sensitivity.

  19. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We ...

  20. Spin squeezing and entanglement in a dispersive cavity

    International Nuclear Information System (INIS)

    Deb, R. N.; Abdalla, M. Sebawe; Hassan, S. S.; Nayak, N.

    2006-01-01

    We consider a system of N two-level atoms (spins) interacting with the radiation field in a dispersive but high-Q cavity. Under an adiabatic condition, the interaction Hamiltonian reduces to a function of spin operators which is capable of producing spin squeezing. For a bipartite system (N=2), the expressions for spin squeezing get very simple, giving a clear indication of close to 100% noise reduction. We analyse this squeezing as a measure of bipartite entanglement

  1. Studying fluid squeeze characteristics for aerostatic journal bearing

    International Nuclear Information System (INIS)

    Abdel-Rahman, Gamal M.

    2008-01-01

    The Reynolds equation for studying fluid squeeze of aerostatic journal bearing is solved numerically by considering the quasi-steady behavior of the air film. The radial displacement can influence the air film thickness modifying the pressure distribution in the journal-bearing gap. Also, the variations in the seal characteristics with eccentricity, time, squeeze number, length-to-diameter and supply pressure are presented. The numerical results for the squeeze load-carrying capacity are given in a non-dimensional form

  2. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standa...... Stokes parameter squeezing of −3.9 ±0.3dB and anti-squeezing of 16.2 ±0.3dB....

  3. Noise suppression in an atomic system under the action of a field in a squeezed coherent state

    International Nuclear Information System (INIS)

    Gelman, A. I.; Mironov, V. A.

    2010-01-01

    The interaction of a quantized electromagnetic field in a squeezed coherent state with a three-level Λ-atom is studied numerically by the quantum Monte Carlo method and analytically by the Heisenberg-Langevin method in the regime of electromagnetically induced transparency (EIT). The possibility of noise suppression in the atomic system through the quantum properties of squeezed light is considered in detail; the characteristics of the atomic system responsible for the relaxation processes and noise in the EIT band have been found. Further applications of the Monte Carlo method and the developed numerical code to the study of more complex systems are discussed.

  4. Crystal-field-modulated magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  5. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Science.gov (United States)

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  6. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  7. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin

    Directory of Open Access Journals (Sweden)

    Kui Young Park

    2015-01-01

    Full Text Available Background. Photodynamic therapy (PDT has been used for acne, with various combinations of photosensitizers and light sources. Objective. We evaluated the effectiveness and safety of indocyanine green (ICG and intense pulsed light (IPL in the treatment of acne. Materials and Methods. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Results. Marked to excellent improvement was noted in 483 of 1,213 (39.8% patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2% patients. Patient satisfaction scores revealed that 197 (16.3% of 1,213 patients were highly satisfied, 887 (73.1% were somewhat satisfied, and 129 (10.6% were unsatisfied. There were no significant side effects. Conclusion. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  8. Gross and microscopic findings in patients submitted to nonablative full-face resurfacing using intense pulsed light: a preliminary study.

    Science.gov (United States)

    Hernández-Pérez, Enrique; Ibiett, Erick Valencia

    2002-08-01

    Intense pulsed light (IPL) is a noncoherent, nonlaser, filtered flashlamp emitting a broadband visible light that has been shown to be effective in photoepilation, as well as in a number of vascular and pigmented lesions of the skin. Their efficacy has also been reported recently in the treatment of photodamaged facial skin. In the last condition, however, there are few studies showing the clinical and microscopic changes produced by IPL. To assess the gross and microscopic changes that occur in photodamaged skin submitted to nonablative full-face resurfacing (NAFFR) using IPL. Five women were submitted to five NAFFR sessions using IPL, one every 2 weeks. Skin biopsies and photographs were taken on all of the patients before the first procedure and after the last one, as well as weekly clinical assessment. Data concerning skin features (wrinkles, oiliness, thickness, dilated pores, and general appearance) were all assessed. Microscopic improvement of the aging features in the epidermis and dermis were all assessed. For the statistical analysis a t test for small samples was used. All the patients showed clinical and microscopic improvement in every one of the parameters assessed. The t test for small samples showed a statistically significant difference (P Facial photodamage was clinically and microscopically improved using IPL. Use of IPL as a rejuvenating method seems to be promising, with minimal side effects, a wide safety margin, and minimal downtime.

  9. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  10. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yong, Thian Khok; Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2010-01-01

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO 3 :HCl:H 2 O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq 3 )/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  11. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Thian Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway)

    2010-12-15

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO{sub 3}:HCl:H{sub 2}O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq{sub 3})/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  12. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    Science.gov (United States)

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  13. Volume holographic storage and multiplexing in blends of PMMA and a block methacrylic azopolymer, using 488 nm light pulses in the range of 100 ms to 1 s

    DEFF Research Database (Denmark)

    Forcen, Patricia; Oriol, Luis; Sanchez, Carlos

    2008-01-01

    Blends of polymethylmethacrylate (PMMA) and diblock methacrylic azopolymers have been investigated for holographic storage with short light pulses. Transmission electron microscopy measurements show that the dilution of the block copolymer in PMMA changes the microstructure from a lamellar to a s...

  14. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  15. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    Science.gov (United States)

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode

  16. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color

    Directory of Open Access Journals (Sweden)

    Choi Ho-Sun

    2009-07-01

    Full Text Available Abstract Background Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Methods Subjects (blue-eyed n = 7; brown eyed n = 6 maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO. Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux. An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline. A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment. Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. Results The average phase delay of the DLMO was -1.3 ± 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. Conclusion A single 2-hour bright light

  17. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    In the first part of this thesis the methodics of the non-collinear, optically parametric amplification of chirped light pulses (NOPCPA) for the generation of few-cycle light pulses in the visible (Vis) and near infrared (NIR) with of 5-8 fs half-width are essential further developed. Fundamental parametric influences, like the existence of a parametrically induced phase and the generation of optically parametric fluorescence (OPF), are studied both by theoretical analyses and numerical simulations and by concrete experiments. Experimentally in the framework of this thesis fwe-cycle light pulses with a pulse width of 7.9 fs, 130 mJ energy, at 805 nm central wavelength and a very high seed-pulse-limited prepulse contrast of 11 and 8 orders of magnitude are reached at 30 ps and approximately 3 ps. One the one hand it has been succeeded to accelerate with the broad-band pulse amplifier quasi-monoenergetic electrons with energies of up to 50 MeV. For this the light pulse is focussed to relativistic intensities of several W/cm{sup 2} in a helium gas jet. On the other hand XUV light was produced up to the 20th harmonic of the generated light pulse from the broad-band pulse amplifier by its sub-cycle interaction with solid surfaces. In the framework of this thesis furthermore new, extended concepts for still broader-band NOPCPA over one octave were developed and characterized, which contain the application of two pump pulses in one NOPCPA stage and the application of two different pump wavelength in two subsequent NOPCPA stages. In the second part of this thesis broad-band white-light spectra and by means of NOPCPA spectrally tunable light pulses are applied in order to realize a transient absorption spectrometer with multichannel detection. This new excitation-query construction combines a very broad-band UV-Vis-NIR query with a high time resolution of 40 fs and high sensitivity for the transient change of the optical density of less than 10{sup -4}. By this it has in

  18. Optofluidic technology for monitoring rotifer Brachionus calyciflorus responses to regular light pulses

    Science.gov (United States)

    Cartlidge, Rhys; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Behavioural alterations can occur as a result of a toxicant exposure at concentrations significantly lower than lethal effects that are commonly measured in acute toxicity testing. The use of alternating light and dark photoperiods to test phototactic responses of aquatic invertebrates in the presence of environmental contaminants provides an attractive analytical avenue. Quantification of phototactic responses represents a sublethal endpoint that can be employed as an early warning signal. Despite the benefits associated with the assessment of these endpoints, there is currently a lack of automated and miniaturized bioanalytical technologies to implement the development of toxicity testing with small aquatic species. In this study we present a proof-of-concept microfluidic Lab-on-a-Chip (LOC) platform for the assessment of rotifer swimming behavior in the presence of the toxicant copper sulfate. The device was designed to assess impact of toxicants at sub-lethal concentrations on freshwater crustacean Brachionus calyciflorus, testing behavioral endpoints such as animal swimming distance, speed and acceleration. The LOC device presented in this work enabled straightforward caging of microscopic crustaceans as well as non-invasive analysis of rapidly swimming animals in a focal plane of a video-microscopy system. The chip-based technology was fabricated using a new photolithography method that enabled formation of thick photoresist layers with minimal distortion. Photoresist molds were then employed for replica molding of LOC devices with poly(dimethylsiloxane) (PDMS) elastomer. The complete bioanalytical system consisted of: (i) microfluidic PDMS chip-based device; (ii) peristaltic microperfusion pumping manifold; (iii) miniaturized CMOS camera for video data acquisition; and (iv) video analysis software algorithms for quantification of changes in swimming behaviour of B. calyciflorus in response to reference toxicants.

  19. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe

    2012-01-01

    Recent results on the relation between self-similarity and squeezed coherent states are presented. I consider fractals which are generated iteratively according to a prescribed recipe, the so-called deterministic fractals. Fractal properties are incorporated in the framework of the theory of the entire analytical functions and deformed coherent states. Conversely, fractal properties of squeezed coherent states are recognized. This sheds some light on the understanding of the dynamical origin of fractals and their global nature emerging from local deformation processes. The self-similarity in brain background activity suggested by laboratory observations of power-law distributions of power spectral densities of electrocorticograms is also discussed and accounted in the frame of the dissipative many-body model of brain.

  20. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma

    International Nuclear Information System (INIS)

    Gomez R, F.

    2004-01-01

    τ of the electron that per se is an invariant, it is proportional to a certain interval dη. In the chapter 3 it will see that the movement analysis of the charged particles in the electromagnetic field presents serious mathematical difficulties, where the integration of the movement equations results extraordinarily complex and it can only be integrated in most of the cases by numerical means. We will present the procedure used for the deduction of the equations of motion of a charged particle in the interaction of a laser light pulse and a homogeneous magnetic field in arbitrary direction, with the addition of an harmonic term of force. In this chapter it is not sought to make a meticulous discussion of the involved physics and only we will present the algebraic procedure. In the chapter 4 we will present the integration method of the Lorentz force, and we will obtain the exact solution for the case of a pulse of a plane wave elliptically polarized of arbitrary amplitude spreading along an external magnetic field. The solution method will allow to decrease the solutions to the case in which we have an infinite waves train reported by Ondarza (10) and so the corresponding solutions will be obtained reported in the literature by other authors. The main contribution in this part will be the one of obtaining an exact solution for the problem of the interaction of an electromagnetic pulse, modulated by a form of gaussian type, and a charged particle. The above-mentioned approaches in acceptable measure to real situations in well-known experiments. It will be found that when the form of the pulse is introduced to modulate the electromagnetic field, an amplification of the resonance zone in the solutions appears. Such resonance depends of the external magnetic field that fixes by turns the cyclotron frequency, and of the number of optical cycles that compose the encircling one that modulates the pulse form. In the chapter 5 it will see the case of small oscillations free of

  1. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  2. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Directory of Open Access Journals (Sweden)

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  3. Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.

    Science.gov (United States)

    Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P

    2018-05-02

    Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.

  4. The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2018-01-01

    Full Text Available Objectives: To evaluate the effect of intense pulsed light (IPL on Trichophyton rubrum and investigate its mechanism of action.Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI pretreatment was determined by MTT assays. The reactive oxygen species (ROS were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA content and superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR analysis, and micromorphology was observed using scanning electron microscopy (SEM. In addition, fungal keratinase activity was detected by measuring dye release from keratin azure.Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001. The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes.Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.

  5. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    Science.gov (United States)

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  7. Magnetorheological Damper Working in Squeeze Mode

    Directory of Open Access Journals (Sweden)

    Xinglong Gong

    2014-05-01

    Full Text Available This research is focused on evaluation of the magnetorheological fluids (MRFs based damper which works in squeeze mode. The operation direction of this damper is parallel to the direction of the external magnetic field. Before testing, commercial software ANSYS was used to analyze the magnetic field distribution inside the damper generated by charging current in the coil. The performance of the damper was tested by using the MTS809 (produced by MTS Systems Corporation, USA. For simulation of this damper, a mathematical model was set up. Experimental results showed that the small squeezed MR damper could produce large damping force; for example, the maximum damping force is nearly 6 kN, while the amplitude is 1.2 mm, the frequency is 1.0 Hz, and the current is 2.0 A, and the damping force was controllable by changing the current in the coil. The damping force versus displacement curves are complex. We divide them into four regions for simulation. The maximum damper force increased quickly with the increasing of the current in coil. This kind of damper can be used in vibration isolation for precise equipment.

  8. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  9. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    International Nuclear Information System (INIS)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  10. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-12-15

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  11. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light.

    Science.gov (United States)

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L

    2018-04-12

    The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Modulation of the electroluminescence emission from ZnO/Si NCs/p-Si light-emitting devices via pulsed excitation

    Science.gov (United States)

    López-Vidrier, J.; Gutsch, S.; Blázquez, O.; Hiller, D.; Laube, J.; Kaur, R.; Hernández, S.; Garrido, B.; Zacharias, M.

    2017-05-01

    In this work, the electroluminescence (EL) emission of zinc oxide (ZnO)/Si nanocrystals (NCs)-based light-emitting devices was studied under pulsed electrical excitation. Both Si NCs and deep-level ZnO defects were found to contribute to the observed EL. Symmetric square voltage pulses (50-μs period) were found to notably enhance EL emission by about one order of magnitude. In addition, the control of the pulse parameters (accumulation and inversion times) was found to modify the emission lineshape, long inversion times (i.e., short accumulation times) suppressing ZnO defects contribution. The EL results were discussed in terms of the recombination dynamics taking place within the ZnO/Si NCs heterostructure, suggesting the excitation mechanism of the luminescent centers via a combination of electron impact, bipolar injection, and sequential carrier injection within their respective conduction regimes.

  13. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  14. Squeezing flow viscometry for nonelastic semiliquid foods--theory and applications.

    Science.gov (United States)

    Campanella, Osvaldo H; Peleg, Micha

    2002-01-01

    In most conventional rheometers, notably the coaxial cylinders and capillary viscometers, the food specimen is pressed into a narrow gap and its structure is altered by uncontrolled shear. Also, most semiliquid foods exhibit slip, and consequently the measurements do not always reflect their true rheological properties. A feasible solution to these two problems is squeezing flow viscometry where the specimen, practically intact and with or without suspended particles, is squeezed between parallel plates. The outward flow pattern mainly depends on the friction between the fluid and plates or its absence ("lubricated squeezing flow"). Among the possible test geometries, the one of constant area and changing volume is the most practical for foods. The test can be performed at a constant displacement rate using common Universal Testing Machines or under constant loads (creep array). The tests output is in the form of a force-height, force-time, or height-time relationship, from which several rheological parameters can be derived. With the current state of the art, the method can only be applied at small displacement rates. Despite the method's crudeness, its results are remarkably reproducible and sensitive to textural differences among semiliquid food products. The flow patterns observed in foods do not always follow the predictions of rheological models originally developed for polymer melts because of the foods' unique microstructures. The implications of these discrepancies and the role that artifacts may play are evaluated in light of theoretical and practical considerations. The use of squeezing flow viscometry to quantify rheological changes that occur during a product's handling and to determine whether they are perceived sensorily is suggested.

  15. Analysis of Cytokine Levels in Tears and Clinical Correlations After Intense Pulsed Light Treating Meibomian Gland Dysfunction.

    Science.gov (United States)

    Liu, Ruixing; Rong, Bei; Tu, Ping; Tang, Yun; Song, Wenjing; Toyos, Rolando; Toyos, Melissa; Yan, Xiaoming

    2017-11-01

    To investigate the change from baseline of inflammatory markers in tears of dry eye disease (DED) subjects owing to meibomian gland dysfunction (MGD) after intense pulsed light (IPL) treatment and meibomian gland expression (MGE) compared to sham treatment, and the correlations with ocular surface parameters. Randomized, double-masked, controlled study. Those randomized into the active treatment arm received 3 consecutive treatments (14∼16 J/cm 2 ) approximately 4 weeks apart in the periocular region. Control eyes received 3 treatments in the same intervals of 0 J/cm 2 . Tear samples in all eyes were collected and analyzed at baseline, week 12, and/or week 4 for interleukin (IL)-17A, IL-6, and prostaglandin E2 (PGE2). The correlations between cytokines and ocular surface parameters were analyzed before and after IPL treatment. All of the inflammatory markers declined in value compared to baselines. IL-17A and IL-6 showed statistically significant decreases compared to sham treatment at each measured time point. PGE2 showed statistically significant decreases compared to sham at week 12. Results showed that the expressions of IL-17A and IL-6 correlated well with ocular surface parameters of the lower eyelid before IPL. The changed values of IL-6 and PGE2 in tears correlated with the changed values of partial ocular surface parameters after IPL treatment in study eyes, respectively. The study results suggest that IPL can significantly reduce inflammatory markers in tears of patients suffering with DED owing to MGD after IPL treatment. These findings indicate that IL-17A and IL-6 play roles in the pathogenesis of DED owing to MGD, and the reduction of the inflammatory factors is consistent with the improvement of partial clinical symptoms and signs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D. [Champion Technologies, Inc., Houston, TX (United States); Setia, D.E.A. [FMT Production Duri P.T. Caltex Pacific Indonesia (Indonesia); Hinrichsen, C.J. [Texaco Panama, Bellaire, TX (United States); Sujana, W. [P.T. Champion Kumia Djaja Technologies, Jakarta (Indonesia)

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  17. Phenomenology of the squeezed hadronic correlations at RHIC energies

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Dudek, Danuce M.; Socolowski, Otavio Jr.

    2012-01-01

    We briefly review the basic theoretical results on bosonic back-to-back correlations (bBBC) and compare our predictions with the first experimental search for squeezed correlations of K + K - pairs, performed by PHENIX. The hadronic squeezed correlations are very sensitive to the functional form of the time emission distribution. The comparison is made for three different kaon time distributions. From such comparison we show that the outcome of the experimental search may still be inconclusive but it does not exclude the existence of squeezing effects on hadrons with in-medium modified masses already at RHIC energies. (author)

  18. Squeezing in an injection-locked semiconductor laser

    Science.gov (United States)

    Inoue, S.; Machida, S.; Yamamoto, Y.; Ohzu, H.

    1993-09-01

    The intensity-noise properties of an injection-locked semiconductor laser were studied experimentally. The constant-current-driven semiconductor laser producing the amplitude-squeezed state whose intensity noise was reduced below the standard quantum limit (SQL) by 0.72 dB was injection-locked by an external master laser. The measured intensity-noise level of the injection-locked semiconductor laser was 0.91 dB below the SQL. This experimental result indicates that a phase-coherent amplitude-squeezed state or squeezed vacuum state together with a reference local oscillator wave can be generated directly by semiconductor laser systems.

  19. Comparing Two Methods of Cryotherapy and Intense Pulsed Light with Triamcinolone Injection in the Treatment of Keloid and Hypertrophic Scars: A Clinical Trial

    OpenAIRE

    Meymandi, Simin Shamsi; Moosazadeh, Mahmood; Rezazadeh, Azadeh

    2016-01-01

    Objectives Keloid and hypertrophic scars are abnormal manifestations of wounds that occur following skin injuries in the form of local proliferation of fibroblasts and increased production of collagen. There are several ways to cure these scars; treatment must be selected based on the nature of the scars. In this clinical trial, two methods?cryotherapy and intense pulsed light (IPL)?are compared in the treatment of scars, and the results are presented in terms of improvement level, complicati...

  20. Phonon squeezed states: quantum noise reduction in solids

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1999-03-01

    This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.

  1. Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1997-03-01

    We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.

  2. Price squeezes in electric power: The new Battle of Concord

    International Nuclear Information System (INIS)

    Kwoka, J.E. Jr.

    1992-01-01

    The US Court of Appeals opinion in Town of Concord v. Boston Edison offers a vigorous statement of the position that in a regulated market, what may appear to be a price squeeze almost certainly cannot harm the competitive process and therefore should not be held to violate the antitrust laws. While not disputing the possibility of self-serving claims of price squeezes, this article shows that truly anticompetitive price squeezes may indeed occur in the electric power industry and cannot be so readily dismissed. This analysis begins with a brief factual and economic background on price squeezes, then addresses arguments made in Concord and elsewhere seeking to disprove their possibility, and demonstrate that sound economics and good policy require a more balanced approach

  3. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  4. Squeeze-film damping characteristics of cantilever microresonators ...

    African Journals Online (AJOL)

    user

    perturbation approach does not apply to cantilever plates because of ...... Direct coupling of electrostatic and structural domain has been achieved using ... forces are computed to obtain the modal squeeze stiffness and damping parameters.

  5. Understanding squeezing of quantum states with the Wigner function

    Science.gov (United States)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  6. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  7. Squeezing of thermal and quantum fluctuations: Universal features

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Flensberg, Karsten

    1993-01-01

    We study the classical and quantum fluctuations of a general damped forced oscillator close to a bifurcation instability. Near the instability point, the fluctuations are strongly phase correlated and are squeezed. In the limit of low damping, it is shown that the system has universal features when...... scaled with the damping. The same scaling law applies to the classical and to the quantum regimes. We furthermore show that the coupling to the environment is crucial in the generation of squeezed fluctuations....

  8. Resonance fluorescence from an atom in a squeezed vacuum

    Science.gov (United States)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  9. Squeezed condensate and confinement in a scalar model

    International Nuclear Information System (INIS)

    Blaschke, D.; Pavel, H.P.; Roepke, G.; Peradze, G.; Pervushin, V.N.

    1996-01-01

    The generating functional of a free scalar field theory is generalized to the case of a squeezed vacuum. The squeezed vacuum is prepared by macroscopically populating the original vacuum with pairs of zero energy particles. It is shown that the corresponding quark propagator has no poles on the real-k 2 axis which can be interpreted as quark confinement. In contrast, a scalar meson-like bound state exists as solution of the corresponding Bethe-Salpeter equation. 20 refs

  10. High potential oxidation-reduction titration of absorbance changes induced by pulsed laser and continuous light in chromatophores of photosynthesizing bacteria Rhodospirillum rubrum and Ectothiorhodospira shaposhnikovii

    International Nuclear Information System (INIS)

    Remennikov, S.M.; Chamorovsky, S.K.; Kononenko, A.A.; Venediktov, P.S.; Rubin, A.B.

    1975-01-01

    The photoreactions, activated both by pulsed laser and continuous light were studied in the membranes of isolated bacterial chromatophores poised at different oxidation-reduction potentials over a range of +200 mV to +500 mV. In Rhodospirillum rubrum a midpoint potential of oxidation-reduction curves for the laser-induced positive absorbance changes centred around 430 nm and carotenoid red shifts coincides with that for continuous light-induced absorbance changes, bleaching at 865 nm and blue shift at 800 nm, of the photosynthetic reaction centre bacteriochlorophyll. In Ectothiorhodospira shaposhnikovii the photosynthetic reaction centre bacteriochlorophyll, its photooxidation can be seen as light-induced absorbance changes, bleaching at 890 nm, blue shift at 800 nm and broad band appearance near 440 nm, has a midpoint oxidation-reduction potential of +390 mV at pH 7.4. The analysis of the oxidation-reduction titration curves for the high-potential c-type cytochrome absorbance changes induced both by pulsed laser and continuous light allowed to show that at least two haems of this cytochrome with a midpoint potential of +290 mV (pH 7.4), associated with each reaction centre bacteriochlorophyll, can donate electrons to the oxidized pigment directly

  11. Teleportation of squeezing: Optimization using non-Gaussian resources

    Science.gov (United States)

    Dell'Anno, Fabio; de Siena, Silvio; Adesso, Gerardo; Illuminati, Fabrizio

    2010-12-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.022301 76, 022301 (2007); F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012333 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  12. Teleportation of squeezing: Optimization using non-Gaussian resources

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio; Adesso, Gerardo

    2010-01-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell'Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. A 76, 022301 (2007); F. Dell'Anno, S. De Siena, and F. Illuminati, ibid. 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  13. Squeezing-out dynamics in free-standing smectic films

    Energy Technology Data Exchange (ETDEWEB)

    S̀liwa, Izabela, E-mail: izasliwa@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznaǹ (Poland); Vakulenko, A.A. [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation); Zakharov, A.V., E-mail: alexandre.zakharov@yahoo.ca [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation)

    2016-05-06

    Highlights: • We model the dynamics of layer transitions. • We model the thermally activated nucleation of a small hole. • We model the dynamics of squeezing-out one layer. - Abstract: We have carried out a theoretical study of the dynamics of the squeezing-out of one layer from the N-layer free-standing smectic film (FSSF) coupled with a meniscus, during the layer-thinning process. Squeezing-out is initiated by a thermally activated nucleation process in which a density fluctuation forms a small void in the center of the circular FSSF. The pressure gradient develops between the squeezed-out and nonsqueezed-out areas and is responsible for the driving out of one or several layer(s) from the N-layer smectic film. The dynamics of the boundary between these areas in the FSSF is studied by the use of the conservation laws for mass and linear momentum with accounting for the coupling between the meniscus and the smectic film. This coupling has a strong effect on the dynamics of the squeezing-out process and may significantly change the time which is needed to completely squeezed-out one or several layer(s) from the N-layer smectic film.

  14. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling.

    Science.gov (United States)

    Thüring, André; Gräf, Christian; Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman

    2009-03-15

    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on what we believe to be the first experimental realization of a TSR Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked, and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4 dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

  15. Relativistic dynamics of an electron in a pulse of laser light with propagation along of an external magnetic field

    International Nuclear Information System (INIS)

    Gomez, F.; Ondarza, R.

    2003-01-01

    The exact solution for the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized spreading along a static and homogeneous magnetic field is obtained starting from the equation of force. The solution method allows to solve, in terms of the phase, the trajectory of an accelerated particle by a pulse of arbitrary width and modulated by an encircling in Gaussian form. The reported solutions in this work have diverse applications in the laser-plasma interaction physics. (Author)

  16. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    Science.gov (United States)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  17. Generation of shock fronts in the interaction of the short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.

    2004-01-01

    The plasma is the state of the matter but diffused in the nature. The sun and the stars big heaps of hot plasma can be considered. The external surface of the terrestrial atmosphere this recovered by a layer of plasma. All gassy discharge (lightning spark arch etc.) this related with the formation of plasma. This way, 99 percent of our environment this formed almost of plasma. It is denominated plasma to the ionized gas in the one which all or most of the atoms have lost one or several of the electrons that belonged him, becoming positive ions and free electrons. In the plasma certain physical characteristics exist as for their behavior like they are the collective movements the quasi neutrality, the Debye length, the uncertainty etc. All these behaviors make that the study of the plasma is complex. For this they exist technical of numeric simulation joined to the technological advance of big computers of more capacity and prosecution speed. The simulation techniques of particles are those where a numeric code is built based on a model or theory of a system that it is wanted to investigate. This way through the simulation the results are compared with those theoretical predictions based on an analytic model. The applications of the physics of the plasma are multiple however we focus ourselves in the interaction laser-plasma. Both finish decades of investigation in the interaction of lasers with plasma they have been carried out in laboratories of Europe, Japan, United States. This studies concern the propagation of intense light laser in dense plasma homogeneous, the radiation absorption in cold plasma and problems related with the generation of suprathermal electrons among others. Other areas of the physics of the plasma-laser interaction that it has been considerable attention is the broadly well-known field as parametric uncertainties induced instabilities by the light and that they include the dispersions for example stimulated Raman and Brillouin being able to

  18. Effectiveness of the squeezing out and final squeezing out of petroleum of an increased viscosity by alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    The remaining petroleum in the flooded zone is determined by the ratio of viscosity forces to the forces of the surface tension, which are expressed by the coefficient Ka. With this, for each kind of porous medium, there exists a natural cricial value Ka. For the purpose of studying the effect of the given parameters on the value of the remaining petroleum, experiments were carried out on artificial specimens. In the tests, using petroleum of the Mishkin deposit, the surface tension on the boundary of the petroleum with the distilled water and alkaline solutions were respectively equal to 37.1 and 1.33 dynes per centimeter. The experiments showed, that the squeezing out of the petroleum with water or alkaline solutions leads to similar results. This means, that the composite parameter Ka does not affect the value of the remaining petroleum saturation. The effectiveness of the final squeezing out of the petroleum of increased viscosity was also studied. These experiments were carried out in two variations of the injection of the squeezed out agent: in the first variation, the petroleum was squeezed out with water in the first stage, and in the second stage it was squeezed out by an alkaline solution, and in the subsequent stages, a change in the squeezing out agent took place. By finishing the first stage, the attained values of the coefficients of the squeezing out were practically similar (0.72). In the second stage, the final squeezing out of the petroleum with a solution of alkaline, provided a major effect.

  19. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  20. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    Science.gov (United States)

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  1. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  2. Squeezed noise in precision force measurements

    International Nuclear Information System (INIS)

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  3. The effects of pulse cycloheximide treatments on the light-induced recovery of mitotic divisions in antheridial filaments of Chara vulgaris

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Within the proliferative period of spermatogenesis in Chara vulgaris, the progression throughout successive cell divisions in antheridial filaments is greatly influenced by changes in photoperiodic conditions. The extended (4-day period of total darkness brings about cell cycle arrest in the early G2 phase. The recovery of mitosis requires about 20 hours of exposition to light. In the present study, a series of 8 pulse incubations of plants in cycloheximide (Cx; 2.5 mg/I, 2.5 h each pulse were performed within the period elapsing till the resumption of mitotic divisions. Depending on the time of treatment, the effects induced by Cx vary considerably. Within the first 10 hs of exposition to light, incubations with Cx result in the delays of mitoses; within the period between the 10th and the 17th h, mitotic divisions become blocked, and, following the 17.5 h of light-induced recovery, no influence of Cx is noticed on mitotic activity, as compared with the untreaed control plants. The obtained results provide a starting point for the characteristic of proteins synthesized during the G2 phase and a preliminary study on those mechanisms, which become engaged in the regulation of the G1-deficient cell cycle evidenced in antheridial filaments of Chara.

  4. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  5. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2013-10-01

    Full Text Available Mariana G Figueiro, Andrew Bierman, Mark S ReaLighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USAAbstract: A model of circadian phototransduction was published in 2005 to predict the spectral sensitivity of the human circadian system to narrow-band and polychromatic light sources by combining responses to light from the spectral-opponent “blue” versus “yellow” cone bipolar pathway with direct responses to light by the intrinsically photosensitive retinal ganglion cells. In the model, depolarizing “blue” responses, but not hyperpolarizing “yellow” responses, from the “blue” versus “yellow” pathway are combined with the intrinsically photosensitive retinal ganglion cell responses. Intrinsically photosensitive retinal ganglion cell neurons are known to be much slower to respond to light than the cone pathway, so an implication of the model is that periodic flashes of “blue” light, but not “yellow” light, would be effective for stimulating the circadian system. A within-subjects study was designed to test the implications of the model regarding retinal exposures to brief flashes of light. The study was also aimed at broadening the foundation for clinical treatment of circadian sleep disorders by delivering flashing light through closed eyelids while people were asleep. In addition to a dark control night, the eyelids of 16 subjects were exposed to three light-stimulus conditions in the phase delay portion of the phase response curve while they were asleep: (1 2-second flashes of 111 W/m2 of blue (λmax ≈ 480 nm light once every minute for 1 hour, (2 131 W/m2 of green (λmax ≈ 527 nm light, continuously on for 1 hour, and (3 2-second flashes of the same green light once every minute for 1 hour. Inferential statistics showed that the blue flash light-stimulus condition significantly delayed circadian phase and significantly suppressed nocturnal melatonin. The results of this study further our

  6. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Science.gov (United States)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    The Commission of the European Union (EU) conceived its Fifth Framework Programme (FP5) to identify the priorities for the European Union's research, technological development and demonstration activities for the period 1998-2002. By encouraging collaborative research between groups in different member countries, FP5 was intended to help solve problems the EU is facing and respond to major socio-economic challenges. The programme focused on a number of objectives and areas combining technological, industrial, economic, social and cultural aspects. A specific call was made, under its `Quality of Life and Management of Living Resources' section, for proposals which aim to explore improvements in non-invasive methods of imaging for early diagnosis and clinical evaluation of disease. Among the projects successfully funded under the FP5 programme was one entitled `Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light', known by its acronym OPTIMAMM. The project involved a consortium of nine partners, comprising ten applied science and clinical research groups based in six EU countries, with overall administration and management provided by the Physikalisch-Technische Bundesanstalt, Berlin, Germany. The broad aim of the OPTIMAMM project was to combine multi-disciplinary basic (physics, engineering, mathematics, computer science) and clinical (oncology, histology) research to assess the diagnostic potential of time-domain optical and photoacoustic mammography as novel, non-invasive imaging modalities for the detection and clinical evaluation of breast lesions. Funding for the project, at a total cost of about 1.67 MEuro, began in December 2000 for a period of three years, although a zero-cost extension was granted to enable the ongoing project activities to continue until the end of May 2004. The importance of developing new tools for the detection and diagnosis of breast disease is evident from the very high incidence and

  7. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM to predict tunnel squeezing based on four parameters, that is, diameter (D, buried depth (H, support stiffness (K, and rock tunneling quality index (Q. We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes.

  8. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    Science.gov (United States)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  9. Light field driven streak-camera for single-shot measurements of the temporal profile of XUV-pulses from a free-electron laser; Lichtfeld getriebene Streak-Kamera zur Einzelschuss Zeitstrukturmessung der XUV-Pulse eines Freie-Elektronen Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fruehling, Ulrike

    2009-10-15

    The Free Electron Laser in Hamburg (FLASH) is a source for highly intense ultra short extreme ultraviolet (XUV) light pulses with pulse durations of a few femtoseconds. Due to the stochastic nature of the light generation scheme based on self amplified spontaneous emission (SASE), the duration and temporal profile of the XUV pulses fluctuate from shot to shot. In this thesis, a THz-field driven streak-camera capable of single pulse measurements of the XUV pulse-profile has been realized. In a first XUV-THz pump-probe experiment at FLASH, the XUV-pulses are overlapped in a gas target with synchronized THz-pulses generated by a new THz-undulator. The electromagnetic field of the THz light accelerates photoelectrons produced by the XUV-pulses with the resulting change of the photoelectron momenta depending on the phase of the THz field at the time of ionisation. This technique is intensively used in attosecond metrology where near infrared streaking fields are employed for the temporal characterisation of attosecond XUV-Pulses. Here, it is adapted for the analysis of pulse durations in the few femtosecond range by choosing a hundred times longer far infrared streaking wavelengths. Thus, the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and techniques with attosecond resolution is filled. Using the THz-streak camera, the time dependent electric field of the THz-pulses was sampled in great detail while on the other hand the duration and even details of the time structure of the XUV-pulses were characterized. (orig.)

  10. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Plancken, van der I.; Hendrickx, M.E.; Matser, A.M.

    2011-01-01

    Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial

  11. The radiofrequency frontier: a review of radiofrequency and combined radiofrequency pulsed-light technology in aesthetic medicine.

    Science.gov (United States)

    Sadick, Neil; Sorhaindo, Lian

    2005-05-01

    Radiofrequency (RF) and combined RF light source technologies have established themselves as safe and effective treatment modalities for several dermatologic procedures, including skin tightening, hair and leg vein removal, acne scarring, skin rejuvenation, and wrinkle reduction. This article reviews the technology, clinical applications, and recent advances of RF and combined RF light/laser source technologies in aesthetic medicine.

  12. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  13. Quantum entanglement and nonlocality properties of two-mode Gaussian squeezed states

    International Nuclear Information System (INIS)

    Shao-Hua, Xiang; Bin, Shao; Ke-Hui, Song

    2009-01-01

    Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing parameter and the difference of the two single-mode squeezing parameters. For the same two-mode squeezing parameter, these states show larger entanglement than the usual two-mode squeezed vacuum state. The violation of Bell inequality depends strongly on all the squeezing parameters of these states and disappears completely in the limit of large squeezing. In particular, these states can exhibit much stronger violation of local realism than two-mode squeezed vacuum state in the range of experimentally available squeezing values. (general)

  14. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  15. Slowing Quantum Decoherence by Squeezing in Phase Space

    Science.gov (United States)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  16. Slip analysis of squeezing flow using doubly stratified fluid

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-06-01

    The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.

  17. Novel polymeric phosphonate scale inhibitors for improved squeeze treatment lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, G.E.; Poynton, N.; McLaughlin, K.; Clark, D.R.

    1996-12-31

    New patented chemistry has provided an exciting discovery which may be used to reduce costs in scale squeeze applications. Phosphomethylated polyamines (PMPAs) have been found to possess outstanding adsorption-desorption properties which generate long squeeze lifetimes. This paper describes the core-flood tests and modelling work, which highlight these properties, plus additional scale inhibition performance studies to demonstrate the all-round capabilities of this chemistry for squeeze treatments. An example of a PMPA is used to show the extremely viable adsorption and desorption isotherms. These illustrate the efficient way in which the desorption occurs to minimise the chemical in the returns with a benefit of reduced chemical content in the discharge. The PMPA also demonstrates that both polymer and phosphonate properties can be embraced in a single product (e.g. dual scale control mechanisms) confirming that this chemistry is a true polymeric phosphonate. 13 refs., 12 figs., 1 tab.

  18. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    International Nuclear Information System (INIS)

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha; Bonelli, Ludmila

    2007-01-01

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ( 99m Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with 99m Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with 99m Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with 99m Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  19. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-graduacao em Ciencias da Saude; Santos-Filho, Sebastiao David; Adenilson de Souza da Fonseca; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental; Ariel Ronzio, Oscar [Universidad de Buenos Aires (Argentina); Bonelli, Ludmila [Universidade Salgado de Oliveira, Belo Horizonte, MG (Brazil)

    2007-09-15

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ({sup 99m}Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with {sup 99m}Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with {sup 99m}Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with {sup 99m}Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  20. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    International Nuclear Information System (INIS)

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L.

    2007-01-01

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10 2 picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  1. Light dark matter candidates in intense laser pulses II: the relevance of the spin degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Villalba-Chávez, S.; Müller, C. [Institut für Theoretische Physik I, Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 1, 40225 Düsseldorf (Germany)

    2016-02-03

    Optical searches assisted by the field of a laser pulse might allow for exploring a variety of not yet detected dark matter candidates such as hidden-photons and scalar minicharged particles. These hypothetical degrees of freedom may be understood as a natural consequence of extensions of the Standard Model incorporating a hidden U(1)-gauge sector. In this paper, we study the effects induced by both candidates on the propagation of a probe electromagnetic wave in the vacuum polarized by a long laser pulse of moderate intensity, this way complementing our previous study [http://dx.doi.org/10.1007/JHEP06(2015)177]. We describe how the absence of a spin in the scalar charged carriers modifies the photon-paraphoton oscillations as compared with a fermionic minicharge model. In particular, we find that the regime close to their lowest threshold mass might provide the most stringent upper limit for minicharged scalars. The pure-laser based experiment investigated here could allow for excluding a sector in the parameter space of the particles which has not been experimentally ruled out by setups driven by dipole magnets. We explain how the sign of the ellipticity and rotation of the polarization plane acquired by a probe photon — in combination with their dependencies on the pulse parameters — can be exploited to elucidate the quantum statistics of the charge carriers.

  2. Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

    International Nuclear Information System (INIS)

    Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro

    2010-01-01

    In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM 10 mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational

  3. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    International Nuclear Information System (INIS)

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  4. Waveguide Cavity Resonator as a Source of Optical Squeezing

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2017-04-01

    We present the generation of continuous-wave optical squeezing from a titanium-in-diffused lithium niobate waveguide resonator. We directly measure 2.9 ±0.1 dB of single-mode squeezing, which equates to a produced level of 4.9 ±0.1 dB after accounting for detection losses. This device showcases the current capabilities of this waveguide architecture and precipitates more complicated integrated continuous-wave quantum devices in the continuous-variable regime.

  5. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    , the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.......75 atoms to improve the clock sensitivity of 10000 atoms by 2.05+0.34−0.37  dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks...

  6. Squeezing a wave packet with an angular-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G M [Departamento de Ciencias Exatas, Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com, E-mail: agmschmidt@pq.cnpq.br

    2009-06-19

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses {mu}({theta}), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field.

  7. Squeezing a wave packet with an angular-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G M

    2009-01-01

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses μ(θ), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field

  8. Displacement of microwave squeezed states with Josephson parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2015-07-01

    Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.

  9. The Wigner distribution function for squeezed vacuum superposed state

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Daoud, A.S.; AL-Laithy, M.A.; Naseem, E.N.

    2005-01-01

    In this paper, we construct the Wigner distribution function for a single-mode squeezed vacuum mixed-state which is a superposition of the squeezed vacuum state. This state is defined as a P-representation for the density operator. The obtained Wigner function depends, beside the phase-space variables, on the mean number of photons occupied by the coherent state of the mode. This mean number relates to the mean free path through a given relation, which enables us to measure this number experimentally by measuring the mean free path

  10. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  11. A faster urethral pressure reflectometry technique for evaluating the squeezing function

    DEFF Research Database (Denmark)

    Klarskov, Niels; Saaby, Marie-Louise; Lose, Gunnar

    2013-01-01

    Abstract Objective. Urethral pressure reflectometry (UPR) has shown to be superior in evaluating the squeeze function compared to urethral pressure profilometry. The conventional UPR measurement (step method) required up to 15 squeezes to provide one measure of the squeezing opening pressure...

  12. A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation

    International Nuclear Information System (INIS)

    Chuan-Mei, Xie; Shao-Long, Wan; Hong-Yi, Fan

    2010-01-01

    Based on the displacement-squeezing related squeezed coherent state representation |z) g and using the technique of integration within an ordered product of operators, this paper finds a generalized Fresnel operator, whose matrix element in the coordinate representation leads to a generalized Collins formula (Huygens–Fresnel integration transformation describing optical diffraction). The generalized Fresnel operator is derived by a quantum mechanical mapping from z to sz - rz * in the |z) g representation, while |z) g in phase space is graphically denoted by an ellipse. (classical areas of phenomenology)

  13. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    International Nuclear Information System (INIS)

    Dalton, B J; Goold, J; Garraway, B M; Reid, M D

    2017-01-01

    entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable

  14. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable

  15. Quantum states of light

    CERN Document Server

    Furusawa, Akira

    2015-01-01

    This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.

  16. Investigations, Experiments, and Implications for using existing Pulse Magnets for 'TOPOFF' Operation at the Advanced Light Source

    International Nuclear Information System (INIS)

    Stover, Gregory D.; Baptiste, Kenneth Michael; Barry, Walter; Gath, William; Julian, James; Kwiatkowski, Slawomir; Prestemon, Soren; Schlueter, Ross; Shuman, Derek; Steier, Christoph

    2005-01-01

    ALS top-off mode of operation will require injection of the electron beam from the Booster Ring into the Storage Ring at the full ALS energy level of 1.9 GeV. Currently the Booster delivers a beam at 1.5 GeV to the Storage Ring where it is then ramped to the full energy and stored for the user operation. The higher Booster beam energy will require the pulse magnets in the Booster and Storage Rings to operate at proportionally higher magnetic gap fields. Our group studied and tested the possible design and installation modifications required to operate the magnets and drivers at ''top-off'' levels. Our results and experiments show that with minor electrical modifications all the existing pulse magnet systems can be used at the higher energy levels, and the increased operational stresses should have a negligible impact on magnet reliability. Furthermore, simple electrical modifications to the storage ring thick septum will greatly reduce the present level of septum stray leakage fields into the storage ring beam

  17. Probe transparency in a two-level medium embedded by a squeezed vacuum

    International Nuclear Information System (INIS)

    Swain, S.; Zhou, P.

    1994-08-01

    Effect of the detuning on the probe absorption spectra of a two-level system with and without a classically driven field in a squeezed vacuum is investigated. For a strong squeezing, there is a threshold which determines the positions and widths of the absorption peaks, for the squeezed parameter M. In a large detuning, the spectra exhibit some resemblance to the Fano spectrum. The squeezing-induced transparency occurs at the frequency 2ω L - ω A in the minimum-uncertainty squeezed vacuum. This effect is not phase-sensitive. (author). 15 refs, 8 figs

  18. Squeezing, photon bunching, photon antibunching and nonclassical photon statistics in degenerate hyper Raman processes

    International Nuclear Information System (INIS)

    Sen, Biswajit; Mandal, Swapan

    2007-01-01

    An initially prepared coherent state coupled to a second-order nonlinear medium is responsible for stimulated and spontaneous hyper Raman processes. By using an intuitive approach based on perturbation theory, the Hamiltonian corresponding to the hyper Raman processes is analytically solved to obtain the temporal development of the field operators. It is true that these analytical solutions are valid for small coupling constants. However, the interesting part is that these solutions are valid for reasonably large time. Hence, the present analytical solutions are quite general and are fresh compared to those solutions under short-time approximations. By exploiting the analytical solutions of field operators for various modes, we investigate the squeezing, photon antibunching and nonclassical photon statistics for pure modes of the input coherent light responsible for hyper Raman processes. At least in one instance (stimulated hyper Raman processes for vibration phonon mode), we report the simultaneous appearance of classical (photon bunching) and nonclassical (squeezing) effects of the radiation field responsible for hyper Raman processes

  19. Squeezing and entangling nuclear spins in helium 3

    DEFF Research Database (Denmark)

    Reinaudi, Gael; Sinatra, Alice; Dantan, Aurelien Romain

    2007-01-01

    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study t...

  20. Quantum reconstruction of an intense polarization squeezed optical state

    DEFF Research Database (Denmark)

    Marquardt, Ch.; Heersink, J.; Dong, R.

    2007-01-01

    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space, providing a full quantum mechanical characteri...

  1. Squeezed states from a quantum deformed oscillator Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)

    2016-03-11

    The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.

  2. Scoping study on coastal squeeze in the Ayeyarwady Delta

    NARCIS (Netherlands)

    Kroon, M.E.N.; Rutten, M.M.; Stive, M.J.F.; Wunna, S.

    2015-01-01

    Coastal squeeze is the reduction in the space of coastal habitats to operate (Phan et al, 2014) and an important cause for coastline retreat, increase in flood risk, salinity intrusion etc. Land use changes, such as deforestation and urbanization, reduce the space of natural habitats, such as

  3. A Study Of Magnetic Fluid Based Squeeze Film Between Porous ...

    African Journals Online (AJOL)

    Efforts have been made to study and analyze the effect of surface roughness on the performance of magnetic fluid based squeeze film between porous elliptic plates. The transverse roughness of the bearing surface is characterized by a stochastic random variable with non-zero mean, variance and skewness.

  4. US nuclear industry plans squeeze on O and M costs

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United States nuclear industry, still the largest in the world with 107 operating commercial plants, wants to squeeze still more fat out of operation and maintenance costs. Success or failure could decide whether many operating units remain competitive with other forms of baseload electricity generation over the coming decade. (Author)

  5. Estimating the distribution of salt cavern squeeze using subsidence measurements

    NARCIS (Netherlands)

    Fokker, P.A.; Visser, J.

    2014-01-01

    We report a field study on solution mining of magnesium chloride from bischofite layers in the Netherlands at depths between 1500 and 1850 m. Subsidence that was observed in the area is due to part of the brine production being realized by cavern squeeze; some of which were connccted. Wc used an

  6. Polarization squeezing and entanglement produced by a frequency doubler

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2003-01-01

    The quantum mechanical polarization properties of a nondegenerate second harmonic generator, where a nonlinear type II crystal is placed inside a cavity, are investigated theoretically. We demonstrate the possibility of strong squeezing of the continuous Stokes parameters as well as strong...... entanglement between them....

  7. Geometric phases for nonlinear coherent and squeezed states

    International Nuclear Information System (INIS)

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  8. Squeezing effects of an atom laser: Beyond the linear model

    International Nuclear Information System (INIS)

    Jing Hui; Ge Molin; Chen Jingling

    2002-01-01

    We investigate the quantum dynamics and statistics of an atom laser by taking into account binary atom-atom collisions. The rotating wave approximation Hamiltonian of the system is solved analytically . We show that the nonlinear atom-atom interactions could yield periodic quadrature squeezing effects in the atom laser output beam, although the input radio frequency field is in a Glauber coherent state

  9. Why the Marriage Squeeze Cannot Cause Dowry Inflation

    NARCIS (Netherlands)

    Anderson, K.S.

    2000-01-01

    It has been argued that rising dowry payments are caused by population growth.According to that explanation, termed the `marriage squeeze', a population increase leads to an excess supply of brides since men marry younger women.As a result, dowry payments rise in order to clear the marriage

  10. Kinetics of polymer degradation in solution. 6. Laser flash photolysis and pulse radiolysis studies of polymethylvinylketone in solution using the light scattering detection method

    Energy Technology Data Exchange (ETDEWEB)

    Lindenau, D; Beavan, S W; Beck, G; Schnabel, W [Hahn-Meitner-Institut fuer Kernforschung Berlin G.m.b.H. (Germany, F.R.)

    1977-01-01

    Polymethylvinylketone (PMVK) was irradiated in solution with 2 ..mu..s pulses of 15 MeV electrons or with 15 ns flashes of 262 nm light. The change of the intensity of the light scattered by the solution (LSI) after the irradiation was measured. For the radiolysis experiments, a main chain scission process tausub(1/2) (decr) approximately 20 ..mu..s) and a subsequent crosslinking process (tausub(1/2) (incr) approximately 0.4 sec) could be discriminated. The LSI change pertaining to the main chain degradation was found to be due to disentanglement diffusion, whereas the LSI change pertaining to the crosslinking process could be correlated to a chemical reaction. The rate constant for combination of lateral macroradicals in acetone solution was estimated as 2 k/sub 2/ - (4.5 +- 1.5)10/sup 6/ M/sup -1/ sec/sup -1/. Stationary irradiation with /sup 60/Co-..gamma..-rays showed that PMVK is predominantly crosslinked to form a macrogel when irradiated in the solid state or in solution at concentrations greater than 100 g/l. At lower concentrations, microgel formation occurred. Photolysis of PMVK in solution yielded only main chain degradation. The LSI change was found to be due to disentanglement diffusion as during radiolysis. It was concluded that the same mechanism for main chain rupture is operative as in radiolysis. Stationary irradiations with uv light (lambda > 260 nm ) resulted in main chain degradation; no indication of crosslinking was obtained.

  11. Self-magnetically-insulated 'plasma-focus diode' as a new source of an intence pulsed light-ion beam

    International Nuclear Information System (INIS)

    Takahashi, Akira; Aga, Keigo; Masugata, Katsumi; Ito, Michiaki; Yatsui, Kiyoshi

    1986-01-01

    A new and simple type of self-magnetically-insulated diode named ''Plasma-Focus Diode'' has been successfully developed, where anode and cathode are constituted by a pair of coaxial cylindrical electrodes similarly to a Mather-type plasma-focus device. Operating conditions are typically as follows: inductively-calibrated diode voltage ∼ 660 kV, diode current ∼ 142 kA, total ion current ∼ 32 kA, pulse width ∼ 90 ns and diode efficiency ∼ 22 %. Multiple-shots operation more than 50 shots has been possible without changing flashboard. Local divergence angle has been observed to be 0.9 deg ∼ 1.6 deg. Using such a simple ion diode, we have demonstrated a possibility of high concentration of beam-power density onto a target placed at the center. (author)

  12. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  13. Entropy squeezing for a two—level atom in the Jaynes—Cummings model with an intensity—depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发; 等

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cumings model with intensity-dependent coupling using quantum information entropy,and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing.Our results show that,the squeezed component number depends on the atomic initial distribution angle,while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing.Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  14. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    Science.gov (United States)

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  15. In0.15Ga0.85N visible-light metal-semiconductor-metal photodetector with GaN interlayers deposited by pulsed NH3

    Science.gov (United States)

    Wang, Hongxia; Zhang, Xiaohan; Wang, Hailong; Lv, Zesheng; Li, Yongxian; Li, Bin; Yan, Huan; Qiu, Xinjia; Jiang, Hao

    2018-05-01

    InGaN visible-light metal-semiconductor-metal photodetectors with GaN interlayers deposited by pulsed NH3 were fabricated and characterized. By periodically inserting the GaN thin interlayers, the surface morphology of InGaN active layer is improved and the phase separation is suppressed. At 5 V bias, the dark current reduced from 7.0 × 10-11 A to 7.0 × 10-13 A by inserting the interlayers. A peak responsivity of 85.0 mA/W was measured at 420 nm and 5 V bias, corresponding to an external quantum efficiency of 25.1%. The insertion of GaN interlayers also lead to a sharper spectral response cutoff.

  16. Short-time fourth-order squeezing effects in spontaneous and stimulated four- and six-wave mixing processes

    International Nuclear Information System (INIS)

    Giri, Dilip Kumar; Gupta, P S

    2003-01-01

    The concept of fourth-order squeezing of the electromagnetic field is investigated in the fundamental mode in spontaneous and stimulated four- and six-wave mixing processes under the short-time approximation based on a fully quantum mechanical approach. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The possibility of obtaining fourth-order squeezing is studied. The dependence of fourth-order squeezing on the number of photons is also investigated. It is shown that fourth-order squeezing, which is a higher-order squeezing, allows a much larger fractional noise reduction than lower-order squeezing. It is shown that squeezing is greater in a stimulated process than the corresponding squeezing in spontaneous interaction. The conditions for obtaining maximum and minimum squeezing are obtained. We have also established the non-classical nature of squeezed radiation using the Glauber-Sudarshan representation

  17. Characterization of plastic scintillators for detection of radioactivity: Light yield, Time decay measurements and Neutron/γ Pulse Shape Discrimination

    International Nuclear Information System (INIS)

    Montbarbon, E.; Pansu, R.B.; Hamel, M.; Coulon, R.

    2015-07-01

    Since Helium-3 shortage, organic scintillators play a major role in neutron detection. CEA LIST decided to focus on plastic scintillators. By definition, a plastic scintillator is a radio-luminescent polymer; this means that it emits light after interaction with an ionizing radiation. A platform was developed to characterize lab-made prepared scintillators and to compare them with commercial scintillators. Three physicochemical criteria are determined with this unique platform. (authors)

  18. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of

  19. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    Energy Technology Data Exchange (ETDEWEB)

    Howansky, A; Peng, B; Lubinsky, A; Zhao, W [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) on an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of

  20. Are lasers superior to lights in the photoepilation of Fitzpatrick V and VI skin types? - A comparison between Nd:YAG laser and intense pulsed light.

    Science.gov (United States)

    Bs, Bibilash; Chittoria, Ravi Kumar; Thappa, Devinder Mohan; Mohapatra, Devi Prasad; Mt, Friji; S, Dineshkumar; Pandey, Sandhya

    2017-10-01

    There are no large volume comparative studies available to compare the efficacy of lasers over lights for hair removal in Fitzpatrick V and VI skin types. This study is designed to compare the efficacy of Nd:YAG laser versus IPL in the darker skin types. Thirty-nine patients included in Group-1 were treated with Nd:YAG and 31 in Group-2 with IPL. Both groups received 5 sessions of treatment. The hair counts were assessed using digital photography and manual counting method before and after treatment and the results were analysed. Patient satisfaction scores and pain scores were recorded in each session and compared. Mean hair reduction in the IPL group was 25.70 and Nd:YAG group was 24.12 (95% CI). In the Nd:YAG group, 59% of subjects had burning sensation while the figure was 32.3% in IPL group. Burning was less in IPL group (p < 0.023). There were no statistically significant differences noticed regarding hyperpigmentation in both the groups (p < 0.115). Both Nd:YAG and IPL are equally effective for epilation of the darker skin types. Nd:YAG is associated with mild burning sensation in a significant number of patients. Patient satisfaction scores were comparable in both the groups.

  1. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    Science.gov (United States)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  2. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    International Nuclear Information System (INIS)

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ (3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  3. Squeezed States and Uncertainty Relations. Abstracts

    International Nuclear Information System (INIS)

    Masahito, Hayashi; Reynaud, S.; Jaekel, M.Th.; Fiuraaek, J.; Garcia-Patron, R.; Cerf, N.J.; Hage, B.; Chelkowski, S.; Franzen, A.; Lastzka, N.; Vahlbruch, N.; Danzmann, K.; Schnabel, R.; Hassan, S.S.; Joshi, A.; Jakob, M.; Bergou, J.A.; Kozlovskii, A.V.; Prakash, H.; Kumar, R.

    2005-01-01

    The purpose of the conference was to bring together people working in the field of quantum optics, with special emphasis on non-classical light sources and related areas, quantum computing, statistical mechanics and mathematical physics. As a novelty, this edition will include the topics of quantum imaging, quantum phase noise and number theory in quantum mechanics. This document gives the program of the conference and gathers the abstracts

  4. Squeezing and other non-classical features in k-photon anharmonic oscillator in binomial and negative binomial states of the field

    International Nuclear Information System (INIS)

    Joshi, A.; Lawande, S.V.

    1990-01-01

    A systematic study of squeezing obtained from k-photon anharmonic oscillator (with interaction hamiltonian of the form (a † ) k , k ≥ 2) interacting with light whose statistics can be varied from sub-Poissonian to poissonian via binomial state of field and super-Poissonian to poissonian via negative binomial state of field is presented. The authors predict that for all values of k there is a tendency increase in squeezing with increased sub-Poissonian character of the field while the reverse is true with super-Poissonian field. They also present non-classical behavior of the first order coherence function explicitly for k = 2 case (i.e., for two-photon anharmonic oscillator model used for a Kerr-like medium) with variation in the statistics of the input light

  5. Squeezed states and Hermite polynomials in a complex variable

    International Nuclear Information System (INIS)

    Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.

    2014-01-01

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)

  6. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    Science.gov (United States)

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  7. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  8. Globalisation squeezes the public sector - is it so obvious?

    DEFF Research Database (Denmark)

    Andersen, Torben M.; Sørensen, Allan

    It is widely perceived that globalization squeezes public sector activities by making taxation more costly. This is attributed to increased factor mobility and to a more elastic labour demand due to improved scope for relocation of production and thus employment across countries. We argue...... that this consensus view overlooks that gains from trade unambiguously work to lower the marginal costs of public funds, and moreover that globalization via increased trade in intermediaries may actually lower the labour demand elasticity....

  9. An Experimental Study on Steel and Teflon Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    Asad A. Khalid

    2006-01-01

    Full Text Available In this paper, the vibration analysis on Teflon and steel squeeze film dampers has been carried out. At different frequency ranges, vibration amplitude and the resonance frequency are measured. The eccentricity ratio at resonance speed has been determined. Results show that the vibration amplitude of the steel damper is 10% less at resonance compared with the Teflon damper. On the other hand, saving weight of 36% has been achieved by using the Teflon damper.

  10. Noncritical quadrature squeezing through spontaneous polarization symmetry breaking

    OpenAIRE

    Garcia-Ferrer, Ferran V.; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J.; Roldán, Eugenio

    2010-01-01

    We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We consider first type-II frequency-degenerate optical parametric oscillators, but discard them for a number of reasons. Then we propose a four-wave mixing cavity in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity complete noise suppression in a quadrature of the output field occurs, irrespective of ...

  11. Noncritical quadrature squeezing through spontaneous polarization symmetry breaking.

    Science.gov (United States)

    Garcia-Ferrer, Ferran V; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J; Roldán, Eugenio

    2010-07-01

    We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.

  12. Possible Depolarization Mechanism due to Low Beta Squeeze

    International Nuclear Information System (INIS)

    Ranjbar, V.; Luccio, A.; Bai, M.

    2008-01-01

    Simulations reveal a potential depolarization mechanism during low beta squeeze. This depolarization appears to be driven by a spin tune modulation caused by spin precession through the strong low beta quads due to the vertical fields. The modulation of the spin tune introduces an additional snake resonance condition at ν s0 ± nν x - ν z l = integer which while the same numerology as the well known sextupole resonance, can operate in the absence of sextupole elements

  13. Third International Workshop on Squeezed States and Uncertainty Relations

    Science.gov (United States)

    Han, D. (Editor); Kim, Y. S. (Editor); Rubin, Morton H. (Editor); Shih, Yan-Hua (Editor); Zachary, Woodford W. (Editor)

    1994-01-01

    The purpose of these workshops is to bring together an international selection of scientists to discuss the latest developments in Squeezed States in various branches of physics, and in the understanding of the foundations of quantum mechanics. At the third workshop, special attention was given to the influence that quantum optics is having on our understanding of quantum measurement theory. The fourth meeting in this series will be held in the People's Republic of China.

  14. An Experimental and numerical Study for squeezing flow

    Science.gov (United States)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  15. China's marriage squeeze: A decomposition into age and sex structure.

    Science.gov (United States)

    Jiang, Quanbao; Li, Xiaomin; Li, Shuzhuo; Feldman, Marcus W

    2016-06-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China's male marriage squeeze. In this paper we develop an index we call "spousal sex ratio" (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China's marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market.

  16. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  17. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  18. Flower-Like Squeezing in the Motion of a Laser-Driven Trapped Ion

    Science.gov (United States)

    Nguyen, Ba An; Truong, Minh Duc

    We investigate the Nth order amplitude squeezing in the fan-state |ξ2k,f>F which is a linear superposition of the 2k-quantum nonlinear coherent states. Unlike in usual states where an ellipse is the symbol of squeezing, a 4k-winged flower results in the fan state. We first derive the analytical expression of squeezing for arbitrary k, N, f and then study in detail the case of a laser-driven trapped ion characterized by a specific form of the nonlinear function f. We show that the lowest order in which squeezing may appear and the number of directions along which the amplitude may be squeezed depend only on k whereas the precise directions of squeezing are determined also by the other physical parameters involved. Finally, we present a scheme to produce such fan-states.

  19. A group property for the coherent state representation of fermionic squeezing operators

    Science.gov (United States)

    Fan, Hong-yi; Li, Chao

    2004-06-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation.

  20. A group property for the coherent state representation of fermionic squeezing operators

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation

  1. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  2. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs

    International Nuclear Information System (INIS)

    Chmllowski, W.; Kondratoff, L.B.

    1992-01-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations

  3. On the Generation of Intermediate Number Squeezed State of the Quantized Radiation Field

    Science.gov (United States)

    Baseia, B.; de Lima, A. F.; Bagnato, V. S.

    Recently, a new state of the quantized radiation field — the intermediate number squeezed state (INSS) — has been introduced in the literature: it interpolates between the number state |n> and the squeezed state |z, α>=Ŝ(z)|α>, and exhibits interesting nonclassical properties as antibunching, sub-Poissonian statistics and squeezing. Here we introduce a slight modification in the previous definition allowing us a proposal to generate the INSS. Nonclassical properties using a new set of parameters are also studied.

  4. Optimization of Squeeze Casting Parameters for 2017 A Wrought Al Alloy Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Najib Souissi

    2014-04-01

    Full Text Available This study applies the Taguchi method to investigate the relationship between the ultimate tensile strength, hardness and process variables in a squeeze casting 2017 A wrought aluminium alloy. The effects of various casting parameters including squeeze pressure, melt temperature and die temperature were studied. Therefore, the objectives of the Taguchi method for the squeeze casting process are to establish the optimal combination of process parameters and to reduce the variation in quality between only a few experiments. The experimental results show that the squeeze pressure significantly affects the microstructure and the mechanical properties of 2017 A Al alloy.

  5. Experimental test of the strongly nonclassical character of a noisy squeezed single-photon state

    DEFF Research Database (Denmark)

    Jezek, M.; Tipsmark, A.; Dong, R.

    2012-01-01

    We experimentally verify the quantum non-Gaussian character of a conditionally generated noisy squeezed single-photon state with a positive Wigner function. Employing an optimized witness based on probabilities of squeezed vacuum and squeezed single-photon states, we prove that the state cannot...... be expressed as a mixture of Gaussian states. In our experiment, the non-Gaussian state is generated by conditional subtraction of a single photon from a squeezed vacuum state. The state is probed with a homodyne detector and the witness is determined by averaging a suitable pattern function over the measured...

  6. Enhanced squeezing of a collective spin via control of its qudit subsystems.

    Science.gov (United States)

    Norris, Leigh M; Trail, Collin M; Jessen, Poul S; Deutsch, Ivan H

    2012-10-26

    Unitary control of qudits can improve the collective spin squeezing of an atomic ensemble. Preparing the atoms in a state with large quantum fluctuations in magnetization strengthens the entangling Faraday interaction. The resulting increase in interatomic entanglement can be converted into metrologically useful spin squeezing. Further control can squeeze the internal atomic spin without compromising entanglement, providing an overall multiplicative factor in the collective squeezing. We model the effects of optical pumping and study the tradeoffs between enhanced entanglement and decoherence. For realistic parameters we see improvements of ~10 dB.

  7. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    Science.gov (United States)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  8. Pulsed Nd:YAG laser deposition of indium tin oxide thin films in different gases and organic light emitting device applications

    International Nuclear Information System (INIS)

    Yong, T.Y.; Tou, T.Y.; Yow, H.K.; Safran, G.

    2008-01-01

    The microstructures, electrical and optical properties of indium-doped tin oxide (ITO) films, deposited on glass substrates in different background gases by a pulsed Nd:YAG laser, were characterized. The optimal pressure for obtaining the lowest resistivity in ITO thin film is inversely proportional to the molecular weight of the background gases, namely the argon (Ar), oxygen (O 2 ), nitrogen (N 2 ) and helium (He). While substrate heating to 250 deg. C decreased the ITO resistivity to -4 Ω cm, obtaining the optical transmittance of higher than 90% depended mainly on the background gas pressure for O 2 and Ar. Obtaining the lowest ITO resistivity, however, did not beget a high optical transmittance for ITO deposition in N 2 and He. Scanning electron microscope pictures show distinct differences in microstructures due to the background gas: nanostructures when using Ar and N 2 but polycrystalline for using O 2 and He. The ITO surface roughness varied with the deposition distance. The effects on the molecularly doped, single-layer organic light emitting device (OLED) operation and performance were also investigated. Only ITO thin films prepared in O 2 and Ar are suitable for the fabrication OLED with performance comparable to that fabricated on the commercially available, magnetron-sputtered ITO

  9. Efficacy of Intense-pulsed Light Therapy with Topical Benzoyl Peroxide 5% versus Benzoyl Peroxide 5% Alone in Mild-to-moderate Acne Vulgaris: A Randomized Controlled Trial.

    Science.gov (United States)

    Mokhtari, Fatemeh; Gholami, Maryam; Siadat, Amir Hossein; Jafari-Koshki, Tohid; Faghihi, Gita; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen; Abtahi-Naeini, Bahareh

    2017-01-01

    Acne vulgaris is a disease of pilosebaceous unit with multifactorial pathogenesis and threats patients' social functioning. There is a growing research to find faster, more effective, and easy to use treatments. The aim of this study is to evaluate the efficacy of benzoyl peroxide 5% (BP) with and without concomitant intense-pulsed light (IPL) therapy in mild-to-moderate acne vulgaris. In this controlled trial, 58 eligible patients with mild-to-moderate acne and Fitzpatrick skin phototype III and IV were randomly allocated to two groups. All patients were asked to use a thin layer of BP every night. The IPL therapy was administered at the end of first, 2 nd , and 3 rd months. Acne Global Severity Scale (AGSS), Acne Severity Index (ASI), and total lesion counting (TLC) along with patient satisfaction were recorded. Patients were also examined 1 month after the final therapeutic visit. The IPL group showed greater reduction in AGSS ( P < 0.001) and TLC ( P = 0.005) than the control group. However, the difference in ASI was not significant ( P = 0.12). Patients in IPL groups were more satisfied than control group ( P < 0.001). Adding IPL to BP can result better response to BP alone. In acne treatment, combination therapy such as IPL and other topical agents should be kept in mind.

  10. Comparing Two Methods of Cryotherapy and Intense Pulsed Light with Triamcinolone Injection in the Treatment of Keloid and Hypertrophic Scars: A Clinical Trial.

    Science.gov (United States)

    Meymandi, Simin Shamsi; Moosazadeh, Mahmood; Rezazadeh, Azadeh

    2016-10-01

    Keloid and hypertrophic scars are abnormal manifestations of wounds that occur following skin injuries in the form of local proliferation of fibroblasts and increased production of collagen. There are several ways to cure these scars; treatment must be selected based on the nature of the scars. In this clinical trial, two methods-cryotherapy and intense pulsed light (IPL)-are compared in the treatment of scars, and the results are presented in terms of improvement level, complications, and patient satisfaction. This clinical trial was conducted in southeastern Iran. The intervention group included scars that underwent the IPL method and the control group, which consisted of scars that were subjected to cryotherapy. In both methods, intralesional corticosteroid injection was administered. To select samples, the easy sampling method was used. To determine the expected outcomes, the criteria determined in the Vancouver scar scale were used. Data were analyzed using the Mix Model, chi-square test, and t test. In this study, 166 samples of keloid and hypertrophic scars were cured using two methods (Cryotherapy, 83; IPL, 83). The recovery rate was higher in the Cryotherapy group than in the IPL group ( p  > 0.05), and the incidence of complications was also higher in the Cryotherapy group (14.5% vs. 12%). Moreover, patients were more satisfied, although not significantly so, with the cryotherapy method ( p  = 0.09). Both methods were highly successful in curing scars; participants were totally satisfied with both methods.

  11. Split-face comparison of intense pulsed light and nonablative 1,064-nm Q-switched laser in skin rejuvenation.

    Science.gov (United States)

    Huo, Meng-Hua; Wang, Yong-Qian; Yang, Xin

    2011-01-01

    Multiple nonablative skin rejuvenation techniques have been used to improve facial aging. To compare rejuvenation efficiency of intense pulsed light (IPL) with nonablative 1,064-nm Q-switched laser in Asian patients. Twelve female subjects were enrolled and received five sessions of treatments at 2-week intervals. A split-face study was performed, with IPL applied to the left side of the face and nonablative 1,064-nm Q-switched laser to the right side. All assessments showed significant skin rejuvenation. For the improvement of skin texture, pore size, and sebum secretion, similar efficiency from laser and IPL was observed. For lightening of skin tone and macula, the IPL was more efficient than the laser after the first treatment, although no further clinical improvement resulted after three treatments. The laser gradually lightened the skin tone and macula and was ultimately more efficient than the IPL after five treatments. A series of IPL and nonablative 1,064-nm Q-switched laser treatments were performed with similar efficiency and safety for the improvement in skin texture, pore size, and sebum secretion. IPL was faster, but nonablative 1,064-nm Q-switched laser was more effective in improving skin tone and macula. © 2010 by the American Society for Dermatologic Surgery, Inc.

  12. Is the pulsed xenon ultraviolet light no-touch disinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Restrepo, Marcos I; Ganachari-Mallappa, Nagaraja; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been shown to survive on ambient surfaces for extended periods of time. Leftover MRSA environmental contamination in a hospital room places future patients at risk. Manual disinfection supplemented by pulsed xenon ultraviolet (PX-UV) light disinfection has been shown to greatly decrease the MRSA bioburden in hospital rooms. However, the effect of PX-UV in the absence of manual disinfection has not been evaluated. Rooms that were previously occupied by a MRSA-positive patient (current colonization or infection) were selected for the study immediately postdischarge. Five high-touch surfaces were sampled, before and after PX-UV disinfection, in each hospital room. The effectiveness of the PX-UV device on the concentration of MRSA was assessed employing a Wilcoxon signed-rank test for all 70 samples with MRSA in 14 rooms, as well as by surface location. The final analysis included 14 rooms. Before PX-UV disinfection there were a total of 393 MRSA colonies isolated from the 5 high-touch surfaces. There were 100 MRSA colonies after disinfection by the PX-UV device and the overall reduction was statistically significant (P disinfection. These findings are important for hospital and environmental services supervisors who plan to adapt new technologies as an adjunct to routine manual disinfection. Published by Elsevier Inc.

  13. Within-patient right-left blinded comparison of diode (810 nm) laser therapy and intense pulsed light therapy for hair removal.

    Science.gov (United States)

    Cameron, H; Ibbotson, S H; Dawe, R S; Ferguson, J; Moseley, H

    2008-10-01

    Excessive facial hair in women can cause significant psychological distress. A variety of treatment methods are available, including lasers and, more recently, intense pulsed light (IPL) sources. There are very few studies comparing laser and IPL devices. The purpose of our study was to compare a laser diode device with an IPL, using a within-patient, right-left, assessor-blinded, controlled, study design. Hair counts were made, using coded close-up photographs. Treatments were carried out on three occasions at 6-week intervals, and a final assessment was made 6 weeks following the third treatment. Patient self-assessment was also included. Nine women were recruited, and seven completed the study. Average hair counts in a 16 cm(2) area before and after treatment were, respectively, 42.4 and 10.4 (laser), 38.1 and 20.4 (IPL), 45.3 and 44.7 (control). Both laser and IPL reduced the hair count substantially; laser vs control was significant at P=0.028, but IPL vs control had P=0.13, suggesting that more subjects or more treatments were required if statistical significance were to be achieved. Despite subjecting the patients to higher pain scores and more inflammation, laser was preferred by five patients; two preferred IPL and one had no preference.

  14. Tensor squeezed limits and the Higuchi bound

    Energy Technology Data Exchange (ETDEWEB)

    Bordin, Lorenzo [SISSA, via Bonomea 265, 34136, Trieste (Italy); Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Noreña, Jorge, E-mail: lbordin@sissa.it, E-mail: creminel@ictp.it, E-mail: mehrdadm@ias.edu, E-mail: jorge.norena@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile)

    2016-09-01

    We point out that tensor consistency relations—i.e. the behavior of primordial correlation functions in the limit a tensor mode has a small momentum—are more universal than scalar consistency relations. They hold in the presence of multiple scalar fields and as long as anisotropies are diluted exponentially fast. When de Sitter isometries are approximately respected during inflation this is guaranteed by the Higuchi bound, which forbids the existence of light particles with spin: de Sitter space can support scalar hair but no curly hair. We discuss two indirect ways to look for the violation of tensor consistency relations in observations, as a signature of models in which inflation is not a strong isotropic attractor, such as solid inflation: (a) graviton exchange contribution to the scalar four-point function; (b) quadrupolar anisotropy of the scalar power spectrum due to super-horizon tensor modes. This anisotropy has a well-defined statistics which can be distinguished from cases in which the background has a privileged direction.

  15. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2006-01-01

    We study the effects of frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency (EIT) on gravitational-wave (GW) interferometers. We propose the use of low-pass, bandpass, and high-pass EIT filters, an S-shaped EIT filter, and an intracavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous filter designs with regard to optical losses, compactness, and the tunability of the filter linewidth

  16. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger; Cheung, Howard; Gang, Hong; Ye, Wenjing

    2010-01-01

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze

  17. Light storage via slow-light four-wave mixing

    International Nuclear Information System (INIS)

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  18. Optimal unambiguous comparison of two unknown squeezed vacua

    International Nuclear Information System (INIS)

    Olivares, Stefano; Paris, Matteo G. A.; Sedlak, Michal; Rapsan, Peter; Busek, Vladimir

    2011-01-01

    We propose a scheme for the unambiguous state comparison (USC) of two unknown squeezed vacuum states of the electromagnetic field. Our setup is based on linear optical elements and photon-number detectors, and it achieves optimal USC in an ideal case of unit quantum efficiency. In realistic conditions, i.e., for nonunit quantum efficiency of photodetectors, we evaluate the probability of getting an ambiguous result as well as the reliability of the scheme, thus showing its robustness in comparison to previous proposals.

  19. Oscillatory squeeze flow for the study of linear viscoelastic behavior

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    2016-01-01

    of molten polymers and suspensions. The principal advantage of squeeze flow rheometer over rotational devices is the simplicity of the apparatus. It has no air bearing and is much less expensive and easier to use. Accuracy may be somewhat reduced, but for quality control purposes, it could be quite useful....... It might also find application as the central component of a high-throughput rheometer for evaluating experimental materials. The deformation is not simple shear, but equations have been derived to show that the oscillatory compressive (normal) force that is measured can serve as a basis for calculating...

  20. Lipid corralling and poloxamer squeeze-out in membranes

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2004-01-01

    Using x-ray scattering measurements we have quantitatively determined the effect of poloxamer 188 (P188), a polymer known to seal damaged membranes, on the structure of lipid monolayers. P188 selectively inserts into low lipid-density regions of the membrane and "corrals" lipid molecules to pack...... tightly, leading to unexpected Bragg peaks at low nominal lipid density and inducing lipid/poloxamer phase separation. At tighter lipid packing, the once inserted P188 is squeezed out, allowing the poloxamer to gracefully exit when the membrane integrity is restored....

  1. Analysis of an Electrostatic MEMS Squeeze-film Drop Ejector

    Directory of Open Access Journals (Sweden)

    Edward P. Furlani

    2009-10-01

    Full Text Available We present an analysis of an electrostatic drop-on-demand MEMS fluid ejector. The ejector consists of a microfluidic chamber with a piston that is suspended a few microns beneath a nozzle plate. A drop is ejected when a voltage is applied between the orifice plate and the piston. This produces an electrostatic force that moves the piston towards the nozzle. The moving piston generates a squeeze-film pressure distribution that causes drop ejection. We discuss the operating physics of the ejector and present a lumped-element model for predicting its performance. We calibrate the model using coupled structural-fluidic CFD analysis.

  2. Colliding During the Squeeze and β* Levelling in the LHC

    CERN Document Server

    Buffat, X; Lamont, M; Pieloni, T; Redaelli, S; Wenninger, J

    2013-01-01

    While significantly more complicated in term of operation, bringing the beams into collisions prior to the β squeeze rather than after presents some advantages. Indeed, the large tune spread arising from the non-linearity of head-on beam-beam interactions is profitable, as it can damp impedance driven instabilities much more efficiently than external non-linearity such as octupoles. Moreover, this operation allows to level the luminosity in the case when the peak luminosity is too high for the experiments. Operational issues are discussed and experimental results from the LHC are presented.

  3. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Abdalla, M Sebawe

    2011-01-01

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  4. Normalized Excited Squeezed Vacuum State and Its Applications

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong

    2007-01-01

    By using the intermediate coordinate-momentum representation in quantum optics and generating function for the normalization of the excited squeezed vacuum state (ESVS), the normalized ESVS is obtained. We find that its normalization constants obtained via two new methods are uniform and a new form which is different from the result obtained by Zhang and Fan [Phys. Lett. A 165 (1992) 14]. By virtue of the normalization constant of the ESVS and the intermediate coordinate-momentum representation, the tomogram of the normalized ESVS and some useful formulae are derived.

  5. Variance squeezing and entanglement of the XX central spin model

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abdalla, M Sebawe, E-mail: m.sebaweh@physics.org [Mathematics Department, College of Science, King Saud University PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2011-01-21

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  6. Squeezing of higher order Hermite-Gauss modes

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard

    2008-01-01

    The present paper gives an overview of the experimental generation of squeezing in higher order Hermite-Gaussian modes with an optical parametric ampli¯er (OPA). This work was awarded with The European Optical Society (EOS) price 2007. The purpose of the prize is to encourage a European dimension...... in research in pure and applied optics. The EOS prize is awarded based on the selection criteria of high professionalism, academic and technical quality. Following the EOS Prize rules, the conditions for eligibility are that the work was performed in Europe and that it is published under the auspices...

  7. Pulse height model for deuterated scintillation detectors

    International Nuclear Information System (INIS)

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  8. On irreversible evolutions of two-level systems approaching coherent and squeezed states

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1988-01-01

    The concepts of completely positive quantum dynamical semigroups and SU(2)-related generalized coherence and squeezing are used to investigate conditions for Markovian evolutions leading to coherent, intelligent, minimum-uncertainty and squeezed asymptotic stationary states in a 2-level system. (author). 10 refs

  9. New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation

    International Nuclear Information System (INIS)

    Jiang Nianquan; Fan Hongyi

    2008-01-01

    We show that the Agarwal-Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.

  10. SU(2) and SU(1,1) squeezing of interacting radiation modes

    International Nuclear Information System (INIS)

    Abdalla Sebawe, M.; Faisal El-Orany, A.A.; Perina, J.

    2000-01-01

    In this communication we discuss SU(1,1) and SU(2) squeezing of an interacting system of radiation modes in a quadratic medium in the framework of Lie algebra. We show that regardless of which state being initially considered, squeezing can be periodically generated. (authors)

  11. Measurement Induced Enhancement of Squeezing in Nondegenerate Two-Photon Jaynes-Cummings Model

    International Nuclear Information System (INIS)

    Ye Saiyun

    2006-01-01

    Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement are analyzed. Different values of the parameters of the classical field are taken into account. It is found that the field squeezing can be enhanced by measurement.

  12. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    International Nuclear Information System (INIS)

    Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie

    2011-01-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS

  13. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    Science.gov (United States)

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  14. First beam test of a combined ramp and squeeze at LHC

    CERN Document Server

    Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gorzawski, Arkadiusz; Redaelli, Stefano; Schaumann, Michaela; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2015-01-01

    With increasing maturity of LHC operation it is possible to envisage more complex beam manipulations. At the same time operational efficiency receives increasing attention. So far ramping the beams to their target energy and squeezing the beams to smaller or higher beta are decoupled at the LHC. (De-)squeezing is always performed at the target energy, currently 6.5 TeV. Studies to combine the ramp and squeeze processes have been made for the LHC since 2011, but so far no experimental test with beam had ever performed. This note describes the first machine experiment with beam aiming at validating the combination of ramp and squeeze, the so-called combined ramp and squeeze (CRS).

  15. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  16. Generation of higher-order squeezing of quantum electromagnetic fields by degenerate four-wave mixing and other processes

    International Nuclear Information System (INIS)

    Li Xizeng; Shan Ying; Mandel, L.

    1988-11-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of degenerate four-wave mixing exhibits higher-order squeezing to all even order. The degree of squeezing increases with the order N, and the higher-order squeeze parameter q N may approach -1. (author). 3 refs, 2 figs

  17. Atom-number squeezing and bipartite entanglement of two-component Bose-Einstein condensates: analytical results

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G R; Wang, X W; Li, D; Lu, Y W, E-mail: grjin@bjtu.edu.c [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-02-28

    We investigate spin dynamics of a two-component Bose-Einstein condensate with weak Josephson coupling. Analytical expressions of atom-number squeezing and bipartite entanglement are presented for atom-atom repulsive interactions. For attractive interactions, there is no number squeezing; however, the squeezing parameter is still useful to recognize the appearance of Schroedinger's cat state.

  18. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn; Liu, Jianping; Zhang, Shuming [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zhou, Kun; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Institute of Semiconductors (CAS), Beijing 100083 (China); Liu, Zongshun [Institute of Semiconductors (CAS), Beijing 100083 (China)

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  19. Ablative fractional carbon dioxide laser combined with intense pulsed light for the treatment of photoaging skin in Chinese population: A split-face study.

    Science.gov (United States)

    Mei, Xue-Ling; Wang, Li

    2018-01-01

    Intense pulsed light (IPL) is effective for the treatment of lentigines, telangiectasia, and generalized erythema, but is less effective in the removal of skin wrinkles. Fractional laser is effective on skin wrinkles and textural irregularities, but can induce postinflammatory hyperpigmentation (PIH), especially in Asians. This study evaluated the safety and efficacy of ablative fractional laser (AFL) in combination with IPL in the treatment of photoaging skin in Asians.This study included 28 Chinese women with Fitzpatrick skin type III and IV. The side of the face to be treated with IPL alone (3 times) or AFL in combination with IPL (2 IPL treatments and 1 AFL treatment) was randomly selected. Skin conditions including hydration, transepidermal water loss, elasticity, spots, ultraviolet spots, brown spots, wrinkle, texture, pore size and red areas, as well as adverse effects were evaluated before the treatment and at 30 days after the treatment.Compared with IPL treatment alone, AFL in combination with IPL significantly increased elasticity, decreased pore size, reduced skin wrinkles, and improved skin texture (P = .004, P = .039, P = .015, and P = .035, respectively). Both treatment protocols produced similar effects in relation to the improvement of photoaging-induced pigmentation. The combined therapy did not impair epidermal barrier function. No postoperative infection, hypopigmentation, or scarring occurred after IPL and AFL treatments. PIH occurred at 1 month after AFL treatment and disappeared at 30 days after completion of the combined therapy.AFL in combination with IPL is safe and effective for photoaging skin in Asians. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  20. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes.

    Science.gov (United States)

    Cao, Xinang; Huang, Runze; Chen, Haiqiang

    2017-11-02

    Blueberry have a short shelf life when fully ripe and susceptible to contamination of various pathogens. Our study investigated the effect of pulsed light (PL) on inactivation of Salmonella on blueberries and its impact on shelf-life, quality attributes and health-benefit compounds of blueberries. Dry PL (6J/cm 2 ) and water-assisted PL (samples were agitated in water during PL treatment; 9J/cm 2 ) along with two controls, dry control (untreated) and water-assisted control (water washing without PL), were applied to blueberries with subsequent storages at room temperature (3days) or 5°C (7days). For Salmonella inactivation, dry PL treatment achieved 0.9 and 0.6 log reduction of Salmonella for spot and dip inoculation, respectively; while the water-assisted PL treatment reduced Salmonella by 4.4 log and 0.8 log for spot and dip inoculation, respectively. The water-assisted PL treatment resulted in Salmonella populations significantly lower than the dry control after storage regardless of the storage temperature and inoculation method. Neither dry nor water-assisted PL treatments improved the shelf life of blueberries even though direct inactivation of natural yeasts and molds were achieved. Surface lightness was instantly reduced after both dry and water-assisted PL treatments. Compared with the dry control, the two PL treatments did not reduce the firmness of blueberries. Weight loss was increased for the dry PL treated samples, but not for the water-assisted PL treatment for both storage conditions. Delayed anthocyanins accumulation and reduced total antioxidant activity were induced by both PL treatments at the end of storage at room temperature, while slight enhancement in total phenolics content was achieved by water-assisted PL treatment. In conclusion, the water-assisted PL treatment could effectively decontaminate Salmonella on blueberries while showed minimal or no impact on the shelf-life, quality attributes and health-benefit compounds of blueberries. PL