WorldWideScience

Sample records for pulsed radio emission

  1. Transient pulsed radio emission from a magnetar.

    Science.gov (United States)

    Camilo, Fernando; Ransom, Scott M; Halpern, Jules P; Reynolds, John; Helfand, David J; Zimmerman, Neil; Sarkissian, John

    2006-08-24

    Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.

  2. Non-detection of pulsed radio emission from magnetar Swift J1834.9-0846: constraint on the fundamental plane of magnetar radio emission

    Institute of Scientific and Technical Information of China (English)

    Hao Tong; Jian-Ping Yuan; Zhi-Yong Liu

    2013-01-01

    The magnetar Swift J1834.9-0846 is observed using the Nanshan 25 mradio telescope.No pulsed radio emission is detected.The upper limit on the pulsed radio emission from this source is 0.5 mJy.According to the "fundamental plane"for radio magnetars,this source should have radio emission.Therefore,our results put constraints on the existence of a fundamental plane of magnetar radio emission.We argue that a magnetar's ability to emit radio emission may have little to do with the spin down luminosity and is related to the magnetar's X-ray luminosity.The only necessary condition is a relatively low X-ray luminosity.

  3. Searching towards the Galactic Centre region for pulsed radio emission

    Science.gov (United States)

    Toomey, Lawrence; Johnston, Simon; Hobbs, George; Bhat, Ramesh; Shannon, Ryan

    2014-10-01

    A search of archival Parkes survey data has uncovered a source similar to that of a radio pulsar, however the detection DM indicates that it may be either the closest pulsar ever discovered, or simply a case of mistaken identity and is in fact an RFI event that closely mimics that of a pulsar signal. We would like to propose a grid search of the location of this source, at 3 available frequency bands, in order to determine its nature.

  4. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars

    Science.gov (United States)

    Zakharenko, V. V.; Vasylieva, I. Y.; Konovalenko, A. A.; Ulyanov, O. M.; Serylak, M.; Zarka, P.; Grießmeier, J.-M.; Cognard, I.; Nikolaenko, V. S.

    2013-06-01

    The study of pulsars at the lowest radio frequencies observable from the ground (10-30 MHz) is complicated by strong interstellar (dispersion, scattering) and ionospheric (scintillation, refraction) propagation effects, as well as intense Galactic background noise and interference. However, it permits us to measure interstellar plasma parameters (the effects of which increase by a power of two to >4 times the wavelength), the spectrum and the pulse profile at low frequencies more accurately. Up to now, only ˜10 pulsars have been successfully detected at these frequencies. The recent upgrade of the receivers at the Ukrainian T-shaped Radio telescope, second modification (UTR-2) has increased its sensitivity and motivated a new search for pulsed radio emissions. In this work we carried out a survey of known pulsars with declination above -10°, period >0.1 s and dispersion measure (DM) < 30 pc cm-3, i.e. a sample of 74 sources. Our goal was either to detect pulsars not recorded before in the decametre range or to identify factors that prevent their detection. As a result, we have detected the radio emission of 40 pulsars, i.e. 55 per cent of the observed sample. For 30 of them, this was a first detection at these frequencies. Parameters of their average profiles have been calculated, including the intrinsic widening of the pulse (not due to interstellar scattering) with decreasing frequency. Furthermore, two pulsars beyond the selected DM (B0138+59 with DM ≈ 35 pc cm-3 and B0525+21 with DM ≈51 pc cm-3) were also detected. Our results indicate that there is still room to detect new transient and pulsed sources with low-frequency observations.

  5. Search for the Giant Pulses Search for the Giant Pulses - an extreme phenomenon in radio pulsar emission

    CERN Document Server

    Kazantsev, A N

    2016-01-01

    Here we present results of our search for Giant Pulses(GPs) from pulsars of Northern Hemisphere. Our survey was carried out at a frequency of 111 MHz using the Large Phased Array (LPA) radio telescope. Up to now we have detected regular generation of strong pulses satisfying the criteria of GPs from 2 pulsars: B1133+16, B1237+25.

  6. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: a case for Caustic Radio Emission?

    CERN Document Server

    Guillemot, L; Venter, C; Kerr, M; Pancrazi, B; Livingstone, M; Janssen, G H; Jaroenjittichai, P; Kramer, M; Cognard, I; Stappers, B W; Harding, A K; Camilo, F; Espinoza, C M; Freire, P C C; Gargano, F; Grove, J E; Johnston, S; Michelson, P F; Noutsos, A; Parent, D; Ransom, S M; Ray, P S; Shannon, R; Smith, D A; Theureau, G; Thorsett, S E; Webb, N

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the \\emph{Fermi} Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nan\\c{c}ay radio telescopes. In addition, we analyzed archival \\emph{RXTE} and \\emph{XMM-Newton} X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ($\\sim 4\\sigma$) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions...

  7. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.; Theureau, G.; Thorsett, S. E.; Webb, N.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nançay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (~4σ) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  8. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  9. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, P.; Kaspi, V. M.; Dib, R. [Department of Physics, Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Champion, D. J. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Hessels, J. W. T., E-mail: plazar@physics.mcgill.ca [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  10. Constraining Radio Emission from Magnetars

    CERN Document Server

    Lazarus, Patrick; Champion, David J; Hessels, Jason W T; Dib, Rim

    2011-01-01

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected was detected for any of our targets. The non-detections allow us to place luminosity upper limits (at 1950 MHz) of approximately L < 1.60 mJy kpc^2 for periodic emission and L < 7.6 Jy kpc^2 for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  11. VARIABILITY OF THE PULSED RADIO EMISSION FROM THE LARGE MAGELLANIC CLOUD PULSAR PSR J0529-6652

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F.; Altemose, D.; Li, H. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Lorimer, D. R. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2013-01-10

    We have studied the variability of PSR J0529-6652, a radio pulsar in the Large Magellanic Cloud (LMC), using observations conducted at 1390 MHz with the Parkes 64 m telescope. PSR J0529-6652 is detectable as a single pulse emitter, with amplitudes that classify the pulses as giant pulses. This makes PSR J0529-6652 the second known giant pulse emitter in the LMC, after PSR B0540-69. The fraction of the emitted pulses detectable from PSR J0529-6652 at this frequency is roughly two orders of magnitude greater than it is for either PSR B0540-69 or the Crab pulsar (if the latter were located in the LMC). We have measured a pulse nulling fraction of 83.3% {+-} 1.5% and an intrinsic modulation index of 4.07 {+-} 0.29 for PSR J0529-6652. The modulation index is significantly larger than values previously measured for typical radio pulsars but is comparable to values reported for members of several other neutron star classes. The large modulation index, giant pulses, and large nulling fraction suggest that this pulsar is phenomenologically more similar to these other, more variable sources, despite having spin and physical characteristics that are typical of the unrecycled radio pulsar population. The large modulation index also does not appear to be consistent with the small value predicted for this pulsar by a model of polar cap emission outlined by Gil and Sendyk. This conclusion depends to some extent on the assumption that PSR J0529-6652 is exhibiting core emission, as suggested by its simple profile morphology, narrow profile width, and previously measured profile polarization characteristics.

  12. Probing Pulsar Emission on Short Timescales: Rotating Radio Transients, Cyclic Spectroscopy, and Single-Pulse Studies of Millisecond Pulsars

    Science.gov (United States)

    Palliyaguru, Nipuni Tharaka

    Rotating radio transients (RRATs) are neutron stars are that characterized by the emission of strong sporadic bursts. We have analysed the long- and short-term time dependence of the pulse arrival times and the pulse detection rates for eight RRAT sources from the Parkes Multi-beam Pulsar Survey (PMPS). We find significant periodicities in the individual pulse arrival times from six RRATs. These periodicities range from ˜30 minutes to 2100 days and from one to 16 independent (i.e. non-harmonically related) periodicities are detected for each RRAT. In addition, we find that pulse emission is a random process on short (hour-long) time scales but that most of the objects exhibit longer term (months-years) non-random behaviour. We find that PSRs J1819--1458 and J1317--5759 emit more doublets (two consecutive pulses) and triplets (three consecutive pulses) than is expected in random pulse distributions. No evidence for such an excess is found for the other RRATs. There are several different models for RRAT emission depending on both extrinsic and intrinsic factors which are consistent with these properties. Light travel time changes due to gravitational waves may be detected within the next decade through precision timing of an array of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups routinely correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a phase change in the signal that results in pulse broadening and arrival time delays. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover pulse broadening functions (PBFs), such as those that would be introduced

  13. Observations of Radio Giant Pulses with GAVRT

    CERN Document Server

    Jones, Glenn

    2015-01-01

    Radio giant pulses provide a unique opportunity to study the pulsar radio emission mechanism in exquisite detail. Previous studies have revealed a wide range of properties and phenomena, including extraordinarily high brightness temperatures, sub-nanosecond emission features, and banded dynamic spectra. New measurements of giant pulse characteristics can help guide and test theoretical emission models. To this end, an extensive observation campaign has begun which will provide more than 500 hours on the Crab with a 34-meter antenna located in California, USA. The observations are being done as part of an educational outreach program called the Goldstone-Apple Valley Radio Telescope (GAVRT). This antenna has a novel wide bandwidth receiver which provides up to 8 GHz of instantaneous bandwidth in the range of 2.5 to 14 GHz. These observations will provide detailed information about the variability, amplitude distribution, and detailed frequency structure of radio giant pulses. In addition, a database of pulses ...

  14. Searches for Radio Pulsars & Fast Transients and Multiwavelength Studies of Single-pulse Emission

    Science.gov (United States)

    Mickaliger, Mitchell B.

    Pulsars are excellent tools for studying a wide array of astrophysical phenomena (e.g. gravitational waves, the interstellar medium, general relativity), yet they are still not fully understood. What are their emission processes and how do they change at different energies? How is giant pulse emission different from regular emission? How are different classes of pulsars (RRATs, magnetars, nulling pulsars, etc.) related? Answering these questions will not only help us to understand pulsars in general, but will also help improve techniques for pulsar searches and timing, gravitational wave searches, and single-pulse searches. The work we present here aims to answer these questions through studies of giant pulse emission, the discovery of new pulsars, and single-pulse studies of a large population of pulsars and RRATs. We took advantage of open telescope time on the 43-m telescope in Green Bank, WV to conduct a long-term study of giant pulses from the Crab pulsar at 1.2 GHz and 330 MHz. Over a timespan of 15 months, we collected a total of 95000 giant pulses which we correlated with both gamma-ray photons from the Fermi satellite and giant pulses collected at 8.9 GHz. Statistics of these pulses show that their amplitudes follow power-law distributions, with indices in the range of 2.1 to 3.1. The correlation with giant pulses at 8.9 GHz showed that the emission processes at 1.2 GHz and 8.9 GHz are related, despite significant profile differences. The correlation with Fermi gamma-ray photons was to test if increased pair production in the magnetosphere was the cause of giant pulses. Our findings suggest that, while it may play a role, increased pair production is not the dominant cause of giant pulses. As part of a single-pulse study, we reprocessed the archival Parkes Multibeam Pulsar Survey, discovering six previously unknown pulsars. PSR J0922-52 has a period of 9.68 ms and a DM of 122.4 pc cm-3. PSR J1147-66 has a period of 3.72 ms and a DM of 133.8 pc cm-3. PSR J

  15. Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622-4950

    CERN Document Server

    Levin, L; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; D'Amico, N; Johnston, S; Keith, M J; Kramer, M; Milia, S; Possenti, A; Stappers, B; van Straten, W

    2012-01-01

    Here we report on observations of the radio magnetar PSR J1622-4950 at frequencies from 1.4 to 17 GHz. We show that although its flux density is varying up to a factor of ~10 within a few days, it has on average decreased by a factor of 2 over the last 700 days. At the same time, timing analysis indicates a trend of decreasing spin-down rate over our entire data set, again of about a factor of 2 over 700 days, but also an erratic variability in the spin-down rate within this time span. Integrated pulse profiles are often close to 100 per cent linearly polarized, but large variations in both the profile shape and fractional polarization are regularly observed. Furthermore, the behaviour of the position angle of the linear polarization is very complex - offsets in both the absolute position angle and the phase of the position angle sweep are often seen and the occasional presence of orthogonal mode jumps further complicates the picture. However, model fitting indicates that the magnetic and rotation axes are cl...

  16. Constraining Radio Emission from Magnetars

    NARCIS (Netherlands)

    Lazarus, P.; Kaspi, V.M.; Champion, D.; Hessels, J.W.T.; Dib, R.

    2012-01-01

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 follow

  17. Radio Emission from Exoplanets

    OpenAIRE

    George, Samuel J.; Stevens, Ian R.

    2008-01-01

    We present results from new low frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). We do not detect either system, but are able to place tight upper limits on their low frequency radio emission.

  18. Antennas for the Detection of Radio Emission Pulses from Cosmic-Ray induced Air Showers at the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boh\\'{čová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmia\\lkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Charrier, D; Denis, L; Hilgers, G; Mohrmann, L; Philipps, B; Seeger, O

    2012-01-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective l...

  19. Pulse Shaping for High Capacity Impulse Radio Ultra-Wideband Wireless Links Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Two pulse shapes for IR-UWB transmission under the Russian spectral emission mask are proposed and their potential experimentally demonstrated. Pulses based on the hyperbolic secant square function and the frequency B-spline wavelet are shown to enable transmission of 1.25 Gbit/s signals, reachin...

  20. Simultaneous Observations of Giant Pulses from the Crab Pulsar, with the Murchison Widefield Array and Parkes Radio Telescope: Implications for the Giant Pulse Emission Mechanism

    CERN Document Server

    Oronsaye, S I; Bhat, N D R; Tremblay, S E; McSweeney, S J; Tingay, S J; van Straten, W; Jameson, A; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    We report on observations of giant pulses from the Crab pulsar performed simultaneously with the Parkes radio telescope and the incoherent combination of the Murchison Widefield Array (MWA) antenna tiles. The observations were performed over a duration of approximately one hour at a center frequency of 1382 MHz with 340 MHz bandwidth at Parkes, and at a center frequency of 193 MHz with 15 MHz bandwidth at the MWA. Our analysis has led to the detection of 55 giant pulses at the MWA and 2075 at Parkes above a threshold of 3.5$\\sigma$ and 6.5$\\sigma$ respectively. We detected 51$\\%$ of the MWA giant pulses at the Parkes radio telescope, with spectral indices in the range of $-3.6>\\alpha> -4.9$ ($S_{\\rm \

  1. Phenomenology of magnetospheric radio emissions

    Science.gov (United States)

    Carr, T. D.; Desch, M. D.; Alexander, J. K.

    1983-01-01

    Jupiter has now been observed over 24 octaves of the radio spectrum, from about 0.01 MHz to 300,000 MHz. Its radio emissions fill the entire spectral region where interplanetary electromagnetic propagation is possible at wavelengths longer than infrared. Three distinct types of radiation are responsible for this radio spectrum. Thermal emission from the atmosphere accounts for virtually all the radiation at the high frequency end. Synchrotron emission from the trapped high-energy particle belt deep within the inner magnetosphere is the dominant spectral component from about 4000 to 40 MHz. The third class of radiation consists of several distinct components of sporadic low frequency emission below 40 MHz. The decimeter wavelength emission is considered, taking into account the discovery of synchrotron emission, radiation by high-energy electrons in a magnetic field, and the present status of Jovian synchrotron phenomenology. Attention is also given to the decameter and hectometer wavelength emission, and emissions at kilometric wavelengths.

  2. Radio emission in Mercury magnetosphere

    Science.gov (United States)

    Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.

    2016-10-01

    Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.

  3. New SETI Sky Surveys for Radio Pulses

    CERN Document Server

    Siemion, Andrew; McMahon, Peter; Korpela, Eric; Werthimer, Dan; Anderson, David; Bower, Geoff; Cobb, Jeff; Foster, Griffin; Lebofsky, Matt; van Leeuwen, Joeri; Mallard, William; Wagner, Mark

    2008-01-01

    Berkeley conducts 7 SETI programs at IR, visible and radio wavelengths. Here we review two of the newest efforts, Astropulse and Fly's Eye. A variety of possible sources of microsecond to millisecond radio pulses have been suggested in the last several decades, among them such exotic events as evaporating primordial black holes, hyper-flares from neutron stars, emissions from cosmic strings or perhaps extraterrestrial civilizations, but to-date few searches have been conducted capable of detecting them. We are carrying out two searches in hopes of finding and characterizing these uS to mS time scale dispersed radio pulses. These two observing programs are orthogonal in search space; the Allen Telescope Array's (ATA) "Fly's Eye" experiment observes a 100 square degree field by pointing each 6m ATA antenna in a different direction; by contrast, the Astropulse sky survey at Arecibo is extremely sensitive but has 1/3,000 of the instantaneous sky coverage. Astropulse's multibeam data is transferred via the interne...

  4. Coherent Radio Emission from Pulsars

    CERN Document Server

    Mitra, Dipanjan; Gil, Janusz

    2015-01-01

    We review a physical model where the high brightness temperature of 10$^{25}-10^{30}$ K observed in pulsar radio emission is explained by coherent curvature radiation excited in the relativistic electron-positron plasma in the pulsar magnetosphere.

  5. Statistical study of the pulse width distribution for radio pulsars

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Pulse widths of standard pulse profiles for 262 pulsars were measured by using the Urumqi 25 m radio telescope at 1.54 GHz.For the simplest case of circular emission beam,we applied Monte Carlo simulations to the pulse width distribution.Different density functions of magnetic inclination angle α and observer angle ξ were considered.Using Kolmogorov-Smirnov tests,we derived the most probable distribution for α and ξ.

  6. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  7. Radio Emission from Globular Clusters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Radio emission of globular clusters is studied by analyzing the VLA radio survey data of the NVSS and FIRST. We find that 13 clusters have radio sources within their half-mass radii of clusters. Sources detected previously in NGC 7078and NGC 6440 are identified. Pulsars in NGC 6121, NGC 6440 and NGC 7078cannot be detected because of the insufficient survey sensitivity and resolution.There may be a pulsar in the core of Terzan 1. The nature of the extended radio source near the core of NGC 6440 remains unclear. In the core of a globular cluster,there may be many neutron stars or an intermediate mass black hole, but this cannot be clarified with the current radio observations.

  8. Correlations between pulsed X-ray flux and radio arrival time in the Vela pulsar

    CERN Document Server

    Lommen, A N; Gwinn, C; Arzoumanian, Z; Harding, A; Strickman, M S; Dodson, R; McCulloch, P; Moffett, D

    2007-01-01

    We report the results of simultaneous observations of the Vela pulsar in X-rays and radio from the RXTE satellite and the Mount Pleasant Radio Observatory in Tasmania. We sought correlations between the Vela's X-ray and radio flux densities and radio arrival times on a pulse by pulse basis. We found significantly higher flux density in Vela's main X-ray peak during radio pulses that arrived early. This excess flux shifts to the 'trough' following the 2nd X-ray peak during radio pulses that arrive later. We suggest that the mechanism producing the radio pulses is intimately connected to the mechanism producing X-rays. Current models using resonant absorption in the outer magnetosphere as a cause of the radio emission, and less directly of the X-ray emission, are explored as a possible explanation for the correlation.

  9. Pulse Compression Technique of Radio Fuze

    Institute of Scientific and Technical Information of China (English)

    HU Xiu-juan; DENG Jia-hao; SANG Hui-ping

    2006-01-01

    The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has be en implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.

  10. Radio Emission Physics in the Crab Pulsar

    CERN Document Server

    Eilek, J A

    2016-01-01

    We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low-Frequency Interpulse come from regions somewhere in the high-altitude emission zones (caustics) that also produce pulsed X-ray and gamma-ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of timescales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High-Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in it...

  11. Radio emission in Mercury magnetosphere

    CERN Document Server

    Varela, J; Brun, A S; Pantellini, F; Zarka, P

    2016-01-01

    Context: Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the MHD code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the interplanetary magnetic field (IMF) orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka [2001, 2007] to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydr...

  12. DETECTION OF RADIO EMISSION FROM FIREBALLS

    Energy Technology Data Exchange (ETDEWEB)

    Obenberger, K. S.; Taylor, G. B.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Stovall, K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Hartman, J. M. [NASA Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Ellingson, S. W. [Bradley Department of Electrical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Helmboldt, J. F.; Wilson, T. L. [US Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States); Kavic, M. [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States); Simonetti, J. H. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-06-20

    We present the findings from the Prototype All-Sky Imager, a back end correlator of the first station of the Long Wavelength Array, which has recorded over 11,000 hr of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long-duration (10 s of seconds) transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.

  13. Amplified radio emission from cosmic ray air showers in thunderstorms

    CERN Document Server

    Buitink, S; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Y; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D; Buitink, Stijn

    2007-01-01

    Cosmic ray air showers produce radio emission, consisting in large part of geosynchrotron emission. Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. We examine the contribution of an electric field to the emission mechanism theoretically and experimentally. Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. We selected and evaluated LOPES data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We find that during thunderstorms the radio emission can be strongly enhanced. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during ...

  14. 3D modelling of stellar auroral radio emission

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  15. Radio emission of the sun and planets

    CERN Document Server

    Zheleznyakov, V V

    1970-01-01

    International Series of Monographs in Natural Philosophy, Volume 25: Radio Emission of the Sun and Planets presents the origin of the radio emission of the planets. This book examines the outstanding triumphs achieved by radio astronomy of the solar system. Comprised of 10 chapters, this volume begins with an overview of the physical conditions in the upper layers of the Sun, the Moon, and the planets. This text then examines the three characteristics of radio emission, namely, the frequency spectrum, the polarization, and the angular spectrum. Other chapters consider the measurements of the i

  16. The nature of pulsar radio emission

    Science.gov (United States)

    Dyks, J.; Rudak, B.; Demorest, P.

    2010-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.

  17. Polarized radio emission from a magnetar

    NARCIS (Netherlands)

    Kramer, M.; Stappers, B.W.; Jessner, A.; Lyne, A.G.; Jordan, C.A.

    2007-01-01

    We present polarization observations of the radio emitting magnetar AXPJ1810-197. Using simultaneous multifrequency observations performed at 1.4, 4.9 and 8.4 GHz, we obtained polarization information for single pulses and the average pulse profile at several epochs. We find that in several respects

  18. ON THE ORIGIN OF RADIO EMISSION FROM MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz, E-mail: aszary@astro.ia.uz.zgora.pl [Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra (Poland)

    2015-02-10

    Magnetars are the most magnetized objects in the known universe. Powered by the magnetic energy, and not by the rotational energy as in the case of radio pulsars, they have long been regarded as a completely different class of neutron stars. The discovery of pulsed radio emission from a few magnetars weakened the idea of a clean separation between magnetars and normal pulsars. We use the partially screened gap (PSG) model to explain radio emission of magnetars. The PSG model requires that the temperature of the polar cap is equal to the so-called critical value, i.e., the temperature at which the thermal ions outflowing from the stellar surface screen the acceleration gap. We show that a magnetar has to fulfill the temperature, power, and visibility conditions in order to emit radio waves. First, in order to form PSG, the residual temperature of the surface has to be lower than the critical value. Second, since the radio emission is powered by the rotational energy, it has to be high enough to enable heating of the polar cap by backstreaming particles to the critical temperature. Finally, the structure of the magnetic field has to be altered by magnetospheric currents in order to widen a radio beam and increase the probability of detection. Our approach allows us to predict whether a magnetar can emit radio waves using only its rotational period, period derivative, and surface temperature in the quiescent mode.

  19. 3D-modelling of the stellar auroral radio emission

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such...

  20. Envelope Soliton in Solar Radio Emission

    Institute of Scientific and Technical Information of China (English)

    WANG De-Yu; Wangde; G. P. Chernov

    2000-01-01

    Several envelope soliton fine structures have been observed in solar radio metric-wave emission. We present amodel of 1ongitudinal modulational instability to explain these fine structures. It is found that this instability canonly occur in the condition of sound velocity being larger than Alfven velocity in corona. Therefore, the envelopesoliton fine structures should display in the coronal region with high temperature and low magnetic field, whichcorresponds to the solar radio emission in the region of meter and decameter wavelength.

  1. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  2. Tgf Pulse and Radio Properties Detected at Close Range

    Science.gov (United States)

    Cohen, M.; Gross, N. C.; Zoghzoghy, F. G.; Briggs, M. S.; Stanboro, M.; Fitzpatrick, G.

    2014-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are short (10s to 100s of us) energetic (100s to 10000s of keV) discharges originating from the tops of thunderclouds. TGFs have long been associated with radio pulses detected at VLF receivers, but recent evidence indicates that the radio pulse may be from the TGF itself, rather than from a stroke or pulse that either precedes or follows the TGFs. Unfortunately, subionospheric propagation of VLF/LF smooths the radio pulse and destroys in particular the high frequency content, so that the radio signal looks similar to those from ordinary lightning strokes. Since TGFs have a broad range of durations as detected by satellites, these variations should be apparent in the LF radio pulse from the TGF, which may confirm that the TGF is the dominant source of the associated radio pulse and identify a distinguishing feature of TGF-associated pulses. We report on an effort to detect and characterize the LF radio pulses associated with TGFs at close range (TGF source to the radio source, after accounting for dead time and Compton scattering to interpret the satellite TGF data, as well as propagation of the LF pulse along the ground to the receiver.

  3. Properties and geometry of radio pulsar emission

    NARCIS (Netherlands)

    Smits, Johannes Martinus

    2006-01-01

    This thesis consists of a number of studies on the radio emission of pulsars. The central topics are polarisation and multi frequency observations, which both lead to important information on the geometry of the emission. The first chapter introduces different aspects of pulsars that are related to

  4. On the origin of radio emission from magnetars

    CERN Document Server

    Szary, Andrzej; Gil, Janusz

    2014-01-01

    Magnetars are the most magnetized objects in the known universe. Powered by the magnetic energy, and not by the rotational energy as in the case of radio pulsars, have long been regarded as a completely different class of neutron stars. The discovery of pulsed radio emission from a few magnetars weakened the idea of a clean separation between magnetars and normal pulsars. We use the Partially Screened Gap (PSG) model to explain radio emission of magnetars. The PSG model requires that the temperature of the polar cap is equal to the so-called critical value, i.e. the temperature at which the thermal ions outflowing from the stellar surface screen the acceleration gap. We show that a magnetar has to fulfill the 'temperature', 'power' and 'visibility' conditions in order to emit radio waves. Firstly, in order to form PSG the residual temperature of the surface has to be lower than the critical value. Secondly, since the radio emission is powered by the rotational energy it has to be high enough to enable heating...

  5. Nature of microstructure in pulsar radio emission

    CERN Document Server

    Machabeli, G Z; Melikidze, G I; Shapakidze, D; Machabeli, George; Khechinashvili, David; Melikidze, George; Shapakidze, David

    2000-01-01

    We present a model for microstructure in pulsar radio emission. We propose that micropulses result from the alteration of the radio wave generation region by nearly transverse drift waves propagating across the pulsar magnetic field and encircling the bundle of the open magnetic field lines. It is demonstrated that such waves can modify significantly curvature of these dipolar field lines. This in turn affects strongly fulfillment of the resonance conditions necessary for the excitation of radio waves. The time-scale of micropulses is therefore determined by the wavelength of drift waves. Main features of the microstructure are naturally explained in the frame of this model.

  6. Development of A Pulse Radio-Frequency Plasma Jet

    Science.gov (United States)

    Wang, Shou-Guo; Zhao, Ling-Li; Yang, Jing-Hua

    2013-09-01

    A small pulse plasma jet was driven by new developed radio-frequency (RF) power supply of 6.78 MHz. In contrast to the conventional RF 13.56 MHz atmospheric pressure plasma jet (APPJ), the power supply was highly simplified by eliminating the matching unit of the RF power supply and using a new circuit, moreover, a pulse controller was added to the circuit to produce the pulse discharge. The plasma jet was operated in a capacitively coupled manner and exhibited low power requirement of 5 W at atmospheric pressure using argon as a carrier gas. The pulse plasma plume temperature remained at less than 45 °C for an extended period of operation without using water to cool the electrodes. Optical emission spectrum measured at a wide range of 200-1000 nm indicated various excited species which were helpful in applying the plasma jet for surface sterilization to human skin or other sensitive materials. Institude of Plasma Physics, Chinese Academy of Science, Hefei, China.

  7. Radio pulses from electromagnetic, hadronic and neutrino-induced showers up to EeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime, E-mail: jaime.alvarezmuniz@gmail.com [Depto. de Fisica de Particulas and Inst. Galego de Fisica de Altas Enerxias, Univ. de Santiago de Compostela, 15782 Santiago (Spain); Carvalho, Washington R.; Zas, Enrique [Depto. de Fisica de Particulas and Inst. Galego de Fisica de Altas Enerxias, Univ. de Santiago de Compostela, 15782 Santiago (Spain); Romero-Wolf, Andres [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Tueros, Matias [Depto. de Fisica, Facultad de Ciencias Exactas, Univ. Nacional de La Plata (Argentina)

    2012-01-11

    The radio pulses emitted by electromagnetic, hadronic, and neutrino-induced showers are calculated for showers of energies in the EeV range and above in ice and in air. These are obtained in three-dimensional simulations of both the shower and the radio emission. An AIRES-based Monte Carlo code, ZHAIRES, has been developed for this purpose that allows us to predict the radio emission in both the time and frequency domains. The algorithms used, obtained from first principles, predict the radio emission due to all emission mechanisms, including the deflection of charged particles in the Earth's magnetic field. The code which has been extended to calculate in the Fresnel regime can reproduce the full complexity of the relevant shower phenomena.

  8. Characterising Radio Emissions in Cosmic Filaments

    Science.gov (United States)

    Miller, R. O.

    2014-02-01

    A growing number of radio studies probe galaxy clusters into the low-power regime in which star formation is the dominant source of radio emission. However, at the time of writing no comparably deep observations have focused exclusively on the radio populations of cosmic filaments. This thesis describes the ATCA 2.1 GHz observations and subsequent analysis of two such regions - labelled Zone 1 (between clusters A3158 and A3125/A3128) and Zone 2 (between A3135 and A3145) - in the Horologium-Reticulum Supercluster (HRS). Source count profiles of both populations are discussed and a radio luminosity function for Zone 1 is generated. While the source counts of Zone 2 appear to be consistent with expected values, Zone 1 exhibits an excess of counts across a wide flux range (1 mJy< S_1.4 < 200 mJy). An excess in radio activity at the lower extent of this range (log P_1.4 < 22.5; within the SF-dominated regime) is also suggested by the radio luminosity function for that region, and brief colour analysis suggests that such an excess is indeed predominantly associated with a starforming population. The differences between the two filamentary zones is attributed to cosmic variation. The regions are both small (~ 1 degree square), and are significantly separated in the HRS. Further radio observations of filaments are required and the results combined into a larger sample size in order to arrive at a generalised model filamentary population.

  9. Detection of radio continuum emission from Procyon

    Science.gov (United States)

    Drake, Stephen A.; Simon, Theodore; Brown, Alexander

    1993-01-01

    We have detected the F5 IV-V star Procyon as a weak and variable 3.6 cm radio continuum source using the VLA. The inferred radio luminosity is similar to, though some-what higher than, the X-band luminosity of the active and flaring sun. The 33 micro-Jy flux density level at which we detected Procyon on four of five occasions is close to the 36 micro-Jy radio flux density expected from a model in which the radio emission consists of two components: optically thick 'stellar disk' emission with a 3.6 cm brightness temperature of 20,000 K that is 50 percent larger than the solar value, and optically thin coronal emission with an emission measure the same as that indicated by Einstein and EXOSAT X-ray flux measurements in 1981 and 1983. The maximum mass-loss rate of a warm stellar wind is less than 2 x 10 exp -11 solar mass/yr. An elevated flux density of 115 micro-Jy observed on a single occasion provides circumstantial evidence for the existence of highly localized magnetic fields on the surface of Procyon.

  10. A radio-pulsing white dwarf binary star

    Science.gov (United States)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  11. Diffuse Radio Emission in Abell 754

    CERN Document Server

    Kale, Ruta

    2009-01-01

    We present a low frequency study of the diffuse radio emission in the galaxy cluster A754. We present new 150 MHz image of the galaxy cluster A754 made with the Giant Metrewave Radio Telescope (GMRT) and discuss the detection of 4 diffuse features. We compare the 150 MHz image with the images at 74, 330 and 1363 MHz; one new diffuse feature is detected. The flux density upperlimits at 330 and 1363 MHz imply a synchrotron spectral index, $\\alpha > 2$, ($S\\propto \

  12. New data of radio emission from three AXPs

    Science.gov (United States)

    Teplykh, Daria

    2011-07-01

    Anomalous X-ray pulsars (AXPs) are a group of 9 X-ray sources showing periodical pulsation at periods in the 2-12 s range. The main problem is the source of energy, because their X-ray luminosities much higher than can be provided by the rotational kinetic-energy losses. Many attempts have been made to detect radio emission. The first detection of periodical pulsations from the AXP 1E 2259+586 have been made at the frequency 111 MHz by Malofeev (Malofeev et al., 2001, 2005). The second transient AXP XTE J1810-197 and the third AXP candidate 1E1547.0-5408 (Camilo et al., 2006, 2007) have been detected in the large frequency band 0.69-42 GHz. In this report we present new data for three AXPs 1E 2259+586, 4U 0142+61 and XTE J1810-197 at low frequencies. The observations were carried out on two sensitive transit radio telescopes in the range 42-112 MHz. The flux densities and mean pulse profiles, the estimation of the distances and integrated radio luminosities are presented. We used new digital receivers to obtain pulse profiles and dynamic spectra. Comparison with X-ray data shows large differences in the mean pulse widths and luminosities.

  13. Meterwavelength Single-pulse Polarimetric Emission Survey

    CERN Document Server

    Mitra, Dipanjan; Maciesiak, Krzysztof; Skrzypczak, Anna; Melikidze, George I; Szary, Andrzej; Krzeszowski, Krzysztof

    2016-01-01

    We have conducted the Meterwavelength Single-pulse Polarimetric Emission Survey to study the radio emission properties of normal pulsars. A total of 123 pulsars with periods between 0.1 seconds and 8.5 seconds were observed in the survey at two different frequencies, 105 profiles at 333 MHz, 118 profiles at 618 MHz and 100 pulsars at both. In this work we concentrate primarily on the time-averaged properties of the pulsar emission. The measured widths of the pulsar profiles in our sample usually exhibit the radius to frequency mapping. We validate the existence of lower bounds for the distribution of profile widths with pulsar period ($P$), which is seen for multiple definitions of the width, viz. a lower boundary line (LBL) at $2.7^{\\circ} P^{-0.5}$ with width measured at 50% level of profile peak, a LBL at $5.7^{\\circ} P^{-0.5}$ for 10% level of peak and LBL at $6.3^{\\circ} P^{-0.5}$ for width defined as 5$\\sigma$ above the baseline level. In addition we have measured the degree of linear polarization in th...

  14. The search for exomoon radio emissions

    Science.gov (United States)

    Noyola, Joaquin P.

    The field of exoplanet detection has seen many new developments since the discovery of the first exoplanet. Observational surveys by the NASA Kepler Mission and several other instrument have led to the confirmation of over 1900 exoplanets, and several thousands of exoplanet potential candidates. All this progress, however, has yet to provide the first confirmed exomoon. Since all previous attempts to discover exomoons have failed, a novel method to detect them is proposed in this dissertation, which describes development of the method and its applications to select the best exomoon candidates for observational searches. The main goal of these searches is to verify the validity and effectiveness of the method, and discover the first exomoon by using the world largest and most suitable radio telescopes. The discovery of first exomoon would begin a new era of exploratory research in exoplanetary systems. The idea that exomoons can be discovered with radio telescopes was proposed by Noyola, Satyal and Musielak et al. (2014), who suggested that the interaction between Io and the Jovian magnetosphere could also be found in exoplanet-exomoon pairs, and the resulting radio emissions could be used to directly detect these systems. The main results of the original study obtained for single prograde exomoons are also described in this dissertation, which in addition extends the previous study to multiple exomoon systems, as well as retrograde orbits. The main objective of these studies is to identify the best exomoon candidates for detection by chosen radio telescopes. One such candidates, Epsilon Eridani b, was selected and observed by the Giant Metre Radio Telescope (GMRT) in India. The preliminary results of these observations do not show any expected radio emission from the chosen systems. Thus, implementation of several important improvements to the method is discussed in details in this dissertation.

  15. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    Science.gov (United States)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  16. ARCADE 2 Observations of Galactic Radio Emission

    CERN Document Server

    Kogut, A; Levin, S M; Limon, M; Lubin, P M; Mirel, P; Seiffert, M; Singal, J; Villela, T; Wollack, E; Wünsche, C A

    2009-01-01

    We use absolutely calibrated data from the ARCADE 2 flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 1 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emi...

  17. Radio emission from RS CVn binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Doiron, D.J.

    1984-01-01

    The RS CVn binary stellar systems UX Ari, HR 1099, AR Lac, HR 5110, II Peg, lambda And, and SZ Psc were investigated by use of radio interferometry during the period from July 1982 through August 1983. Interferometry took two forms: Very Large Array (VLA) observations and Very Long Baseline Interferometry (VLBI). The VLA observations determined the characteristic polarization and flux behavior of the centimeter wavelength radio emission. The observed spectral index was near zero during quiescent periods, rising to between 0.5 and 1.0 during active periods. No net linear polarization is observed to a limit of 1.7%. This is expected since the Faraday depth of thermal electrons deduced from x-ray observations is approx. 10/sup 5/. Circular polarization is observed to be less than 20% at all frequencies often with a helicity reversal between 1.6 GHz and 5 GHz. The VLBI observations have shown that the brightness temperatures are often T/sub B/ approx.> 10/sup 10/ /sup 0/K and size sources smaller than or comparable to the overall size of the binary system. These data are consistent with incoherent gyrosynchrotron emission from mildly relativistic electrons which are optically thick to their own radiation at 1.6 GHz and optically thin at 5 GHz and above. The spectral behavior suggests that the radio emission is due to a power-law distribution of electrons.

  18. A Novel Pulse Shaping for UWB Impulse Radio IEEE 802.15.4a Communications Systems

    Directory of Open Access Journals (Sweden)

    BARRAJ Imen

    2014-05-01

    Full Text Available This paper presents a novel pulse shape which we call modified triangular pulse (MTri for Impulse Radio-Ultra Wide Band (IR-UWB IEEE 802.15.4a systems. The MTri pulse and UWB shapes previously proposed for low power IR-UWB transceivers topologies are studied and compared. The performance measures considered are compliance with required spectral emission constrains, Mask Loss (ML power and pulse energy. Our theoretical and simulations results show the advantages of the MTri pulse over studies UWB pulses. It presents the lower ML power about 0.45dB and the higher pulse energy of 0.45nJ/p.

  19. Correlation between radio and broad-line emissions in radio-loud quasars

    CERN Document Server

    Cao, X; Cao, Xinwu

    1999-01-01

    Radio emission is a good indicator of the jet power of radio-loud quasars, while the emission in broad-line can well represent the accretion disc radiation in quasars. We compile a sample of all sources of which the broad-line fluxes are available from 1 Jy, S4 and S5 radio source catalogues. A correlation between radio and broad-line emission for this sample of radio-loud quasars is presented, which is in favour of a close link between the accretion processes and the relativistic jets. The BL Lac objects seem to follow the statistical behaviour of the quasars, but with fainter broad-line emission.

  20. SINGLE-PULSE RADIO OBSERVATIONS OF THE GALACTIC CENTER MAGNETAR PSR J1745–2900

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhen; Shen, Zhi-Qiang; Wu, Ya-Jun; Zhao, Rong-Bing; Fan, Qing-Yuan; Hong, Xiao-Yu; Jiang, Dong-Rong; Li, Bin; Liang, Shi-Guang; Ling, Quan-Bao; Liu, Qing-Hui; Qian, Zhi-Han; Zhang, Xiu-Zhong; Zhong, Wei-Ye; Ye, Shu-Hua [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Wu, Xin-Ji [Department of Astronomy, Peking University, Beijing 100871 (China); Manchester, R. N. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Yuan, Jian-Ping [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China); Lee, Ke-Jia, E-mail: yanzhen@shao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2015-11-20

    In this paper, we report radio observations of the Galactic Center magnetar PSR J1745–2900 at six epochs between 2014 June and October. These observations were carried out using the new Shanghai Tian Ma Radio Telescope at a frequency of 8.6 GHz. Both the flux density and integrated profile of PSR J1745–2900 show dramatic changes from epoch to epoch, showing that the pulsar was in its “erratic” phase. On MJD 56836, the flux density of this magnetar was about 8.7 mJy, which was 10 times larger than that reported at the time of discovery, enabling a single-pulse analysis. The emission is dominated by narrow “spiky” pulses that follow a log-normal distribution in peak flux density. From 1913 pulses, we detected 53 pulses whose peak flux densities are 10 times greater than that of the integrated profile. They are concentrated in pulse phase at the peaks of the integrated profile. The pulse widths at the 50% level of these bright pulses were between 0.°2 and 0.°9, much narrower than that of the integrated profile (∼12°). The observed pulse widths may be limited by interstellar scattering. No clear correlation was found between the widths and peak flux density of these pulses and no evidence was found for subpulse drifting. Relatively strong spiky pulses are also detected in the other five epochs of observation, showing the same properties as those detected in MJD 56836. These strong spiky pulses cannot be classified as “giant” pulses but are more closely related to normal pulse emission.

  1. Constraining Substellar Magnetic Dynamos using Auroral Radio Emission

    Science.gov (United States)

    Kao, Melodie; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam J.; Stevenson, David J.

    2017-01-01

    An important outstanding problem in dynamo theory is understanding how magnetic fields are generated and sustained in fully convective stellar objects. A number of models for possible dynamo mechanisms in this regime have been proposed but constraining data on magnetic field strengths and topologies across a wide range of mass, age, rotation rate, and temperature are sorely lacking, particularly in the brown dwarf regime. Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime. However, these detections are very rare; previous radio surveys encompassing ˜60 L6 or later targets have yielded only one detection. We have developed a selection strategy for biasing survey targets based on possible optical and infrared tracers of auroral activity. Using our selection strategy, we previously observed six late L and T dwarfs with the Jansky Very Large Array (VLA) and detected the presence of highly circularly polarized radio emission for five targets. Our initial detections at 4-8 GHz provided the most robust constraints on dynamo theory in this regime, confirming magnetic fields >2.5 kG. To further develop our understanding of magnetic fields in the ultracool brown dwarf mass regime bridging planets and stars, we present constraints on surface magnetic field strengths for two Y-dwarfs as well as higher frequency observations of the previously detected L/T dwarfs corresponding ~3.6 kG fields. By carefully comparing magnetic field measurements derived from auroral radio emission to measurements derived from Zeeman broadening and Zeeman Doppler imaging, we provide tentative evidence that the dynamo operating in this mass regime may be inconsistent with predicted values from currently in vogue models. This suggests that parameters beyond convective flux may influence magnetic field generation in brown dwarfs.

  2. Subharmonic emissions from microbubbles: effect of the driving pulse shape.

    Science.gov (United States)

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2006-11-01

    The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic

  3. Modelling of radio emission from cosmic ray air showers

    Science.gov (United States)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  4. Radio Emission in the Cosmic Web

    CERN Document Server

    Araya-Melo, Pablo A; Brueggen, Marcus; Hoeft, Matthias

    2012-01-01

    We explore the possibility of detecting radio emission in the \\emph{cosmic web} by analyzing shock waves in the MareNostrum cosmological simulation. This requires a careful calibration of shock finding algorithms in Smoothed-Particle Hydrodynamics simulations, which we present here. Moreover, we identify the elements of the cosmic web, namely voids, walls, filaments and clusters with the use of the SpineWeb technique, a procedure that classifies the structure in terms of its topology. Thus, we are able to study the Mach number distribution as a function of its environment. We find that the median Mach number, for clusters is $\\mathcal{M}_{\\mathrm{clusters}}\\approx1.8$, for filaments is $\\mathcal{M}_{\\mathrm{filaments}}\\approx 6.2$, for walls is $\\mathcal{M}_{\\mathrm{walls}}\\approx 7.5$, and for voids is $\\mathcal{M}_{\\mathrm{voids}}\\approx 18$. We then estimate the radio emission in the cosmic web using the formalism derived in Hoeft & Br\\"{u}ggen (2007). We also find that in order to match our simulation...

  5. The nature of pulsar radio emission

    CERN Document Server

    Dyks, J; Demorest, P

    2009-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in `absorption' and emission. Averaged profile of a 5-ms pulsar J1012+5307 hosts a distinct, extremely symmetric, and bifurcated emission component (BFC) with deep central minimum. We show that the component can be very well fitted by the textbook formula for the non-coherent beam of curvature radiation (CR) in the polarisation state that is orthogonal to the plane of electron trajectory. The separation Delta_bfc of maxima in the BFC is observed to decrease with increasing frequency nu_obs at the rate that is consistent with the curvature origin (Delta_bfc proportional to nu_obs^(-1/3)). With zero emissivity in the plane of electron trajectory, the extraordinary-mode beam can naturally produce deep double absorption features (double notches) observed in other pulsars. The bifurcated emission components are observed when the line of sight passes through splitted fan beams produced by radially-extended streams of...

  6. Auroral radio emission from ultracool dwarfs: a Jovian model

    Science.gov (United States)

    Turnpenney, S.; Nichols, J. D.; Wynn, G. A.; Casewell, S. L.

    2017-10-01

    A number of fast-rotating ultracool dwarfs (UCDs) emit pulsed coherent radiation, attributed to the electron-cyclotron maser instability, a phenomenon that occurs in the Solar system at planets with strong auroral emission. In this paper, we examine magnetosphere-ionosphere coupling currents in UCDs, adopting processes used in models of Jovian emission. We consider the angular velocity gradient arising from a steady outward flux of angular momentum from an internal plasma source, as analogous to the Jovian main oval current system, as well as the interaction of a rotating magnetosphere with the external medium. Both of these mechanisms are seen in the Solar system to be responsible for the production of radio emission. We present the results of an investigation over a range of relevant plasma and magnetosphere-ionosphere coupling parameters to determine regimes consistent with observed UCD radio luminosities. Both processes are able to explain observed UCD luminosities with ionospheric Pedersen conductances of ˜1-2 mho, either for a closed magnetosphere with a plasma mass outflow rate of ˜105 kg s-1, i.e. a factor of ˜100 larger than that observed at Jupiter's moon Io, or for a dwarf with an open magnetosphere moving through the interstellar medium at ˜50 km s-1 and a plasma mass outflow rate of ˜1000 kg s-1. The radio luminosity resulting from these mechanisms has opposing dependencies on the magnetic field strength, a point that may be used to discriminate between the two models as more data become available.

  7. Planetary and stellar auroral magnetospheric radio emission

    Science.gov (United States)

    Speirs, David; Cairns, Robert A.; Bingham, Robert; Kellett, Barry J.; McConville, Sandra L.; Gillespie, Karen M.; Vorgul, Irena; Phelps, Alan D. R.; Cross, Adrian W.; Ronald, Kevin

    2012-10-01

    A variety of astrophysical radio emissions have been identified to date in association with non-uniform magnetic fields and accelerated particle streams [1]. Such sources are spectrally well defined and for the planetary cases [1,2] show a high degree of extraordinary (X-mode) polarisation within the source region. It is now widely accepted that these emissions are generated by an electron cyclotron-maser instability driven by a horseshoe shaped electron velocity distribution. Although the generation mechanism is well established, a satisfactory explanation does not yet exist for the observed field aligned beaming of the radiation out-with the source region [2]. In the current context, the results of PiC simulations will be presented investigating the spatial growth of the horseshoe-maser instability in an unbounded interaction geometry, with a view to studying the wave vector of emission, spectral properties and RF conversion efficiency. In particular, the potential for backward-wave coupling is investigated as a viable precursor to a model of upward refraction and field-aligned beaming of the radiation [3].[4pt] [1] A.P. Zarka, Advances in Space Research, 12, pp. 99 (1992).[0pt] [2] R.E. Ergun et al., Astrophys. J., 538, pp. 456 (2000)[0pt] [3] J.D. Menietti et al., J. Geophys. Res., 116, A12219 (2011).

  8. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    Science.gov (United States)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  9. Solar system radio emissions studies with the largest low-frequency radio telescopes

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Litvinenko, G.; Kolyadin, V.; Zarka, P.; Mylostna, K.; Vasylieva, I.; Griessmeier, J.-M.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2014-04-01

    We describe the trends and tasks in the field of lowfrequency studies of radio emission from the Solar system's objects. The world's largest decameter radio telescopes UTR-2 and URAN have a unique combination of sensitivity and time/frequency resolution parameters, providing the capability of the most detailed studies of various types of solar and planetary emissions.

  10. Neptune's non-thermal radio emissions - Phenomenology and source locations

    Science.gov (United States)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  11. Implementation of Pulse Radar Waveform Based on Software Radio Platform

    OpenAIRE

    Wang Dong; Dong Jian; Xiao Shunping

    2015-01-01

    Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...

  12. X-ray and radio emission from colliding stellar winds

    CERN Document Server

    Pittard, J M; Coker, R F; Corcoran, M F

    2004-01-01

    The collision of the hypersonic winds in early-type binaries produces shock heated gas, which radiates thermal X-ray emission, and relativistic electrons, which emit nonthermal radio emission. We review our current understanding of the emission in these spectral regions and discuss models which have been developed for the interpretation of this emission. Physical processes which affect the resulting emission are reviewed and ideas for the future are noted.

  13. Fossil shell emission in dying radio loud AGNs

    CERN Document Server

    Kino, M; Kawakatu, N; Orienti, M; Nagai, H; Wajima, K; Itoh, R

    2015-01-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolutions of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in radio band while it is bright in TeV gamma-ray band and it can be detectable by CTA.

  14. Extended radio emission and the nature of blazars

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, R.R.J.; Ulvestad, J.S.

    1985-07-01

    The VLA has been used at 20 cm to map all 23 of the 54 confirmed blazars listed in the Angel and Stockman review paper that had not been mapped before at high resolution. (Blazars include BL Lac objects and optically violently variable quasars.) In addition, data on most of the previously mapped blazars have been reprocessed in order to achieve higher dynamic range. Extended emission has been detected associated with 49 of the 54 objects. The extended radio emission has been used to test the hypothesis that blazars are normal radio galaxies and radio quasars viewed along the jet axes. We find that blazars have substantial extended power, consistent with this hypothesis. Many have extended powers as high as the luminous Fanaroff-Riley class 2 radio doubles. The projected linear sizes are small, as expected from foreshortening of the extended sources, and many blazars have the expected core-halo morphology. There are also several small doubles, a head-tail source, and some one-sided sources, and these could be in cases where the line of sight is slightly off the jet axis, or projections of asymmetrical radio galaxies and quasars. The ratio of core to extended radio emission has been studied as a possible indicator of viewing aspect or beaming intensity. It is found to correlate with optical polarization, optical and radio core variability, and one-sided radio morphology. We can go beyond these consistency checks and work toward a proof of the hypothesis under discussion. The flux from the extended emission alone is sufficient in some blazars to qualify them for inclusion in the 3C and 4C catalogs. Suppose that the radio core emission is anisotropic, but the extended emission is predominantly isotropic. The isotropy of the extended emission implies that these blazars would be in the catalogs even if viewed from the side.

  15. Extended Radio Emission in MOJAVE Blazars: Challenges to Unification

    Science.gov (United States)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-02-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile "core-only" source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Å, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  16. Searching for Transient Pulses with the ETA Radio Telescope

    CERN Document Server

    Patterson, Cameron D; Martin, Brian S; Deshpande, Kshitija; Simonetti, John H; Kavic, Michael; Cutchin, Sean E

    2008-01-01

    Array-based, direct-sampling radio telescopes have computational and communication requirements unsuited to conventional computer and cluster architectures. Synchronization must be strictly maintained across a large number of parallel data streams, from A/D conversion, through operations such as beamforming, to dataset recording. FPGAs supporting multi-gigabit serial I/O are ideally suited to this application. We describe a recently-constructed radio telescope called ETA having all-sky observing capability for detecting low frequency pulses from transient events such as gamma ray bursts and primordial black hole explosions. Signals from 24 dipole antennas are processed by a tiered arrangement of 28 commercial FPGA boards and 4 PCs with FPGA-based data acquisition cards, connected with custom I/O adapter boards supporting InfiniBand and LVDS physical links. ETA is designed for unattended operation, allowing configuration and recording to be controlled remotely.

  17. Measurement of radio emission from extensive air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Hoerandel, J.R., E-mail: j.horandel@astro.ru.n [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Istituto di Fisica dello Spazio Interplan etario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany)

    2011-02-21

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES{sup star} and new methods are explored to realize a radio self-trigger algorithm in real time.

  18. Measurement of Radio Emission from Extensive Air Showers with LOPES

    CERN Document Server

    Hoerandel, J R

    2009-01-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES-Star and new methods are explored to realize a radio self-trigger algorithm in real time.

  19. Detection of Exomoons Through Their Modulation of Exoplanetary Radio Emissions

    CERN Document Server

    Noyola, Joaquin P; Musielak, Zdzislaw E

    2013-01-01

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect the moon to the Jupiter's polar regions, where the radio emission is modulated by the currents. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. The required physical conditions for the modulation are established and used to select potential candidates for exomoon's detection. A cautiously optimistic scenario of possible detection of such exomoons with the Long Wavelength Array (LWA) and the Low-Frequency Array (LOFAR) radio telescopes is provided.

  20. Pulse shaping for high data rate ultra-wideband wireless transmission under the Russian spectral emission mask

    DEFF Research Database (Denmark)

    Rommel, Simon; Grakhova, Elizaveta P.; Jurado-Navas, Antonio

    2017-01-01

    This paper addresses impulse-radio ultra-wideband (IR-UWB) transmission under the Russian spectral emission mask for unlicensed UWB radio communications. Four pulse shapes are proposed and their bit error rate (BER) performance is both estimated analytically and evaluated experimentally. Well-kno...

  1. Radio Emission in Atmospheric Air Showers: Results of LOPES-10

    Energy Technology Data Exchange (ETDEWEB)

    Haungs, A [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Apel, W D [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Asch, T [IPE, Forschungszentrum Karlsruhe (Germany)] (and others)

    2007-09-15

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from Extensive Air Showers. Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by showers observed with KASCADE-Grande have been analyzed. We report about results of correlations found of the measured radio signals by LOPES-10 with shower parameters.

  2. Radio Emission in Atmospheric Air Showers: Results of LOPES-10

    CERN Document Server

    Haungs, A; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Buitink, S; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Hakenjos, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Isar, P G; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D; Haungs, Andreas; al, et

    2006-01-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from Extensive Air Showers. Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by showers observed with KASCADE-Grande have been analyzed. We report about results of correlations found of the measured radio signals by LOPES-10 with shower parameters.

  3. Radio emission of highly inclined cosmic ray air showers measured with LOPES

    CERN Document Server

    Petrovic, Jelena; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Buitink, S; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2006-01-01

    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50$^{\\circ}$, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80$^{\\circ}$. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.

  4. Fast radio bursts counterparts in the scenario of supergiant pulses

    Science.gov (United States)

    Popov, S. B.; Pshirkov, M. S.

    2016-10-01

    We discuss identification of possible counterparts and persistent sources related to fast radio bursts (FRBs) in the framework of the model of supergiant pulses from young neutron stars with large spin-down luminosities. In particular, we demonstrate that at least some of the sources of FRBs can be observed as ultraluminous X-ray sources (ULXs). At the moment no ULXs are known to be coincident with localization areas of FRBs. We searched for a correlation of FRB positions with galaxies in the 2MASS Redshift survey catalogue. Our analysis produced statistically insignificant overabundance (p-value ≈ 4 per cent) of galaxies in error boxes of FRBs. In the very near future with even modestly increased statistics of FRBs and with the help of dedicated X-ray observations and all-sky X-ray surveys it will be possible to decisively prove or falsify the supergiant pulses model.

  5. Radio emission of air showers with extremely high energy measured by the Yakutsk Radio Array

    Science.gov (United States)

    Knurenko, S. P.; Petrov, Z. E.; Petrov, I. S.

    2017-09-01

    The Yakutsk Array is designed to study cosmic rays at energy 1015 -1020 eV . It consists several independent arrays that register charged particles, muons with energy E ≥ 1 GeV , Cherenkov light and radio emission. The paper presents a technical description of the Yakutsk Radio Array and some preliminary results obtained from measurements of radio emission at 30-35 MHz frequency induced by air shower particles with energy ε ≥ 1 ·1017 eV . The data obtained at the Yakutsk array in 1986-1989 (first set of measurements) and 2009-2014 (new set of measurements). Based on the obtained results we determined: Lateral distribution function (LDF) of air showers radio emission with energy ≥1017 eV . Radio emission amplitude empirical connection with air shower energy. Determination of depth of maximum by ratio of amplitude at different distances from the shower axis. For the first time, at the Yakutsk array radio emission from the air shower with energy >1019 eV was registered including the shower with the highest energy ever registered at the Yakutsk array with energy ∼ 2 ·1020 eV .

  6. Polarized radio emission from extensive air showers measured with LOFAR

    NARCIS (Netherlands)

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.

    2014-01-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles,

  7. Pulsed Discharge Effects on Bacteria Inactivation in Low-Pressure Radio-Frequency Oxygen Plasma

    Science.gov (United States)

    Vicoveanu, Dragos; Ohtsu, Yasunori; Fujita, Hiroharu

    2008-02-01

    The sporicidal effects of low-pressure radio frequency (RF) discharges in oxygen, produced by the application of continuous and pulsed RF power, were evaluated. For all cases, the survival curves showed a biphasic evolution. The maximum efficiency for bacteria sterilization was obtained when the RF power was injected in the continuous wave mode, while in the pulsed mode the lowest treatment temperature was ensured. The inactivation rates were calculated from the microorganism survival curves and their dependencies on the pulse characteristics (i.e., pulse frequency and duty cycle) were compared with those of the plasma parameters. The results indicated that the inactivation rate corresponding to the first phase of the survival curves is related to the time-averaged intensity of the light emission by the excited neutral atoms in the pulsed plasma, whereas the inactivation rate calculated from the second slope of the survival curves and the time-averaged plasma density have similar behaviors, when the pulse parameters were modified.

  8. A broadband radio study of the average profile and giant pulses from PSR B1821-24A

    CERN Document Server

    Bilous, A V; Demorest, P; Ransom, S M

    2014-01-01

    We present the results of wide-band (720-2400 MHz) study of PSR B1821-24A (J1824-2452A, M28A), an energetic millisecond pulsar visible in radio, X-rays and gamma-rays. In radio, the pulsar has a complex average profile which spans >85% of the spin period and exhibits strong evolution with observing frequency. For the first time we measure phase-resolved polarization properties and spectral indices of radio emission throughout almost all of the on-pulse window. We combine this knowledge with the high-energy information to compare M28A to other known gamma-ray millisecond pulsars and to speculate that M28A's radio emission originates in multiple regions within its magnetosphere (i.e. both in the slot or outer gaps near the light cylinder and at lower altitudes above the polar cap). M28A is one of the handful of pulsars which are known to emit Giant Pulses (GPs) -- short, bright radio pulses of unknown nature. We report a drop in the linear polarization of the average profile in both windows of GP generation and...

  9. Time-domain radio pulses from particle showers

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime [Depto. de Fisica de Particulas and Instituto Galego de Fisica de Altas Enerxias, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Romero-Wolf, Andres, E-mail: rw.andres@gmail.com [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Zas, Enrique [Depto. de Fisica de Particulas and Instituto Galego de Fisica de Altas Enerxias, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2012-01-11

    The time-domain properties of the far-field coherent radio emission from electromagnetic showers are studied in depth. A purely time-domain technique for mapping the electromagnetic fields of charged tracks is developed. The method is applied to the ZHS shower code to produce electric fields. It is demonstrated that the technique is equivalent to the frequency domain methods used in the ZHS code and produces consistent results. In addition, a model for mapping the longitudinal charge profile of a shower to a time-domain electromagnetic field is developed. It is shown that the model is in good agreement to the results of shower simulation.

  10. Radio emission of the sun at millimeter wavelengths

    Science.gov (United States)

    Nagnibeda, V. G.; Piotrovich, V. V.

    This review article deals with the radio emission originating from different solar atmospheric regions - the quiet solar atmosphere, active regions and solar flares. All experimental data of the quiet Sun brightness temperature at the region of 0.1 - 20 mm wavelength are summarized. The quiet Sun brightness distributions across the disk and values of the solar radio radius are reviewed. The properties of the sources of sunspot-associated active region emission and radio brightness depression associated with Hα-filaments are considered in comparison with observations at centimetre and optical domains. The observational properties of millimetre wave bursts and their correlations with similar phenomena at other domains are reviewed. Special reference is devoted to nearly 100% correlation impulsive radio bursts with hard X-ray bursts. Existence of the fine temporal structure containing many spikes with time scales up to 10 ms as well as observations of quasi-periodic millisecond oscillations are discussed.

  11. Timing Solution and Single-pulse Properties for Eight Rotating Radio Transients

    Science.gov (United States)

    Cui, B.-Y.; Boyles, J.; McLaughlin, M. A.; Palliyaguru, N.

    2017-05-01

    Rotating radio transients (RRATs), loosely defined as objects that are discovered through only their single pulses, are sporadic pulsars that have a wide range of emission properties. For many of them, we must measure their periods and determine timing solutions relying on the timing of their individual pulses, while some of the less sporadic RRATs can be timed by using folding techniques as we do for other pulsars. Here, based on Parkes and Green Bank Telescope (GBT) observations, we introduce our results on eight RRATs including their timing-derived rotation parameters, positions, and dispersion measures (DMs), along with a comparison of the spin-down properties of RRATs and normal pulsars. Using data for 24 RRATs, we find that their period derivatives are generally larger than those of normal pulsars, independent of any intrinsic correlation with period, indicating that RRATs’ highly sporadic emission may be associated with intrinsically larger magnetic fields. We carry out Lomb-Scargle tests to search for periodicities in RRATs’ pulse detection times with long timescales. Periodicities are detected for all targets, with significant candidates of roughly 3.4 hr for PSR J1623-0841 and 0.7 hr for PSR J1839-0141. We also analyze their single-pulse amplitude distributions, finding that log-normal distributions provide the best fits, as is the case for most pulsars. However, several RRATs exhibit power-law tails, as seen for pulsars emitting giant pulses. This, along with consideration of the selection effects against the detection of weak pulses, imply that RRAT pulses generally represent the tail of a normal intensity distribution.

  12. Carrier phase dependence in the ionization of Rydberg atoms by short radio-frequency pulses: A model system for high order harmonic generation

    NARCIS (Netherlands)

    Gurtler, A.; Robicheaux, F.; Vrakking, M.J.J.; Zande, W.J. van der; Noordam, L.D.

    2004-01-01

    We report time-resolved electron emission in experiments on ionization of rubidium Rydberg atoms (n=90) by few-cycle radio-frequency (RF) (1-10 MHz) pulses. The electron emission occurs in multiple bursts and strongly depends on the carrier-envelope phase as well as the duration and amplitude of the

  13. Radio emission from rapidly-rotating cool giant stars

    Science.gov (United States)

    Drake, Stephen A.; Walter, Frederick M.; Florkowski, David R.

    1990-01-01

    The results of a VLA program are reported to examine the radio continuum emission from 11 rapidly-rotating cool giant stars, all of which were originally believed to be single stars. Six of the 11 stars were detected as radio sources, including FK Com and HR 9024, for which there exist multifrequency observations. HD 199178, UZ Lib (now known to be a binary system), and HD 82558, for which there is only 6-cm data. The radio properties of these stars are compared with those of the active, rapidly rotating evolved stars found in the RS CVn binary systems.

  14. Radio continuum emission from knots in the DG Tau jet

    CERN Document Server

    Rodriguez, L F; Raga, A C; Canto, J; Riera, A; Loinard, L; Dzib, S A; Zapata, L A

    2011-01-01

    Context: HH 158, the jet from the young star DG Tau, is one of the few sources of its type where jet knots have been detected at optical and X-ray wavelengths. Aims: To search, using Very Large Array observations of this source, radio knots and if detected, compare them with the optical and X-ray knots. To model the emission from the radio knots. Methods: We analyzed archive data and also obtained new Very Large Array observations of this source, as well as an optical image, to measure the present position of the knots. We also modeled the radio emission from the knots in terms of shocks in a jet with intrinsically time-dependent ejection velocities. Results: We detected radio knots in the 1996.98 and 2009.62 VLA data. These radio knots are,within error, coincident with optical knots. We also modeled satisfactorily the observed radio flux densities as shock features from a jet with intrinsic variability. All the observed radio, optical, and X-ray knot positions can be intepreted as four successive knots, ejec...

  15. A current circuit model of pulsar radio emission

    CERN Document Server

    Kunzl, T A; Jessner, A; Kunzl, Th.

    2002-01-01

    We present the outline of a new model for the coherent radio emission of pulsars that succeeds in reproducing the energetics and brightness temperatures of the observed radio emission from the observationally deduced distances of 50-100 pulsar radii above the neutron star in a narrow region. The restrictions imposed by energy conservation, plasma dynamics of the coherent radiation process and propagation effects are used to apply the action of a plasma process like coherent inverse Compton scattering (CICS) (see Benford, 1992). In accordance with our findings (Kunzl et al. 1998a) this process requires Lorentz factors of about 10 which are lower than in most other radio emission models. This implies that no significant pair production can take place near the surface and we expect charge densities close to the Goldreich-Julian value (Goldreich & Julian (1969)). To fulfill the energetic and electrodynamic constraints the model requires constant re-acceleration in dissipation regions which can be interpreted ...

  16. Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars with LOFAR

    CERN Document Server

    Pilia, M; Stappers, B W; Kondratiev, V I; Kramer, M; van Leeuwen, J; Weltevrede, P; Lyne, A G; Zagkouris, K; Hassall, T E; Bilous, A V; Breton, R P; Falcke, H; Grießmeier, J -M; Keane, E; Karastergiou, A; Kuniyoshi, M; Noutsos, A; Osłowski, S; Serylak, M; Sobey, C; ter Veen, S; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Ciardi, B; Corbel, S; de Geus, E; de Jong, A; Deller, A; Duscha, S; Eislöffel, J; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Gunst, A W; Hamaker, J P; Heald, G; Horneffer, A; Jonker, P; Juette, E; Kuper, G; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; Miller-Jones, J C A; Nelles, A; Paas, H; Pandey-Pommier, M; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Rowlinson, A; Schwarz, D; Smirnov, O; Steinmetz, M; Stewart, A; Swinbank, J D; Tagger, M; Tang, Y; Tasse, C; Thoudam, S; Toribio, M C; van der Horst, A J; Vermeulen, R; Vocks, C; van Weeren, R J; Wijers, R A M J; Wijnands, R; Wijnholds, S J; Wucknitz, O; Zarka, P

    2015-01-01

    LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects: such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: High Band (120-167 MHz, 100 profiles) and Low Band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and1400 MHz) in order to study the profile evolution. The profiles are aligned in abs...

  17. Probing the radio emission from air showers with polarization measurements

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  18. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  19. Quasi-Quiescent Radio Emission from the First Radio-Emitting T Dwarf

    CERN Document Server

    Williams, Peter K G; Zauderer, B Ashley

    2013-01-01

    Radio detections of ultracool dwarfs provide insight into their magnetic fields and the dynamos that maintain them, especially at the very bottom of the main sequence, where other activity indicators dramatically weaken. Until recently, the coolest brown dwarf detected in the radio was only of spectral type L3.5, but this has changed with the Arecibo detection of rapid polarized flares from the T6.5 dwarf 2MASS J10475385+2124234. Here, we report the detection of quasi-quiescent radio emission from this source at 5.8 GHz using the Karl G. Jansky Very Large Array. The luminosity is {\

  20. Spread spectrum compressed sensing MRI using chirp radio frequency pulses

    CERN Document Server

    Qu, Xiaobo; Zhuang, Xiaoxing; Yan, Zhiyu; Guo, Di; Chen, Zhong

    2013-01-01

    Compressed sensing has shown great potential in reducing data acquisition time in magnetic resonance imaging (MRI). Recently, a spread spectrum compressed sensing MRI method modulates an image with a quadratic phase. It performs better than the conventional compressed sensing MRI with variable density sampling, since the coherence between the sensing and sparsity bases are reduced. However, spread spectrum in that method is implemented via a shim coil which limits its modulation intensity and is not convenient to operate. In this letter, we propose to apply chirp (linear frequency-swept) radio frequency pulses to easily control the spread spectrum. To accelerate the image reconstruction, an alternating direction algorithm is modified by exploiting the complex orthogonality of the quadratic phase encoding. Reconstruction on the acquired data demonstrates that more image features are preserved using the proposed approach than those of conventional CS-MRI.

  1. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    Science.gov (United States)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  2. Discussing the processes constraining the Jovian synchrotron radio emission's features

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  3. The convergence of EAS radio emission models and a detailed comparison of REAS3 and MGMR simulations

    NARCIS (Netherlands)

    Huege, T.; Ludwig, M.; Scholten, O.; de Vries, K. D.

    2012-01-01

    Over the previous decade, many approaches for the modelling of radio emission from cosmic ray air showers have been developed. However, there remained significant deviations between the models, reaching from important qualitative differences such as unipolar versus bipolar pulses to large variations

  4. The convergence of EAS radio emission models and a detailed comparison of REAS3 and MGMR simulations

    NARCIS (Netherlands)

    Huege, T.; Ludwig, M.; Scholten, O.; de Vries, K. D.

    2012-01-01

    Over the previous decade, many approaches for the modelling of radio emission from cosmic ray air showers have been developed. However, there remained significant deviations between the models, reaching from important qualitative differences such as unipolar versus bipolar pulses to large variations

  5. Radio Emissions from Plasma with Electron Kappa-Distributions

    Science.gov (United States)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  6. Optical polarisation of the Crab pulsar: precision measurements and comparison to the radio emission

    CERN Document Server

    Słowikowska, Agnieszka; Kramer, Michael; Stefanescu, Alexander

    2009-01-01

    The linear polarisation of the Crab pulsar and its close environment was derived from observations with the high-speed photo-polarimeter OPTIMA at the 2.56-m Nordic Optical Telescope in the optical spectral range (400 - 750 nm). Time resolution as short as 11 microseconds, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarisation details never achieved before. The degree of optical polarisation and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations require more elaborate theoretical models than those currently available in the literature.

  7. Mean and extreme radio properties of quasars and the origin of radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Rachael M.; Richards, Gordon T. [Department of Physics, Drexel University, Philadelphia, PA (United States)

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  8. Is Coherence Essential to Account for Pulsar Radio Emission?

    CERN Document Server

    Zhang, B; Qiao, G J; Zhang, Bing

    1999-01-01

    Based on definitions, two joint-criteria, namely, the optical-thin constraint and the energy budget constraint, are proposed to judge whether the emission nature of radio pulsars is incoherent or obligatory to be coherent. We find that the widely accepted criterion, $kT_B \\le \\epsilon$, is not a rational criterion to describe the optical-thin condition, even for the simplest case. The energy budget constraint could be released by introducing a certain efficient radiation mechanism (e.g. the inverse Compton scattering, QL98) with emission power of a single particle as high as a critical value $P_{sing,c} to interpret high luminosities of pulsars in terms of incoherent emission mechanisms, if the optical-thin constraint could be released by certain mechanism as well. Coherence may not be an essential condition to account for pulsar radio emission.

  9. Rotational modulation of Saturn's auroral radio emissions

    Science.gov (United States)

    Lamy, L.

    2011-10-01

    Among the persistent questions raised by the existence of a rotational modulation of the Saturn Kilometric Radiation (SKR), the origin of the variability of the 10.8 hours SKR period at a 1% level over weeks to years remains intriguing. While its short-term fluctuations (20-30 days) have been related to the variations of the solar wind speed, its long-term fluctuations (months to years) were proposed to be triggered by Enceladus mass-loading and/or seasonal variations. This situation has become even more complicated since the recent identification of two separated periods at 10.8h and 10.6h, each varying with time, corresponding to SKR sources located in the southern (S) and the northern (N) hemispheres, respectively. Here, six years of Cassini continuous radio measurements have been used to derive long-term radio periods and phase systems separately for each hemisphere 1. The S phase has then been used to investigate the S SKR rotational modulation (see Figure 1), shown to be consistent with an intrinsically rotating phenomenon, in contrast with the early Voyager picture, but in agreement with the diurnal modulation observed in other kronian auroral phenomena.

  10. Radio emissions from double RHESSI TGFs

    CERN Document Server

    Mezentsev, Andrew; Gjesteland, Thomas; Albrechtsen, Kjetil; Lehtinen, Nikolai; Marisaldi, Martino; Smith, David; Cummer, Steven

    2016-01-01

    A detailed analysis of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) terrestrial gamma ray flashes (TGFs) is performed in association with World Wide Lightning Location Network (WWLLN) sources and very low frequency (VLF) sferics recorded at Duke University. RHESSI clock offset is evaluated and found to experience changes on the 5 August 2005 and 21 October 2013, based on the analysis of TGF-WWLLN matches. The clock offsets were found for all three periods of observations with standard deviations less than 100 {\\mu}s. This result opens the possibility for the precise comparative analyses of RHESSI TGFs with the other types of data (WWLLN, radio measurements, etc.) In case of multiple-peak TGFs, WWLLN detections are observed to be simultaneous with the last TGF peak for all 16 cases of multipeak RHESSI TGFs simultaneous with WWLLN sources. VLF magnetic field sferics were recorded for two of these 16 events at Duke University. These radio measurements also attribute VLF sferics to the second pea...

  11. Multi-Spacecraft Observations of Saturn Kilometric Radio Emission

    Science.gov (United States)

    MacDowall, R. J.; Hess, R. A.

    2011-01-01

    Saturn kilometric radiation (SKR) is the auroral radio emission of Saturn, which has been observed by Voyager 1 & 2, Cassini, and Ulysses. Ulysses is able to detect the intense intervals of SKR from distances up to 10 AU, because of its long antennas (72 m tip-to-tip) and sensitive radio receivers. Studies of SKR by A. Lecacheux gave the surprising result that the periodicity of SKR varied with time; it was not locked to a planetary rotation of Saturn. This result has been confirmed by Cassini radio observations. Here, we compare Ulysses and Cassini observations of SKR to constrain a mode! for the SKR emission geometry. SpecifIcally, we examine the question - are the brighter sources of 5KR fixed in Saturn longitude or local time? The results have significant consequences for our understanding of SKR and its varying periodicity

  12. Gamma Ray Burst reverse shock emission in early radio afterglows

    CERN Document Server

    Resmi, Lekshmi

    2016-01-01

    Reverse shock (RS) emission from Gamma Ray Bursts is an important tool in investigating the nature of the ejecta from the central engine. If the ejecta magnetization is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would give important contribution to early afterglow light curves. In the radio band, synchrotron self-absorption may suppress early RS emission, and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band for different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both reverse and forward shocks. We calculate the ratio between the reverse to forward shock flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS e...

  13. Broadband nuclear emission in two radio-loud BAL quasars

    CERN Document Server

    Kunert-Bajraszewska, M; Janiuk, A

    2014-01-01

    The X-ray weakness of broad absorption line (BAL) quasars in comparison to non-BAL objects is possibly caused by the absorption of X-ray emission by the shielding material near the equatorial plane. On the other hand, the radio-loud BALQSOs are more X-ray loud than the radio-quiet ones. This suggests that part of the X-ray emission may arise from the radio jet. To investigate this possibility, we modelled the nuclear spectra of two radio-loud BALQSOs. We focus on the emission from the very centres of these two objects. The source of emission was approximated by a single, homogeneous component that produces synchrotron and inverse-Compton (IC) radiation. The simplicity of the model allowed us to estimate the basic physical parameters of the emitting regions, using a universal analytic approach. Such methods have already been used in blazars. For the first time we propose this solution for quasars. In addition, we modelled the radiation spectra of the accretion disk and its corona to compare them with the jets'...

  14. Measurement of radio emission from extensive air showers

    OpenAIRE

    Hoerandel, Joerg R.

    2009-01-01

    A new promising development in astroparticle physics is to measure the radio emission from extensive air showers. The particles in the cascade emit synchrotron radiation (30 - 90 MHz) which is detected with arrays of dipole antennas. Recent experimental efforts are discussed.

  15. A simple capacitor model for radio emission associated with earthquakes

    Institute of Scientific and Technical Information of China (English)

    Ares de Parga Gonzalo; Ram(I)rez-Rojas Alejandro

    2004-01-01

    In this brief report we propose a simple model based on the properties of an electric capacitor under short-circuit conditions as a possible mechanism of radio emissions associated with earthquakes. This model can be considered as complementary to other models concerning the same problem.

  16. The AGN content of deep radio surveys and radio emission in radio-quiet AGN. Why every astronomer should care about deep radio fields

    CERN Document Server

    Padovani, P; Miller, N; Kellermann, K I; Mainieri, V; Rosati, P; Tozzi, P; Vattakunnel, S

    2014-01-01

    We present our very recent results on the sub-mJy radio source populations at 1.4 GHz based on the Extended Chandra Deep Field South VLA survey, which reaches ~ 30 {\\mu}Jy, with details on their number counts, evolution, and luminosity functions. The sub-mJy radio sky turns out to be a complex mix of star-forming galaxies and radio-quiet AGN evolving at a similar, strong rate and declining radio-loud AGN. While the well-known flattening of the radio number counts below 1 mJy is mostly due to star-forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-mJy sky. Our results shed also light on a fifty-year-old issue, namely radio emission from radio-quiet AGN, and suggest that it is closely related to star formation, at least at z ~ 1.5 - 2. The implications of our findings for future, deeper radio surveys, including those with the Square Kilometre Array, are also discussed. One of the main messages, especially to non-radio astronomers, is that radio surveys are reaching such f...

  17. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars

    CERN Document Server

    Zakamska, Nadia L; Petric, Andreea; Dicken, Daniel; Greene, Jenny E; Heckman, Timothy M; Hickox, Ryan C; Ho, Luis C; Krolik, Julian H; Nesvadba, Nicole P H; Strauss, Michael A; Geach, James E; Oguri, Masamune; Strateva, Iskra V

    2015-01-01

    Radio emission from radio-quiet quasars may be due to star formation in the quasar host galaxy, to a jet launched by the supermassive black hole, or to relativistic particles accelerated in a wide-angle radiatively-driven outflow. In this paper we examine whether radio emission from radio-quiet quasars is a byproduct of star formation in their hosts. To this end we use infrared spectroscopy and photometry from Spitzer and Herschel to estimate or place upper limits on star formation rates in hosts of ~300 obscured and unobscured quasars at z<1. We find that low-ionization forbidden emission lines such as [NeII] and [NeIII] are likely dominated by quasar ionization and do not provide reliable star formation diagnostics in quasar hosts, while PAH emission features may be suppressed due to the destruction of PAH molecules by the quasar radiation field. While the bolometric luminosities of our sources are dominated by the quasars, the 160 micron fluxes are likely dominated by star formation, but they too should...

  18. Magnetar-like Activity and Radio Emission Variability from the High Magnetic Field Pulsar PSR J1119-6127

    Science.gov (United States)

    Pearlman, Aaron B.; Majid, Walid A.; Horiuchi, Shinji; Kocz, Jonathon; Lippuner, Jonas; Prince, Thomas Allen

    2017-08-01

    We present results from a high frequency radio monitoring campaign of the high magnetic field pulsar PSR J1119-6127 with the Deep Space Network (DSN) 70 m antenna (DSS-43) in Canberra, Australia, following recently reported magnetar-like activity. Dramatic pulsed radio emission variability was observed over several months at S-band (2.3 GHz) and X-band (8.4 GHz) after an initial disappearance of radio pulsations. The S-band pulse profile evolved from a multiple-peaked structure into a single-peak over several weeks, which is extremely unusual for radio pulsars. We also observed significant differences between the polarized pulse profiles at both S-band and X-band. In addition, pulsed emission variability was observed on shorter timescales, of order tens of minutes, during individual observations.The spectral index from 2.3 GHz to 8.4 GHz varied between flux densities exceeding 0.49/0.27 Jy.Although PSR J1119-6127 is normally a rotation-powered pulsar, it is possible that the decay of the pulsar’s strong magnetic field, together with other magnetar-like mechanisms, may be responsible for the observed emission variability. We will discuss how these results could connect magnetars with high-B field pulsars.

  19. Young radio sources: the duty-cycle of the radio emission and prospects for gamma-ray emission

    CERN Document Server

    Orienti, M; Giovannini, G; Giroletti, M; D'Ammando, F

    2011-01-01

    The evolutionary stage of a powerful radio source originated by an AGN is related to its linear size. In this context, compact symmetric objects (CSOs), which are powerful and intrinsically small objects, should represent the young stage in the individual radio source life. However, the fraction of young radio sources in flux density-limited samples is much higher than what expected from the number counts of large radio sources.This indicates that a significant fraction of young radio sources does not develop to the classical Fanaroff-Riley radio galaxies,suggesting an intermittent jet activity. As the radio jets are expanding within the dense and inhomogeneous interstellar medium,the ambient may play a role in the jet growth, for example slowing down or even disrupting its expansion when a jet-cloud interaction takes place. Moreover, this environment may provide the thermal seed photons that scattered by the lobes' electrons may be responsible for high energy emission, detectable by Fermi-LAT.

  20. Search for a Correlation Between Very-High-Energy Gamma Rays and Giant Radio Pulses in the Crab Pulsar

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Perkins, J. S.

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ( E(sub Gamma) > 150 GeV) and giant radio pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15,366 GRPs were recorded during 11.6 hr of simultaneous observations, which were made across four nights in 2008 December and in 2009 November and December. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, eight different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Furthermore, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pulsed VHE emission was found in any of the preformed searches. We set upper limits of 5-10 times the average VHE flux of the Crab pulsar on the flux simultaneous with interpulse GRPs on single-rotation-period timescales. On approx. 8 s timescales around interpulse GRPs, we set an upper limit of 2-3 times the average VHE flux. Within the framework of recent models for pulsed VHE emission from the Crab pulsar, the expected VHE-GRP emission correlations are below the derived limits.

  1. On the pulse-width statistics in radio pulsars. III. Importance of the conal profile components

    CERN Document Server

    Maciesiak, K; Melikidze, G

    2012-01-01

    This work is a continuation of two previous papers of a series, in which we examined the pulse-width statistics of normal radio pulsars. In the first paper we compiled the largest ever database of pulsars with interpulses in their mean profiles. In the second one we confirmed the existence of the lower boundary in the scatter plot of core component pulse-widths versus pulsar period W50 sim 2.5 P^{-0.5}[deg], first discovered by Rankin using much smaller number of interpulse cases. In this paper we show that the same lower boundary also exists for conal profile components. Rankin proposed a very simple method of estimation of pulsar inclination angle based on comparing the width W50 of its core component with the period dependent value of the lower boundary. We claim that this method can be extended to conal components as well. To explain an existence of the lower boundary Rankin proposed that the core emission originates at or near the polar cap surface. We demonstrated clearly that no coherent pulsar radio e...

  2. Simulating radio emission from air showers with CoREAS

    CERN Document Server

    Huege, T; James, C W

    2013-01-01

    CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA. As such, it is parameter-free, makes no assumptions on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA. In this article, we illustrate the capabilities of CoREAS with simulations carried out in different frequency ranges from tens of MHz up to GHz frequencies, and describe in particular the emission characteristics at high frequencies due to Cherenkov effects arising from the varying refractive index of the atmosphere.

  3. High resolution radio emission from RCW 49/Westerlund 2

    CERN Document Server

    Benaglia, Paula; Peri, Cintia S; Marti, Josep; Sanchez-Sutil, Juan R; Dougherty, Sean M; Noriega-Crespo, Alberto

    2013-01-01

    The HII region RCW 49 and its ionizing cluster form an extensive, complex region that has been widely studied at infrared and optical wavelengths. Molonglo 843 MHz and ATCA data at 1.4 and 2.4 GHz showed two shells. Recent high-resolution IR images revealed a complex dust structure and ongoing star formation. New high-bandwidth and high-resolution data of the RCW 49 field have been obtained to survey the radio emission at arcsec scale and investigate the small-scale features and nature of the HII region. Radio observations were collected with the new 2-GHz bandwidth receivers and the ATCA CABB correlator, at 5.5 and 9.0 GHz. In addition, archival observations at 1.4 and 2.4 GHz have been re-reduced and re-analyzed in conjunction with observations in the optical, infrared, X-ray and gamma-ray regimes.- The new 2-GHz bandwidth data result in the most detailed radio continuum images of RCW 49 to date. The radio emission closely mimics the near-IR emission observed by Spitzer, showing pillars and filaments. The b...

  4. No radio emission from SN 2006X after 2 years

    Science.gov (United States)

    Chandra, Poonam; Chevalier, Roger; Patat, Ferdinando

    2008-02-01

    We observed Type Ia supernova SN 2006X (IAUC 8667) with the VLA for 2 hours in 8.46 GHz band at 2008 Feb 19.47 UT mean time. We did not detect any radio emission, indicating it to be a normal Type Ia supernova. The map rms is 18 uJy and the flux density at the supernova position is 4 +/-18 uJy. We thank VLA staff for making this observation possible. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    CERN Document Server

    Kratzer, Rachael M

    2014-01-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio-loudness of quasars. We consider how these values evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high-redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly both the RLF and mean radio loudness increase for quasars which are argued to have weaker radiation line driven wind components of the broad emission line region. In agreement with past work, we find that the RLF increases with increasing luminosity and decreasing redshift while the mean radio-loudness evolves in the exact oppos...

  6. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  7. Optimal design of basic pulse waveforms for THSS UWB radio systems

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Zhang Zhongzhao

    2005-01-01

    Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also,the polarity of these short basic pulses does not affect the performance of UWB radio system.

  8. A Search for Radio Emission from Nearby Exoplanets

    Science.gov (United States)

    Maps, Amethyst D.; Bastian, Timothy S.; Beasley, Anthony J.

    2017-01-01

    Since the discovery of the first extrasolar planet orbiting a main sequence star more than 20 years ago, the study of exoplanets has become a burgeoning field with more than 3300 confirmed extrasolar planets now known. A variety of techniques has been used to discover exoplanets orbiting main sequence stars and to deduce their properties: timing, radial velocities, direct imaging, microlensing, and transits in the optical/IR bands. Absent from this list so far is the detection of exoplanets at radio wavelengths, but not for lack of trying. Searches for radio emission from exoplanets predate their discovery (Winglee et al. 1986) and have continued sporadically to this day. The majority of searches for radio emission from exoplanets has searched for coherent radio emission. It is indeed the case that in our own solar system, all magnetized planets are powerful radio emitters, the likely emission mechanism being the cyclotron maser instability. The outstanding example is Jupiter, which emits 1010-1011 W at decameter wavelengths (frequencies planets in other solar systems, many must surely emit CMI radiation. The emitted radiation could be orders of magnitude more intense than Jupiter’s if the interaction between the magnetized planet and the wind from the primary star is stronger than the Sun/Jupiter interaction - due, for example, to a more powerful wind and/or the planet being closer to the star.We have initiated a new search for radio emission from exoplanets, focusing on all known exoplanetary systems within 20 pc - more than 50 systems containing nearly 100 planets using the Jansky Very Large Array (JVLA) in three frequency bands: 1-2 GHz, 2-4 GHz, and 4-8 GHz with a target sensitivity of ~10 microJy. We have completed the 2-4 GHz survey and report our preliminary results, which include the detection of two systems. We discuss whether the emission is from a planet or from the star and the implications of our conclusions for habitability of exoplanets.

  9. A New Solar Radio Emission Component Observed at Hectometric Wavelengths

    Science.gov (United States)

    Reiner, M.; Kaiser, M.; Fainberg, J.

    2003-04-01

    From May 17 to 22, 2002 a highly circularly polarized solar radio source was observed by the WAVES receivers on the Wind spacecraft. This unique event, which became quite intense and definite after May 19 and which was observed continuously for 6 days, was characterized by fine frequency structures, 1 to 2 hour amplitude periodicities, and a peaked frequency spectrum. Indeed, this emission has characteristics more typical of planetary emissions than of solar emissions. This is the only such event observed by Wind/WAVES in its 8 years of operation. (The only other example of an event of similar nature may have been observed more than 20 years ago by the ISEE-3 spacecraft.) The direction-finding analysis for this event indicates a relatively small radio source that may lie somewhere between 0.06 and 0.36 AU from the sun. The radiation from this event was very weak at the onset, being nearly an order of magnitude below the galactic background radiation level. It is speculated that this radio event may be a unique hectometric manifestation of a moving type IV burst. The radiation mechanism is unknown--possibilities include plasma emission, gyro-synchrotron, and cyclotron maser.

  10. Tracing star formation with non-thermal radio emission

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2016-01-01

    Understanding the evolution of galaxies and in particular their star formation history is a central challenge of modern cosmology. Theoretical scenarios will be constrained by future ultra deep radio surveys. In this paper we present an analytical tool for analyzing radio data. Our physical model, based on an analytical description of the steady-state cosmic ray spectrum, explains the correlation between the non-thermal radio flux and the star formation rate (SFR). As cosmic rays are produced in supernova remnants, their injection rate is proportional to the supernova rate and thus also to the SFR. When these highly energetic charged particles travel in the magnetized interstellar medium they emit synchrotron radiation. As a result there is a relation between the SFR and the non-thermal radio emission. A crucial point is that synchrotron emission can be absorbed again by the free-free mechanism. This suppression becomes stronger with increasing number density of the gas, more precisely of the free electrons, ...

  11. Physical Analysis of the Jovian Synchrotron Radio Emission

    Science.gov (United States)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  12. The radiation belt origin of Uranus' nightside radio emission

    Science.gov (United States)

    Curtis, S. A.; Desch, M. D.; Kaiser, M. L.

    1987-01-01

    On the basis of the location of the source field lines of the smooth nightside component of Uranus kilometric radiation, the most likely free energy source is the outer radiation belts. As the terminator sweeps over the magnetic north polar region, precipitation of electrons generated by solar heating of the upper atmosphere and submergence of the electron mirror points deeper in the atmosphere will create a backscattered electron distribution with an enhanced population at large pitch angles. The clocklike radio emission turns out to be a direct consequence of the terminator's control of the emission process.

  13. Thermal Radio Emission from Radiative Shocks in Colliding Stellar Winds

    Science.gov (United States)

    Montes, Gabriela; González, Ricardo F.; Cantó, Jorge; Pérez-Torres, Miguel A.; Alberdi, Antonio

    2011-01-01

    We present a semi-analytic model for computing the thermal radio continuum emission from radiative shocks within colliding wind binaries. Assuming a thin shell approximation, we determine the contribution of the wind collision region (WCR) to the total thermal emission for close binaries. We investigate the effect of the binary separation and the stellar wind parameters on the total spectrum. In addition, we point out the relevance of taking into account this contribution for the correct interpretation of the observations, and the accuracy of the stellar wind parameters derived from them.

  14. Thermal Radio Emission from Radiative Shocks in Colliding Wind Binaries

    Science.gov (United States)

    Montes, G.; González, R. F.; Cantó, J.; Pérez-Torres, M. A.; Alberdi, A.

    2011-10-01

    We present a semi-analytic model for computing the thermal radio continuum emission from radiative shocks within colliding wind binaries. Assuming a thin shell approximation, we calculate the contribution of the wind collision region (WCR) to the total thermal emission for close binaries. We investigate the effect of the binary separation on the total spectrum. In addition, we point out the relevance of taking into account this contribution for the correct interpretation of the observations, and the accuracy of parameters derived from them.

  15. Seyfert Galaxies: Radio Continuum Emission Properties and the Unification Scheme

    Indian Academy of Sciences (India)

    Veeresh Singh; Prajval Shastri; Ramana Athreya

    2011-12-01

    Seyfert galaxies are classified mainly into type 1 and type 2 depending on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Unification scheme hypothesizes that the observed similarities and differences between the two Seyfert subtypes can be understood as due to the differing orientations of anisotropically distributed obscuring material having a torus-like geometry around the AGN. We investigate the radio continuum emission properties of a sample of Seyfert galaxies in the framework of the unification scheme.

  16. Detection of 610-MHz radio emission from hot magnetic stars

    Science.gov (United States)

    Chandra, P.; Wade, G. A.; Sundqvist, J. O.; Oberoi, D.; Grunhut, J. H.; ud-Doula, A.; Petit, V.; Cohen, D. H.; Oksala, M. E.; David-Uraz, A.

    2015-09-01

    We have carried out a study of radio emission from a small sample of magnetic O- and B-type stars using the Giant Metrewave Radio Telescope, with the goal of investigating their magnetospheres at low frequencies. These are the lowest frequency radio measurements ever obtained of hot magnetic stars. The observations were taken at random rotational phases in the 1390 and the 610 MHz bands. Out of the eight stars, we detect five B-type stars in both the 1390 and the 610 MHz bands. The three O-type stars were observed only in the 1390 MHz band, and no detections were obtained. We explain this result as a consequence of free-free absorption by the free-flowing stellar wind exterior to the confined magnetosphere. We also study the variability of individual stars. One star - HD 133880 - exhibits remarkably strong and rapid variability of its low-frequency flux density. We discuss the possibility of this emission being coherent emission as reported for CU Vir by Trigilio et al.

  17. Search for a correlation between very-high-energy gamma rays and giant radio pulses in the Crab pulsar

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Buckley, J H; Bugaev, V; Byrum, K; Cesarini, A; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Dickherber, R; Duke, C; Dumm, J; Falcone, A; Federici, S; Feng, Q; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Lee, K; Lyutikov, M; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Nelson, T; de Bhroithe, A O'Faolain; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G D; Smith, A W; Staszak, D; Telezhinsky, I; Tesic, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vincent, S; Vivier, M; Wagner, R G; Wakely, S P; Weekes, T C; Weinstein, A; Welsing, R; Williams, D A; Zitzer, B; Kondratiev, V

    2012-01-01

    We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ($E_{\\gamma} >$ 150 GeV) and Giant Radio Pulses (GRPs) from the Crab pulsar at 8.9 GHz. A total of 15366 GRPs were recorded during 11.6 hours of simultaneous observations, which were made across four nights in December 2008 and in November and December 2009. We searched for an enhancement of the pulsed gamma-ray emission within time windows placed around the arrival time of the GRP events. In total, 8 different time windows with durations ranging from 0.033 ms to 72 s were positioned at three different locations relative to the GRP to search for enhanced gamma-ray emission which lagged, led, or was concurrent with, the GRP event. Further, we performed separate searches on main pulse GRPs and interpulse GRPs and on the most energetic GRPs in our data sample. No significant enhancement of pu...

  18. Pulsed terahertz emission from GaN/InN heterostructure

    Science.gov (United States)

    Reklaitis, Antanas

    2011-11-01

    Dynamics of the electron-hole plasma excited by the femtosecond optical pulse in wurtzite GaN/InN heterostructure is investigated by Monte Carlo simulations. The GaN/InN heterostructure for pulsed terahertz emission is suggested. The results of Monte Carlo simulations show that the power of terahertz emission from the GaN/InN heterostructure exceeds the power of terahertz emission from the surface of InN by one order of magnitude.

  19. Hint of star exoplanet interaction by modelling the stellar auroral radio emission of the M8.5 dwarf TVLM 513-46546

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The stellar auroral radio emission has been recognized in some early-type magnetic stars and in many ultra-cool dwarfs. The typical features are the highly polarized pulses explained in terms of Electron Cyclotron Maser emission mechanism. The A0 type star CU Virginis is the prototype of the stars showing this coherent emission; the repeatability and stability of its auroral radio emission allow us to well study this elusive phenomenon. Taking advantage of the CU Vir insights, we built a 3D-model able to reproduce the timing and pulse profile of the auroral radio emission from a dipolar magnetosphere. This model can be applied to stars with an overall symmetric magnetic field topology and showing auroral radio emission, like the ultra-cool dwarfs. In this paper, we simulate the cyclic circularly-polarized pulses of the ultra-cool dwarf TVLM 513-46546, observed with the VLA at 4.88 and 8.44 GHz on May 2006. The auroral radio emission originates in polar rings located at different elevations as a function of th...

  20. Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119--6127

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M E; Kaspi, V M; Camilo, F; Gaensler, B M; Pivovaroff, M J

    2005-08-05

    We present XMM-Newton observations of the radio pulsar PSR J1119-6127, which has an inferred age of 1,700 yr and surface dipole magnetic field strength of 4.1 x 10{sup 13} G. We report the first detection of pulsed X-ray emission from PSR J1119-6127. In the 0.5-2.0 keV range, the pulse profile shows a narrow peak with a very high pulsed fraction of (74 {+-} 14)%. In the 2.0-10.0 keV range, the upper limit for the pulsed fraction is 28% (99% confidence). The pulsed emission is well described by a thermal blackbody model with a temperature of T{infinity} = 2.4{sub -0.2}{sup +0.3} x 10{sup 6} K and emitting radius of 3.4{sub -0.3}{sup +1.8} km (at a distance of 8.4 kpc). Atmospheric models result in problematic estimates for the distance/emitting area. PSR J1119-6127 is now the radio pulsar with smallest characteristic age from which thermal X-ray emission has been detected. The combined temporal and spectral characteristics of this emission are unlike those of other radio pulsars detected at X-ray energies and challenge current models of thermal emission from neutron stars.

  1. Very Long Baseline Interferometry Experiment on Giant Radio Pulses of Crab Pulsar toward Fast Radio Burst Detection

    CERN Document Server

    Takefuji, K; Kondo, T; Mikami, R; Takeuchi, H; Misawa, H; Tsuchiya, F; Kita, H; Sekido, M

    2016-01-01

    We report on a very long baseline interferometry (VLBI) experiment on giant radio pulses (GPs) from the Crab pulsar in the radio 1.4 to 1.7 GHz range to demonstrate a VLBI technique for searching for fast radio bursts (FRBs). We carried out the experiment on 26 July 2014 using the Kashima 34 m and Usuda 64 m radio telescopes of the Japanese VLBI Network (JVN) with a baseline of about 200 km. During the approximately 1 h observation, we could detect 35 GPs by high-time-resolution VLBI. Moreover, we determined the dispersion measure (DM) to be 56.7585 +/- 0.0025 on the basis of the mean DM of the 35 GPs detected by VLBI. We confirmed that the sensitivity of a detection of GPs using our technique is superior to that of a single-dish mode detection using the same telescope.

  2. Saturn's Radio Emissions and their Relation to Magnetospheric Dynamics

    Science.gov (United States)

    Jackman, C. M.

    With the arrival of the Cassini spacecraft at Saturn in July 2004, there have been quasi-continuous observations of Saturn Kilometric Radiation (SKR) emissions. In this paper we review the response of these emissions to dynamics in Saturn's magnetosphere, driven by factors internal and external to the system. We begin by reviewing solar wind data upstream of Saturn and discuss the link between solar wind compressions and dynamics in Saturn's magnetosphere, evidenced by intensifications and occasional phase changes in the SKR emission. We then review the link between magnetotail reconnection and planetary radio emissions. We begin in the well-sampled magnetotail of Earth and then move to Saturn where exploration of the nightside magnetosphere has revealed evidence of plasmoid-like magnetic structures and other phenomena indicative of the kronian equivalent of terrestrial substorms. In general, there is a good correlation between the timing of reconnection events and enhancements in the SKR emission, coupled with extension of the emission to lower frequencies. We interpret this as growth of the radio source region to higher altitudes along the field lines, stimulated by increased precipitation of energetic electrons into the auroral zones following reconnection. We also comment on the observation that the majority of reconnection events occur at SKR phases where the SKR power would be expected to be rising with time, indicating that reconnection is most likely to occur at a preferred phase. We conclude with a summary of the current knowledge of the link between Saturn's magnetospheric dynamics and SKR emissions, and list a number of open questions to be addressed in the future.

  3. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    Science.gov (United States)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  4. Detection of thermal radio emission from a single coronal giant

    CERN Document Server

    O'Gorman, Eamon; Vlemmings, Wouter

    2016-01-01

    We report the detection of thermal continuum radio emission from the K0 III coronal giant Pollux ($\\beta$ Gem) with the Karl G. Jansky Very Large Array (VLA). The star was detected at 21 and 9 GHz with flux density values of $150\\pm21$ and $43\\pm8\\,\\mu$Jy, respectively. We also place a $3\\sigma_{\\mathrm{rms}}$ upper limit of $23\\,\\mu$Jy for the flux density at 3 GHz. We find the stellar disk-averaged brightness temperatures to be approximately 9500, 15000, and $<71000\\,$K, at 21, 9, and 3 GHz, respectively, which are consistent with the values of the quiet Sun. The emission is most likely dominated by optically thick thermal emission from an upper chromosphere at 21 and 9 GHz. We discuss other possible additional sources of emission at all frequencies and show that there may also be a small contribution from gyroresonance emission above active regions, coronal free-free emission and free-free emission from an optically thin stellar wind, particularly at the lower frequencies. We constrain the maximum mass-...

  5. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  6. Restarting radio activity and dust emission in radio-loud broad absorption line quasars

    CERN Document Server

    Bruni, G; Montenegro-Montes, F M; Brienza, M; González-Serrano, J I

    2015-01-01

    Broad absorption line quasars (BAL QSOs) are objects showing absorption from relativistic outflows, with velocities up to 0.2c. These manifest, in about 15% of quasars, as absorption troughs on the blue side of UV emission lines, such as C iv and Mg ii. In this work, we complement the information collected in the cm band for our previously presented sample of radio loud BAL QSOs with new observations at m and mm bands. Our aim is to verify the presence of old, extended radio components in the MHz range, and probe the emission of dust (linked to star formation) in the mm domain. We observed 5 sources from our sample, already presenting hints of low-frequency emission, with the GMRT at 235 and 610 MHz. Other 17 sources (more than half the sample) were observed with bolometer cameras at IRAM-30m and APEX. All sources observed with the GMRT present extended emission at a scale of tens of kpc. In some cases these measurements allow us to identify a second component in the SED, at frequencies below 1.4 GHz, beyond ...

  7. Radio emission from Supernovae and High Precision Astrometry

    Science.gov (United States)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  8. Shocks in nova outflows. II. Synchrotron radio emission

    CERN Document Server

    Vlasov, Andrey Dmitrievich; Metzger, Brian David

    2016-01-01

    The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a timescale of months with a brightness temperature which is too high to result from freely expanding photo-ionized gas. Paper I developed a one dimensional model for the thermal emission from nova shocks. This work concluded that the shock-powered radio peak cannot be thermal if line cooling operates in the post-shock gas at the rate determined by collisional ionization equilibrium. Here we extend this calculation to include non-thermal synchrotron emission. Applying our model to three classical novae, we constrain the amplification of the magnetic field $\\epsilon_B$ and the efficiency $\\epsilon_e$ of accelerating relativistic electrons of characteristic Lorentz factor $\\gamma \\sim 100$. If the shocks are radiative (low velocity $v_{\\rm sh} \\lesssi...

  9. Far-UV Emission Properties of FR1 Radio Galaxies

    CERN Document Server

    Danforth, Charles W; France, Kevin; Begelman, Mitchell C

    2016-01-01

    The power mechanism and accretion geometry for low-power FR1 radio galaxies is poorly understood in comparison to Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Lya recombination line observed using the Cosmic Origins Spectrograph aboard HST to investigate the accretion flows in three well-known, nearby FR1s: M87, NGC4696, and HydraA. The Lya emission line's luminosity, velocity structure, variability and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the SMBH in these radio-mode AGN. We observe strong Lya emission in all three objects with similar total luminosity to that seen in BL Lacertae objects. M87 shows a complicated emission line profile in Lya which varies spatially across the COS aperture as well as temporally over several epochs of observation. Over the same observing epochs the UV continuum was seen to not vary, making it unlikely that the observed UV continuum is the ionizing source for Lya. In both ...

  10. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Yusef-Zadeh, Farhad [Northwestern Univ., Evanston, IL (United States)

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  11. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  12. Study of Calibration of Solar Radio Spectrometers and the quiet-Sun Radio Emission

    CERN Document Server

    Tan, Chengming; Tan, Baolin; Fu, Qijun; Liu, Yuying; Xu, Guirong

    2015-01-01

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0-2.0 GHz, 2.6-3.8 GHz, and 5.2-7.6 GHz) during 1997-2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about $10\\%-20\\%$ at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet-Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  13. Radio data and synchrotron emission in consistent cosmic ray models

    CERN Document Server

    Bringmann, Torsten; Lineros, Roberto A

    2011-01-01

    We consider the propagation of electrons in phenomenological two-zone diffusion models compatible with cosmic-ray nuclear data and compute the diffuse synchrotron emission resulting from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors both a very large (L>15 kpc) and small (L<1 kpc) effective size of the diffusive halo. This has profound implications for, e.g., indirect dark matter searches.

  14. The discharge mode transition and O(5p1) production mechanism of pulsed radio frequency capacitively coupled plasma

    Science.gov (United States)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Shi, J. J.

    2012-07-01

    The discharge mode transition from uniform plasma across the gas gap to the α mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He2* dominate the production of O(5p1) through dissociation and excitation of O2. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  15. Extended X-ray emission from radio galaxy cocoons

    CERN Document Server

    Nath, Biman B

    2010-01-01

    We study the emission of X-rays from lobes of FR-II radio galaxies by inverse Compton scattering of microwave background photons. Using a simple model that takes into account injection of relativistic electrons, their energy losses through adiabatic expansion, synchrotron and inverse Compton emission, and also the stopping of the jet after a certain time, we study the evolution of the total X-ray power, the surface brightness, angular size of the X-ray bright region and the X-ray photon index, as functions of time and cocoon size, and compare the predictions with observations. We find that the radio power drops rapidly after the stopping of the jet, with a shorter time-scale than the X-ray power. The X-ray spectrum initially hardens until the jet stops because the steepening of electron spectrum is mitigated by the injection of fresh particles, for electrons with $\\gamma \\ge 10^3$. This happens because of the concurrence of two times scales, that of the typical jet lifetimes and cooling due to inverse Compton...

  16. Fast Radio Bursts with Extended Gamma-Ray Emission?

    CERN Document Server

    Murase, Kohta; Fox, Derek B

    2016-01-01

    We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that, even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly-relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source...

  17. Radio and X-ray emission from disc winds in radio-quiet quasars

    CERN Document Server

    Steenbrugge, K C; Kuncic, Z; Blundell, K M

    2010-01-01

    It has been proposed that the radio spectra of radio-quiet quasars is produced by free-free emission in the optically thin part of an accretion disc wind. An important observational constraint on this model is the observed X-ray luminosity. We investigate this constraint using a sample of PG radio-quiet quasars for which XMM-Newton EPIC spectra are available. Comparing the predicted and measured luminosities for 0.5, 2 and 5 keV, we conclude that all of the studied PG quasars require a large hydrogen column density absorber, requiring these quasars to be close to or Compton-thick. Such a large column density can be directly excluded for PG 0050+124, for which a high-resolution RGS spectrum exists. Further constraint on the column density for a further 19 out of the 21 studied PG quasars comes from the EPIC spectrum characteristics such as hard X-ray power-law photon index and the equivalent width of the Fe Kalpha line; and the small equivalent width of the C IV absorber present in UV spectra. For 2 sources: P...

  18. Correlations between radio emission of the parsec-scale jet and optical nuclear emission of host AGN

    CERN Document Server

    Torrealba, Janet; Chavushyan, Vahram; Cruz-Gonzalez, Irene

    2011-01-01

    We study the relation between the VLBA (Very Long Baseline Array) radio emission at 15 GHz and the optical nuclear emission at 5100 A for a sample of 233 core-dominated AGN with relativistic jets. For 181 quasars, there is a significant positive correlation between optical nuclear emission and total radio (VLBA) emission of unresolved cores (on milliarcsecond scales) of the jet at 15 GHz. Optical continuum emission correlates with radio emission of the jet for 31 BL Lacs. These correlations confirm that the radio and optical emission are beamed and originate at sub-parsec scales in the innermost part of the jet in quasars, while they are generated in the parsec-scale jet in BL Lacs. These results are in agreement with that reported earlier by Arshakian et al. 2010 for a sample of 135 AGN.

  19. Rotational modulation of Saturn's radio emissions after equinox

    Science.gov (United States)

    Ye, S.-Y.; Fischer, G.; Kurth, W. S.; Menietti, J. D.; Gurnett, D. A.

    2016-12-01

    Saturn kilometric radiation (SKR), narrowband emission, and auroral hiss are periodically modulated due to Saturn's rotation, and the periods were found to vary with time. We analyze Cassini observations of Saturn's radio emissions with the main focus on the four years 2012-2015. It is shown that the rotation rates of SKR north and south were different since mid-2012 with SKR north being faster until autumn 2013, followed by a 1 year interval of similar north and south rotation rates and phases, before the northern SKR component finally became slower than the southern SKR in late 2014. The dual rotation rates of 5 kHz narrowband emissions reappeared for slightly longer than 1 year after a long break since equinox. Auroral hiss provides an unambiguous way of tracking the rotation signals from each hemisphere because the whistler mode waves cannot cross the equator. Rotation rates of auroral hiss and narrowband emissions are consistent with each other and those of SKR when they are observed at high latitudes in early 2013. The phase difference between SKR and auroral hiss and the intensity of auroral hiss are local time dependent.

  20. Polarized radio emission from extensive air showers measured with LOFAR

    CERN Document Server

    Schellart, P; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Krause, M; Nelles, A; Rachen, J P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G

    2014-01-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization exceeding $99\\%$, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for $179$ individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from $(3.47\\pm 0.79)\\%$ for very inclined air showers at $25\\, \\m...

  1. Probing the magnetosphere of the M8.5 dwarf TVLM 513-46546 by modelling its auroral radio emission. Hint of star exoplanet interaction?

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2017-08-01

    In this paper, we simulate the cyclic circularly polarized pulses of the ultracool dwarf TVLM 513-46546, observed with the Very Large Array at 4.88 and 8.44 GHz on 2006 May, by using a three-dimensional model of the auroral radio emission from the stellar magnetosphere. During this epoch, the radio light curves are characterized by two pulses left-hand polarized at 4.88 GHz, and one doubly peaked (of opposite polarizations) pulse at 8.44 GHz. To take into account the possible deviation from the dipolar symmetry of the stellar magnetic-field topology, the model described in this paper is also able to simulate the auroral radio emission from a magnetosphere shaped like an offset dipole. To reproduce the timing and pattern of the observed pulses, we explored the space of parameters controlling the auroral beaming pattern and the geometry of the magnetosphere. Through the analysis of the TVLM 513-46546 auroral radio emission, we derive some indications on the magnetospheric field topology that is able to simultaneously reproduce the timing and patterns of the auroral pulses measured at 4.88 and 8.44 GHz. Each set of model solutions simulates two auroral pulses (singly or doubly peaked) per period. To explain the presence of only one 8.44 GHz pulse per period, we analyse the case of auroral radio emission limited only to a magnetospheric sector activated by an external body, like the case of the interaction of Jupiter with its moons.

  2. The Correlation between -Ray and Radio Emissions for the Fermi Blazars

    Indian Academy of Sciences (India)

    J. H. Yang; J. H. Fan

    2011-03-01

    Based upon the Fermi blazars sample, the radio and -ray emissions are compiled for a sample of 74 -ray loud blazars to calculate the radio to -ray effective spectrum index R . The correlations between R and -ray luminosity, and between radio and -ray luminosity are also investigated.

  3. On the production mechanism of radio-pulses from large extensive air showers

    Science.gov (United States)

    Datta, P.; Pathak, K. M.

    1985-01-01

    None of the theories put forward so far to explain the radio emission from cosmic ray showers, has been successful in giving a satisfactory explanation for all the experimental data obtained from various laboratories over the globe. It is apprehended that emission mechanism at low and high frequencies may be quite different. This calls for new theoretical look into the phenomenon. Theoretical as well as the experimental results indicate that the frequency spectrum is rather flat in the frequency range (40 to 60 MHz. Above 80 MHz, the radio emission can be explained with the help of geomagnetic mechanism. But at very low frequency ( 10 MHz), mechanisms other than geomagnetic are involved.

  4. Low Frequency Radio Emission of Pulsar PSR J1907+0919 Associated with the Magnetar SGR 1900+14

    CERN Document Server

    Shitov, Yu P; Kutuzov, S M; Shitov, Yu. P.

    2000-01-01

    The soft gamma repeater SGR 1900+14 was observed in Pushchino observatorysince 1988 December using BSA radio telescope operating at 111 MHz. We havedetected the pulsed radio emission (Shitov 1999) with the same 5.16 s periodthat was reported earlier for this object. The timing analysis has shown thatthis new radio pulsar PSR J1907+0919 associated with SGR 1900+14 has asuperstrong magnetic field, which is 8.1 * 10^14 G, thereby confirming that itis a "magnetar". The dispersion measure of PSR J1907+0919 is 281.4(9) pc *cm^(-3) which gives an estimate of the pulsar's distance as about 5.8 kpc.

  5. Constraining Fully Convective Magnetic Dynamos using Brown Dwarf Auroral Radio Emission

    Science.gov (United States)

    Kao, Melodie; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam; Bourke, Stephen; Stevenson, David

    2017-05-01

    An important outstanding problem in dynamo theory is understanding how magnetic fields are generated and sustained in fully convective objects, spanning stars through planets. For fully convective dynamo models to accurately predict exoplanet magnetic fields, pushing measurements to include the coolest T and Y dwarfs at the substellar-planetary boundary is critical. A number of models for possible dynamo mechanisms in this regime have been proposed but constraining data on magnetic field strengths and topologies across a wide range of mass, age, rotation rate, and temperature are sorely lacking, particularly in the brown dwarf regime.Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime. However, these detections are very rare; previous radio surveys encompassing ∼60 L6 or later targets have yielded only one detection. We have developed a selection strategy for biasing survey targets by leveraging the emergence of magnetic activity that is driven by planet-like auroral processes in the coolest brown dwarfs. Using our selection strategy, we previously observed six late L and T dwarfs with the Jansky Very Large Array (VLA) at 4-8 GHz and detected the presence of highly circularly polarized radio emission for five targets. Our initial detections provided the most robust constraints on dynamo theory in this regime, confirming magnetic fields >2.5 kG. To further probe the mechanisms driving fully convective dynamos at the substellar-planetary boundary, we present magnetic field constraints for two Y-dwarfs and 8-12 GHz radio observations of late L and T dwarfs corresponding to >3.6 kG surface fields. We additionally present initial results for a comprehensive L and T dwarf survey spanning a wide range of rotation periods to test rotation-dominated dynamo models. Finally, we present a method for comparing magnetic field measurements derived from

  6. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  7. Radio emission variability and proper motions of WR 112

    CERN Document Server

    Yam, J O; Rodríguez, L F; Rodríguez-Gómez, V

    2014-01-01

    We analyzed 64 radio observations at the frequency of 8.4 GHz of the Wolf-Rayet star WR 112, taken from the Very Large Array archive. These observations cover a time baseline of 13 years, from June 2000 to July 2013. The radio structure of WR 112 is consistent with it being a point source in all the epochs and with its flux density varying from 0.6 mJy to 2.1 mJy. We tried to search for periodicities in these variations but our results were not conclusive. We also looked for extended emission from the infrared nebula that surrounds WR 112, settimg upper limits of 50 $\\mu$Jy. Finally, we used the highest angular resolution images to measure the proper motions of WR 112, obtaining $\\mu_\\alpha\\cos \\delta = -2.6 \\pm 1.1 \\mbox{ mas yr$^{-1}$}$, and $\\mu_\\delta = -5.4 \\pm 1.4 \\mbox{ mas yr$^{-1}$}$. These proper motions are smaller than those previously reported, but still suggest significant peculiar motions for WR 112.

  8. Estimation of emission cone wall thickness of Jupiter's decametric radio emission using stereoscopic STEREO/WAVES observations

    Science.gov (United States)

    Panchenko, M.; Rucker, H. O.

    2016-11-01

    Aims: Stereoscopic observations by the WAVES instrument onboard two STEREO spacecraft have been used with the aim of estimating wall thickness of an emission cone of Jovian decametric radio emission (DAM). Methods: Stereoscopic observations provided by STEREO-A and -B facilitate unambiguous recognition of the Jovian DAM in observed dynamic spectra as well as identification of its components (Io DAM or non-Io DAM). The dynamic spectra of radio emissions recorded by STEREO/WAVES have been analyzed using the method of cross-correlation of the radio dynamic spectra. Results: Altogether, 139 radio events, in particular 91 Io- and 48 non-Io-related radio events were observed. The averaged width of the emission cone wall for Io-DAM as well as for non-Io DAM is about 1.1° ± 0.2°. These results are in agreement with previous findings.

  9. Upper limits on gravitational wave emission from 78 radio pulsars

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkey, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; De Bra, D; DeSalvo, R; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Dickson, J; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Díaz, M; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R E; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Gustafson, R; Günther, M; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Krämer, M; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Lyne, A G; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Müller, G; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Sakata, S; Samidi, M; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D W; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C

    2007-01-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO600 gravitational wave detectors. The data from both runs have been combined coherently to maximise sensitivity. For the first time pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 3.2e-25 for PSRJ1603-7202, and the equatorial ellipticity of PSRJ2124-3358 is less than 10e-6. Furthermore, our strain upper limit for the Crab pulsar is only three times greater than the fiducial spin-down limit.

  10. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator

    NARCIS (Netherlands)

    Marpaung, David; Chevalier, Ludovic; Burla, Maurizio; Roeloffzen, Chris

    2011-01-01

    We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator

  11. Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2013-01-01

    Cosmic ray air showers emit radio pulses at MHz frequencies, which can be measured with radio antenna arrays - like LOPES at the Karlsruhe Institute of Technology in Germany. To improve the understanding of the radio emission, we test theoretical descriptions with measured data. The observables used for these tests are the absolute amplitude of the radio signal, and the shape of the radio lateral distribution. We compare lateral distributions of more than 500 LOPES events with two recent and public Monte Carlo simulation codes, REAS 3.11 and CoREAS (v 1.0). The absolute radio amplitudes predicted by REAS 3.11 are in good agreement with the LOPES measurements. The amplitudes predicted by CoREAS are lower by a factor of two, and marginally compatible with the LOPES measurements within the systematic scale uncertainties. In contrast to any previous versions of REAS, REAS 3.11 and CoREAS now reproduce the shape of the measured lateral distributions correctly. This reflects a remarkable progress compared to the si...

  12. Pulsed photoelectric field emission from needle cathodes

    CERN Document Server

    Hernandez-Garcia, C

    2002-01-01

    Experiments have been carried out to measure the current emitted by tungsten needles with 1-mu m tip radius operated up to 50 kV. This corresponds to electric fields in the order of 10 sup 9 to 10 sup 1 sup 0 V/m. The needles were illuminated with 10-ns laser pulses at 532, 355 and 266 nm. The laser intensity was varied from 10 sup 1 sup 0 to 10 sup 1 sup 2 W/m sup 2 , limited by damage to the needle tip. The observed quantum efficiency depends on the wavelength and the electric field, approaching unity at the highest electric fields when illuminated at 266 nm. Peak currents up to 100 mA were observed in nanosecond pulses, corresponding to an estimated brightness of 10 sup 1 sup 6 A/m sup 2 sr. Since the current is controlled by the laser intensity, with only a weak voltage dependence, these cathodes can be used for infrared and ultraviolet tabletop free-electron lasers and other applications that demand short electron-beam pulses with high brightness.

  13. Investigation of the Earth Ionosphere using the Radio Emission of Pulsars

    CERN Document Server

    Ulyanov, O M; Mukha, D V; Seredkina, A A

    2013-01-01

    The investigation of the Earth ionosphere both in a quiet and a disturbed states is still desirable. Despite recent progress in its modeling and in estimating the electron concentration along the line of sight by GPS signals, the impact of the disturbed ionosphere and magnetic field on the wave propagation still remains not sufficiently understood. This is due to lack of information on the polarization of GPS signals, and due to poorly conditioned models of the ionosphere at high altitudes and strong perturbations. In this article we consider a possibility of using the data of pulsar radio emission, along with the traditional GPS system data, for the vertical and oblique sounding of the ionosphere. This approach also allows to monitor parameters of the propagation medium, such as the dispersion measure and the rotation measure using changes of the polarization between pulses. By using a selected pulsar constellation it is possible to increase the number of directions in which parameters of the ionosphere and ...

  14. LOFAR Search for Magnetospheric Radio Emissions from Exoplanet HD 80606b

    Science.gov (United States)

    Winterhalter, D.; Lazio, J.; Hartman, J.; Majid, W.; Farrell, W. M.; Splitter, L.; Kuiper, T.

    2013-05-01

    This paper describes observations (LOFAR Cycle 0) targeting magnetospheric radio emission from the exoplanet HD 80606b during a periastron passage. Its orbit is among the most eccentric known, meaning that it is naturally exposed to a wide range of stellar wind strengths, which should modulate its radio emission. Further, the high orbital eccentricity suggests that it is in a state of pseudo-synchronous rotation, leading to a relatively robust estimate of its characteristic emission frequency. It may be among the most promising planets for the direct detection of radio emission.

  15. Large Radio Telescopes for Anomalous Microwave Emission Observations

    CERN Document Server

    Battistelli, E S; de Bernardis, P; Masi, S

    2013-01-01

    We discuss in this paper the problem of the Anomalous Microwave Emission (AME) in the light of ongoing or future observations to be performed with the largest fully steerable radio telescope in the world. High angular resolution observations of the AME will enable astronomers to drastically improve the knowledge of the AME mechanisms as well as the interplay between the different constituents of the interstellar medium in our galaxy. Extragalactic observations of the AME have started as well, and high resolution is even more important in this kind of observations. When cross-correlating with IR-dust emission, high angular resolution is also of fundamental importance in order to obtain unbiased results. The choice of the observational frequency is also of key importance in continuum observation. We calculate a merit function that accounts for the signal-to-noise ratio (SNR) in AME observation given the current state-of-the-art knowledge and technology. We also include in our merit functions the frequency depen...

  16. Far-UV Emission Properties of FR1 Radio Galaxies

    Science.gov (United States)

    Danforth, Charles W.; Stocke, John T.; France, Kevin; Begelman, Mitchell C.; Perlman, Eric

    2016-11-01

    The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Lyα recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Lyα emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the supermassive black hole in these radio-mode active galactic nuclei. We observe strong Lyα emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Lyα, which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Lyα luminosities ˜1040 erg s-1 are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Lyα-emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Lyα luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Lyα, a clear indicator of relativistic beaming in our direction. Given their substantial space density (˜4 × 10-3 Mpc-3), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (˜10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.

  17. Pulsed radio frequency interference effects on data communications via satellite transponder

    Science.gov (United States)

    Weinberg, A.; Hong, Y.

    1979-01-01

    Power-limited communication links may be susceptible to significant degradation if intentional or unintentional pulsed high level radio frequency interference (RFI) is present. Pulsed RFI is, in fact, of current interest to NASA in studies relating to its Tracking and Data Relay Satellite System (TDRSS). The present paper examines the impact of pulsed RFI on the error probability performance of a power-limited satellite communication link: the assumed modulation scheme is PN coded binary PSK. The composite effects of thermal noise, pulsed CW and pulsed Gaussian noise are analyzed, where RFI arrivals are assumed to follow Poisson statistics. Under the assumption that the satellite repeater is ideal and that integrate and dump filtering is employed at the ground receiver, an exact error probability expression and associated approximations are derived. Computed results are generated using an arbitrarily specified RFI model.

  18. An effect of stimulated radiation processes on radio emission from extended sources

    CERN Document Server

    Prigara, F V

    2003-01-01

    Both the standard theory of thermal radio emission and the synchrotron theory encounter some difficulties. The most crucial for the former one is nonpossibility to explain the radio spectrum of Venus in the decimeter range (Ksanfomality 1985). The radio spectra of planetary nebulae at high frequencies also are not comfortably consistent with the standard theory (Siodmiak & Tylenda 2001). Here we show that the account for an induced character of radiation processes sufficiently improves the predictions of the standard theory. Moreover, the developed here theory of radio emission from non-uniform gas gives the radio spectra of extended sources, such as supernova remnants and radio galaxies, which are normally attributed to the synchrotron emission. It is important, in this aspect, that the synchrotron self-absorption produces a change in the polarization position angle across the spectral peak. No such a change was detected in gigahertz-peaked spectrum sources (Mutoh et al. 2002). Besides, the flat or sligh...

  19. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Peng; JIANG Hong-Bing; TANG Shan-Chun; GONG Qi-Huang

    2009-01-01

    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction.

  20. ADRF experiments using near n.pi pulse strings. [Adiabatic Demagnetization due to Radio Frequency pulses

    Science.gov (United States)

    Rhim, W. K.; Burum, D. P.; Elleman, D. D.

    1977-01-01

    Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.

  1. Simultaneous observations of periodic non-Io decametric radio emission by ground radio telescope URAN-2 and STEREO/WAVES

    Science.gov (United States)

    Panchenko, M.; Brazhenko, A. I.; Rucker, H. O.; Frantzusenko, A.; Shaposhnikov, V. E.; Konovalenko, A. A.

    2013-09-01

    Periodic bursts of the non-Io component of Jovian decametric radio emission (non-Io DAM) is observed as (1) series of arc-like radio bursts with negative frequency drift which reoccur with 1.5% longer period than the Jovian magnetosphere rotation rate, (2) series of bursts with positive frequency drift which reoccur with Jupiter's rotation period and (3) periodic non-arc like radio features [1, 2]. These bursts are typically detected during several Jupiter rotations in decametric frequency range from 4 MHz to 12 - 16 MHz between 300° and 60° of CML. We present simultaneous observations of the periodic non-Io controlled DAM performed by the WAVES radio experiment onboard the two STEREO spacecraft and the groundbased radio telescope URAN-2 (Poltava, Ukraine) operated in the decametric frequency range. URAN-2 with an effective area of about 30000 m2 consists of 512 broadband crossed dipoles and equipped with the high performance digital radio spectrometer with polarization measurement capability. During the observation campaign Sep., 2012 - Apr., 2013 URAN-2 recorded a large amount of Jovian DAM events with the high time-frequency resolution (4 kHz - 100 ms) in a frequency range 8-32 MHz. In the same time the two spatially separated STEREO spacecraft was able to observe DAM in the frequency range up to 16 MHz. The first analysis of the acquired stereoscopic observations is presented. In particular, we show one episode when the periodic non-arc DAM was recorded together with long lasting Jovian narrow band (NB) emissions. These NB emission was observed at the high frequency cutoff of DAM and can be interpreted as propagation of the decametric radiation in the Jovian ionosphere [3]. We discuss the possible relations between the observed NB events and the periodic non-Io controlled Jovian decametric radio emission.

  2. A Search for Radio Emission at the Bottom of the Main Sequence and Beyond

    CERN Document Server

    Krishnamurthi, A; Linsky, J L; Krishnamurthi, Anita; Leto, Giuseppe; Linsky, Jeffrey L.

    1999-01-01

    We have used the VLA to conduct a deep search for 3.6 cm radio emission from nearby very low mass stars and brown dwarfs. The Gudel-Benz relation is used to predict radio luminosities for some very low mass stars and candidate brown dwarfs with measured X-ray fluxes. The predicted radio fluxes are quite small, whereas the measured radio flux from the brown dwarf candidate Rho Oph GY 31 is relatively strong. In light of our new observations, this object remains an anomaly. We present upper limits for our measured radio fluxes at 3.6 cm for our targets.

  3. A Search for Radio Emission at the Bottom of the Main Sequence and Beyond

    Science.gov (United States)

    Krishnamurthi, Anita; Leto, Giuseppe; Linsky, Jeffrey L.

    1999-09-01

    We have used the VLA to conduct a deep search for 3.6 cm radio emission from nearby very low mass stars and brown dwarfs. The Güdel-Benz relation is used to predict radio luminosities for some very low mass stars and candidate brown dwarfs with measured X-ray fluxes. The predicted radio fluxes are quite small, whereas the measured radio flux from the brown dwarf candidate GY 31 in the rho Oph cloud is relatively strong. In light of our new observations, this object remains an anomaly. We present upper limits for our measured radio fluxes at 3.6 cm for our targets.

  4. Multifrequency Study of Giant Radio Pulses from the Crab Pulsar with K5 VLBI Recording Terminal

    CERN Document Server

    Popov, M V; Kondratiev, V I; Bilous, A V; Moshkina, O; Oreshko, V V; Ilyasov, Yu P; Sekido, M; Kondo, T

    2009-01-01

    Simultaneous multifrequency observations of the Crab pulsar giant pulses (GPs) were performed with the 64-m Kalyazin radio telescope at four frequencies 0.6, 1.4, 2.2 and 8.3 GHz using the K5 VLBI recording terminal. K5 terminal provided continuous recording in 16 4-MHz wide frequency channels distributed over 4 frequency bands. Several thousands of GPs were detected during about 6 hours of observations in two successive days in July 2005. Radio spectra of single GPs were analysed at separate frequencies and over whole frequency range. These spectra manifest notable modulation both on large ($\\Delta\

  5. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    Science.gov (United States)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ∼1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  6. Conical Emission Patterns by Femtosecond Pulses with Different Spectral Bandwidths

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; ZENG Zhi-Nan; GE Xiao-Chun; CHEN Xiao-Wei; LI Ru-Xin; XU Zhi-Zhan

    2008-01-01

    @@ Different conical emission (CE) patterns are obtained experimentally at various incident powers and beam sizes of pump laser pulses with pulse durations of 7fs, 44fs and lOOfs.The results show that it is the incident power but not the incident power density that determines a certain CE pattern.In addition, the critical powers for similar CE patterns are nearly the same for the laser pulses with the same spectral bandwidth.Furthermore, as far as a certain CE pattern is concerned, the wider the spectral bandwidth of pump laser pulse is, the higher the critical power is.This will hopefully provide new insights for the generation of CE pattern in optical medium.

  7. Beamed radio and far infrared emission in quasars and radio galaxies

    NARCIS (Netherlands)

    Hoekstra, H; Barthel, PD; Hes, R

    1997-01-01

    Simple orientation model predictions for the radio to far infrared spectral energy distributions of radio-loud AGN are confronted with observations at various radio frequencies. This model is subsequently used to investigate 60 mu m far-infrared data. The results are supportive of the unified scheme

  8. Beamed radio and far infrared emission in quasars and radio galaxies

    NARCIS (Netherlands)

    Hoekstra, H; Barthel, PD; Hes, R

    Simple orientation model predictions for the radio to far infrared spectral energy distributions of radio-loud AGN are confronted with observations at various radio frequencies. This model is subsequently used to investigate 60 mu m far-infrared data. The results are supportive of the unified scheme

  9. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  10. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    Science.gov (United States)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  11. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    Science.gov (United States)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  12. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  13. Upper limits on gravitational wave emission from 78 radio pulsars

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  14. Measuring interstellar magnetic fields by radio synchrotron emission

    CERN Document Server

    Beck, Rainer

    2009-01-01

    Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of interstellar magnetic fields. The total intensity traces the strength and distribution of total magnetic fields. Total fields in gas-rich spiral arms and bars of nearby galaxies have strengths of 20-30 $\\mu$Gauss, due to the amplification of turbulent fields, and are dynamically important. In the Milky Way, the total field strength is about 6 $\\mu$G near the Sun and several 100 $\\mu$G in filaments near the Galactic Center. -- The polarized intensity measures ordered fields with a preferred orientation, which can be regular or anisotropic fields. Ordered fields with spiral structure exist in grand-design, barred, flocculent and even in irregular galaxies. The strongest ordered fields are found in interarm regions, sometimes forming "magnetic spiral arms" between the optical arms. Halo fields are X-shaped, probably due to outflows. -- The Faraday rotation of the polarization vectors tr...

  15. Device for measurement of power and shape of radio frequency pulses in nuclear magnetic resonance

    Science.gov (United States)

    Pfeffer, M.; Řezníček, R.; Křišťan, P.; Štěpánková, H.

    2012-05-01

    A design of an instrument to measure the power and shape of radio frequency (RF) pulses operating in a broad frequency range is described. The device is capable of measuring the pulse power up to 500 W of both CW and extremely short (˜1 μs) RF pulses of arbitrary period. The pulse envelope can be observed on a logarithmic scale on a corresponding instrument output using an inexpensive storage oscilloscope. The instrument consists of a coaxial measurement head, the RF processing circuits and an AD conversion and display unit. The whole device is based on widely available integrated circuits; thus, good reproducibility and adaptability of the design is ensured. Since the construction is intended to be used in particular (but not solely) in nuclear magnetic resonance spectroscopy, we found it useful to provide a demonstration of two typical usage scenarios. Other application fields may comprise magnetic resonance imaging, radar and laser technology, power amplifier testing, etc.

  16. Collisionless expansion of pulsed radio frequency plasmas. I. Front formation

    Science.gov (United States)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The dynamics during plasma expansion are studied with the use of a versatile particle-in-cell simulation with a variable neutral gas density profile. The simulation is tailored to a radio frequency plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47(5), 055207 (2014)]. The experiment has shown the existence of a propagating ion front. The ion front features a strong electric field and features a sharp plasma potential drop similar to a double layer. However, the presented results of a first principle simulation show that, in general, the ion front does not have to be entangled with an electric field. The propagating electric field reflects the downstream ions, which stream with velocities up to twice as high as that of the ion front propagation. The observed ion density peak forms due to the accumulation of the reflected ions. The simulation shows that the ion front formation strongly depends on the initial ion density profile and is subject to a wave-breaking phenomenon. Virtual diagnostics in the code allow for a direct comparison with experimental results. Using this technique, the plateau forming in the wake of the plasma front could be indirectly verified in the expansion experiment. Although the simulation considers profiles only in one spatial dimensional, its results are qualitatively in a very good agreement with the laboratory experiment. It can successfully reproduce findings obtained by independent numerical models and simulations. This indicates that the effects of magnetic field structures and tangential inhomogeneities are not essential for the general expansion dynamic. The presented simulation will be used for a detailed parameter study dealt with in Paper II [Schröder et al., Phys. Plasma 23, 013512 (2016)] of this series.

  17. Radio synchrotron emission from secondary electrons in interaction-powered supernovae

    CERN Document Server

    Petropoulou, Maria; Sironi, Lorenzo

    2016-01-01

    Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For a SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radi...

  18. Detection of X-ray Emission from the Eastern Radio Lobe of PICTOR A

    CERN Document Server

    Grandi, P; Maraschi, L; Morganti, R; Fusco-Femiano, R; Fiocchi, M; Ballo, L; Tavecchio, F; Grandi, Paola; Guainazzi, Matteo; Maraschi, Laura; Morganti, Raffaella; Fusco-Femiano, Roberto; Fiocchi, Mariateresa; Ballo, Lucia; Tavecchio, Fabrizio

    2003-01-01

    The XMM-Newton satellite has revealed extended X-ray emission from the eastern radio lobe of the Fanaroff-Riley II Radio Galaxy Pictor A. The X-ray spectrum, accumulated on a region covering about half the entire radio lobe, is well described by both a thermal model and a power law. The X-ray emission could be thermal and produced by circum-galactic gas shocked by the expanding radio lobe or, alternatively, by Inverse Compton (IC) of cosmic microwave background photons by relativistic electrons in the lobe. The latter possibility seems to be supported by the good agreement between the lobe-average synchrotron radio index and the X-ray energy slope. However, if this is the case, the magnetic field, as deduced from the comparison of the IC X-ray and radio fluxes, is more than a factor 2 below the equipartition value estimated in the same X-ray region.

  19. Variable low-frequency radio emission of the solar system and galactic objects

    Science.gov (United States)

    Konovalenko, Alexander; Kolyadin, Vladimir; Rucker, Helmut; Zakharenko, Vyacheslav; Zarka, Philippe; Griessmeier, Jean-M.; Denis, Loran; Melnik, Valentin; Litvinenko, Galina; Zaitsev, Valerij; Falkovich, Igor; Ulyanov, Oleg; Sidorchuk, Mikhail; Stepkin, Sergej; Stanislavskij, Alexander; Kalinichenko, Nikolaj; Boiko, Nastja; Vasiljiva, Iaroslavna; Mukha, Dmytro; Koval, Artem

    2013-04-01

    There are many physical processes and propagation effects for the producing the time variable radio emission just at the low frequencies (at the decameter wavelength). The study of this radio emission is the important part of the modern radio astronomy. Strong progress in the development of the radio telescopes, methods and instrumentation allowed to start the corresponding investigations at new quality and quantity levels. It related to the implementation of the world largest UTR-2 radio telescope (effective area is more than 100 000 sq.m) more high sensitive at frequencies less than 30 MHz. During last years many new observations were carried out with this radio telescope and many new effects have been detected for the Sun, planets, interplanetary medium, exoplanets as well as various kinds of the stars.

  20. Instant Radio Spectra of Giant Pulses from the Crab Pulsar Over Decimeter to Decameter Wave Band

    Science.gov (United States)

    Popov, M. V.; Kuzmin, A. D.; Ulyanov, O. M.; Deshpande, A. A.; Ershov, A. A.; Kondratiev, V. I.; Kostyuk, S. V.; Losovsky, B. Ya.; Soglasnov, V. A.; Zakharenko, V. V.

    2006-08-01

    We present results of simultaneous multi-frequency observations of giant radio pulses (GPs) from the Crab pulsar PSR B0531+21 at frequencies of 23, 111 and 600 MHz. For the first time GPs were detected at such low frequency as 23 MHz. Among 45 GPs detected in the overall observations time with 600 MHz, 12 GPs were identified as simultaneous ones at 600 and 23 MHz. At 111 MHz among 128 GPs detected in the overall observations time with 600 MHz, 21 GPs were identified as simultaneous ones at 600 and 111 MHz. Spectral indexes for the power-law frequency dependence of GPs energy were enclosed between -3.1 and -1.6. Mean spectral index equals to -2.7 ± 0.1 and is the same for both frequency combinations 600-111 MHz and 600-23 MHz. A big scatter in values of the individual spectral indexes and a large number of unidentified giant pulses, indicate that a real form of spectra of individual giant pulses does not follow a simple power law. The shape of giant pulses at all three frequencies is governed by the scattering of radio waves on the inhomogeneities of the interstellar plasma. The pulse scatter broadening and their frequency dependence was measured as τ[SC]=20(ν/100)^-3.5^±^0.1 ms, where frequency ν is in MHz. The main results of these observations are present on the figure bellow.

  1. An effect of stimulated radiation processes on radio emission from major planets

    CERN Document Server

    Prigara, F V

    2004-01-01

    The standard theory of thermal radio emission encounters some difficulties. The most crucial one is nonpossibility to explain the radio spectrum of Venus in the decimeter range (Ksanfomality 1985). The radio spectra of planetary nebulae at high frequencies also are not comfortably consistent with the standard theory (Siodmiak & Tylenda 2001). Here we show that the account for an induced character of radiation processes sufficiently improves the predictions of the standard theory.

  2. Advanced Techniques and Antenna Design for Pulse Shaping in UWB Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2012-01-01

    Full Text Available Spectrum scarcity has emerged as a primary problem in the communications technology. The combination of cognitive radio (CR and ultra-wideband impulse radio (UWB-IR has been proposed to solve the shortage problem by allowing smart and adaptive spectrum management, leading to UWB-CR. In a UWB-CR scheme, secondary users are supposed to ensure interference avoidance by adaptively selecting the portions of the spectrum not being used by primary users. In this paper, three different techniques for the generation of adaptive UWB pulses are studied. The Parks-McClellan algorithm is employed, a neural network is trained, and a reconfigurable band stop filter is designed to generate an adaptive waveform with nulls at specific frequencies. Simulations, measurements, and analysis show that each generated UWB pulse has remarkable advantages in the frequency utilization, spectrum avoidance, and hardware implementation.

  3. Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey

    Science.gov (United States)

    Sirothia, S. K.; Lecavelier des Etangs, A.; Gopal-Krishna; Kantharia, N. G.; Ishwar-Chandra, C. H.

    2014-02-01

    The ongoing radio continuum TIFR GMRT Sky Survey (TGSS) using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz offers an unprecedented opportunity to undertake a fairly deep search for low-frequency radio emission from nearby extrasolar planets. Currently TGSS images are available for a little over a steradian, encompassing 175 confirmed exoplanetary systems. We have searched for their radio counterparts in the TGSS (150 MHz), supplemented with a search in the NRAO VLA Sky Survey (NVSS) and the VLA FIRST survey at 1.4 GHz. For 171 planetary systems, we find no evidence of radio emission in the TGSS maps, placing a 3σ upper limit between 8.7 mJy and 136 mJy (median ~24.8 mJy) at 150 MHz. These non-detections include the 55 Cnc system for which we place a 3σ upper limit of 28 mJy at 150 MHz. Nonetheless, for four of the extrasolar planetary systems, we find TGSS radio sources coinciding with or located very close to their coordinates. One of these is 61 Vir: for this system a large radio flux density was predicted in the scenario involving magnetosphere-ionosphere coupling and rotation-induced radio emission. We also found 150 MHz emissions toward HD 86226 and HD 164509, where strong radio emission can be produced by the presence of a massive satellite orbiting a rapidly rotating planet. We also detected 150 MHz emission within a synthesized beam from 1RXS1609 b, a pre-main-sequence star harboring a ~14 Jupiter mass planet (or a brown dwarf). With a bright X-ray-UV star and a high mass, the planet 1RXS1609 b presents the best characteristics for rotation-induced emissions with high radio power. Deeper high-resolution observations toward these planetary systems are needed to discriminate between the possibilities of background radio-source and radio-loud planets. At 1.4 GHz, radio emission toward the planet-harboring pulsar PSR B1620-26 is detected in the NVSS. Emissions at 1.4 GHz are also detected toward the very-hot-Jupiter WASP-77A b (in the FIRST survey

  4. Design of UWB pulse radio transceiver using statistical correlation technique in frequency domain

    Directory of Open Access Journals (Sweden)

    M. Anis

    2007-06-01

    Full Text Available In this paper, we propose a new technique to extract low power UWB pulse radio signals, near to noise level, using statistical correlation technique in frequency domain. The receiver consists of many narrow bandpass filters which extract energy either from transmitted UWB signal, interfering channels or noise. Transmitted UWB data can be eliminated by statistical correlation of multiple bandpass filter outputs. Super-regenerative oscillators, tuned within UWB spectrum, are designed as bandpass filters. Summers and comparators perform statistical correlation.

  5. X-ray Emission from the Radio Jet in 3C 120

    DEFF Research Database (Denmark)

    Harris, D. E.; Hjorth, J.; Sadun, A. C.;

    1999-01-01

    We report the discovery of X-ray emission from a radio knot at a projected distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for the knot preclude a simple power law extension of the radio spect...

  6. Diffuse radio emission from clusters in the MareNostrum Universe simulation

    CERN Document Server

    Hoeft, M; Yepes, G; Gottlöber, S; Schwope, A

    2008-01-01

    Large-scale diffuse radio emission is observed in some clusters of galaxies. There is ample of evidence that the emission has its origin in synchrotron losses of relativistic electrons, accelerated in the course of clusters mergers. In a cosmological simulation we locate the structure formation shocks and estimate their radio emission. We proceed as follows: Introducing a novel approach to identify strong shock fronts in an SPH simulation, we determine the Mach number as well as the downstream density and temperature in the MareNostrum Universe simulation which has 2x1024^3 particles in a 500 Mpc/h box and was carried out with non-radiative physics. Then, we estimate the radio emission using the formalism derived in Hoeft & Brueggen (2007) and produce artificial radio maps of massive clusters. Several of our clusters show radio objects with similar morphology to large-scale radio relics found in the sky, whereas about half of the clusters show only very little radio emission. In agreement with observation...

  7. Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support.

    Science.gov (United States)

    Cecconi, B.; Savalle, R.; Zarka, P. M.; Anderson, M.; Andre, N.; Coffre, A.; Clarke, T.; Denis, L.; Ebert, R. W.; Erard, S.; Genot, V. N.; Girard, J. N.; Griessmeier, J. M.; Hess, S. L.; Higgins, C. A.; Hobara, Y.; Imai, K.; Imai, M.; Kasaba, Y.; Konovalenko, A. A.; Kumamoto, A.; Kurth, W. S.; Lamy, L.; Le Sidaner, P.; Misawa, H.; Nakajo, T.; Orton, G. S.; Ryabov, V. B.; Sky, J.; Thieman, J.; Tsuchiya, F.; Typinski, D.

    2015-12-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  8. Enhancement of terahertz pulse emission by optical nanoantenna.

    Science.gov (United States)

    Park, Sang-Gil; Jin, Kyong Hwan; Yi, Minwoo; Ye, Jong Chul; Ahn, Jaewook; Jeong, Ki-Hun

    2012-03-27

    Bridging the gap between ultrashort pulsed optical waves and terahertz (THz) waves, the THz photoconductive antenna (PCA) is a major constituent for the emission or detection of THz waves by diverse optical and electrical methods. However, THz PCA still lacks employment of advanced breakthrough technologies for high-power THz emission. Here, we report the enhancement of THz emission power by incorporating optical nanoantennas with a THz photoconductive antenna. The confinement and concentration of an optical pump beam on a photoconductive substrate can be efficiently achieved with optical nanoantennas over a high-index photoconductive substrate. Both numerical and experimental results clearly demonstrate the enhancement of THz wave emission due to high photocarrier generation at the plasmon resonance of nanoantennas. This work opens up many opportunities for diverse integrated photonic elements on a single PCA at THz and optical frequencies.

  9. Measurement of radio emission from extensive air showers with LOPES

    NARCIS (Netherlands)

    Horandel, J.R.; Apel, W.D.; Arteaga, J.C.; Asch, T.; Badea, F.; Bahren, L.; Bekk, K.; Bertaina, M.; Biermann, P.L.; Blumer, J.; Bozdog, H.; Brancus, I.M.; Bruggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; Souza, V. de; Pierro, F. di; Doll, P.; Ender, M.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P.L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Horneffer, A.; Huege, T.; Isar, P.G.; Kampert, K.H.; Kang, D.; Kickelbick, D.; Kromer, O.; Kuijpers, J; Lafebre, S.J.; Link, K.; Luczak, P.; Ludwig, M.; Mathes, H.J.; Mayer, H.J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlager, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schroder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G.C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J.A.

    2011-01-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequ

  10. Radio emission from the high-mass X-ray binary BP Cru: first detection

    CERN Document Server

    Pestalozzi, M; Hobbs, G; Lopez-Sanchez, A R

    2009-01-01

    BP Cru is a well known high-mass X-ray binary composed of a late B hypergiant (Wray 977) and a neutron star, also observed as the X-ray pulsar GX 301-2. No information about emission from BP Cru in other bands than X-rays and optical has been reported to date in the literature, though massive X-ray binaries containing black holes can have radio emission from a jet. In order to assess the presence of a radio jet, we searched for radio emission towards BP Cru using the Australia Compact Array Telescope during a survey for radio emission from Be/X-ray transients. We probed the 41.5d orbit of BP Cru with the Australia Telescope Compact Array not only close to periastron but also close to apastron. BP Cru was clearly detected in our data on 4, possibly 6, of 12 occasions at 4.8 and 8.6 GHz. Our data suggest that the spectral index of the radio emission is modulated either by the X-ray flux or the orbital phase of the system. We propose that the radio emission of BP Cru probably arises from two components: a persis...

  11. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    Science.gov (United States)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  12. Spectral Index Studies of the Diffuse Radio Emission in Abell 2256: Implications to Merger Activity

    CERN Document Server

    Ruta, Kale

    2010-01-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies Abell 2256. We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over an extent $\\sim1.2$ Mpc$^2$. Using this 150 MHz image and the images made using archival observations from the VLA (1369 MHz) and the WSRT (350 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S$\\propto\

  13. A study of diffuse radio sources and X-ray emission in six massive clusters

    CERN Document Server

    Parekh, Viral; Kale, Ruta; Intema, Huib

    2016-01-01

    The goal of the present study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to $z$ $>$ 0.3. Here we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235 and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036 and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic or both) in the first four clusters. In the last two clusters we do not detect any diffuse radio emission but we put stringent upper-limits on their radio powers. We also use archival {\\it Chandra} X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio power...

  14. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  15. Systematic Search of the Nearest Stars for Exoplanetary Radio Emission: Preliminary results from LOFAR

    Science.gov (United States)

    Winterhalter, Daniel; Knapp, Mary

    2016-04-01

    Radio observations have been used as a tool to search for exoplanets since before the confirmed discovery of the first extrasolar planet. To date, neither targeted observations of known exoplanets nor surveys have produced definitive detections of exoplanetary radio emission. We present the framework for, and initial results from, a blind radio survey of the nearest star systems for exoplanetary radio emission. The very closest stars were chosen to minimize the dilution of potential radio signals by distance and thereby increase the probability of a detection. The goal of this survey is to obtain, at minimum, physically meaningful upper limits on radio emission from (or modulated by) substellar companions of the nearest stars. The target selection criteria for this survey are restricted to distance, observability for LOFAR and the VLA, and data quality metrics only. Stellar properties are not considered because preconceptions about the types of systems most likely to exhibit radio emission have not been observationally confirmed and may be incorrect. Two survey targets, GJ 411 and GJ 725A/B, have been observed with the LOFAR telescope LBA (30-75 MHz) system. A series of 4 2-hour integrations and 1 3-hour integration were made for each target of a period of approximately 2 weeks. Additional observations are underway with LOFAR as well as the VLA. Preliminary results from the first LOFAR observations are presented.

  16. The connection between the 15 GHz radio and gamma-ray emission in blazars

    CERN Document Server

    Max-Moerbeck, W; Hovatta, T; Pavlidou, V; Pearson, T J; Readhead, A C S; King, O G; Reeves, R

    2014-01-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope. One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in mo...

  17. Directional Statistics for Polarization Observations of Individual Pulses from Radio Pulsars

    CERN Document Server

    McKinnon, M M

    2010-01-01

    Radio polarimetry is a three-dimensional statistical problem. The three-dimensional aspect of the problem arises from the Stokes parameters Q, U, and V, which completely describe the polarization of electromagnetic radiation and conceptually define the orientation of a polarization vector in the Poincar'e sphere. The statistical aspect of the problem arises from the random fluctuations in the source-intrinsic polarization and the instrumental noise. A simple model for the polarization of pulsar radio emission has been used to derive the three-dimensional statistics of radio polarimetry. The model is based upon the proposition that the observed polarization is due to the incoherent superposition of two, highly polarized, orthogonal modes. The directional statistics derived from the model follow the Bingham-Mardia and Fisher family of distributions. The model assumptions are supported by the qualitative agreement between the statistics derived from it and those measured with polarization observations of the ind...

  18. A study of diffuse radio sources and X-ray emission in six massive clusters

    Science.gov (United States)

    Parekh, V.; Dwarakanath, K. S.; Kale, R.; Intema, H.

    2017-01-01

    The goal of this study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to z > 0.3. Here, we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235, and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036, and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic, or both) in the first four clusters. In the last two clusters, we do not detect any diffuse radio emission but we put stringent upper limits on their radio powers. We also use archival Chandra X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio powers of the first four MACS clusters are consistent with their expected values in the LX-P1.4 GHz plot. However, we found ultrasteep spectrum radio halo in the MACSJ0417.5-1154 cluster whose rest-frame cut-off frequency is at ˜900 MHz. The remaining two clusters whose radio powers are ˜11 times below the expected values are most likely to be in the `off-state' as has been postulated in some of the models of radio halo formation.

  19. Radio emission of SN1993J: the complete picture. II. Simultaneous fit of expansion and radio light curves

    Science.gov (United States)

    Martí-Vidal, I.; Marcaide, J. M.; Alberdi, A.; Guirado, J. C.; Pérez-Torres, M. A.; Ros, E.

    2011-02-01

    We report on a simultaneous modelling of the expansion and radio light curves of the supernova SN1993J. We developed a simulation code capable of generating synthetic expansion and radio light curves of supernovae by taking into consideration the evolution of the expanding shock, magnetic fields, and relativistic electrons, as well as the finite sensitivity of the interferometric arrays used in the observations. Our software successfully fits all the available radio data of SN 1993J with a standard emission model for supernovae, which is extended with some physical considerations, such as an evolution in the opacity of the ejecta material, a radial decline in the magnetic fields within the radiating region, and a changing radial density profile for the circumstellar medium starting from day 3100 after the explosion.

  20. Radio emission of SN1993J. The complete picture: II. Simultaneous fit of expansion and radio light curves

    CERN Document Server

    Marti-Vidal, I; Alberdi, A; Guirado, J C; Perez-Torres, M A; Ros, E

    2010-01-01

    We report on a simultaneous modelling of the expansion and radio light curves of SN1993J. We have developed a simulation code capable of generating synthetic expansion and radio light curves of supernovae by taking into consideration the evolution of the expanding shock, magnetic fields, and relativistic electrons, as well as the finite sensitivity of the interferometric arrays used in the observations. Our software successfully fits all the available radio data of SN 1993J with an standard emission model for supernovae extended with some physical considerations, as an evolution in the opacity of the ejecta material, a radial drop of the magnetic fields inside the radiating region, and a changing radial density profile of the circumstellar medium beyond day 3100 after explosion.

  1. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    Science.gov (United States)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Chomiuk, Laura; Linford, Justin D.; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P.; Walter, Frederick M.

    2016-08-01

    Since the Fermi discovery of γ-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 Nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: (1) a shock-powered, non-thermal flare; and (2) weak thermal emission from 10-5 M⊙ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies 4 kpc away (3.2-4.6 kpc). The shock-powered flare dominated the radio light curve at low frequencies before day 100. The spectral evolution of the radio flare, its high radio brightness temperature, the presence of unusually hard (kTx > 33 keV) X-rays, and the ratio of radio to X-ray flux near radio maximum all support the conclusions that the flare was shock-powered and non-thermal. Unlike most other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to the unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of γ-rays.

  2. Radio emission at the centre of the galaxy cluster Abell 3560: evidence for core sloshing?

    CERN Document Server

    Venturi, T; Bardelli, S; Giacintucci, S; Dallacasa, D; Cornacchia, M; Kantharia, N

    2013-01-01

    Previous radio observations of the galaxy cluster A3560 in the Shapley Concentration showed complex radio emission associated with the brightest cluster member.To understand its origin we observed it with the GMRT, the VLA and ATCA at 240 and 610 MHz, 1.28,1.4, 2.3,4.8 and 8.4 GHz, and performed a detailed morphological and spectral study of the radio emission associated with the BCG. We also observed the cluster with XMM-Newton and Chandra to derive the properties of the ICM. The radio emission of the N-E nucleus of the dumb-bell BCG shows an active radio galaxy, plus aged diffuse emission, which is not refurbished at present. Our Chandra data show that the radio active nucleus of the BCG has extended X-ray emission, which we classify as a low-luminosity corona. A residual image of the XMM-Newton brightness shows the presence of a spiral-like feature, which we interpret as the signature of gas sloshing. The presence of a subgroup is clear in the surface brightness residual map, and in the XMM-Newton temperat...

  3. Low Frequency Radio Emission from the 'Quiet' Sun

    Indian Academy of Sciences (India)

    R. Ramesh

    2000-09-01

    We present observations of the 'quiet' Sun close to the recent solar minimum (Cycle 22), with the Gauribidanur radioheliograph. Our main conclusion is that coronal streamers also influence the observed radio brightness temperature.

  4. Surveying for Exoplanetary Auroral Radio Emission with HERA

    Science.gov (United States)

    Williams, Peter K. G.; Berger, Edo

    2017-05-01

    HERA, the Hydrogen Epoch of Reionization Array, is a long wavelength radio telescope under construction in South Africa. Although HERA's primary science driver is the search for radio signatures of the Epoch of Reionization, its large collecting area, excellent calibratability, and methodical observing scheme make it a world-class tool for time-domain radio astronomy as well. In particlar, the completed HERA array will be sensitive to auroral radio bursts from planets with auroral powers and magnetic field strengths comparable to (factors of a few larger than) those of Jupiter, assuming a fiducial distance of 10 pc. HERA will log thousands of hours monitoring the stellar systems in its sky footprint, including the 40 systems found within this fiducial horizon. In this talk I will describe the current status of HERA and its future prospects for directly detecting exoplanetary magnetospheres.

  5. Solar Radio Emission as a Prediction Technique for Coronal Mass Ejections' registration

    Science.gov (United States)

    Sheiner, Olga; Fridman, Vladimir

    2016-07-01

    The concept of solar Coronal Mass Ejections (CMEs) as global phenomenon of solar activity caused by the global magnetohydrodynamic processes is considered commonly accepted. These processes occur in different ranges of emission, primarily in the optical and the microwave emission being generated near the surface of the sun from a total of several thousand kilometers. The usage of radio-astronomical data for CMEs prediction is convenient and promising. Actually, spectral measurements of solar radio emission cover all heights of solar atmosphere, sensitivity and accuracy of measurements make it possible to record even small energy changes. Registration of the radio emission is provided by virtually all-weather ground-based observations, and there is the relative cheapness to obtain the corresponding information due to a developed system of monitoring observations. On the large statistical material there are established regularities of the existence of sporadic radio emission at the initial stage of CMEs' formation and propagation in the lower layers of the solar atmosphere during the time interval from 2-3 days to 2 hours before registration of CMEs on coronagraph. In this report we present the prediction algorithm and scheme of short-term forecasting developed on the base of statistical analysis regularities of solar radio emission data prior to "isolated" solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.

  6. High sensitive observations of the planetary radio emission in decameter wavelength

    Science.gov (United States)

    Litvinenko, Galina; Zakharenko, Vyacheslav; Rucker, Helmut; Konovalenko, Alexander; Shaposhnikov, Vladimir; Zarka, Philippe; Griessmeier, Jean-M.; Fisher, Georg; Vinogradov, Vladimir; Mylostna, Krystyna

    2013-04-01

    The progress of the ground-based low frequency radio astronomy has opened a new approach to the study of planetary radio emission in the solar system and beyond. This is manifested in the study of the Jupiter (detection of various types of the sporadic emission), of the Saturn (investigation of the electrostatic discharges emission, SED), as well as other planets and exoplanets. High efficiency decameter wavelength radio telescope UTR-2 and modern registration systems (effective area is more than 100 000 sq.m., instant frequency band is 8-33 MHz, dynamic range is about 90 dB, the frequency resolution is about 1 kHz, the temporal resolution is about 1 microsecond) allow for a new observation and detect many interesting phenomena. This includes the detection of superfine time-frequency structures and new types of the modulations effects in the Jovian radio emission, the detection of microsecond scales in the SED emission of the Saturn, and dispersion delay of the SED signals in the interplanetary medium. In addition, the described above method of observation of the planetary signals allowed for the first time to start ground-based searching radio emission from Uranus, Venus, Mars and exoplanets.

  7. Observation of local radio emission associated with type III radio bursts and Langmuir waves

    Science.gov (United States)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    The first clear detection of fundamental and harmonic radiation from the type III radio source region is presented. This radiation is characterized by its lack of frequency drift, its short rise and decay times, its relative weakness compared to the remotely observed radiation and its temporal coincidence with observed Langmuir waves. The observations were made with the radio and plasma frequency (URAP) receivers on the Ulysses spacecraft between about 1 and 2 AU from the Sun.

  8. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  9. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    Science.gov (United States)

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  10. The Extended Blue Continuum and Line Emission around the Central Radio Galaxy in Abell 2597

    CERN Document Server

    Koekemoer, A M; Sarazin, C L; McNamara, B R; Donahue, M; Voit, G M; Baum, S A; Gallimore, J F

    1999-01-01

    We present results from detailed imaging of the centrally dominant radio elliptical galaxy in the cooling flow cluster Abell 2597, using data obtained with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). This object is one of the archetypal "blue-lobed" cooling flow radio elliptical galaxies, also displaying a luminous emission-line nebula, a compact radio source, and a significant dust lane and evidence of molecular gas in its center. We show that the radio source is surrounded by a complex network of emission-line filaments, some of which display a close spatial association with the outer boundary of the radio lobes. We present a detailed analysis of the physical properties of ionized and neutral gas associated with the radio lobes, and show that their properties are strongly suggestive of direct interactions between the radio plasma and ambient gas. We resolve the blue continuum emission into a series of knots and clumps, and present evidence that these are most likely du...

  11. Observational Characteristics of Radio Emission Related to Multi-polar Magnetic Configuration

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Rui-Xiang Xie; Chun Xu; Shuo-Biao Shi; Yi-Hua Yan

    2005-01-01

    We present a large complex radio burst and its associated fast time structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a biposuggests that the radio burst is generated from a very complicated loop structure.According to the spectral and image observations, we assume that the beginning connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type Ⅲ bursts, and slowly drifting and no-drift structures.ture, which is an important source of the various types of fast time structures.The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively.Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the lar).

  12. Diagnostic Signatures of Radio and HXR Emission on Particle Acceleration Processes in the Coma Cluster

    CERN Document Server

    Kuo, P H; Ip, W H; Kuo, Ping-Hung; Hwang, Chorng-Yuan; Ip, Wing-Huen

    2003-01-01

    We investigate theoretical models for the radio halo and hard X-ray (HXR) excess in the Coma galaxy cluster. Time-independent and time-dependent re-acceleration models for relativistic electrons have been carried out to study the formation of the radio halo and HXR excess. In these models, the relativistic electrons are injected by merger shocks and re-accelerated by ensuing violent turbulence. The effects of different Mach numbers of the merger shocks on the radio and HXR excess emission are also investigated. We adopt 6 $mu$G as the central magnetic field and reproduce the observed radio spectra via the synchrotron emission. We also obtain a central "plateau" in the radio spectral-index distribution, which have been observed in radio emission distribution. Our models can also produce the observed HXR excess emission via the inverse Compton scattering of the cosmic microwave background photons. We find that only the merger shocks with the Mach numbers around 1.6--2 can produce results in agreement with both ...

  13. Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Buson, S; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Gora, D; Guberman, D; Hadasch, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Pedaletti, G; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R

    2015-01-01

    Aims: To investigate the extension of the very-high-energy spectral tail of the Crab pulsar at energies above 400 GeV. Methods: We analyzed $\\sim$320 hours of good quality data of Crab with the MAGIC telescope, obtained from February 2007 until April 2014. Results: We report the most energetic pulsed emission ever detected from the Crab pulsar reaching up to 1.5 TeV. The pulse profile shows two narrow peaks synchronized with the ones measured in the GeV energy range. The spectra of the two peaks follow two different power-law functions from 70 GeV up to 1.5 TeV and connect smoothly with the spectra measured above 10 GeV by the Large Area Telescope (LAT) on board of the Fermi satellite. When making a joint fit of the LAT and MAGIC data, above 10 GeV, the photon indices of the spectra differ by 0.5$\\pm$0.1. Conclusions: We measured with the MAGIC telescopes the most energetic pulsed photons from a pulsar to date. Such TeV pulsed photons require a parent population of electrons with a Lorentz factor of at least ...

  14. Radio Emission from Galaxies In The Hubble Deep Field

    CERN Document Server

    Richards, E A; Fomalont, E B; Windhorst, R A; Partridge, R B

    1998-01-01

    We report on sensitive radio observations made with the VLA at 8.5 GHz, centered on the Hubble Deep Field (HDF). We collected data in the A, CnB, C, DnC, and D configurations, corresponding to angular resolutions ranging from 0.3" to 10". We detected 29 radio sources in a complete sample within 4.6' of the HDF center and above a flux density limit of 9.0 microjy (5 sigma). Seven of these sources are located within the HDF itself, while the remaining 22 sources are covered by the Hubble Flanking Fields (HFFs) or ground based optical images. All of the sources in the HDF are identified with galaxies with a mean magnitude R = 21.7, while the mean magnitude of the identifications outside the HDF is R = 22.1. Three radio sources have no optical counterparts to R = 27. Based on a radio and optical positional coincidence, we detected an additional 19 radio sources in this field (seven of which are contained in the HDF) with 6.3 microjy < S < 9.0 (3.5 sigma < S < 5 sigma) and and R < 25, but which are ...

  15. Spatial distribution of far infrared emission in spiral galaxies; 1, relation with radio continuum emission

    CERN Document Server

    Mayya, Y D

    1997-01-01

    We use high resolution IRAS and 20 cm radio continuum (RC) images of a sample of 22 spiral galaxies to study the correlation between the far infra-red (FIR) and RC emissions within the galactic disks. A combination of exponential and gaussian profiles rather than a single exponential profile is found to be a better representation of the observed intensity profiles in the two bands. The gaussian component, which we show is not due to the effects of limited beam-resolution, contains more than 60% of the total flux in majority of the galaxies. The dominance of the gaussian component suggests that the nuclear star forming regions and the bulge stars are more important contributors to the emission in the two bands, rather than the outer exponential stellar disks. The RC profile is flatter compared to the FIR profile, resulting in a decrease of their ratio, Q60, away from the center. However, the Q60 increases in the extreme outer parts, where the dispersion in the FIR and RC correlation is also higher than in the ...

  16. Radio emissions from pulsar companions : a refutable explanation for galactic transients and fast radio bursts

    CERN Document Server

    Mottez, Fabrice

    2014-01-01

    The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals in order to see if they could originate from pulsar-orbiting bodies. The analysis is based on the theory of Alfv\\'en wings: for a body immersed in a pulsar wind, a system of two stationary Alfv\\'en waves is attached to the body, provided that the wind is highly magnetized. When destabilized through plasma instabilities, Alfv\\'en wings can be the locus of strong radio sources convected with the pulsar wind. Assuming a cyclotron mase...

  17. GMRT 150 MHz follow up of diffuse steep spectrum radio emission in galaxy clusters

    CERN Document Server

    Macario, G; Dallacasa, D; Giacintucci, S; Brunetti, G; Cassano, R; Ishwara-Chandra, C H; Athreya, R

    2011-01-01

    It has been recently found that a few galaxy clusters host diffuse radio halo emission with very steep synchrotron spectra ($\\alpha$ > 1.6), which may be classified as Ultra Steep Spectrum Radio Halos (USSRHs). USSRHs are expected in the turbulence re-acceleration model for the origin of cluster radio halos, and are best discovered and studied at low frequencies. We performed GMRT follow up observations of three galaxy clusters at 150MHz, selected from the GMRT radio halo survey, which are known to host an USSRH or candidate very steep spectrum diffuse emission. This project is aimed to characterize the low frequency spectrum of USSRHs for a detailed study of their origin and connection with cluster mergers. We present preliminary results at 150 MHz of the cluster A697.

  18. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  19. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  20. Influence of pulse polarity on electron emission property of antiferroelectric ceramic

    Institute of Scientific and Technical Information of China (English)

    SHENG ZhaoXuan; FENG YuJun; OUI Jie; HUANG Xuan; XU Zhuo; SUN XinLi

    2008-01-01

    The electron emission property of a novel antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) on the application of positive or negative triggering voltage pulses has been investigated. All experiments were performed in a vacuum of 10-5 Torr and at room tempera-ture. It was discovered that there were two electron emission pulses when low positive triggering voltage was applied to the rear electrode, and three electron emission pulses when high positive trig-gering voltage was applied. However there were always two electron emission pulses when negative triggering pulses were applied. This phenomenon is proposed to be a result of both field electron emission at triple junctions and electron emission caused by polarization reversal. The experimental observations indicate that domain movement in the vicinity close to the triple junction under applica-tion of the triggering voltage pulse may be a primary origin of electron emission from PLZST.

  1. Consecutive Bright Pulses in the Vela Pulsar

    CERN Document Server

    Palfreyman, Jim L; Dickey, John M; Young, Timothy G; Hotan, Claire E; 10.1088/2041-8205/735/1/L17

    2011-01-01

    We report on the discovery of consecutive bright radio pulses from the Vela pulsar, a new phenomenon that may lead to a greater understanding of the pulsar emission mechanism. This results from a total of 345 hr worth of observations of the Vela pulsar using the University of Tasmania's 26 m radio telescope to study the frequency and statistics of abnormally bright pulses and sub-pulses. The bright pulses show a tendency to appear consecutively. The observations found two groups of six consecutive bright pulses and many groups of two to five bright pulses in a row. The strong radio emission process that produces the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses in sequence far exceed what would be expected if individual bright pulses were independent random events. Consecutive bright pulses must be generated by an emission process that is long lived relative to the rotation period of the neutron star.

  2. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    CERN Document Server

    Krupar, Vratislav; Kruparova, Oksana; Santolik, Ondrej; Soucek, Jan; Magdalenic, Jasmina; Vourlidas, Angelos; Maksimovic, Milan; Bothmer, Volker; Mrotzek, Niclas; Pluta, Adam; Barnes, David; Davies, Jackie; Oliveros, Juan Carlos Martinez; Bale, Stuart

    2016-01-01

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth-directed. Here we report a rare instance with comprehensive in situ and remote sensing observa- tions of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white light CME recon- struction. We find that the radio emission arises from the flanks of the CME, and are most likely associated with the CME-driven shock. Our work demon- strates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  3. Modeling of gyrosynchrotron radio emission pulsations produced by MHD loop oscillations in solar flares

    CERN Document Server

    Mossessian, George

    2011-01-01

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional MHD oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are than quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We app...

  4. Discovery of Misaligned Radio Emission in Galaxy Cluster Zw CL 2971

    Science.gov (United States)

    Wallack, Nicole; Migliore, C.; Resnick, A.; White, T.; Liu, C.

    2014-01-01

    In a search for green valley galaxies with radio loud active galactic nuclei (AGN), we found one such object that may be associated with the cluster of galaxies Zw CL 2971 (z = 0.098). Serendipitously, we found in this cluster a strong bent-jet radio source associated with the cluster's central dominant (cD) elliptical galaxy. The center of the cD galaxy is coincident (0.35 arcsecond) with the second brightest spot of radio continuum emission (34.3 mJy as measured by FIRST), but the brightest radio hotspot (66.8 mJy) is offset by 4.6 arcseconds 9 kpc at the redshift of the cluster) and has no visible counterpart. Furthermore, the optical spectrum of the cD galaxy has only weak emission lines, suggesting the absence of a currently active nucleus. It is possible that the counterpart is optically faint (possibly due to a recently completed duty cycle) or is not visible due to movement or position. If the radio source is a distant background object, then the brighter jet is most likely magnified by gravitational lensing. If the radio source is located at the redshift of the cluster, then the brighter radio jet trails backward toward and past the cD galaxy to a distance of ~120 kpc, while the fainter jet is bent at a nearly orthogonal angle, ~40 kpc away from the brightest radio hotspot, in the opposite direction. These geometric offsets could be used to constrain the duty cycle history of the AGN creating the radio emission, as well as the dynamical properties of the intracluster medium.

  5. On Using Solar Radio Emission to Probe Interiors of Asteroids and Comets

    Science.gov (United States)

    Winebrenner, D. P.; Gary, D. E.; Sahr, J. D.; Asphaug, E. I.

    2015-12-01

    Asteroids, comets and other primitive solar system bodies are key sources of information on the early solar system, on volatiles and organics delivered to the terrestrial planets, and on processes of planetary formation now observed in operation around other stars. Whether asteroids (in various size classes) are rubble piles or monolithic, and whether any porosity or internal voids contain volatiles, are first-order questions for understanding the delivery of volatiles to the early Earth, and for assessing impact hazards. Information on bulk composition aids discrimination between types and origins of primitive bodies, .e.g., the degree of aqueous alteration and bound-water content of carbonaceous chondrite bodies, and the volatile mass fraction of comets. Radar and radio methods can provide direct information on bulk composition, micro- and macro-porosity, body-scale internal structure, and on whether voids in rocky materials are volatile- or vacuum-filled. Such methods therefore figure prominently in current missions to primitive bodies (e.g., CONSERT) and in a variety of proposed missions. Radio transmitters necessary for conventional methods, however, add considerably to spacecraft mass and power requirements. Moreover, at many wavelengths most useful for radio sounding, powerful radio emission from the Sun strongly interferes with conventional signals. Here we present initial results from an investigation of how solar radio emission could serve as a natural resource for probing interiors of primitive bodies, rather than as interference. We briefly review methods for using stochastic radio illumination (aka noise radar methods), and illustrate the characteristics of solar radio emission relevant to mission design (e.g., observed intervals between emission events of specified intensity for different points in the solar cycle). We then discuss methods for selecting and interpreting observations in terms of interior properties, for bodies is different size classes

  6. COMPTEL detection of pulsed gamma-ray emission from B1509-58 up to at least 10 MeV

    OpenAIRE

    Kuiper, L.; Hermsen, W.; J. M. Krijger; Bennett, K.; Carraminana, A.; Schoenfelder, V.; Bailes, M.; Manchester, R. N.

    1999-01-01

    We report on the first firm detection of pulsed gamma-ray emission from PSR B1509-58 in the 0.75-30 MeV energy range in CGRO COMPTEL data collected over more than 6 years. The modulation significance in the 0.75-30 MeV pulse-phase distribution is 5.4 sigma and the lightcurve is similar to the lightcurves found earlier between 0.7 and 700 keV: a single broad asymmetric pulse reaching its maximum 0.38 +/- 0.03 in phase after the radio peak, compared to the offset of 0.30 found in the CGRO BATSE...

  7. Radio frequency pulse compression experiments at SLAC (Stanford Linear Accelerator Center)

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Miller, R.H.; Nantista, C.; Spalek, G.; Wilson, P.B.

    1991-01-01

    Proposed future positron-electron linear colliders would be capable of investigating fundamental processes of interest in the 0.5--5 TeV beam-energy range. At the SLAC Linear Collider (SLC) gradient of about 20 MV/m this would imply prohibitive lengths of about 50--250 kilometers per linac. We can reduce the length by increasing the gradient but this implies high peak power, on the order of 400-- to 1000-MW at X-Band. One possible way to generate high peak power is to generate a relatively long pulse at a relatively low power and compress it into a short pulse with higher peak power. It is possible to compress before DC to RF conversion, as is done using magnetic switching for induction linacs, or after DC to RF conversion, as is done for the SLC. Using RF pulse compression it is possible to boost the 50-- to 100-MW output that has already been obtained from high-power X-Band klystrons the levels required by the linear colliders. In this note only radio frequency pulse compression (RFPC) is considered.

  8. The Tunka-Rex Experiment for the Detection of the Air-Shower Radio Emission

    CERN Document Server

    Kazarina, Y; Budnev, N M; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Mirgazov, R R; Pankov, L; Prosin, V V; Rubtsov, G I; Rühle, C; Savinov, V; Schröder, F G; Wischnewski, R; Zagorodnikov, A

    2016-01-01

    The Tunka-Rex experiment (Tunka Radio Extension) has been deployed in 2012 at the Tunka Valley (Republic of Buryatia, Russia). Its purpose is to investigate methods for the energy spectrum and the mass composition of high-energy cosmic rays based on the radio emission of air showers. Tunka-Rex is an array of 25 radio antennas distributed over an area of 3 km^2. The most important feature of the Tunka-Rex is that the air-shower radio emission is measured in coincidence with the Tunka-133 installation, which detects the Cherenkov radiation generated by the same atmospheric showers. Joint measurements of the radio emission and the Cherenkov light provide a unique opportunity for cross calibration of both calorimetric detection methods. The main goal of Tunka-Rex is to determine the precision for the reconstruction of air-shower parameters using the radio detection technique. In this article we present the current status of Tunka-Rex and first results, including reconstruction methods for parameters of the primar...

  9. Discovery of extended radio emission in the young cluster Wd1

    CERN Document Server

    Clark, J S; Waters, L B F M; Dougherty, S M; Koornneef, J; Steele, I A; Van Blokland, A

    1998-01-01

    We present 10 micron, ISO-SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO-SWS spectrum reveals emission from highly ionised species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5cm and 6.3cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by 14''. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and nonthermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10micron reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in com...

  10. Radio emission in air showers measured by LOPES-10 in concidence with KASCADE-Grande observations

    Energy Technology Data Exchange (ETDEWEB)

    Badea, A.F.; Apel, W.D.; Asch, T. (and others)

    2006-05-15

    Data taken during half a year of operation of 10 LOPES antennas (LOPES-10), triggered by EAS observed with KASCADE-Grande have been analysed. We report about the analysis of correlations of radio signals measured by LOPES-10 with extensive air shower events reconstructed by KASCADE-Grande, including shower cores at large distances. The efficiency of detecting radio signals induced by air showers up to distances of 700m from the shower axis has been investigated. The results are discussed with special emphasis on the effects of the reconstruction accuracy for shower core and arrival direction on the coherence of the measured radio signal. In addition, the correlations of the radio pulse amplitude with the primary cosmic ray energy and with the lateral distance from the shower core are studied. (Orig.)

  11. Variable Radio Emission from the Young Stellar Host of a Hot Jupiter

    CERN Document Server

    Bower, Geoffrey C; Dzib, Sergio; Galli, Phillip A B; Ortiz-León, Gisela N; Moutou, Claire; Donati, Jean-Francois

    2016-01-01

    We report the discovery of variable radio emission associated with the T Tauri star, V830 Tau, which was recently shown to host a hot Jupiter companion. Very Large Array observations at a frequency of 6 GHz reveal a detection on 01 May 2011 with a flux density $919 \\pm 26\\ \\mu$Jy, along with non-detections in two other epochs at $}{\\scriptstyle \\sim}} 30$ G, and is likely driven by an energetic event such as magnetic reconnection that accelerated electrons. With the limited data we have, we are not able to place any constraint on the relationship between the radio emission and the rotational or orbital properties of V830 Tau. This is the first detection of radio emission from a non-degenerate star known to host an exoplanet.

  12. Deka-keV X-ray emission associated with the onset of radio noise storms

    DEFF Research Database (Denmark)

    Crosby, N.; Vilmer, N.; Lund, Niels

    1996-01-01

    Radio noise storms show that suprathermal electrons (a few tens of keV) are present in the vicinity of active regions during several hours or even a few days. Where and how these electrons are energized is not yet well known. A flare-like sudden energy release in the active region is in general...... observed at the onset of noise storms, either as a fully developed flare or, more often, as a soft X-ray brightening without conspicuous Her signature. In order to investigate to what extent electrons energized in the active region contribute to the noise-storm emission in the overlying coronal structures...... from an isothermal fit to the GOES fluxes. Although the electron population producing the deka-keV X-ray emission would be energetic enough to power the simultaneous radio noise storm, the much longer duration of the radio emission requires time-extended particle acceleration. The acceleration probably...

  13. Narrowband Radio Emission As A Possible Feature of Before CMEs Onset Processes

    Science.gov (United States)

    Fridman, V.; Sheiner, O.; Grechin, S.

    The narrow band events in microwave radio emission were discovered during the ob- servations by RT-22 CrAO on August 12, 1989 before CMEs registration has been done. The observations were carried out using the sweeping spectrograph in 13-17 GHz range with frequency resolution of 100 MHz and sweeping time of less then 1 sec. It is well known that the period preceding the CMEs formation is characterized by sporadic radio emission of different types. We have found the existence of fast changes in temporal behavior of radio emission during the burst. They are character- ized by consistent origin of narrow-band (research. This work is being supported by the Federal Science and Technology Programme "Astronomy" and the Russian Foundation for Fundamental Research.

  14. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    Science.gov (United States)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10-3 cm-3 for the interstellar medium and A * < 5 × 10-4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  15. Time-scales of close-in exoplanet radio emission variability

    Science.gov (United States)

    See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.

    2015-07-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.

  16. The Atlas3D project -- XXXI. Nuclear radio emission in nearby early-type galaxies

    CERN Document Server

    Nyland, Kristina; Wrobel, Joan M; Sarzi, Marc; Morganti, Raffaella; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2016-01-01

    We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the Atlas3D survey of early-type galaxies (ETGs). We find that 51 +/- 4% of the ETGs in our sample contain nuclear radio emission with luminosities as low as 10^18 W/Hz. Most of the nuclear radio sources have compact (< 25-110 pc) morphologies, although < 10% display multi-component core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the Atlas3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at sub-arcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in...

  17. Detection of Radio Emission from the Hyperactive L Dwarf 2MASS J13153094-2649513AB

    CERN Document Server

    Burgasser, Adam J; Zauderer, B Ashley; Berger, Edo

    2012-01-01

    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370+/-50 microJy, corresponding to a radio luminosity of L_rad = nuL_nu = (9+/-3)x10^23 erg/s and log10(L_rad/L_bol) = -5.44+/-0.22. No detection is made at 9.0 GHz to a 5 sigma limit of 290 microJy, consistent with a power law spectrum S_nu ~ nu^-a with a > 0.5. The emission is quiescent, with no evidence of variability or bursts over 3 hr of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent Halpha and radio emission, indicating the coexistence of a cool, neut...

  18. Steep-spectrum sources and the duty cycle of the radio emission

    CERN Document Server

    Orienti, M

    2010-01-01

    It is currently accepted that intrinsically compact and bright radio sources characterized by a convex spectrum peaking at frequencies ranging from 100 MHz to a few GHz are young objects. Following the evolutionary models, these objects would evolve into the population of classical radio galaxies. However, the fraction of young radio sources in flux density-limited samples is much larger than what expected from the number counts of large radio sources. This may suggest that for some reason a significant fraction of young objects would never become large radio galaxies with sizes up to a few Mpc. The discovery of the young radio source PKS 1518+047 characterized by an uncommonly steep spectrum confirms that the radio emission may switch off shortly after its onset. Then the source spectrum steepens and evolves due to energy losses. If the interruption is not temporary, the fate of the fading sources is to disappear at frequencies lower than those explored by current radio telescopes. Fossils of past activities...

  19. On the high frequency polarization of pulsar radio emission

    CERN Document Server

    Von Hoensbroech, A; Krawczyk, A

    1998-01-01

    We have analyzed the polarization properties of pulsars at an observing frequency of 4.9 GHz. Together with low frequency data, we are able to trace polarization profiles over more than three octaves into an interesting frequency regime. At those high frequencies the polarization properties often undergo important changes such as significant depolarization. A detailed analysis allowed us to identify parameters, which regulate those changes. A significant correlation was found between the integrated degree of polarization and the loss of rotational energy E^dot. The data were also used to review the widely established pulsar profile classification scheme of core- and cone-type beams. We have discovered the existence of pulsars which show a strongly increasing degree of circular polarization towards high frequencies. Previously unpublished average polarization profiles, recorded at the 100m Effelsberg radio telescope, are presented for 32 radio pulsars at 4.9 GHz. The data were used to derive polarimetric param...

  20. Observations of the solar radio emission with the Callisto spectrometer

    Science.gov (United States)

    Monstein, Kh. A.; Lesovoy, S. V.; Maslov, A. I.

    2009-12-01

    In the framework of the program for setting the Callisto spectrometer network into operation, the spectral measurements were carried out at the sites of spectrometer locations in India and Russia in winter 2006. The results achieved at Badary, the site where the Siberian Solar Radio Telescope (SSRT) is located, are presented. The measurements were performed using a broadband log-periodic antenna connected to the Callisto spectrometer developed at the Institute of Astronomy (Zurich). The results of these measurements should explain whether spectral studies at frequencies below 1 GHz can be performed using such antennas or new antennas should be developed. The presented results are compared with the similar results obtained in Switzerland in the frequency intervals of interest for radio astronomy. Concerning electromagnetic noise, Badary is a better site for observing the Sun in the 50-800 MHz frequency range as compared to observatories in Switzerland.

  1. Radio monitoring of the periodically variable IR source LRLL 54361: No direct correlation between the radio and IR emissions

    CERN Document Server

    Forbrich, Jan; Palau, Aina; Zapata, Luis A; Muzerolle, James; Gutermuth, Robert A

    2015-01-01

    LRLL 54361 is an infrared source located in the star forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 during roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of $\\sim$100 AU that smooths out the variability over a period of order a year. The average flux density measured in these 2014 observations, 27$\\pm$5 $\\mu$Jy, is about a factor of two less than that measured about 1.5 years before, $53\\pm$11 $\\mu$Jy, suggesting that variabi...

  2. Search of the radio emission from flare stars at decameter wavelengths

    Science.gov (United States)

    Boiko, A. I.; Konovalenko, A. A.; Koliadin, V. L.; Melnik, V. N.

    2012-11-01

    Observations of the two M-dwarf flare stars (AD Leonis and EV Lacertae), which were carried out with the radio telescope UTR-2 (Kharkiv, Ukraine) in the range of 16.5-33 MHz, are presented. 167 events of radio emission from AD Leo and 73 events from EV Lac were detected in the period of 2010-2011. These events were considered as stellar emission in ON-OFF regime of observations. The morphology of the probable events in the form of bursts from flare stars is considered and frequency drift rates, durations and fluxes of the bursts are analysed.

  3. AGN and Starburst Radio Emission from Optically Selected QSOs

    CERN Document Server

    Condon, J J; Kimball, Amy E; Ivezic, Zeljko; Perley, R A

    2013-01-01

    We used the 1.4 GHz NVSS to study radio sources in two color-selected QSO samples: a volume-limited sample of 1313 QSOs defined by M_i < -23 in the redshift range 0.2 < z < 0.45 and a magnitude-limited sample of 2471 QSOs with m_r < 18.5 and 1.8 < z < 2.5. About 10% were detected above the 2.4 mJy NVSS catalog limit and are powered primarily by AGNs. The space density of the low-redshift QSOs evolves as rho proportional to (1+z)^6. In both redshift ranges the flux-density distributions and luminosity functions of QSOs stronger than 2.4 mJy are power laws, with no features to suggest more than one kind of radio source. Extrapolating the power laws to lower luminosities predicts the remaining QSOs should be extremely radio quiet, but they are not. Most were detected statistically on the NVSS images with median peak flux densities S_p(mJy/beam) ~ 0.3 and 0.05 in the low- and high-redshift samples, corresponding to 1.4 GHz spectral luminosities log[L(W/Hz)] ~ 22.7$ and 24.1, respectively. We sug...

  4. The emission line regions of redshift one radio galaxies

    Directory of Open Access Journals (Sweden)

    P. N. Best

    2002-01-01

    Full Text Available Hacemos una rese~na de las ideas corrientes sobre las zonas emisoras de l neas en radio galaxias con corrimientos al rojo de z 1. Primero, consideramos la evoluci on de las propiedades del gas emisor de l neas desde el universo cercano hasta z 1. Luego, consideramos el origen de la ionizaci on y de los estados cinem aticos del gas en poderosas galaxias 3CR a z 1, y en particular mostramos que estas evolucionan fuertemente a lo largo de la vida de la radio fuente como resultado del profundo efecto del pasaje de choques a trav es del medio interestelar de la galaxia. Demostramos que esta dicotom a persiste a z m as bajo y tambi en en una muestra de radio galaxias de menor potencia al mismo z. Finalmente, discutimos las implicaciones de estos resultados para el entendimiento de las propiedades del gas emisor de l neas y del papel m as amplio de las interacciones jet/nube.

  5. Heliospheric 2-3 kHz radio emissions and their relationship to large Forbush decreases

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.

    1995-01-01

    Two intense heliospheric 2-3 kHz radio emission events have been observed by Voyagers 1 and 2, the first in 1983-84 and the second in 1992-93. These radio emission events occurred about 400 days after large Forbush decreases in mid-1982 and mid-1991. Since Forbush decreases are indicative of a strong interplanetary shock propagating outward through the heliosphere, this temporal relationship provides strong evidence that the radio emissions are triggered by the interaction of a shock with one of the outer boundaries of the heliosphere. From the travel time and the known speed of the shock, the distance to the interaction region can be estimated and is well beyond 100 AU. At this great distance the plasma frequency at the terminal shock (100 to 200 Hz) is believed to be too small to explain the observed emission frequencies, which extend up to 3.6 kHz. For this reason, we have proposed that the interaction takes place at or near the heliopause, where remote sensing measurements show that the plasma frequency is in a suitable range (approximately 3 kHz) for explaining the radio emission. From the travel time and shock propagation speed, the radial distance to the heliopause has been calculated for various candidate solar events. After taking into account the likely deceleration of the shock, the heliopause is estimated to be in the range from about 110 to 160 AU.

  6. Simultaneous observations of solar sporadic radio emission by the radio telescopes UTR-2, URAN-2 and NDA within the frequency range 8-42 MHz

    Science.gov (United States)

    Melnik, V.; Konovalenko, A.; Brazhenko, A.; Briand, C.; Dorovskyy, V.; Zarka, P.; Denis, L.; Bulatzen, V.; Frantzusenko, A.; Rucker, H.; Stanislavskyy, A.

    2012-09-01

    From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations some interesting phenomena were observed. Some of them are discussed in this paper.

  7. Radio and Gamma-Ray Constraints on the Emission Geometry and Birthplace of PSR J2043+2740

    CERN Document Server

    Noutsos, A; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Busetto, G; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Colafrancesco, S; Cutini, S; Dermer, C D; de Palma, F; Drell, P S; Dumora, D; Espinoza, C M; Favuzzi, C; Ferrara, E C; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grandi, P; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hughes, R E; Jackson, M S; Johannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Knoedlseder, J; Kramer, M; Kuss, M; Lande, J; Lee, S -H; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Lyne, A G; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Persic, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rain, S; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Romani, R W; Sadrozinski, H F -W; Sander, A; Parkinson, P M Saz; Sgro, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Theureau, G; Thompson, D J; Thorsett, S E; Tibolla, O; Torres, D F; Tramacere, A; Usher, T L; Vandenbroucke, J; Vianello, G; Vilchez, N; Villata, M; Vitale, V; von Kienlin, A; Waite, A P; Wang, P; Watters, K; Weltevrede, P; Winer, B L; Wood, K S; Ziegler, M

    2010-01-01

    We report on the first year of Fermi gamma-ray observations of pulsed high-energy emission from the old PSR J2043+2740. The study of the gamma-ray efficiency of such old pulsars gives us an insight into the evolution of pulsars' ability to emit in gammma rays as they age. The gamma-ray lightcurve of this pulsar above 0.1 GeV is clearly defined by two sharp peaks, 0.353+/-0.035 periods apart. We have combined the gamma-ray profile characteristics of PSR J2043+2740 with the geometrical properties of the pulsar's radio emission, derived from radio polarization data, and constrained the pulsar-beam geometry in the framework of a Two Pole Caustic and an Outer Gap model. The ranges of magnetic inclination and viewing angle were determined to be {alpha,zeta}~{52-57,61-68} for the Two Pole Caustic model, and {alpha,zeta}~{62-73,74-81} and {alpha,zeta}~{72-83,60-75} for the Outer Gap model. Based on this geometry, we assess possible birth locations for this pulsar and derive a likely proper motion, sufficiently high t...

  8. Effects of exomoon’s magnetic field on generation of radio emissions

    Science.gov (United States)

    Griffith, John; Noyola, Joaquin; Satyal, Suman; Musielak, Zdzislaw E.

    2017-01-01

    In the recent work by Noyola et al. (2014, 2016), a novel technique of detection of exomoons through the radio emissions produced by the magnetic field interactions between exoplanet-exomoon pair is emulated based upon the processes occurring in the Jupiter-Io system. Their calculations have shown that the radio signal from the distant extra-solar planetary systems is detectable by current technology provided that the systems emanating the radio waves are relatively closer, have some form of atmosphere, and have larger exomoons. In this work, we explore the effect of exomoon’s magnetic field on the radio emission processes by considering a hypothetical magnetic exomoon and re-calculating the resulting radio flux. Then, a limit to the exomoon’s magnetic field is proposed based on the signal amplification versus the dampening effect the magnetic field induces on the secondary conditions such as the containment of ions within the exomoon’s magnetic field and the effect of the plasma torus density that co-orbits with the moon. The energy from the exomoon’s magnetic field is expected to amplify the radio signal, hence increasing the probability of detection of the first exomoons.

  9. Tachyonic Cherenkov emission from Jupiter's radio electrons

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.org

    2013-12-17

    Tachyonic Cherenkov radiation from inertial relativistic electrons in the Jovian radiation belts is studied. The tachyonic modes are coupled to a frequency-dependent permeability tensor and admit a negative mass-square, rendering them superluminal and dispersive. The superluminal radiation field can be cast into Maxwellian form, using 3D field strengths and inductions, and the spectral densities of tachyonic Cherenkov radiation are derived. The negative mass-square gives rise to a longitudinal flux component. A spectral fit to Jupiter's radio spectrum, inferred from ground-based observations and the Cassini 2001 fly-by, is performed with tachyonic Cherenkov flux densities averaged over a thermal electron population.

  10. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    CERN Document Server

    Weston, Jennifer H S; Chomiuk, Laura; Linford, Justin D; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P; Walter, Frederick M

    2015-01-01

    Since the Fermi discovery of $\\gamma$-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: 1) a shock-powered, non-thermal flare; and 2) weak thermal emission from $10^{-5}$ M$_\\odot$ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies at 4 kpc (3.2-4.6 kpc). The shock-powered flare was the dominant component in the radio light curve at low frequencies before day 100. The spectral evolution of the flare, its high radio brightness temperature, the presence of unusually hard ($kT_x > 33$ keV) X-rays, and the ratio of radio to X-ray flux near the peak of the flare all support the conclusions that the flare is shock-powered and non-thermal. Unlike other nova...

  11. Non-thermal radio emission from O-type stars. V. 9 Sgr

    CERN Document Server

    Blomme, R

    2013-01-01

    The colliding winds in a massive binary system generate synchrotron emission due to a fraction of electrons that have been accelerated to relativistic speeds around the shocks in the colliding-wind region. We studied the radio light curve of 9 Sgr = HD 164794, a massive O-type binary with a 9.1-yr period. We investigated whether the radio emission varies consistently with orbital phase and we determined some parameters of the colliding-wind region. We reduced a large set of archive data from the Very Large Array (VLA) to determine the radio light curve of 9 Sgr at 2, 3.6, 6 and 20 cm. We also constructed a simple model that solves the radiative transfer in the colliding-wind region and both stellar winds. The 2-cm radio flux shows clear phase-locked variability with the orbit. The behaviour at other wavelengths is less clear, mainly due to a lack of observations centred on 9 Sgr around periastron passage. The high fluxes and nearly flat spectral shape of the radio emission show that synchrotron radiation domi...

  12. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    CERN Document Server

    Sommer, Martin W; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2016-01-01

    Radio halos are diffuse synchrotron sources on scales of ~1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by the merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the JVLA, VLA and GMRT. We present detailed radio images of the targets, subtract the compact emission components, and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultra-steep spectrum radio halos. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, althoug...

  13. Non-thermal emission from high-energy binaries through interferometric radio observations

    CERN Document Server

    Marcote, B

    2016-01-01

    High-mass binary systems involve extreme environments that produce non-thermal emission from radio to gamma rays. Only three types of these systems are known to emit persistent gamma-ray emission: colliding-wind binaries, high-mass X-ray binaries and gamma-ray binaries. This thesis is focused on the radio emission of high-mass binary systems through interferometric observations, and we have explored several of these sources with low- and high-frequency radio observations, and very high-resolution VLBI ones. We have studied two gamma-ray binaries, LS 5039 and LS I +61 303, at low frequencies. We have obtained their light-curves and spectra, and we have determined the physical properties of their radio emitting regions. We have also studied the gamma-ray binary HESS J0632+057 through VLBI observations. A new colliding wind binary, HD 93129A, has been discovered through VLBI and optical observations. Finally, we have conducted radio observations of two sources that were candidates to be gamma-ray binaries.

  14. Radio emission of the Galactic X-rays binaries with relativistic jets

    CERN Document Server

    Trushkin, S A

    2000-01-01

    Variable non-thermal radio emission from Galactic X-ray binaries is a trace of relativistic jets, created near accretion disks. The spectral characteristics of a lot of radio flares in the X-ray binaries with jets (RJXB) is discussed in this report. We carried out several long daily monitoring programs with the RATAN-600 radio telescope of the sources: SS433, Cyg X-3, LSI+61o303, GRS 1915+10 and some others. We also reviewed some data from the GBI monitoring program at two frequencies and hard X-ray BATSE (20-100 keV) and soft X-ray RTXE (2-12 keV) ASM data. We confirmed that flaring radio emission of Cyg X-3 correlated with hard and anti-correlated with soft X-ray emission during the strong flare (>$ Jy) in May 1997. During two orbital periods we investigated radio light curves of the remarkable X-binary LSI+61o303. Two flaring events near a phase 0.6 of the 26.5-day orbital period have been detected for first time at four frequencies simultaneously. Powerful flaring events of SS433 were detected at six freq...

  15. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Isar, P.G. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)], E-mail: gina.isar@ik.fzk.de; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10{sup 18}eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  16. A Search for double-lobed radio emission from Galactic Stars and Spiral Galaxies

    CERN Document Server

    Martínez, Abiel Felipe Ortiz

    2016-01-01

    We present a systematic search for two types of very unusual astronomical objects: Galactic stars and spiral galaxies with double radio lobes, i.e. radio emission on opposite sides of the optical object, suggesting the ejection of jets from them. We designed an algorithm to search for pairs of radio sources straddling objects from two unprecedented samples of 878,031 Galactic stars from the Sloan Digital Sky Survey and 675,874 spiral galaxy candidates drawn from the recent literature. We found three new examples of double-lobed radio stars, while for the spiral galaxies we only rediscovered one known such double source, confirming that the latter objects are extremely rare.

  17. LOPES 3D - vectorial measurements of radio emission from cosmic ray induced air showers

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2013-01-01

    LOPES 3D is able to measure all three components of the electric field vector of the radio emission from air showers. This allows a better comparison with emission models. The measurement of the vertical component increases the sensitivity to inclined showers. By measuring all three components of the electric field vector LOPES 3D demonstrates by how much the reconstruction accuracy of primary cosmic ray parameters increases. Thus LOPES 3D evaluates the usefulness of vectorial measurements for large scale applications.

  18. LOPES-3D, an antenna array for full signal detection of air-shower radio emission

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Buchholz, P; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Finger, M; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J; Zensus, J A; 10.1016/j.nima.2012.08.082

    2013-01-01

    To better understand the radio signal emitted by extensive air-showers and to further develop the radio detection technique of high-energy cosmic rays, the LOPES experiment was reconfigured to LOPES-3D. LOPES-3D is able to measure all three vectorial components of the electric field of radio emission from cosmic ray air showers. The additional measurement of the vertical component ought to increase the reconstruction accuracy of primary cosmic ray parameters like direction and energy, provides an improved sensitivity to inclined showers, and will help to validate simulation of the emission mechanisms in the atmosphere. LOPES-3D will evaluate the feasibility of vectorial measurements for large scale applications. In order to measure all three electric field components directly, a tailor-made antenna type (tripoles) was deployed. The change of the antenna type necessitated new pre-amplifiers and an overall recalibration. The reconfiguration and the recalibration procedure are presented and the operationality of...

  19. Radio emission from weak spherical shocks in the outskirts of galaxy clusters

    CERN Document Server

    Kang, Hyesung

    2015-01-01

    In Kang (2015) we calculated the acceleration of cosmic-ray electrons and the ensuing radio synchrotron emission at weak spherical shocks that are expected to form in the outskirts of galaxy clusters.There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of injected electrons decrease in time. In this study, we consider spherical blast waves propagating into a constant density core surrounded by an isothermal halo with a decreasing density profile in order to explore how the deceleration rate of the shock speed affects the radio emission from accelerated electrons. The surface brightness profile and the volume-integrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the p...

  20. The influence of circumnuclear environment on the radio emission from TDE jets

    Science.gov (United States)

    Generozov, A.; Mimica, P.; Metzger, B. D.; Stone, N. C.; Giannios, D.; Aloy, M. A.

    2017-01-01

    Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavourable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear medium which includes mass and energy input from a stellar population. Near the jet Sedov radius of 1018 cm, we find gas densities in the range of n18 ˜ 0.1-1000 cm-3 across a wide range of plausible star formation histories. Using one- and two-dimensional relativistic hydrodynamical simulations, we calculate the synchrotron radio light curves of TDE jets (as viewed both on and off-axis) across the allowed range of density profiles. We find that bright radio emission would be produced across the plausible range of nuclear gas densities by jets as powerful as Swift J1644+57, and we quantify the relationship between the radio luminosity and jet energy. We use existing radio detections and upper limits to constrain the energy distribution of TDE jets. Radio follow-up observations several months to several years after the TDE candidate will strongly constrain the energetics of any relativistic flow.

  1. Gamma-ray emitting radio galaxies at hard X-rays: Seyfert core or jet emission?

    CERN Document Server

    Beckmann, V; Mattana, F; Saez, D; Soldi, S

    2013-01-01

    A number of radio galaxies has been detected by Fermi/LAT in the gamma-ray domain. In some cases, like Cen A and M 87, these objects have been seen even in the TeV range by Cherenkov telescopes. Whereas the gamma-ray emission is likely to be connected with the non-thermal jet emission, dominating also the radio band, the situation is less clear at hard X-rays. While the smoothly curved continuum emission and the overall spectral energy distribution indicate a non-thermal emission, other features such as the iron line emission and the low variability appear to be rather of Seyfert type, i.e. created in the accretion disk and corona around the central black hole. We investigate several prominent cases using combined X-ray and gamma-ray data in order to constrain the possible contributions of the jet and the accretion disk to the overall spectral energy distribution in radio galaxies. Among the three sources we study, three different origins of the hard X-ray flux can be identified. The emission can be purely no...

  2. Radio continuum detection in blue early-type weak emission line galaxies

    CERN Document Server

    Paswan, A

    2016-01-01

    The star formation rates (SFRs) in weak emission line (WEL) galaxies in a volume-limited ($0.02 < z < 0.05$) sample of blue early-type galaxies (ETGs) identified from SDSS, are constrained here using 1.4 GHz radio continuum emission. The direct detection of 1.4 GHz radio continuum emission is made in 8 WEL galaxies and a median stacking is performed on 57 WEL galaxies using VLA FIRST images. The median stacked 1.4 GHz flux density and luminosity are estimated as 79 $\\pm$ 19 $\\mu$Jy and 0.20 $\\pm$ 0.05 $\\times$ 10$^{21}$ W Hz$^{-1}$ respectively. The radio far-infrared correlation in 4 WEL galaxies suggests that the radio continuum emission from WEL galaxies is most likely due to star formation activities. The median SFR for WEL galaxies is estimated as 0.23 $\\pm$ 0.06 M$_{\\odot}$yr$^{-1}$, which is much less compared to SFRs ($0.5 - 50$ M$_{\\odot}$yr$^{-1}$) in purely star forming blue ETGs. The SFRs in blue ETGs are found to be correlated with their stellar velocity dispersions ($\\sigma$) and decreasin...

  3. The low-frequency radio emission in blazar PKS2155-304

    CERN Document Server

    Pandey-Pommier, M; Chadwick, P; Martin, J -M; Colom, P; van Driel, W; Combes, F; Kharb, P; Crespeau, P-J; Richard, J; Guiderdoni, B

    2016-01-01

    We report radio imaging and monitoring observations in the frequency range 0.235 - 2.7 GHz during the flaring mode of PKS 2155-304, one of the brightest BL Lac objects. The high sensitivity GMRT observations not only reveal extended kpc-scale jet and FRI type lobe morphology in this erstwhile `extended-core' blazar but also delineate the morphological details, thanks to its arcsec scale resolution. The radio light curve during the end phase of the outburst measured in 2008 shows high variability (8.5%) in the jet emission in the GHz range, compared to the lower core variability (3.2%) seen at the lowest frequencies. The excess of flux density with a very steep spectral index in the MHz range supports the presence of extra diffuse emission at low frequencies. The analysis of multi wavelength (radio/ optical/ gamma-ray) light curves at different radio frequencies confirms the variability of the core region and agrees with the scenario of high energy emission in gamma-rays due to inverse Compton emission from a ...

  4. Monte Carlo simulations of radio emission from cosmic ray air showers

    NARCIS (Netherlands)

    Huege, T.; Falcke, H.D.E.

    2006-01-01

    As a basis for the interpretation of data gathered by LOPES and other experiments, we have carried out Monte Carlo simulations of geosynchrotron radio emission from cosmic ray air showers. The simulations, having been verified carefully with analytical calculations, reveal a wealth of information on

  5. First Experimental Impulse-Radio Ultra-Wideband Transmission Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Ultra-wideband impulse-radio wireless transmission under the stringent conditions and complex shape of the Russian spectral emission mask is experimentally demonstrated for the first time. Transmission of 1Gbit/s and 1.25Gbit/s signals over distances of 6m and 3m is achieved with a BER below 3.8×...

  6. Radio emission of highly inclined cosmic ray air showers measured with LOPES - possibility for neutrino detection

    NARCIS (Netherlands)

    Petrovic, J.; Bähren, L.; Buitink, S.J.; Falcke, H.D.E.; Horneffer, K.H.A.; Kuijpers, J.M.E.; Lafebre, S.J.; Nigl, A.

    2006-01-01

    LOPES - LOFAR PrototypE Station (LOFAR - LOw Frequency ARray) is an array of dipole antennas used for the detection of radio emission from cosmic ray air showers. It is co-located and triggered by the KASCADE (KArlsruhe Shower Core and Array Detector) experiment, which also provides information abou

  7. VizieR Online Data Catalog: Jupiter decametric radio emissions over 26 years (Marques+, 2017)

    Science.gov (United States)

    Marques, M. S.; Zarka, P.; Echer, E.; Ryabov, V. B.; Alves, M. V.; Denis, L.; Coffre, A.

    2017-05-01

    We provide two files ('obs.dat' and 'em.dat') where the classification of decametric radio emission from Jupiter observed by Nancay Decametric Array during 26-years was done. The data is associated with the dynamic spectrums that you can access at https://www.obs-nancay.fr/ (Instruments/Decameter Array/Data availability/) (2 data files).

  8. Analysis of Saturnian planetary rotation following the knowledge on Jovian radio emission

    Science.gov (United States)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Sawas, Sami; Lammer, Helmut

    2017-04-01

    We report on the Saturnian Radio Emission (SRE) recorded at Saturn by the Cassini Radio and Plasma Wave Science experiment (RPWS). We attempt to estimate the planetary rotation by applying the spectral method previously considered for the Jupiter radio emissions. This technique consists to distinguish between the spectral patterns occurring during one full Jovian rotation. Hence symmetrical features act around the axis of the planetary magnetic field due to the hollow cone beam. Therefore arc shapes appear with different orientations, i.e. vertex-early and -late arcs. This spectral 'symmetry' is fortified by the inclination between the geographical and the magnetic axes. The Saturnian radio emissions exhibit more spectral complexity because both axes (.i.e. magnetic and geographic) are quasi-aligned. Arc shapes are not frequently observed as in the case of Jupiter. We illustrate in our analysis that there is possibility to separate between Saturnian planetary rotations. Their occurrences are compared to the classic technique based on the variation of the Saturnian Kilometric Radiation (SKR) versus the sub-solar phase and the observation time (Kurth et al., JGR, 113, 2008). We discuss and we show that in several cases the planetary rotation accuracy is less than few minutes when combining both methods. We emphasize on spectral features by showing that the SRE and the SKR exhibit similar planetary rotation despite a difference in the emission frequency range.

  9. Radio emission from cosmic ray air showers : simulation results and parametrization

    NARCIS (Netherlands)

    Huege, T.; Falcke, H.D.E.

    2005-01-01

    We have developed a sophisticated model of the radio emission from extensive air showers in the scheme of coherent geosynchrotron radiation, providing a theoretical foundation for the interpretation of experimental data from current and future experiments. Having verified the model through compariso

  10. A giant radio flare from Cygnus X-3 with associated Gamma-ray emission

    CERN Document Server

    Corbel, S; Tomsick, J A; Szostek, A; Corbet, R H D; Miller-Jones, J C A; Richards, J L; Pooley, G; Trushkin, S; Dubois, R; Hill, A B; Kerr, M; Max-Moerbeck, W; Readhead, A C S; Bodaghee, A; Tudose, V; Parent, D; Wilms, J; Pottschmidt, K

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emis...

  11. Periodic Radio Continuum Emission Associated with the beta Cephei Star V2187 Cyg

    CERN Document Server

    Tapia, Mauricio; Tovmassian, Gagik; Rodriguez-Gomez, Vicente; Gonzalez-Buitrago, Diego; Zharikov, Sergei; Ortiz-Leon, Gisela N

    2014-01-01

    We present new optical time-resolved photometry and medium-resolution spectroscopy of V2187 Cyg. We confirm its classification as a beta Cephei star based on sinusoidal light variations with a period of 0.2539 days and mean amplitudes of 0.037 and 0.042 magnitudes in "i" and "V", respectively. We classified the spectrum of this star B2-3V with no evidence of variations in the profiles of its absorption lines in timescales of hours or days. The stellar spectrum is totally absent of emission lines. We detected unexpected faint radio continuum emission (between 0.4 and 0.8 mJy at 6-cm) showing a sinusoidal variation with a period of 12.8 days. The radio spectrum is thermal. We searched in the Very Large Array archive for radio continuum emission toward other 15 beta Cephei stars. None of these additional stars, some of them much closer to the Sun than V2187 Cyg, was detected, indicating that radio emission is extremely uncommon toward beta Cephei stars.

  12. Correlated variations of UV and radio emissions during an outstanding Jovian auroral event

    Science.gov (United States)

    Prange, R.; Zarka, P.; Ballester, G. E.; Livengood, T. A.; Denis, L.; Carr, T.; Reyes, F.; Bame, S. J.; Moos, H. W.

    1993-01-01

    An exceptional Jovian aurora was detected in the FUV on December 21, 1990, by means of Vilspa and Goddard Space Flight Center (GFSC) International Ultraviolet Explorer (IUE) observations. This event included intensification by a factor of three between December 20 and 21, leading to the brightest aurora identified in the IUE data analyzed, and, in the north, to a shift of the emission peak towards larger longitudes. The Jovian radio emission simultaneously recorded at decameter wavelengths in Nancay also exhibits significant changes, from a weak and short-duration emission on December 20 to a very intense one, lasting several hours, on December 21. Confirmation of this intense radio event is also found in the observations at the University of Florida on December 21. The emissions are identified as right-handed Io-independent 'A' (or 'non Io-A') components from the northern hemisphere. The radio source region deduced from the Nancay observations lies, for both days, close to the UV peak emission, exhibiting in particular a similar shift of the source region toward larger longitudes from one day to the next. A significant broadening of the radio source was also observed and it is shown that on both days, the extent of the radio source closely followed the longitude range for which the UV brightness exceeds a given threshold. The correlated variations, both in intensity and longitude, strongly suggest that a common cause triggered the variation of the UV and radio emissions during this exceptional event. On one hand, the variation of the UV aurora could possibly be interpreted according to the Prange and Elkhamsi (1991) model of diffuse multicomponent auroral precipitation (electron and ion): it would arise from an increase in the precipitation rate of ions together with an inward shift of their precipitation locus from L approximately equal 10 to L approximately equal 6. On the other hand, the analysis of Ulysses observations in the upstream solar wind suggests that

  13. Spectral indices for radio emission of 228 pulsars

    Science.gov (United States)

    Han, Jun; Wang, Chen; Xu, Jun; Han, Jin-Lin

    2016-10-01

    We determine spectral indices of 228 pulsars by using Parkes pulsar data observed at 1.4 GHz, among which 200 spectra are newly determined. The indices are distributed in the range from ‑4.84 to ‑0.46. Together with known pulsar spectra from literature, we tried to find clues to the pulsar emission process. The weak correlations between the spectral index, the spin-down energy loss rate E and the potential drop in the polar gap ΔΨ hint that emission properties are related to the particle acceleration process in a pulsar's magnetosphere.

  14. Weathering the Largest Storms in the Universe : Understanding environmental effects on extended radio emission in clusters

    Science.gov (United States)

    Dehghan, S.

    2014-05-01

    This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg2 area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS). Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies. It is believed that tailed radio galaxies reside in the dense

  15. Scattering of pulsar radio emission by the interstellar plasma

    CERN Document Server

    Coles, W A; Gao, J J; Hobbs, G; Verbiest, J P W

    2010-01-01

    We present simulations of scattering phenomena which are important in pulsar observations, but which are analytically intractable. The simulation code, which has also been used for solar wind and atmospheric scattering problems, is available from the authors. These simulations reveal an unexpectedly important role of dispersion in combination with refraction. We demonstrate the effect of analyzing observations which are shorter than the refractive scale. We examine time-of-arrival fluctuations in detail: showing their correlation with intensity and dispersion measure; providing a heuristic model from which one can estimate their contribution to pulsar timing observations; and showing that much of the effect can be corrected making use of measured intensity and dispersion. Finally, we analyze observations of the millisecond pulsar J0437$-$4715, made with the Parkes radio telescope, that show timing fluctuations which are correlated with intensity. We demonstrate that these timing fluctuations can be corrected,...

  16. Radio emission of extensive air showers at microwave frequencies

    Science.gov (United States)

    Filonenko, A. D.

    2016-05-01

    It is found that the power of the incoherent radiation of ionization electrons of an extensive air shower in the frequency range of 150 GHz is more than 10-24 W/m2Hz, with the shower energy ~1018 eV at a distance of 5 km from its axis. This means that, unlike fluorescent detectors, a radio telescope with an effective area of more than 300 m2 can monitor the trajectory of showers with an energy higher than 1018 eV at any time of the day regardless of the weather. The spectrum maximum near the frequency of 150 GHz is roughly three orders of magnitude higher than the value experimentally measured in the characteristic band (~5-10 GHz).

  17. Coherent radio pulses from showers in different media: A unified parameterization

    CERN Document Server

    Alvarez-Muñiz, J; Vázquez, R A; Zas, E; Alvarez-Mu\\~niz, Jaime; Marqu\\'es, Enrique; V\\'azquez, Ricardo A.; Zas, Enrique

    2005-01-01

    We study the frequency and angular dependences of Cherenkov radio pulses originated by the excess of electrons in electromagnetic showers in different dense media. We develop a simple model to relate the main characteristics of the electric field spectrum to the properties of the shower such as longitudinal and lateral development. This model allows us to establish the scaling of the electric field spectrum with the properties of the medium such as density, radiation length, Moliere radius, critical energy and refraction index. We normalize the predictions of the scaling relations to the numerical results obtained in our own developed GEANT4-based Monte Carlo simulation, and we give a unified parameterization of the frequency spectrum and angular distribution of the electric field in ice, salt, and the lunar regolith, in terms of the relevant properties of the media. Our parameterizations are valid for electromagnetic showers below the energy at which the Landau-Pomeranchuk-Migdal effect starts to be relevant...

  18. Inferences from the Distributions of Fast Radio Burst Pulse Widths, Dispersion Measures and Fluences

    CERN Document Server

    Katz, J I

    2015-01-01

    The widths, dispersion measures, dispersion indices and fluences of Fast Radio Bursts (FRB) impose coupled constraints that all models must satisfy. Observation of dispersion indices close to their low density limit of $-2$ sets a model-independent upper bound on the electron density and a lower bound on the size of any dispersive plasma cloud. The non-monotonic dependence of burst widths (after deconvolution of instrumental effects) on dispersion measure excludes the intergalactic medium as the location of scattering that broadens the FRB in time. Temporal broadening far greater than that of pulsars at similar high Galactic latitudes implies that scattering occurs close to the sources, where high densities and strong turbulence are plausible. FRB energetics are consistent with supergiant pulses from young, fast, high-field pulsars at cosmological distances. The distribution of FRB dispersion measures is inconsistent with expanding clouds (such as SNR). It excludes space-limited distributions (such as the loc...

  19. Searching the Nearest Stars for Exoplanetary Radio Emission: VLA and LOFAR Observations

    Science.gov (United States)

    Knapp, Mary; Winterhalter, Daniel; Lazio, Joseph

    2016-10-01

    Six of the eight solar system planets and one moon (Ganymede) exhibit present-day dynamo magnetic fields. To date, however, there are no conclusive detections of exoplanetary magnetic fields. Low frequency radio emission via the cyclotron maser instability (CMI) from interactions between a planet and the solar/stellar wind is the most direct means of detecting and characterizing planetary/exoplanetary magnetic fields. We have undertaken a survey of the very nearest stars in low frequency radio (30 MHz - 4 GHz) in order to search for yet-undiscovered planets. The closest stars are chosen in order to reduce the attenuation of the magnetospheric radio signal by distance dilution, thereby increasing the chances of making a detection if a planet with a strong magnetic field is present. The VLA telescope (P-band: 230-470 MHz, L-band: 1-2 GHz, S-band: 2-4 GHz) and LOFAR telescope (LBA: 30-75 MHz) have been used to conduct this survey.This work focuses on VLA and LOFAR observations of an M-dwarf binary system: GJ 725. We present upper limits on radio flux as a function of frequency. Since the peak emission frequency of CMI-type emission is the local plasma frequency in the emission region, the peak frequency of planetary radio emission is a direct proxy for the magnetic field strength of the planet. Our spectral irradiance upper limits therefore represent upper limits on the magnetic field strengths of any planets in the GJ 725 system.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  20. A Measurement Method of Time Jitter of a Laser Pulse with Respect to the Radio-Frequency Wave Phase in a Photocathode Radio-Frequency Gun

    Institute of Scientific and Technical Information of China (English)

    刘圣广; 李永贵; 王鸣凯

    2002-01-01

    In a photo-cathode radio-frequency (rf) gun, the micro-bunched charge output from the gun is dependent linearly on the laser injection phase, due to the Scottay effect in the process of photoemission and the procedure of the electron longitudinal acceleration. Based on this principle, a new method is proposed, which should be utilized to measure the time jitter between the driving laser pulse and the rf phase with a very high resolution of a few tens of femtoseconds.

  1. The Nature of Emission from Optical Breakdown Induced by Pulses of fs and ns Duration

    Energy Technology Data Exchange (ETDEWEB)

    Carr, C W; Feit, M D; Rubenchik, A M; Demange, P; Kucheyev, S; Shirk, M D; Radousky, H B; Demos, S G

    2004-11-09

    Spectral emission from optical breakdown in the bulk of a transparent dielectric contains information about the nature of the breakdown medium. We have made time resolved measurements of the breakdown induced emission caused by nanosecond and femtosecond infrared laser pulses. We previously demonstrated that the emission due to ns pulses is blackbody in nature allowing determination of the fireball temperature and pressure during and after the damage event. The emission due to femtosecond pulse breakdown is not blackbody in nature; two different spectral distributions being noted. In one case, the peak spectral distribution occurs at the second harmonic of the incident radiation, in the other the distribution is broader and flatter and presumably due to continuum generation. The differences between ns and fs breakdown emission can be explained by the differing breakdown region geometries for the two pulse durations. The possibility to use spectral emission as a diagnostic of the emission region morphology will be discussed.

  2. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    FINAL REPORT Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions ESTCP Project WP-200212...PROGRAM ELEMENT NUMBER Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions 6. AUTHOR(S) 5d. PROJECT

  3. Lightning as a possible source of the radio emission on HAT-P-11b

    CERN Document Server

    Hodosán, Gabriella; Helling, Christiane

    2016-01-01

    Lightning induced radio emission has been observed on Solar System planets. There have been many attempts to observe exoplanets in the radio wavelength, however, no unequivocal detection has been reported. Lecavelier des Etangs et al. (2013, A&A, 552, A65) carried out radio transit observations of the exoplanet HAT-P-11b, and suggested that a small part of the radio flux can be attributed to the planet. In the current letter, we assume that this signal is real, and study if this radio emission could be caused by lightning in the atmosphere of the planet. We find that a lightning storm with 530 times larger flash densities than the Earth-storms with the largest lightning activity is needed to produce the observed signal from HAT-P-11b. The optical counterpart would nevertheless be undetectable with current technology. We show that HCN produced by lightning chemistry of such thunderstorms is observable 2-3 years after the storm, which produces signatures in the L ($3.0 \\mu{\\rm m}-4.0 \\mu$m) and N ($7.5 \\mu{...

  4. Non-thermal radio emission from O-type stars. II. HD 167971

    CERN Document Server

    Blomme, R; Runacres, M C; Van Loo, S; Gunawan, D Y A S

    2006-01-01

    HD 167971 is a triple system consisting of a 3.3-day eclipsing binary (O5-8 V + O5-8 V) and an O8 supergiant. It is also a well known non-thermal radio emitter. We observed the radio emission of HD 167971 with the Very Large Array (VLA) and the Australia Telescope Compact Array (ATCA). By combining these data with VLA archive observations we constructed a radio lightcurve covering a 20-yr time-range. We searched for, but failed to find, the 3.3-day spectroscopic period of the binary in the radio data. This could be due to the absence of intrinsic synchrotron radiation at the colliding-wind region between the two components of the eclipsing binary, or due to the large amount of free-free absorption that blocks the synchrotron radiation. We are able to explain many of the observed characteristics of the radio data if the non-thermal emission is produced in a colliding-wind region between the supergiant and the combined winds of the binary. Furthermore, if the system is gravitationally bound, the orbital motion ...

  5. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    Science.gov (United States)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  6. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    Science.gov (United States)

    Kashiyama, Kazumi; Murase, Kohta

    2017-04-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙, a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 1013 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙, a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  7. Compact FPGA-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    CERN Document Server

    Pruttivarasin, Thaned

    2015-01-01

    We present a compact FPGA-based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 TTL channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube (PMT). There are 16 independent direct-digital-synthesizers (DDS) RF sources with fast (rise-time of ~60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  8. Relationship of shock-associated kilometric radio emission with metric type II bursts and energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S.W.; Cliver, E.W.; Cane, H.V.

    1986-01-01

    Shock-associated (SA) events are a class of kilometric-wavelength solar radio bursts first observed with the ISEE-3 Radio Astronomy Experiment. These fast-drift events are typically associated with metric type II bursts and hypothesized that the SA events were due to electrons accelerated by coronal shocks. Compare SA events from 1978 to 1982 with metric type II bursts and solar energetic particle (SEP) events. Most metric type II bursts are not obviously associated with SA events at 1980 kHz. Metric type II bursts associated with magnetically well connected flares and SA emission are well correlated with SEP events; those without SA emission are poorly correlated with SEP events. The largest SEP events from flares at any longitude are well correlated with SAs. These results are consistent with the hypothesis that the escaping electrons giving rise to SA emission are accelerated in coronal shocks.

  9. GeV emission from the nearby radio galaxy Centaurus A

    CERN Document Server

    Sreekumar, P; Hartman, R C; Nolan, P L; Thompson, D J

    1999-01-01

    EGRET has detected 67 sources associated with active galactic nuclei. With the exception of radio galaxy Cen A, all are classified as belonging to the blazar class of active galactic nuclei. The cumulative exposure from multiple EGRET observations has provided the first clear detection of Centaurus A. Unlike the \\gr blazars seen by EGRET which are believed to exhibit near-alignment of the central jet along the line-of-sight, Cen A provides the first evidence for $>$100 MeV emission from a source with a confirmed large-inclination jet. Although the high-energy emission represents a lower luminosity than most EGRET blazars, with the advent of new more sensitive instruments such as GLAST and VERITAS, the detection of off-axis high-energy emission from more distant radio galaxies is an exciting possibility.

  10. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anmin [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Shao, Junfeng; Wang, Tingfeng [State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Huang, Xuri [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Jin, Mingxing [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  11. Non-thermal radio emission from O-type stars. V. 9 Sagittarii

    Science.gov (United States)

    Blomme, R.; Volpi, D.

    2014-01-01

    Context. The colliding winds in a massive binary system generate synchrotron emission due to a fraction of electrons that have been accelerated to relativistic speeds around the shocks in the colliding-wind region (CWR). Aims: We studied the radio light curve of 9 Sgr = HD 164794, a massive O-type binary with a 9.1-year period. We investigated whether the radio emission varies consistently with orbital phase and we determined some parameters of the colliding-wind region (CWR). Methods: We reduced a large set of archive data from the Very Large Array (VLA) to determine the radio light curve of 9 Sgr at 2, 3.6, 6, and 20 cm. We also constructed a simple model that solves the radiative transfer in the CWR and both stellar winds. Results: The 2 cm radio flux shows clear phase-locked variability with the orbit. The behaviour at other wavelengths is less clear, mainly because of a lack of observations centred on 9 Sgr around periastron passage. The high fluxes and nearly flat spectral shape of the radio emission show that synchrotron radiation dominates the radio light curve at all orbital phases. The model provides a good fit to the 2 cm observations, allowing us to estimate that the brightness temperature of the synchrotron radiation emitted in the colliding-wind region at 2 cm is at least 4 × 108 K. Conclusions: The simple model used here already allows us to derive important information about the CWR. We propose that 9 Sgr is a good candidate for more detailed modelling, as the CWR remains adiabatic during the whole orbit thus simplifying the hydrodynamics. Appendix A is available in electronic form at http://www.aanda.org

  12. MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Mossessian, George; Fleishman, Gregory D. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2012-04-01

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

  13. Evidence of non-thermal X-ray emission from radio lobes of Cygnus A

    CERN Document Server

    Yaji, Y; Isobe, N; Kino, M; Asada, K; Nagai, H; Koyama, S; Kusunose, M

    2010-01-01

    Using deep Chandra ACIS observation data for Cygnus A, we report evidence of non-thermal X-ray emission from radio lobes surrounded by a rich intra-cluster medium (ICM). The diffuse X-ray emission, which are associated with the eastern and western radio lobes, were observed in a 0.7--7 keV Chandra$ ACIS image. The lobe spectra are reproduced with not only a single-temperature Mekal model, such as that of the surrounding ICM component, but also an additional power-law (PL) model. The X-ray flux densities of PL components for the eastern and western lobes at 1 keV are derived as 77.7^{+28.9}_{-31.9} nJy and 52.4^{+42.9}_{-42.4} nJy, respectively, and the photon indices are 1.69^{+0.07}_{-0.13} and 1.84^{+2.90}_{-0.12}, respectively. The non-thermal component is considered to be produced via the inverse Compton (IC) process, as is often seen in the X-ray emission from radio lobes. From a re-analysis of radio observation data, the multiwavelength spectra strongly suggest that the seed photon source of the IC X-ra...

  14. A comparison of X-ray and radio emission from the supernova remnant Cassiopeia A

    CERN Document Server

    Keohane, J W; Anderson, M C; Keohane, Jonathan W; Rudnick, Lawrence; Anderson, Martha C

    1996-01-01

    We compare the radio and soft X-ray brightness as a function of position within the young supernova remnant Cassiopeia A. A moderately strong correlation (r = 0.7) was found between the X-ray emission (corrected for interstellar absorption) and radio emission, showing that the thermal and relativistic plasmas occupy the same volumes and are regulated by common underlying parameters. The logarithmic slope of the relationship, ln(Sx-ray) = 1.2 x Sradio + ln(k) implies that the variations in brightness are primarily due to path length differences. The X-ray and radio emissivities are both high in the same general locations, but their more detailed relationship is poorly constrained and probably shows significant scatter. The strongest radio and X-ray absorption is found at the western boundary of Cas A. Based on the properties of Cas A and the absorbing molecular cloud, we argue that they are physically interacting. We also compare ASCA derived column densities with 21 cm H I and 18 cm OH optical depths in the d...

  15. Bright radio emission from an ultraluminous stellar-mass microquasar in M31

    CERN Document Server

    Middleton, Matthew J; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2012-01-01

    A subset of ultraluminous X-ray sources (those with luminosities < 10^40 erg/s) are thought to be powered by the accretion of gas onto black holes with masses of ~5-20 M_solar, probably via an accretion disc. The X-ray and radio emission are coupled in such Galactic sources, with the radio emission originating in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium precludes determining the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source whose peak luminosity can exceed 10^39 erg/s in the nearby galaxy, M31. The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highl...

  16. Correlation between X-ray Lightcurve Shape and Radio Arrival Time in the Vela Pulsar

    CERN Document Server

    Lommen, A; Gwinn, C; Arzoumanian, Z; Harding, A; Strickman, M S; Dodson, R; McCulloch, P; Moffett, D

    2006-01-01

    We report the results of simultaneous observations of the Vela pulsar in X-rays and radio from the RXTE satellite and the Mount Pleasant Radio Observatory in Tasmania. We sought correlations between the Vela's X-ray emission and radio arrival times on a pulse by pulse basis. At a confidence level of 99.8% we have found significantly higher flux density in Vela's main X-ray peak during radio pulses that arrived early. This excess flux shifts to the 'trough' following the 2nd X-ray peak during radio pulses that arrive later. Our results suggest that the mechanism producing the radio pulses is intimately connected to the mechanism producing X-rays. Current models using resonant absorption of radio emission in the outer magnetosphere as a cause of the X-ray emission are explored as a possible explanation for the correlation.

  17. Wide-Band Spectra of Giant Radio Pulses from the Crab Pulsar

    CERN Document Server

    Mikami, Ryo; Tanaka, Shuta J; Kisaka, Shota; Sekido, Mamoru; Takefuji, Kazuhiro; Takeuchi, Hiroshi; Misawa, Hiroaki; Tsuchiya, Fuminori; Kita, Hajime; Yonekura, Yoshinori; Terasawa, Toshio

    2016-01-01

    We present the results of the simultaneous observation of the Giant Radio Pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7 and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70\\% or more of the GRP spectra are consistent with single power-laws and the spectral indices of them are distributed from $-4$ to $-1$. We also find that a significant number of GRPs have so hard spectral index $\\sim -1$) that the fluence at 0.3 GHz is below the detection limit (``dim-hard' GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensiv...

  18. On the origin of the scatter broadening of fast radio burst pulses and astrophysical implications

    CERN Document Server

    Xu, Siyao

    2016-01-01

    Fast radio bursts (FRBs) have been identified as extragalactic sources which can make a probe of turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible models of electron density fluctuations in both the IGM and the host galaxy medium. We find that a shallow power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs. It implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contribute to a...

  19. Radio emission and mass loss rate limits of four young solar-type stars

    Science.gov (United States)

    Fichtinger, Bibiana; Güdel, Manuel; Mutel, Robert L.; Hallinan, Gregg; Gaidos, Eric; Skinner, Stephen L.; Lynch, Christene; Gayley, Kenneth G.

    2017-03-01

    Aims: Observations of free-free continuum radio emission of four young main-sequence solar-type stars (EK Dra, π1 UMa, χ1 Ori, and κ1 Cet) are studied to detect stellar winds or at least to place upper limits on their thermal radio emission, which is dominated by the ionized wind. The stars in our sample are members of The Sun in Time programme and cover ages of 0.1-0.65 Gyr on the main-sequence. They are similar in magnetic activity to the Sun and thus are excellent proxies for representing the young Sun. Upper limits on mass loss rates for this sample of stars are calculated using their observational radio emission. Our aim is to re-examine the faint young Sun paradox by assuming that the young Sun was more massive in its past, and hence to find a possible solution for this famous problem. Methods: The observations of our sample are performed with the Karl G. Jansky Very Large Array (VLA) with excellent sensitivity, using the C-band receiver from 4-8 GHz and the Ku-band from 12-18 GHz. Atacama Large Millimeter/Submillitmeter Array (ALMA) observations are performed at 100 GHz. The Common Astronomy Software Application (CASA) package is used for the data preparation, reduction, calibration, and imaging. For the estimation of the mass loss limits, spherically symmetric winds and stationary, anisotropic, ionized winds are assumed. We compare our results to 1) mass loss rate estimates of theoretical rotational evolution models; and 2) to results of the indirect technique of determining mass loss rates: Lyman-α absorption. Results: We are able to derive the most stringent direct upper limits on mass loss so far from radio observations. Two objects, EK Dra and χ1 Ori, are detected at 6 and 14 GHz down to an excellent noise level. These stars are very active and additional radio emission identified as non-thermal emission was detected, but limits for the mass loss rates of these objects are still derived. The emission of χ1 Ori does not come from the main target

  20. RADIO EMISSION VARIABILITY AND PROPER MOTIONS OF WR 112

    Directory of Open Access Journals (Sweden)

    J. O. Yam

    2015-01-01

    Full Text Available Analizamos 64 observaciones en radio a la frecuencia de 8.4 GHz de la estrella Wolf-Rayet WR 112, tomadas de los archivos del Very Large Array. Las observaciones cubren una línea de base temporal de 13 años, de junio del 2000 a julio de 2013. La estructura de WR 112 es consistente con ser una luente puntual en todas las épocas y su densidad de flujo varía entre 0.6 mJy y 2.1 mJy. Intentamos buscar periodicidades en estas variaciones sin éxito. También buscamos emisión extendida asociada con la nebulosa infrarroja que rodea a WR 112, y encontramos límites superiores de 50 µJy. Finalmente, usamos las observaciones con resolución más alta para medir los movimientos propios de WR 112, y obtenemos µαcos δ = —2.6 ± 1.1 mas yr-1, y µδ = —5.4 ± 1.4 mas yr-1. Estos movimientos propios son menores que los reportados previamente, pero continúan sugiriendo movimientos peculiares significativos.

  1. Are there real orthogonal polarization modes in pulsar radio emission?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 乔国俊

    2000-01-01

    The orthogonal polarization modes (OPM) have been reported observationally and widely accepted by pulsar researchers. However, no acceptable theory can explain the origin of the OPM, which becomes a mystery in pulsar research field. Here a possible way to solve this mystery is pre-sented. We ask a question: Does there exist any real so-called OPM in pulsar radiation? It is proposed that the ’observed OPM’ in individual pulses could be the results of depolarization of pulsar radiation and the observational uncertainties originated f rom polarimeter in observation. A possible method to check this idea is suggested. If the idea is verified, the pulsar research would be influenced significant-ly in theory and in observation.

  2. Are there real orthogonal polarization modes in pulsar radio emission?

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The orthogonal polarization modes (OPM) have been reported observationally and widely accepted by pulsar researchers. However, no acceptable theory can explain the origin of the OPM, which becomes a mystery in pulsar research field. Here a possible way to solve this mystery is presented. We ask a question: Does there exist any real so-called OPM in pulsar radiation? It is proposed that the 'observed OPM' in individual pulses could be the results of depolarization of pulsar radiation and the observational uncertainties originated from polarimeter in observation. A possible method to check this idea is suggested. If the idea is verified, the pulsar research would be influenced significantly in theory and in observation.

  3. The continuum radio emission from the Sy 1.5 galaxy NGC 5033

    CERN Document Server

    Perez-Torres, Miguel A

    2007-01-01

    We present new continuum VLA observations of the nearby Sy 1.5 galaxy NGC 5033, made at 4.9 and 8.4 GHz on 8 April 2003. Combined with VLA archival observations at 1.4 and 4.9 GHz made on 7 August 1993, 29 August 1999, and 31 October 1999, we sample the galaxy radio emission at scales ranging from the nuclear regions (<~ 100 pc) to the outer regions of the disk (~ 40 kpc). The high-resolution VLA images show a core-jet structure for the Sy 1.5 nucleus. While the core has a moderately steep non-thermal radio spectrum (S_\

  4. A survey of X-ray emission from 100 kpc radio jets

    CERN Document Server

    Schwartz, Daniel A; Worrall, Diana M; Birkinshaw, Mark; Perlman, Eric; Lovell, James E J; Jauncey, David; Murphy, David; Gelbord, Jonathan; Godfrey, Leith; Bicknell, Geoffrey

    2015-01-01

    We have completed a Chandra snapshot survey of 54 radio jets that are extended on arcsec scales. These are associated with flat spectrum radio quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from the jet of approximately 60% of the sample objects. We assume minimum energy and apply conditions consistent with the original Felten-Morrison calculations in order to estimate the Lorentz factors and the apparent Doppler factors. This allows estimates of the enthalpy fluxes, which turn out to be comparable to the radiative luminosities.

  5. Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340 m above sea level

    Science.gov (United States)

    Beisenova, A.; Boos, E.; Haungs, A.; Sadykov, T.; Salihov, N.; Shepetov, A.; Tautayev, Y.; Vildanova, L.; Zhukov, V.

    2017-06-01

    The complex EAS installation of the Tien Shan mountain cosmic ray station which is situated at a height of 3340 m above sea level includes the scintillation and Cherenkov detectors of charged shower particles, an ionization calorimeter and a set of neutron detectors for registering the hadronic component of the shower, and a number of underground detectors of the penetrative EAS component. Now it is intended to expand this installation with a promising method for detecting the radio-emission generated by the particles of the developing shower. The facility for radio-emission detection consists of a three crossed dipole antennae, one being set vertically, and another two - mutually perpendicularly in a horizontal plane, all of them being connected to a three-channel radio-frequency amplifier of German production. By the passage of an extensive air shower, which is defined by a scintillation shower detector system, the output signal of antenna amplifier is digitized by a fast multichannel DT5720 ADC of Italian production, and kept within computer memory. The further analysis of the detected signal anticipates its operation according to a special algorithm and a search for the pulse of radio-emission from the shower. A functional test of the radio-installation is made with artificial signals which imitate those of the shower, and with the use of a N1996A type wave analyzer of Agilent Technologies production. We present preliminary results on the registration of extensive air shower emission at the Tien Shan installation which were collected during test measurements held in Summer 2016.

  6. Galactic Synchrotron Emission and the Far-infrared-Radio Correlation at High Redshift

    Science.gov (United States)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR-radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR-radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  7. An Overview of Saturn Narrowband Radio Emissions Observed by Cassini RPWS

    Science.gov (United States)

    Ye, S.-Y.; Fischer, G.; Menietti, J. D.; Wang, Z.; Gurnett, D. A.; Kurth, W. S.

    Saturn narrowband (NB) radio emissions are detected between 3 and 70 kHz, with occurrence probability and wave intensity peaking around 5 kHz and 20 kHz. The emissions usually occur periodically for several days after intensification of Saturn kilometric radiation (SKR). Originally detected by the Voyagers, the extended duration of the Cassini mission and the improved capabilities of the Radio and Plasma Wave Science (RPWS) instrument have significantly advanced our knowledge about them. For example, RPWS measurements of the magnetic component have validated the electromagnetic nature of Saturn NB emissions. Evidences show that the 20 kHz NB emissions are generated by mode conversion of electrostatic upper hybrid waves on the boundary of the plasma torus, whereas direction-finding results point to a source in the auroral zone for the 5 kHz component. Similar to SKR, the 5 kHz NB emissions have a clock-like modulation and display two distinct modulation periods identical to the northern and southern hemisphere periods of SKR. Polarization measurements confirm that most NB emissions are propagating in the L-O mode, with the exception of second harmonic NB emissions. At high latitudes closer to the planet, RPWS detected right hand polarized Z-mode NB emissions below the local electron cyclotron frequency (f_ce), which are believed to be the source of the L-O mode NB emissions detected above the local f_ce. Although the energy source for the generation of the Z-mode waves is still unclear, linear growth rate calculations indicate that the observed plasma distributions are unstable to the growth of electrostatic cyclotron harmonic emission. Alternatively, electromagnetic Z-mode might be directly generated by the cyclotron maser instability. The source Z-mode waves, upon reflection, propagate to the opposite hemisphere before escaping through mode conversion, which could explain the fact that both rotational modulation periods of NB emissions are observable in each

  8. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    Science.gov (United States)

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  9. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    Directory of Open Access Journals (Sweden)

    Jenna eJarvis

    2013-06-01

    Full Text Available How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat’s echoes, but additional mechanisms are needed to explain the bat sonar system’s exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other’s pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat’s emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  10. Rotational modulation of Saturn's radio emissions after equinox

    Science.gov (United States)

    Ye, Shengyi; Fischer, Georg; Kurth, William; Gurnett, Donald

    2016-04-01

    The modulation rate of Saturn kilometric radiation (SKR), originally thought to be constant, was found to vary with time by comparing the Voyager and Ulysses observations. More recently, Cassini RPWS observations of SKR revealed two different modulation rates, one associated with each hemisphere of Saturn, and it was proposed that the rotation rates are subject to seasonal change. The almost continuous observations of SKR, Saturn narrowband emission, and auroral hiss by RPWS provide a good method of tracking the rotation rates of the planet's magnetosphere. We will show that the rotation rate of the northern SKR is slower than that of the southern SKR in 2015. Auroral hiss provides another unambiguous method of tracking the rotation signals from each hemisphere because the whistler mode wave cannot cross the equator. Rotation rates of auroral hiss are shown to agree with those of SKR when both are observed at high latitudes. The dual rotation rates of 5 kHz narrowband emissions reappeared after a long break since equinox and they agree with those of auroral hiss in 2013.

  11. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  12. Correlation of the radio continuum, infrared, and CO molecular emissions in NGC 3627

    CERN Document Server

    Paladino, R; Tarchi, A; Moscadelli, L; Comito, C

    2008-01-01

    We present new radio continuum observations, taken at 1.4 GHz with the Very Large Array, and new observations in the CO line, taken with the Plateau de Bure interferometer, of two regions of the spiral galaxy NGC 3627. Comparing these observations with archival Spitzer and H_{alpha} data we study the correlation of the radio continuum (RC), infrared-8 um and CO emissions at a spatial resolution of 100 pc. We compare the point-by-point variations of the RC, CO, and 8um brightnesses in two distinct regions of 2 kpc \\times 2 kpc in size of NGC 3627. We examined scale much lower than the electron diffusion scale, where a break down of the correlations would be expected. However no evidence for such correlation break down has been found. The RC emission follows well the distribution of CO and the widths of several structures, measured along slices across them, are comparable. Furthermore, we found that down to a spatial scale of 100 pc the radio continuum emission is correlated with dust emissions at 4.5, 5.8, and...

  13. Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10

    CERN Document Server

    Wróbel, J M; Ho, L C; Ulvestad, J S

    2008-01-01

    GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 Solar masses. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically-thin synchrotron spectrum with a spectral index -0.76+/-0.05, is less than 11 percent linearly polarized, and is steady - although poorly sampled - on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 Solar masses per year, is inconsistent with the rate of less than 2 Solar masses per year derived from narrow Halpha and [OII] 3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those Seyferts, t...

  14. A Highly Circularly Polarized Solar Radio Emission Component Observed at Hectometric Wavelengths

    Science.gov (United States)

    Reiner, M. J.; Kaiser, M. L.; Fainberg, J.; Bougeret, J.-L.

    2006-04-01

    We report here the observation of a rare solar radio event at hectometric wavelengths that was characterized by essentially 100% circularly polarized radiation and that was observed continuously for about six days, from May 17 to 23, 2002. This was the first time that a solar source with significantly polarized radiation was detected by the WAVES experiment on the Wind spacecraft. From May 19 to 22, the intense polarized radio emissions were characterized by quasi-periodic intensity variations with periods from one to two hours and with superposed drifting, narrowband, fine structures. The bandwidth of this radiation extended from about 400 kHz to 7 MHz, and the peak frequency of the frequency spectrum slowly decreased from 2 MHz to about 0.8 MHz over the course of four days. The radio source, at each frequency, was observed to slowly drift from east to west about the Sun, as viewed from the Earth and was estimated to lie between 26 and 82 R ⊙ ( R ⊙ = 696 000 km). We speculate that this unusual event may represent an interplanetary manifestation of a moving type IV burst and discuss possible radio emission mechanisms. The ISEE-3 spacecraft may possibly have detected a similar event some 26 years ago.

  15. Non-Thermal Radio Emission from Colliding Flows in Classical Nova V1723 Aql

    CERN Document Server

    Weston, Jennifer H S; Metzger, Brian D; Zheng, Yong; Chomiuk, Laura; Krauss, Miriam I; Linford, Justin; Nelson, Thomas; Mioduszewski, Amy; Rupen, Michael P; Finzell, Tom; Mukai, Koji

    2015-01-01

    The importance of shocks in nova explosions has been highlighted by the recent discovery of \\gamma-ray producing novae by Fermi. We use over three years of multi-band radio observations of nova V1723 Aql with the Karl G. Jansky Very Large Array (VLA) to show that shocks between fast and slow flows within the ejecta led to the acceleration of particles and the production of synchrotron radiation. Approximately one month after the start of V1723 Aql's eruption in 2010 September, shocks in the ejecta produced an unexpected radio flare, ultimately resulting in a radio light curve with a multi-peaked structure. More than a year after the start of the eruption, the radio emission became consistent with emanating from an expanding thermal remnant with a mass of $2\\times10^{-4}$ M$_\\odot$ and a temperature of $10^4$ K. However, the brightness temperature of greater than $10^6$ K at low frequencies during the first two months was too high to be due to thermal emission from the small amount of X-ray producing shock-hea...

  16. White Paper: Radio Emission and Polarization Properties of Galaxy Clusters with VLASS

    CERN Document Server

    Clarke, Tracy; Brown, Shea; Brunetti, Gianfranco; Cassano, Rossella; Dallacasa, Daniele; Feretti, Luigina; Giacintucci, Simona; Giovannini, Gabriele; Govoni, Federica; Markevitch, Maxim; Murgia, Matteo; Rudnick, Lawrence; Scaife, Anna; Vacca, Valentina; Venturi, Tiziana; van Weeren, Reinout

    2014-01-01

    We outline the science case for extended radio emission and polarization in galaxy clusters which would be a scientifically important area of research for an upcoming Jansky Very Large Array Sky Survey. The survey would provide a major contribution in three key areas of the physics of clusters: 1) the active galactic nucleus population and the impact of feedback on the evolution of the intra-cluster medium, 2) the origin and evolution of diffuse cluster radio sources to probe the physics of mergers with implications for cosmology, and 3) the origin and role of magnetic fields in the ICM and in large scale structures. Considering all three areas, a survey must have sufficient spatial resolution to study the tailed galaxies which trace the cluster weather as well as the radio lobes driving energy into the cluster from the central AGN. The survey must also have sensitivity to low surface brightness emission and large angular scales to probe radio halos and relics as well as the WHIM residing in the large scale s...

  17. Radio Emission from the Be/Black Hole Binary MWC 656

    CERN Document Server

    Dzib, S A; Jaron, F

    2015-01-01

    Context. MWC 656 is the recently discovered first binary system case composed of a Be-type star and an accreting black hole. Its low X-ray luminosity indicates that the system is in a quiescent X-ray state. Aims. The aim of our investigation is to establish if the MWC 656 system has detectable radio emission and if the radio characteristics are consistent with those of quiescent black hole systems. Methods.We used three archived VLA data sets, one hour each, at 3 GHz and seven new VLA observations, two hours each, at 10 GHz to produce very high sensitivity images, down to $\\sim$1$\\,\\mu$Jy. Results.We detected the source twice in the new observations: in the first VLA run, at periastron passage, with a flux density of 14.2$\\,\\pm\\,$2.9 $\\mu$Jy and by combining all together the other six VLA runs, with a flux density of $3.7 \\pm 1.4$ $\\mu$Jy. The resulting combined map of the archived observations has the sensitivity of $1 \\sigma = 6.6\\, \\mu Jy$ but no radio emission is there detected. Conclusions. The radio and...

  18. Discovery of Millimeter-Wave Excess Emission in Radio-Quiet Active Galactic Nuclei

    CERN Document Server

    Behar, Ehud; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-01-01

    The physical origin of radio emission in Radio Quiet Active Galactic Nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of Radio Loud (RL) AGN, or whether it originates from the accretion disk. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows $L_R = 10^{-5}L_X$ observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disk corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA and ATCA telescopes. All targets were detected at the $1-10$ mJy level. Emission excess at 95~GHz of up to $\\times 7$ is found with respect to archival low-frequency steep spectra, suggesting a compact, optically-thick core superimposed on the more extended structures that...

  19. Role of Microwave Radio Emission in Estimation of CMEs Geo-Effectiveness in their Formation Stage

    Science.gov (United States)

    Durasova, M.; Fridman, V.; Sheyner, O.

    It was shown by authors earlier [1] that formation stage of the majority CMEs (time interval about 2 hours) is accompanied by sporadic events in solar radio emission. The study of evaluation of CMEs geo-effectiveness is carried out according to their manifestation in microwave emission during formation stage. Data value consists of original recordings of solar radio emission during regular observations in the Radio Astronomical Observatory "Zimenki" (Russia) at 6 frequencies in the range of 9100-100 MHz and includes about 185 events during XXI-XXIII cycles of solar activity. The first stage of study consists in establishment of the fact of CMEs geo- effectiveness on the basis of Kp-index behavior during 1-2 days after CMEs registration. Such parameters of CMES as their Central Locations (CL) and Apparent Widths (AW) were used for analysis. It is shown that the mean AW for geo-effective CMEs top the same one for non-geo-effective CMEs at least by 20%. Above-mentioned study gives stable results for 3 independent volumes of data of 1980-1988, 1998, and 1999. This effect is strengthen for all data concerning geo- effective CMEs of Loop -type and keeps in geometric notions where AW and CL contain the Earth location in space. For further study all radio data are separated into 2 volumes: the first one is connected with sporadic events that are observed during the formation of geo- effective CMEs and the second one - the others CMEs. The difference of characteristics of these sporadic events is examined. It is shown that it is possible to evaluate CMEs geo-effectiveness using totality of characteristics of broad band precursors in radio emission. This work is being supported by the Russian Foundation for Fundamental Research (grant N 00-02-17655).References. 1. Durasova M.S., Fridman V.M., Sheiner O.A. The distinctive features of nonstationary solar radio emission corresponding to CME's formation on the base of wide frequency range observations. In: Proc.of Euroconference

  20. Measuring the radio emission of cosmic ray air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: Frank.Schroeder@kit.ed [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Apel, W.D. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Asch, T. [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT) (Germany); Badea, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Bozdog, H. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Daumiller, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany)

    2010-05-21

    When ultra high energy cosmic rays hit the atmosphere, they produce a shower of millions of secondary particles. Thereby the charged particles in the shower emit a radio pulse whilst deflected in the Earth's magnetic field. LOPES is a digital antenna array measuring these radio pulses in the frequency range from 40 to 80 MHz. It is located at the site of and triggered by the air shower experiment KASCADE-Grande at Karlsruhe Institute of Technology (KIT), Germany. In its present configuration, it consists of 15 east-west-polarized and 15 north-south-polarized, absolutely calibrated short dipole antennas, as well as 10 LPDAs (with two channels each). Furthermore, it serves as a test bench for technological developments, like new antenna types or a radio-based self-triggering (LOPES{sup STAR}). To achieve a good angular reconstruction and to digitally form a beam into the arrival direction of the shower, it has a precise time calibration.

  1. Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    CERN Document Server

    Angelakis, E; Marchili, N; Foschini, L; Myserlis, I; Karamanavis, V; Komossa, S; Blinov, D; Krichbaum, T P; Sievers, A; Ungerechts, H; Zensus, J A

    2015-01-01

    We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systematic monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, imply...

  2. Radio Continuum and Far-infrared Emission from the Galaxies in the Eridanus Group

    Indian Academy of Sciences (India)

    A. Omar; K. S. Dwarakanath

    2005-03-01

    The Eridanus galaxies follow the well-known radio–FIR correlation. The majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies that have a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (20cm > 1023W Hz-1) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (20cm ∼ 1022W Hz-1) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.

  3. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martì, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; DeBonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lefèvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Perrina, C; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J; Falco, E E

    2014-01-01

    Context. The jets of radio-loud Active Galactic Nuclei are among the most powerful particle accelerators in the Universe, and a plausible production site for high-energy cosmic rays. The detection of high-energy neutrinos from these sources would provide unambiguous evidence of a hadronic component in such jets. High-luminosity blazars, such as the flat-spectrum radio quasars (FSRQs), are promising candidates to search for such emission. Because of the low fluxes due to large redshift, these sources are however challenging for the current generation of neutrino telescopes such as ANTARES and IceCube. Aims. This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazars. Methods. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed blazars, using data collected from 2007 to 2012 by ANTARES. The magnification factor is estimated for each syst...

  4. Modeling of radio emission from a particle cascade in a magnetic field and its experimental validation

    Science.gov (United States)

    Zilles, Anne

    2017-03-01

    The SLAC T-510 experiment was designed to compare controlled laboratory measurements of radio emission of particle showers to predictions using particle-level simulations, which are relied upon in ultra-high-energy cosmic-ray air shower detection. Established formalisms for the simulation of radio emission physics, the "endpoint" formalism and the "ZHS" formalism, lead to results which can be explained by a superposition of magnetically induced transverse current radiation and charge-excess radiation due to the Askaryan effect. Here, we present the results of Geant4 simulations for the SLAC T-510 experiment, taking into account the details of the experimental setup (beam energy, target geometry and material, magnetic field configuration, and refraction effects) and their comparison to measured data with respect to e.g. signal polarisation, linearity with magnetic field, and angular distribution. We find that the microscopic calculations reproduce the measurements within uncertainties and describe the data well.

  5. Incoherent transient radio emission from stellar-mass compact objects in the SKA era

    CERN Document Server

    Corbel, S; Fender, R P; Gallo, E; Maccarone, T J; O'Brien, T J; Paragi, Z; Rupen, M P; Rushton, A P; Sabatini, S; Sivakoff, G R; Strader, J; Woud, P A

    2015-01-01

    The universal link between the processes of accretion and ejection leads to the formation of jets and outflows around accreting compact objects. Incoherent synchrotron emission from these outflows can be observed from a wide range of accreting binaries, including black holes, neutron stars, and white dwarfs. Monitoring the evolution of the radio emission during their sporadic outbursts provides important insights into the launching of jets, and, when coupled with the behaviour of the source at shorter wavelengths, probes the underlying connection with the accretion process. Radio observations can also probe the impact of jets/outflows (including other explosive events such as magnetar giant flares) on the ambient medium, quantifying their kinetic feedback. The high sensitivity of the SKA will open up new parameter space, enabling the monitoring of accreting stellar-mass compact objects from their bright, Eddington-limited outburst states down to the lowest-luminosity quiescent levels, whose intrinsic faintnes...

  6. Spectral Characteristics of Large-Scale Radio Emission Areas in Coronal Holes

    CERN Document Server

    Prosovetsky, D V; Kochanov, A A

    2013-01-01

    The spectra of the coronal hole radio emission in solar cycles 23 and 24 have been studied based on RATAN-600 data in the 4-16.5 GHz range at frequencies of 5.7 and 17 GHz and 327 MHz. It has been found that bright features of coronal hole microwave emission at 17 GHz and dark features at 5.7 GHz can exist in coronal holes when the spectral index is 1.25-1.5 in the 6.5-16.5 GHz range; the radio spectrum in this range is flat when coronal holes are indiscernible against the background of a quiet Sun. The possible vertical scale of the solar atmosphere over coronal holes is discussed.

  7. Achieving low-emissivity materials with high transmission for broadband radio-frequency signals.

    Science.gov (United States)

    Liu, Liu; Chang, Huiting; Xu, Tao; Song, Yanan; Zhang, Chi; Hang, Zhi Hong; Hu, Xinhua

    2017-07-07

    The use of low-emissivity (low-e) materials in modern buildings is an extremely efficient way to save energy. However, such materials are coated by metallic films, which can strongly block radio-frequency signals and prevent indoor-outdoor wireless communication. Here, we demonstrate that, when specially-designed metallic metasurfaces are covered on them, the low-e materials can remain low emissivity for thermal radiation and allow very high transmission for a broad band of radio-frequency signals. It is found that the application of air-connected metasurfaces with subwavelength periods is critical to the observed high transmission. Such effects disappear if periods are comparable to wavelengths or metal-connected structures are utilized. The conclusion is supported by both simulations and experiments. Advantages such as easy to process, low cost, large-area fabrication and design versatility of the metasurface make it a promising candidate to solve the indoor outdoor communication problem.

  8. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers

    CERN Document Server

    Schellart, P; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-01-01

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  9. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); Rudnick, Lawrence [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  10. Peak-Flux-Density Spectra of Large Solar Radio Bursts and Proton Emission from Flares.

    Science.gov (United States)

    1985-08-19

    3(d).- 37. Juday, R. D., and Adams, G. W. (1969) Riometer measurements, solar proton intensities and radiation dose rates, Planet. Space Sci. 17:1313...emissions radioelectriques solaires de Type IV et leur relation avec d’autres phenomenes solaires et geophys- iques, Ann.- Astrophys. 24:183. 39. Harvey, G. A...1965) 2800 megacycle per second radiation associated with Type II and Type IV solar radio bursts and the relation with other phen- omena, J

  11. Relationship of Solar Radio Emission at λ=1.43m and Optical Processes in the Sun

    Science.gov (United States)

    Makandarashvili, Sh.; Oghrapishvili, N.; Japaridze, D.; Maghradze, D.

    2016-09-01

    Radio frequency observations supplement optical studies and in some cases they are the only way of obtaining information on the physical conditions for radio waves and their propagation. Solar radio emission appears in two forms, "quiescent" and "sporadic." Their distinctive features are well known. Solar radio observations at meter wavelengths (λ = 1.43 m, ν = 210 MHz) have been made at the Abastumani Astrophysical Observatory using a solar radio telescope throughout five solar cycles (since 1957). This article is a study of the long-term observations of solar radio bursts and sunspots. It is found that there is a correlation between the amplitudes of the radio bursts, the number of spots, and the regions of the spots.

  12. Technique for separating the galactic thermal radio emission from the non-thermal component by means of the associated infrared emission

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, A.; Osborne, J.L.; Haslam, C.G.T.

    1989-03-15

    A detailed correlation is shown to exist between the IRAS 60-..mu..m band emission from the galactic disc and the radio continuum emission measured with a similar angular resolution by previous authors at 11 cm and 6 cm. A major part of the radio continuum at these frequencies is from thermal bremsstrahlung, and the detailed correlation with the 60-..mu..m band emission shows that an important fraction of the latter must be associated with H II regions (not only the compact regions but also the extended low-density regions). To reveal this component more clearly, the infrared emission from H I-associated dust has been modelled in detail and subtracted from both the 60-and 100-..mu..m band observations. The 60-..mu..m band emission is a sufficiently good tracer of the thermal component of the radio continuum emission that it can be used to separate this from the synchrotron component.

  13. A Stochastic Acceleration Model of Radio Emission from Pulsar Wind Nebulae

    Science.gov (United States)

    Tanaka, S.; Asano, K.

    2016-06-01

    The broadband emission of Pulsar Wind Nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the difference of spectral indices at radio and X-rays are not reproduced by the standard shock particle acceleration and cooling processes, and then, for example, the broken power-law spectrum for the particle energy distribution at the injection has been groundlessly adopted. Here, we propose a possible resolution for the particle distribution; the radio emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside the PWNe. The turbulence may be induced by the interaction of the pulsar wind with the supernova ejecta. We upgrade our one-zone spectral evolution model including the stochastic acceleration and apply it to the Crab Nebula. We consider both continuous and impulsive injections of particles to the stochastic acceleration process. The radio emission in the Crab Nebula is reproduced by our stochastic acceleration model. The required forms of the momentum diffusion coefficient will be discussed.

  14. Observations of solar radio emissions in meter wavelengths carried by CALLISTO-BR

    Science.gov (United States)

    Fernandes, F. C. R.; Silva, R. D. C.; Sodré, Z. A. L.; Costa, J. E. R.; Sawant, H. S.

    2012-04-01

    Two Callisto-type (Compound Astronomical Low-cost Low frequency Instrument for Spectroscopy and Transportable Observatory) spectrographs are in operation in Cachoeira Paulista, Brazil, since 2010. The CALLISTO-BR integrates the e-Callisto network consisting of several radio spectrographs distributed around the world, for provide continuous monitoring (24 hours) of the solar activity in the meter frequency range of 45 - 870 MHz. The solar radio emissions observations carried out by Callisto can be used as a diagnostic of several physical processes on the Sun. Here, we present the observations of several bursts recorded by CALLISTO-BR, such as type I bursts associated with a long lasting noise storm, recorded on March 30, 2010 in the typical frequency band around 200 MHz; a group of normal drifting type III bursts recorded in March 31, 2010 and also in February 15, 2011 and a rarely observed broadband (~180 - 800 MHz) continuum emission presenting positive frequency drifting (from low to high frequencies), suggesting the source is moving towards photosphere. Observations of type II and type IV bursts were also recorded. Details of these and many other solar radio emissions recorded by CALLISTO-BR will be presented and their implications for the solar activity and space weather investigations will be discussed.

  15. Constraints on Dark Matter Annihilation in Clusters of Galaxies from Diffuse Radio Emission

    CERN Document Server

    Storm, Emma; Profumo, Stefano; Rudnick, Lawrence

    2012-01-01

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-haloes. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of approximately 3 or more when the same annihilation channel and subtructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as 2 orders of...

  16. First detections of 610 MHz radio emission from hot magnetic stars

    CERN Document Server

    Chandra, P; Sundqvist, J O; Oberoi, D; Grunhut, J H; ud-Doula, A; Petit, V; Cohen, D H; Oksala, M E; David-Uraz, A

    2015-01-01

    We have carried out a study of radio emission from a small sample of magnetic O- and B-type stars using the Giant Metrewave Radio Telescope, with the goal of investigating their magnetospheres at low frequencies. These are the lowest frequency radio measurements ever obtained of hot magnetic stars. The observations were taken at random rotational phases in the 1390 and the 610 MHz bands. Out of the 8 stars, we detect five B-type stars in both the 1390 and the 610 MHz bands. The O-type stars were observed only in the 1390 MHz band, and no detections were obtained. We explain this result as a consequence of free-free absorption by the free-flowing stellar wind exterior to the closed magnetosphere. We also study the variability of individual stars. One star - HD 133880 - exhibits remarkably strong and rapid variability of its low frequency flux density. We discuss the possibility of this emission being coherent emission as reported for CU Vir by Trigilio et al. (2000).

  17. Time-scales of close-in exoplanet radio emission variability

    CERN Document Server

    See, V; Fares, R; Donati, J -F; Moutou, C

    2015-01-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and tau Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetised hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is co-rotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of tau Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of...

  18. MODELING BRIGHT γ-RAY AND RADIO EMISSION AT FAST CLOUD SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210 (Japan); Patnaude, Daniel J.; Raymond, John C.; Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Nagataki, Shigehiro [RIKEN, Astrophysical Big Bang Laboratory and Interdisciplinary Theoretical Science Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ellison, Donald C., E-mail: slee@astro.isas.jaxa.jp, E-mail: slane@cfa.harvard.edu, E-mail: dpatnaude@cfa.harvard.edu, E-mail: jraymond@cfa.harvard.edu, E-mail: don_ellison@ncsu.edu, E-mail: shigehiro.nagataki@riken.jp [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States)

    2015-06-10

    Recent observations by the Large Area Telescope on board the Fermi satellite have revealed bright γ-ray emission from middle-aged supernova remnants (SNRs) inside our Galaxy. These remnants, which also possess bright non-thermal radio shells, are often found to be interacting directly with surrounding gas clouds. We explore the non-thermal emission mechanism at these dynamically evolved SNRs by constructing a hydrodynamical model. Two scenarios of particle acceleration, either a re-acceleration of Galactic cosmic rays or an efficient nonlinear diffusive shock acceleration (NLDSA) of particles injected from downstream, are considered. Using parameters inferred from observations, our models are contrasted with the observed spectra of SNR W44. For the re-acceleration case, we predict a significant enhancement of radio and GeV emission as the SNR undergoes a transition into the radiative phase. If sufficiently strong magnetic turbulence is present in the molecular cloud, the re-acceleration scenario can explain the observed broadband spectral properties. The NLDSA scenario also succeeds in explaining the γ-ray spectrum but fails to reproduce the radio spectral index. Efficient NLDSA also results in a significant post-shock non-thermal pressure that limits the compression during cooling and prevents the formation of a prominent dense shell. Some other interesting differences between the two models in hydrodynamical behavior and resulting spectral features are illustrated.

  19. On the Origin of the Scatter Broadening of Fast Radio Burst Pulses and Astrophysical Implications

    Science.gov (United States)

    Xu, Siyao; Zhang, Bing

    2016-12-01

    Fast radio bursts (FRBs) have been identified as extragalactic sources that can probe turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible electron density fluctuation models in both the IGM and the host galaxy medium. We find that a short-wave-dominated power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs. This implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with the dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contributes to a small fraction of the total DM. We also find that the sheet-like structure of the density in the host ISM associated with folded magnetic fields in a viscosity-dominated regime of magnetohydrodynamic (MHD) turbulence cannot give rise to strong scattering. Furthermore, valuable insights into the IGM turbulence concerning the detailed spatial structure of density and magnetic field can be gained from the observed scattering timescale of FRBs. Our results favor the suppression of micro-plasma instabilities and the validity of the collisional-MHD description of turbulence properties in the collisionless IGM.

  20. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    Science.gov (United States)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  1. Phase offsets between core and conal components of radio pulsars and their emission altitudes

    CERN Document Server

    Kapoor, R C

    2002-01-01

    We present a new method for investigating emission altitudes of radio pulsar core and conal components by attributing them different altitudes and by providing a framework to understand the resulting longitude offsets between them which are frequently observed. By investigating the contributions to these offsets due to aberration and the magnetic field line sweepback, we show that they are always dominated by aberration for all emission altitudes and inclination angles. This directly allows the conclusion that the core emission does not necessarily come from the surface. Our results and the observational trends imply that for a large number of pulsars the emission altitudes of core and conal components are close when compared to the light cylinder radius but not necessarily relative to the stellar radius. The core/cone altitude differences that we find are typically larger than the individual altitudes ascribed to them so far. Widely different core/cone altitudes for some pulsars are also supported by data an...

  2. Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation : experiment and simulations

    CERN Document Server

    Casta, R; Sence, M; Moretto-Capelle, P; Cafarelli, P; Amsellem, A; Sicard-Roselli, C

    2014-01-01

    In this paper we present new results on electronic emission of Gold Nanoparticles (GNPs) using X-ray photoelectron spectroscopy (XPS) and compare them to the gold bulk electron emission. This subject has undergone new interest within the perspective of using GNPs as a radiotherapy enhancer. The experimental results were simulated using various models (Livermore and PENELOPE) of the Geant 4 simulation toolkit dedicated to the calculation of the transportation of particles through the matter. Our results show that the GNPs coating is a key parameter to correctly construe the experimental GNPs electronic emission after X-ray irradiation and point out some limitations of the PENELOPE model. Using XPS spectra and Geant4 Livermore simulations,we propose a method to determine precisely the coating surface density of the GNPs. We also show that the expected intrinsic nano-scale electronic emission enhancement effect - suspected to contribute to the GNPs radio-sensitizing properties - participates at most for a few pe...

  3. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    CERN Document Server

    2009-01-01

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz)in the error circle of the EGRET source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of gamma-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The gamma-ray light curve shows two sharp peaks having phase separation of 0.460 +- 0.004, trailing the very narrow radio pulse by 0.200 +- 0.003 in phase, very similar to that of other known $\\gamma$-ray pulsars. The measured gamma-ray flux gives an efficiency for the pulsar of 10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT ena...

  4. Discovery of Pulsed Gamma Rays from the Young Radio Pulsar PSR J1028-5819 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Baring, Matthew G.; /Rice U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of {gamma}-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The {gamma}-ray light curve shows two sharp peaks having phase separation of 0.460 {+-} 0.004, trailing the very narrow radio pulse by 0.200 {+-} 0.003 in phase, very similar to that of other known {gamma}-ray pulsars. The measured {gamma}-ray flux gives an efficiency for the pulsar of {approx}10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819.

  5. Radio emission from supernovae and gamma-ray bursters and the need for the SKA

    Science.gov (United States)

    Weiler, Kurt W.; Van Dyk, Schuyler D.; Sramek, Richard A.; Panagia, Nino

    2004-12-01

    Study of radio supernovae (SNe) over the past 25 years includes two dozen detected objects and more than 100 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. Since 1997 the afterglow of γ-ray bursting sources (GRBs) has occasionally been detected in the radio, as well in other wavelength bands. In particular, the interesting and unusual γ-ray burst GRB 980425, almost certainly related to the radio supernova SN 1998bw, and the more recent SN 2003dh/GRB 030329 are links between the two classes of objects. Analyzing the extensive radio emission data available for SN 1998bw, one can describe its time evolution within the well established framework available for the analysis of radio emission from supernovae. This then allows relatively detailed description of a number of physical properties of the object. The radio emission can best be explained as the interaction of a mildly relativistic ( Γ ˜ 1.6) shock with a dense pre-explosion stellar wind-established circumstellar medium that is highly structured both azimuthally, in clumps or filaments, and radially, with observed density enhancements. From this we can support the conclusion that at least some members of the slow-soft class of GRBs are related to type Ib/c SNe and can be attributed to the explosion of a massive star in a dense, highly structured CSM that was presumably established by the pre-explosion stellar system. However, due to the lack of sensitivity of current radio telescopes, most supernovae cannot be studied if they are more

  6. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  7. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Science.gov (United States)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  8. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    CERN Document Server

    Lyutikov, Maxim; Popov, Sergei B

    2016-01-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages $\\sim$ tens to hundreds of years) born with regular magnetic field but very short -- few milliseconds -- spin periods. FRBs are extra-Galactic events coming from distances $d \\lesssim 100$ Mpc. Most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell; for a given burst the DM should decrease with time. FRBs are not expected to be seen below $\\sim 300 $ MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers $\\dot{E}$ in young energetic pulsars is consistent with equal birth rate per decade of $\\dot{E}$. Accepting this injection spectrum and scaling the intrinsic brightness of FRBs with $\\dot{E}$, we pr...

  9. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    Science.gov (United States)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (i) the brightest observed events come from a broad distribution in distances; (ii) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  10. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Science.gov (United States)

    Wang, Ran; Momjian, Emmanuel; Carilli, Chris L.; Wu, Xue-Bing; Fan, Xiaohui; Walter, Fabian; Strauss, Michael A.; Wang, Feige; Jiang, Linhua

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μJy beam‑1 and a total flux density of 88 ± 19 μJy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be TB = (1.6 ± 1.2) × 107 K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  11. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Joseph [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Coriat, Mickaël [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Fender, Rob; Broderick, Jess W. [Department of Physics, Oxford University, Oxford OX1 3RH (United Kingdom); Lee, Julia C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany); Tzioumis, Anastasios K.; Edwards, Philip G., E-mail: neilsenj@bu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia)

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  12. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Bruno Yue [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Mao, Xianglei [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hou, Huaming [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ocean University of China, Qingdao (China); Zorba, Vassilia; Russo, Richard E. [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cheung, Nai-Ho, E-mail: nhcheung@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2015-08-01

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm{sup −2} orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism.

  13. The discharge mode transition and O({sup 5}p{sub 1}) production mechanism of pulsed radio frequency capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P. [National State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); Shi, J. J. [College of Science, Donghua University, Shanghai 201620 (China)

    2012-07-23

    The discharge mode transition from uniform plasma across the gas gap to the {alpha} mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He{sub 2}* dominate the production of O({sup 5}p{sub 1}) through dissociation and excitation of O{sub 2}. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  14. Temporal structure of attosecond pulses from laser-driven coherent synchrotron emission

    CERN Document Server

    Cousens, S; Dromey, B; Zepf, M

    2016-01-01

    The microscopic dynamics of laser-driven coherent synchrotron emission transmitted through thin foils are investigated using particle-in-cell simulations. For normal incidence interactions, we identify the formation of two distinct electron nanobunches from which emission takes place each half-cycle of the driving laser pulse. These emissions are separated temporally by 130 attoseconds and are dominant in different frequency ranges, which is a direct consequence of the distinct characteristics of each electron nanobunch. This may be exploited through spectral filtering to isolate these emissions, generating electromagnetic pulses of duration ~70 as.

  15. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control.

    Science.gov (United States)

    Cochems, P; Kirk, A T; Bunert, E; Runge, M; Goncalves, P; Zimmermann, S

    2015-06-01

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  16. Full Monte Carlo simulations of radio emission from extensive air showers with CoREAS

    CERN Document Server

    Huege, Tim

    2013-01-01

    CoREAS is a Monte Carlo simulation code for the calculation of radio emission from extensive air showers. It is based on the "endpoint formalism" for radiation from moving charges implemented directly in CORSIKA. Consequently, the full complexity of the air-shower physics is taken into account without the need for approximations or assumptions on the emission mechanism. We present results of simulations for an unthinned shower performed with CoREAS for both MHz and GHz frequencies. At MHz frequencies, the simulations predict the well-known mixture of geomagnetic and charge excess radiation. At GHz frequencies, the emission is strongly influenced by Cherenkov effects arising from the varying refractive index in the atmosphere. In addition, a qualitative difference in the symmetry of the GHz radiation pattern is observed when compared to the ones at lower frequencies. We also discuss the strong increase in the ground area subtended by the radio emission when going from near-vertical to very inclined geometries,...

  17. Air Shower Radio Emission with Energy E$_0$$\\geq$10$^{19}$ eV by Yakutsk Array Data

    CERN Document Server

    Knurenko, S P

    2016-01-01

    The paper presents short technical description of Yakutsk Radio Array and some preliminary results obtained from measurements of radio emission at 32 MHz frequency induced by air shower particles with energy {\\epsilon}$\\geq$1$\\cdot$10$^{19}$ eV. The data obtained at Yakutsk array in 1987-1989 (first set of measurements) and 2009-2014 (new set of measurements). For the first time, at Yakutsk array radio emission from air shower with energy > 10$^{19}$ eV was registered including the shower with highest energy ever registered at Yakutsk array with energy $\\sim$2$\\cdot$10$^{20}$ eV.

  18. A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds

    CERN Document Server

    Montes, G; Canto, J; Perez-Torres, M A; Alberdi, A

    2011-01-01

    Aims. The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the wind collision region. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods. We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results. Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the wind collision region mainly arises from the optically thick region of the compressed layer and scales as ~ D^{4/5}, where D is the binary separation. The predicted flux density fro...

  19. Gamma-ray emission from galaxy cluster outskirts versus radio relics

    CERN Document Server

    Siemieniec--Oziȩbło, G

    2016-01-01

    Galaxy cluster peripheries provide important information on the nature of ICM/IGM linkage. In this paper we consider potential future observations in the gamma-ray domain at cluster edges involving the radio relic phenomenon. We focus on the spectral signature of gamma radiation that should be evident in the energy range of Fermi--LAT, i.e. $\\gtrsim 10^{-1}$ GeV and the CTA energy range $\\sim$ $ 10^{2}$ GeV. The spectral signature results from a comparable gamma-ray flux due to the IC and $ \\pi ^{0} $ decay on the edge of the cluster, and its spectral position is a function of the magnetic field and relative efficiency of the acceleration of protons and electrons. We aim to draw attention to the dependence of the gamma-ray structure on the magnetic field value. As an example, we carried out analyses of two types of non-thermal diffuse radio emission: the radio relic of A 2256 and the radio halo of Coma cluster. We suggest that in both cases the expected spatially correlated gamma-ray spectrum should have a ch...

  20. A Model of Jupiter's Decametric Radio Emissions as a Searchlight Beam

    Science.gov (United States)

    Imai, K.; Garcia, L.; Reyes, F.; Imai, M.; Thieman, J. R.

    It has long been recognized that there is a marked long-term periodic variation in Jupiter's integrated radio occurrence probability. The period of the variation is on the order of a decade. Carr et al. [1970] showed that such variations are closely correlated with Jovicentric declination of the Earth (DE). The range of the smoothed variation of DE is from approximately +3.3 to -3.3 degrees. This DE effect was extensively studied and confirmed by Garcia [1996]. It shows that the occurrence probability of the non-Io-A source is clearly controlled by DE at 18, 20, and 22 MHz during the 1957-1994 apparitions. We propose a new model to explain the DE effect. This new model shows that the beam structure of Jupiter radio emissions, which has been thought of like a hollow-cone, has a narrow beam like a searchlight, which can be explained by assuming that the three dimensional shape of the radio source expands along the line of the magnetic field. If we consider the sizes of the radio coherent region are 1000 m along Jupiter's magnetic field line and 200 m along the latitudinal direction, the equivalent beam pattern is 1 degree wide along Jupiter's magnetic field line and 5 degrees in latitude. As the searchlight beam is fixed with Jupiter's magnetic field, the pure geometrical effect of DE can be explained by this searchlight beam model.

  1. Effect of electron emission on solids heating by femtosecond laser pulse

    Science.gov (United States)

    Svirina, V. V.; Sergaeva, O. N.; Yakovlev, E. B.

    2011-02-01

    Ultrashort laser pulse interaction with material involves a number of specialities as compared to longer irradiations. We study laser heating of metal by femtosecond pulse with taking into account electron photo- and thermionic emission leading to accumulation of a high positive charge on the target surface and, thus, to the generation of the electric field which causes Coulomb explosion (an electronic mechanism of ablation). Also emission slightly influences the thermal and optical properties of solids.

  2. Mode-selective terahertz emission from rippled air irradiated by femtosecond laser pulses

    Science.gov (United States)

    Shin, Junghun; Zhidkov, Alexei; Jin, Zhan; Hosokai, Tomonao; Kodama, Ryosuke

    2014-04-01

    Terahertz (THz) emission from rippled air is studied in multidimensional particle-in-cell simulations that include optical field ionization. The ionization modulation in a plasma channel produced by a laser pulse propagating along a ripple and the pulse self-focusing result in THz mode selection with the generation of intense signals having quasi-monochromatic spectral distributions.

  3. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    CERN Document Server

    Deane, R P; Heywood, I

    2015-01-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21 cm radio emission from neutral hydrogen has only been detected directly out to z~0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed HI emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic HI disks (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind HI surveys with the SKA are predicted to be efficient at discovering lensed HI systems, increasingly so at z > 2. This will be enabled by the combination of the magnification boosts, the steepness of the HI luminosity function at the high-mass end, and t...

  4. LOPES-3D: An antenna array for full signal detection of air-shower radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.D. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Bekk, K. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik (Germany); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); INAF Torino, Instituto di Fisica dello Spazio Interplanetario (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Daumiller, K. [Karlsruhe Institute of Technology (KIT), Institut fuer Kernphysik (Germany); Souza, V. de [Karlsruhe Institute of Technology (KIT), Institut fuer Experimentelle Kernphysik (Germany); and others

    2012-12-22

    To better understand the radio signal emitted by extensive air-showers and to further develop the radio detection technique of high-energy cosmic rays, the LOPES experiment was reconfigured to LOPES-3D. LOPES-3D is able to measure all three vectorial components of the electric field of radio emission from cosmic ray air showers. The additional measurement of the vertical component ought to increase the reconstruction accuracy of primary cosmic ray parameters like direction and energy, provides an improved sensitivity to inclined showers, and will help to validate simulation of the emission mechanisms in the atmosphere. LOPES-3D will evaluate the feasibility of vectorial measurements for large scale applications. In order to measure all three electric field components directly, a tailor-made antenna type (tripoles) was deployed. The change of the antenna type necessitated new pre-amplifiers and an overall recalibration. The reconfiguration and the recalibration procedure are presented and the operationality of LOPES-3D is demonstrated.

  5. Nuclear Radio Continuum Emission of Low-Luminosity Active Galactic Nucleus NGC 4258

    CERN Document Server

    Doi, Akihiro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2011-01-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showed inverted spectra in all epochs, which were intra-month variable, as well as complicated spectral features that cannot be represented by a simple power law, indicating multiple blobs in nuclear jets. Using the Nobeyama Millimeter Array (NMA), we discovered a large amplitude variable emission at 100 GHz (3 mm), which had higher flux densities at most epochs than those of the VLA observations. A James Clerk Maxwell Telescope (JCMT) observation at 347 GHz (850 micron) served an upper limit of dust contamination. The inverted radio spectrum of the nucleus NGC 4258 is suggestive of an analogy to our Galactic center Sgr A*, but with three orders of magnitude higher radio luminosity. In addition to the LLAGN M 81, we discuss the nucleus of NGC 4258 as another up-scaled ...

  6. Generation of the jovian radio emission by the maser cyclotron instability: first lessons from JUNO

    Science.gov (United States)

    Louarn, Philippe; Allegrini, Frederic; Kurth, WilliamS.; Valek, Philips. W.; McComas, Dave; Bagenal, Fran; Bolton, Scott; Connerney, John; Ebert, Robert W.; Levin, Steven; Szalay, Jamey; Wilson, Robert; Zink, Jenna; André, Nicolas; Imai, Masafumi

    2017-04-01

    Using JUNO plasma and wave observations (JADE and Waves instruments), the scenario for the generation of jovian auroral radio emissions are analyzed. The sources of radiation are identified by localized intensifications of the radio flux at frequencies close to the electron gyrofrequency. Not surprisingly, it is shown that the cyclotron maser instability is perfectly adapted to the plasma conditions prevailing in the radio sources. However, it appears that different forms of activation of the cyclotron maser are observed. For radiation at hectometric wavelengths (one of the main emissions), pronounced loss-cones in the electron distribution functions are likely the source of free energy. The sources would be extended over several thousand km in directions traverse to the magnetic field. The applications of the theory reveals that sufficient growth rates are obtained from the distributions functions that are actually measured by JADE. This differs from the Earth scenario for which 'trapped' distribution functions drive the maser. More localized sources are also observed, possibly linked to local acceleration process. These examples may present analogies with the 'Earth' scenario, with other forms of free energy than the loss-cone. A first lesson of these direct in-situ JADE and RPWS observations is thus to confirm the maser cyclotron scenario with, however, conditions for the wave amplification and detailed maser processes that appear to be different than at Earth.

  7. BeppoSAX Observations of Synchrotron X-ray Emission from Radio Quasars

    CERN Document Server

    Padovani, P; Ghisellini, G; Giommi, P; Perlman, E

    2002-01-01

    We present new BeppoSAX LECS, MECS, and PDS observations of four flat-spectrum radio quasars (FSRQ) having effective spectral indices alpha_ro and alpha_ox typical of high-energy peaked BL Lacs. Our sources have X-ray-to-radio flux ratios on average ~ 70 times larger than ``classical'' FSRQ and lie at the extreme end of the FSRQ X-ray-to-radio flux ratio distribution. The collected data cover the energy range 0.1 - 10 keV (observer's frame), reaching ~ 100 keV for one object. The BeppoSAX band in one of our sources, RGB J1629+4008, is dominated by synchrotron emission peaking at ~ 2 x 10^16 Hz, as also shown by its steep (energy index alpha_x ~ 1.5) spectrum. This makes this object the FIRST known FSRQ whose X-ray emission is not due to inverse Compton radiation. Two other sources display a flat BeppoSAX spectrum (alpha_x ~ 0.7), with weak indications of steepening at low X-ray energies. The combination of BeppoSAX and ROSAT observations, (non-simultaneous) multifrequency data, and a synchrotron inverse Compt...

  8. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    Science.gov (United States)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  9. A Numerical Model of Parsec-scale SSC Morphologies and Their Radio Emission

    Science.gov (United States)

    Richter, S.; Spanier, F.

    2016-09-01

    In current models for jets of active galactic nuclei and their emission a shortcoming in the description and understanding of the connection between the largest and smallest scales exists. In this work we present a spatially resolved synchrotron self-Compton model extended to parsec scales, which opens the possibility of probing the connections between the radio and high-energy properties. We simulate an environment that leads to Fermi-I acceleration of leptonic particles and includes the full time dependence of this process. Omitting the restriction of a finite downstream region, we find that the spectral energy distribution produced by the accelerated particles strongly depends on their radial confinement behind the shock. The requirement, for both the restriction of high-energy emission to a small region around the shock and the production of a flat radio spectrum, is an initial linear increase of the radius immediately behind the shock, which then slows down with increasing distance from the shock. A good representation of the data for the blazar Mrk 501 is achieved by a parameterized log function. The prediction for the shape of the radio blob is given by the flux distribution with respect to shock distance.

  10. Understanding the periodicities in radio and GeV emission from LS I+61303

    CERN Document Server

    Jaron, F; Massi, M

    2016-01-01

    Accretion models predict two ejections along the eccentric orbit of LS I +61 303: one major ejection at periastron and a second, lower ejection towards apastron. We develop a physical model for LS I +61 303 in which relativistic electrons are ejected twice along the orbit. The ejecta form a conical jet that is precessing with P2. The jet radiates in the radio band by the synchrotron process and the jet radiates in the GeV energy band by the external inverse Compton and synchrotron self-Compton processes. We compare the output fluxes of our physical model with two available large archives: OVRO radio and Fermi Large Area Telescope (LAT) GeV observations, the two databases overlapping for five years. The larger ejection around periastron passage results in a slower jet, and severe inverse Compton losses result in the jet also being short. While large gamma-ray emission is produced, there is only negligible radio emission. Our results are that the periastron jet has a length of 3.0 10^6 rs and a velocity beta ~ ...

  11. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    Science.gov (United States)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned

  12. A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds

    Science.gov (United States)

    Montes, G.; González, R. F.; Cantó, J.; Pérez-Torres, M. A.; Alberdi, A.

    2011-07-01

    Context. In massive-star binary systems, the interaction of the strong stellar winds results in a wind collision region (WCR) between the stars, which is limited by two shock fronts. Besides the nonthermal emission resulting from the shock acceleration, these shocks emit thermal (free-free) radiation detectable at radio frequencies that increase the expected emission from the stellar winds. Observations and theoretical studies of these sources show that the shocked gas is an important, but not dominant, contributor to the total emission in wide binary systems, while it plays a very substantial role in close binaries. Aims: The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the WCR. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods: We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results: Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the WCR mainly arises from the optically thick region of the compressed layer and scales as ~D4/5, where D is the binary separation. The predicted flux density Sν from the WCR becomes more important as the frequency ν increases, showing higher spectral indices than the expected 0.6 value (Sν ∝ να, where α = 0.6) from the unshocked winds. We also investigate the emission from short-period WR+O systems calculated with our analytic formulation. In particular, we apply the model to the binary systems WR 98 and WR 113 and compare our results

  13. Radio pulse search and X-Ray monitoring of SAX J1808.4-3658: What Causes its Orbital Evolution?

    CERN Document Server

    Patruno, Alessandro; Kuiper, Lucien; Bult, Peter; Hessels, Jason; Knigge, Christian; King, Andrew R; Wijnands, Rudy; van der Klis, Michiel

    2016-01-01

    The accreting millisecond X-ray pulsar (AMXP) SAX J1808.4-3658, shows a peculiar orbital evolution that proceeds at a much faster pace than predicted by conservative binary evolution models. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves. It has also been suggested that, when in quiescence, SAX J1808.4-3658 turns on as a radio pulsar, a circumstance that might provide a link between AMXPs and black-widow radio pulsars. In this work we report the results of a deep radio pulsation search at 2 GHz using the Green Bank Telescope in August 2014 and an X-ray monitoring of the 2015 outburst with Chandra, Swift, and INTEGRAL. In particular, we present the X-ray timing analysis of a 30-ks Chandra observation executed during the 2015 outburst. We detect no radio pulsations, and place the strongest limit to date on the pulsed radio flux density of any AMXP. We also find that the orbit of SAX J1808.4-3658 continues evolving at a...

  14. Observation of the Emission Spectra of an Atmospheric Pressure Radio-frequency Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz)power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.

  15. SLAC T-510: Radio emission from particle cascades in the presence of a magnetic field

    Science.gov (United States)

    Mulrey, Katharine

    2017-03-01

    Cosmic ray induced particle cascades radiate in radio frequencies in the Earth's atmosphere. Geomagnetic and Askaryan emission provide an effective way to detect ultra-high energy cosmic rays. The SLAC T-510 experiment was the first to measure magnetically induced radiation from particle cascades in a controlled laboratory setting. An electron beam incident upon a dense dielectric target produced a particle cascade in the presence of a variable magnetic field. Antennas covering a band of 30-3000 MHz sampled RF emission in vertical and horizontal polarizations. Results from T-510 are compared to particle-level RF-emission simulations which are critical for reconstructing the energy and composition of detected ultra-high energy cosmic ray air showers. We discuss the experimental set up, the data processing, the systematic errors and the main results of the experiment, which we found in a good agreement with the simulations.

  16. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    Science.gov (United States)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  17. Research Spotlight: North and south components of Saturn's radio emissions reversed

    Science.gov (United States)

    Tretkoff, Ernie

    2011-02-01

    Saturn is known to emit intense radio emissions at kilometer wavelengths from its auroral regions. Observations in recent years found that the Saturn kilometric radiation (SKR) emission from the northern auroral region has a clocklike modulation with a period of about 10.6 hours, while the SKR emission from the southern auroral region has a period of about 10.8 hours. Analyzing more recent observations from the Cassini spacecraft, Gurnett et al. have now found that the rotational modulation rates of the southern and northern components reversed shortly after Saturn’s equinox on 11 August 2009, so that the southern hemisphere SKR now has the shorter rotation period. They also analyzed data from the Ulysses spacecraft to show that a similar reversal occurred during the previous equinox, in November 1995. (Geophysical Research Letters, doi:10.1029/2010GL045796, 2010)

  18. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    CERN Document Server

    Daksha, M; Schuengel, E; Korolov, I; Derzsi, A; Koepke, M; Donko, Z; Schulze, J

    2016-01-01

    A Computationally Assisted Spectroscopic Technique to measure secondary electron emission coefficients ($\\gamma$-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of Phase Resolved Optical Emission Spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient $\\gamma$...

  19. A parameterization for the radio emission of air showers as predicted by CoREAS simulations and applied to LOFAR measurements

    CERN Document Server

    Nelles, Anna; Falcke, Heino; Hörandel, Jörg; Huege, Tim; Schellart, Pim

    2014-01-01

    Measuring radio emission from air showers provides excellent opportunities to directly measure all air shower properties, including the shower development. To exploit this in large-scale experiments, a simple and analytic parameterization of the distribution of the pulse power at ground level is needed. Data taken with the Low-Frequency Array (LOFAR) show a complex two-dimensional pattern of pulse powers, which is sensitive to the shower geometry. Earlier parameterizations of the lateral signal distribution have proven insufficient to describe these data. In this article, we present a parameterization derived from air-shower simulations. We are able to fit the two-dimensional distribution with a double Gaussian, requiring five independent parameters. All parameters show strong correlations with air shower properties, such as the energy of the shower, the arrival direction, and the shower maximum. We successfully apply the parameterization to data taken with LOFAR and discuss implications for air shower experi...

  20. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    Science.gov (United States)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  1. Radio imaging of the very-high-energy gamma-ray emission region in the central engine of a radio galaxy.

    Science.gov (United States)

    Acciari, V A; Aliu, E; Arlen, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Walker, R C; Davies, F; Hardee, P E; Junor, W; Ly, C; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göhring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, M C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; Becerra González, J; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Borla Tridon, D; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; De los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García López, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hsu, C C; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2009-07-24

    The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

  2. Radio Imaging of the Very-High-Energy Gamma-Ray Emission Region in the Central Engine of a Radio Galaxy

    CERN Document Server

    2009-01-01

    The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10^12 electron Volts (eV) and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy M87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

  3. A New Model for the Radio Emission from SN 1994I and an Associated Search for Radio Transients in M51

    Science.gov (United States)

    Alexander, Kate D.; Soderberg, Alicia M.; Chomiuk, Laura B.

    2015-06-01

    We revisit the exquisite archival radio data for the Type Ic supernova SN 1994I and present a revised model for the supernova (SN) radio emission and a pilot study that aims to constrain the rate of C-band radio transients within the face-on host galaxy, M51 (NGC 5194). We find that the temporal and spectral evolution of the SN 1994I radio emission are well fit by a synchrotron self-absorption model and use this to estimate physical parameters. We compute a pre-explosion mass loss rate of \\dot{M}=3.0× {{10}-5} {{M}⊙ } yr-1 for the progenitor, consistent with those observed from galactic Wolf-Rayet stars. Our model makes different assumptions for the dynamical model for the shockwave interaction than the model previously published by Weiler et al., but our \\dot{M} is consistent with theirs to within errors and assumptions. Drawing from a subset of the archival radio observations from the Very Large Array collected for the monitoring of SN 1994I, we conduct a pilot study to search for previously unidentified transients. Data were primarily taken at a frequency of 4.9 GHz and are logarithmic in cadence, enabling sensitivity to transients with variability timescales ranging from days to months. We find no new transient detections in 31 epochs of data, allowing us to place a 2σ upper limit of 17 deg-2 for the source density of radio transients above 0.5 mJy (L ≳ 4× {{10}25} erg s-1 Hz-1 at the distance of M51). This study highlights the feasibility of utilizing archival high-cadence radio studies of SN host galaxies to place constraints on the radio transient rate as a function of luminosity in the local universe.

  4. The physics of the radio emission in the quiet side of the AGN population with the SKA

    CERN Document Server

    Orienti, M; Giroletti, M; Giovannini, G; Panessa, F

    2014-01-01

    Despite targets of many multiwavelength campaigns, the main physical processes at work in AGN are still under debate. In particular the origin of the radio emission and the mechanisms involved are among the open questions in astrophysics. In the radio-loud AGN population the radio emission is linked to the presence of bipolar outflows of relativistic jets. However, the large majority of the AGN population do not form powerful highly-relativistic jets on kpc scales and are characterized by radio luminosity up to 10^23 W/Hz at 1.4 GHz, challenging our knowledge on the physical processes at the basis of the radio emission in radio-quiet objects. The main mechanisms proposed so far are synchrotron radiation from mildly relativistic mini-jets, thermal cyclo-synchrotron emission by low-efficiency accretion flow (like ADAF or ADIOS), or thermal free-free emission from the X-ray heated corona or wind. The difficulty in understanding the main mechanism involved is related to the weakness of these objects, which preclu...

  5. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Ayaka, E-mail: tamura.ayaka.88m@st.kyoto-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya; Sakka, Tetsuo, E-mail: sakka.tetsuo.2a@kyoto-u.ac.jp [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510 (Japan); Nakajima, Takashi; Ogata, Yukio H. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Fukami, Kazuhiro [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2015-01-14

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of the optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.

  6. Properties of the radio jet emission of four gamma-ray Narrow Line Seyfert 1 galaxies

    CERN Document Server

    Angelakis, E; Myserlis, I; Nestoras, I; Karamanavis, V; Krichbaum, T P; Zensus, J A; Marchili, N; Foschini, L; Ungerechts, H; Sievers, A

    2013-01-01

    The detection of gamma rays from a small number of Narrow Line Seyfert 1 galaxies by the LAT instrument onboard Fermi seriously challenged our understanding of AGN physics. Among the most important findings associated with their discovery has been the realisation that smaller-mass black holes seem to be hosted by these systems. Immediately after their discovery a radio multi- frequency monitoring campaign was initiated to understand their jet radio emission. Here the first results of the campaign are presented. The light curves and some first variability analyses are discussed, showing that the brightness temperatures and Doppler factors are moderate. The phenomenologies are typically blazar-like. The frequency domain on the other hand indicates intense spectral evolution and the variability patterns indicate mechanisms similar to those acting in the jets of BL Lacs and FSRQs. Finally, the linear polarisation also reveals the presence of a quiescent, optically thin jet in certain cases.

  7. VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Duke, C; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vasilev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; Kataoka, J; Cavazzuti, E; Cheung, C C; Lott, B; Thompson, D J; Tosti, G

    2009-01-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.

  8. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, Măgurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  9. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    CERN Document Server

    Junklewitz, H; Selig, M; Enßlin, T A

    2013-01-01

    We present RESOLVE, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. RESOLVE not only estimates the measured sky brightness in total intensity, but also its spatial correlation structure, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. For a radio interferometer, it succeeds in deconvolving the effects of the instrumental point spread function during this process. Additionally, RESOLVE provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with RESOLVE we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Mu...

  10. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    Science.gov (United States)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  11. Candidates for detecting exoplanetary radio emissions generated by magnetosphere-ionosphere coupling

    CERN Document Server

    Nichols, J D

    2012-01-01

    In this paper we consider the magnetosphere-ionosphere (M-I) coupling at Jupiter-like exoplanets with internal plasma sources such as volcanic moons, and we have determined the best candidates for detection of these radio emissions by estimating the maximum spectral flux density expected from planets orbiting stars within 25 pc using data listed in the NASA/IPAC/NExScI Star and Exoplanet Database (NStED). In total we identify 91 potential targets, of which 40 already host planets and 51 have stellar X-ray luminosity 100 times the solar value. In general, we find that stronger planetary field strength, combined with faster rotation rate, higher stellar XUV luminosity, and lower stellar wind dynamic pressure results in higher radio power. The top two targets for each category are $\\epsilon$ Eri and HIP 85523, and CPD-28 332 and FF And.

  12. Pulse variation of the optical emission of Crab pulsar

    CERN Document Server

    Karpov, S; Biryukov, A; Plokhotnichenko, V; Debur, V; Shearer, A

    2007-01-01

    The stability of the optical pulse of the Crab pulsar is analyzed based on the 1 $\\mu$s resolution observations with the Russian 6-meter and William Hershel telescopes equipped with different photon-counting detectors. The search for the variations of the pulse shape along with its arrival time stability is performed. Upper limits on the possible short time scale free precession of the pulsar are placed. The evidence of pulse time of arrival (TOA) variations on 1.5-2 hours time scale is presented, along with evidence of small light curve (shape and separation of main and secondary peaks) changes between data sets, on time scale of years. Also, the fine structure of the main pulse is studied.

  13. Emission spectra of YAG:Er3+ under pulse laser-thermal excitation

    Science.gov (United States)

    Marchenko, V. M.; Shakir, Yu. A.

    2016-12-01

    Spectra and kinetics of emission of YAG:0.5% Er3+ monocrystal in visible and NIR ranges were investigated under laser-thermal excitation by the pulses of CO2 laser of 100 ns duration at wavelength λ = 10,6 μμm. Kinetics of integral emission was interpreted.

  14. Kinematic study of the effect of dispersion in quantum vacuum emission from strong laser pulses

    CERN Document Server

    Finazzi, Stefano

    2012-01-01

    A strong light pulse propagating in a nonlinear medium causes an effective change in the local refractive index. With a suitable tuning of the pulse velocity, the leading and trailing edge of the pulse were predicted to behave as analogue black and white horizons in the limit of a dispersionless medium. In this paper, we study a more realistic situation where the frequency dispersion of the medium is fully taken into account. As soon as negative frequency modes are present in the comoving frame, spontaneous emission of quantum vacuum radiation is expected to arise independently of the presence of horizons. We finally investigate the kinematic constraints put on the emission and we show that the optimal directions to observe Hawking-like emission form a narrow angle with the direction of propagation of the pulse.

  15. Gravitationally lensed radio emission associated with SMM J16359+6612, a multiply imaged submillimeter galaxy behind A2218

    CERN Document Server

    Garrett, M A; Van der Werf, P P

    2005-01-01

    We report the detection of discrete, lensed radio emission from the multiply imaged, z=2.516 submillimetre selected galaxy, SMM J16359+6612. All three images are detected in deep WSRT 1.4 GHz and VLA 8.2 GHz observations, and the radio positions are coincident with previous sub-mm SCUBA observations of this system. This is the widest separation lens system to be detected in the radio so far, and the first time that multiply imaged lensed radio emission has been detected from a star forming galaxy -- all previous multiply-lensed radio systems being associated with radio-loud AGN. Taking into account the total magnification of ~45, the WSRT 1.4 GHz observations suggest a star formation rate of 500 Solar mass/yr. The source has a steep radio spectrum (alpha -0.7) and an intrinsic flux density of just 3 microJy at 8.2 GHz. Three other SCUBA sources in the field are also detected by the WSRT, including SMMJ16359+66118, a singly imaged (and magnified) arclet at z=1.034. Higher resolution radio observations of SMMJ1...

  16. Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR

    CERN Document Server

    Nelles, A; Buitink, S; Corstanje, A; de Vries, K D; Enriquez, J E; Falcke, H; Frieswijk, W; Hörandel, J R; Scholten, O; ter Veen, S; Thoudam, S; Akker, M van den; Anderson, J; Asgekar, A; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bregman, J; Breitling, F; Broderick, J; Brouw, W N; Brüggen, M; Butcher, H R; Ciardi, B; Deller, A; Duscha, S; Eislöffel, J; Fallows, R A; Garrett, M A; Gunst, A W; Hassall, T E; Heald, G; Horneffer, A; Iacobelli, M; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; Mevius, M; Norden, M J; Paas, H; Pandey-Pommier, M; Pietka, G; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D; Smirnov, O; Stapper, B W; Steinmetz, M; Stewart, A; Tagger, M; Tang, Y; Tasse, C; Vermeulen, R; Vocks, C; van Weeren, R J; Wijnholds, S J; Wucknitz, O; Yatawatta, S; Zarka, P

    2014-01-01

    Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ~100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110 - 190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.

  17. PULSED KGd(WO42 RAMAN LASER: TOWARDS EMISSION LINEWIDTH NARROWING

    Directory of Open Access Journals (Sweden)

    V. G. Savitski

    2015-01-01

    Full Text Available The linewidth of a KGd(WO42 pulsed Raman laser is analysed experimentally for different configurations of the Raman and pump resonators: with narrow and broadband pump emission profiles, with and without linewidth narrowing elements in the Raman laser resonator, with and without injection seeding into the Raman cavity. The benefits of a narrow linewidth pump source in combination with linewidth narrowing elements in the Raman laser cavity for the efficient linewidth narrowing of the Raman emission are explained. 20 kW peak-power pulses at 1156 nm with 0,43 cm -1 emission linewidth are demonstrated from an injection seeded KGW Raman laser. 

  18. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions

    Science.gov (United States)

    Ryabov, V. B.; Zarka, P.; Hess, S.; Konovalenko, A.; Litvinenko, G.; Zakharenko, V.; Shevchenko, V. A.; Cecconi, B.

    2014-08-01

    We present an analysis of several Jovian Io-related decametric radio storms recorded in 2004-2012 at the Ukrainian array UTR-2 using the new generation of baseband digital receivers. Continuous baseband sampling within sessions lasting for several hours enabled us to study the evolution of multiscale spectral patterns during the whole storm at varying time and frequency resolutions and trace the temporal transformation of burst structures in unprecedented detail. In addition to the well-known frequency drifting millisecond patterns known as S bursts we detected two other classes of events that often look like S bursts at low resolution but reveal a more complicated structure in high resolution dynamic spectra. The emissions of the first type (LS bursts, superposition of L and S type emissions) have a much lower frequency drift rate than the usual quasi linearly drifting S bursts (QS) and often occur within a frequency band where L emission is simultaneously present, suggesting that both LS and at least part of L emissions may come from the same source. The bursts of the second type (modulated S bursts called MS) are formed by a wideband frequency-modulated envelope that can mimic S bursts with very steep negative (or even positive) drift rates. Observed with insufficient time-frequency resolution, MS look like S bursts with complex shapes and varying drifts; MS patterns often occur in association with (i) narrowband emission; (ii) S burst trains; or (iii) sequences of fast drift shadow events. We propose a phenomenological description for various types of S emissions, that should include at least three components: high- and low-frequency limitation of the overall frequency band of the emission, fast frequency modulation of emission structures within this band, and emergence of elementary S burst substructures, that we call "forking" structures. All together, these three components can produce most of the observed spectral structures, including S bursts with

  19. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    CERN Document Server

    Scholten, O; Bonardi, A; Buitink, S; Correa, P; Corstanje, A; Hasankiadeh, Q Dorosti; Falcke, H; Hörandel, J R; Mitra, P; Mulrey, K; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Thoudam, S; ter Veen, S; de Vries, K D; Winchen, T

    2016-01-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.

  20. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    Science.gov (United States)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Dorosti Hasankiadeh, Q.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-11-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.

  1. Radio Emission from 3D Relativistic Hydrodynamic Jets Observational Evidence of Jet Stratification

    CERN Document Server

    Aloy, M A; Ibáñez, J M; Martí, J M; Müller, E; Aloy, Miguel-Angel; Gomez, Jose-Luis; Ibanez, Jose-Maria; Marti, Jose-Maria; Mueller, Ewald

    1999-01-01

    We present the first radio emission simulations from high resolution three dimensional relativistic hydrodynamic jets, which allow for a study of the observational implications of the interaction between the jet and external medium. This interaction gives rise to a stratification of the jet where a fast spine is surrounded by a slow high energy shear layer. The stratification, and in particular the large specific internal energy and slow flow in the shear layer largely determines the emission from the jet. If the magnetic field in the shear layer becomes helical (e.g., resulting from an initial toroidal field and an aligned field component generated by shear) the emission shows a cross section asymmetry, in which either the top or the bottom of the jet dominates the emission. This, as well as limb or spine brightening, is a function of the viewing angle and flow velocity, and the top/bottom jet emission predominance can be reversed if the jet changes direction with respect to the observer, or presents a chang...

  2. Searching for Hard X-Ray Emission from Radio-Loud Gamma-Ray Quiet Blazars

    Science.gov (United States)

    Wada, Katelyn R.; Macomb, Daryl J.

    2017-01-01

    While the Swift BAT AGN source catalog is dominated by radio-quiet Seyfert AGN, around 15% of the sample are radio galaxies or blazars (Ajello et al., 2009). There is an overlap of about 40 sources between the Fermi LAT and Swift BAT detected AGN populations, only a few percent of the Fermi total. These small numbers are presumably a result of selection bias as the SSC peak often falls squarely within the Fermi LAT bandpass while the Swift BAT sensitivity is highest in the spectral region straddling the synchrotron and SSC components.Recently however, a significant sample of bright (F 15GHz >1.5 Jy), radio selected AGN was found, surprisingly, to overlap with Fermi at only the ~80% level (Lister et. al., 2015). This could be a result of selection bias as well as the gamma-ray quiet objects of that survey having synchrotron peak frequencies of 10^13.4 Hz or less. On the other hand it could be due to deficient Doppler boosting among that ~20%. One can, in principle, test the former possibility by assessing emission from the low-energy wings of putative sub-GeV peaked SSC components. We describe our ongoing joint Swift BAT analysis project that attempts to address this possibility. Initial results, comparisons with INTEGRAL observations, and conclusions are presented.

  3. Observational Constraints on Radio Transient Emissions from Binary Neutron Star Mergers

    Science.gov (United States)

    Papadopoulos, Joanna; Dispoto, D.; Cardena, B.; Kavic, M.; Ellingson, S.; Simonetti, J.; Cutchin, S.; Patterson, C.

    2012-01-01

    The merger of a binary neutron star pair is expected to generate a strong transient radio signal. This emission will be strongest at low-frequency and will disperse as it transverses the interstellar medium arriving at Earth after coincidentally emitted gravitational or (higher frequency) electromagnetic signals. The rate of compact object merger events is poorly constrained by observations. The Eight-meter-wavelength Transient Array (ETA) telescope is a low-frequency radio telescope initially located at the Pisgah Astronomical Research Institute (PARI), which is sensitive to a frequency range of 29-47 MHz. It is being upgraded and relocated to western Virginia where it will continue to conduct low frequency observations. This instrument is an all-sky instrument designed to detect astronomical sources of radio transients. Using a series of observations taken during the ETA's first science run, we were able to constrain the rate of such merger events to <1.3 x 10-5 Mpc-3/yr.

  4. Powerful Radio Emission From Low-mass Supermassive Black Holes Favors Disk-like Bulges

    CERN Document Server

    Wang, J; Xu, D W; Wei, J Y

    2016-01-01

    The origin of spin of low-mass supermassive black hole (SMBH) is still a puzzle at present. We here report a study on the host galaxies of a sample of radio-selected nearby ($z<0.05$) Seyfert 2 galaxies with a BH mass of $10^{6-7} M_\\odot$. By modeling the SDSS $r$-band images of these galaxies through a 2-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profile, in which more powerful radio emission comes from a SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH-BH merger in the merger evolution.

  5. Non-thermal radio emission from O-type stars. I. HD 168112

    CERN Document Server

    Blomme, R; De Becker, M; Rauw, G; Runacres, M C; Gunawan, D Y A S; Chapman, J M

    2005-01-01

    We present a radio lightcurve of the O5.5 III(f+) star HD 168112, based on archive data from the Very Large Array (VLA) and the Australia Telescope Compact Array (ATCA). The fluxes show considerable variability and a negative spectral index, thereby confirming that HD 168112 is a non-thermal radio emitter. The non-thermal radio emission is believed to be due to synchrotron radiation from relativistic electrons that have been Fermi accelerated in shocks. For HD 168112, it is not known whether these shocks are due to a wind-wind collision in a binary system or to the intrinsic instability of the stellar wind driving mechanism. Assuming HD 168112 to be a single star, the Van Loo et al. (2005) synchrotron model shows that the velocity jump of the shocks should be very high, or there should be a very large number of shocks in the wind. Neither of these is compatible with time-dependent hydrodynamical calculations of O star winds. If, on the other hand, we assume that HD 168112 is a binary, the high velocity jump i...

  6. MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S. [University of California, Berkeley, Astronomy Department, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Tingay, S. J. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Murphy, T.; Rowlinson, A. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Bell, M. E. [CSIRO Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Adrián-Martínez, S.; Ardid, M. [Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC)—Universitat Politècnica de València. C/ Paranimf 1, E-46730 Gandia (Spain); Ageron, M.; Aubert, J.-J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, F-13288, Marseille (France); Albert, A. [GRPHE—Université de Haute Alsace—Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Avgitas, T.; Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris (France); Collaboration: for the MWA Collaboration; for the ANTARES Collaboration; for the TAROT Collaboration; for the ROTSE Collaboration; and others

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼10{sup 37} erg s{sup −1} for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  7. The angular power spectrum of radio emission at 2.3 GHz

    CERN Document Server

    Giardino, G; Fosalba, P; Górski, K M; Jonas, J L; O'Mullane, W; Tauber, J A

    2001-01-01

    We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scales

  8. Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3

    CERN Document Server

    Ballo, L; Barcons, X; Carrera, F J

    2012-01-01

    X-ray emission from AGN is dominated by the accretion disk around a SMBH. The radio luminosity, however, has not such a clear origin except in the most powerful sources where jets are evident. The origin (and even the very existence) of the local bi-modal distribution in radioloudness is also a debated issue. By analysing X-ray, optical and radio properties of a large sample of type 1 AGN up to z>2, where the bulk of this population resides, we aim to explore the interplay between radio and X-ray emission in AGN, in order to further our knowledge on the origin of radio emission, and its relation to accretion. We analyse a large (~800 sources) sample of type 1 AGN and QSOs selected from the 2XMMi X-ray source catalogue, cross-correlated with the SDSS DR7 spectroscopic catalogue, covering a redshift range from z~0.3 to z~2.3. SMBH masses are estimated from the Mg II emission line, bolometric luminosities from the X-ray data, and radio emission or upper limits from the FIRST catalogue. Most of the sources accret...

  9. Note: radio frequency inductance-capacitance band-stop filter circuit to perform contactless conductivity measurements in pulsed magnetic fields.

    Science.gov (United States)

    Altarawneh, M M

    2012-09-01

    We present a new technique to perform radio frequency (rf) contactless conductivity measurements in pulsed magnetic fields to probe different ground states in condensed matter physics. The new method utilizes a simple analog band-stop filter circuit implemented in a radio frequency transmission setup to perform contactless conductivity measurements. The new method is more sensitive than the other methods (e.g., the tunnel diode oscillator and the proximity detector oscillator) due to more sensitive dependence of the circuit resonance frequency on the tank circuit inductance (not the transmission line). More important, the new method is more robust than other methods when used to perform measurements in very high magnetic fields, works for a wide range of temperatures (i.e., 300 K-1.4 K) and is less sensitive to noise and mechanical vibrations during pulse magnet operation. The new technique was successfully applied to measure the Shubnikov-de Haas effect in Bi(2)Se(3) in pulsed magnetic fields of up to 60 T.

  10. The lateral distribution function of coherent radio emission from extensive air showers : Determining the chemical composition of cosmic rays

    NARCIS (Netherlands)

    de Vries, Krijn D.; van den Berg, Ad M.; Scholten, Olaf; Werner, Klaus

    2010-01-01

    The lateral distribution function (LDF) for coherent electromagnetic radiation from air showers initiated by ultra-high-energy cosmic rays is calculated using a macroscopic description. A new expression is derived to calculate the coherent radio pulse at small distances from the observer. It is show

  11. Optical emission studies of plasma induced by single and double femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pinon, V. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol, A Coruna (Spain); Anglos, D., E-mail: anglos@iesl.forth.g [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Chemistry, University of Crete, 71003 Heraklion, Crete (Greece)

    2009-10-15

    Double-pulse femtosecond laser ablation has been shown to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to single-pulse ablation particularly when an appropriate interpulse delay is selected, that is typically in the range of 50-1000 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy analysis of materials. A detailed comparative study of collinear double- over single-pulse femtosecond laser-induced breakdown spectroscopy has been carried out, based on measurements of emission lifetime, temperature and electronic density of plasmas, produced during laser ablation of brass with 450 fs laser pulses at 248 nm. The results obtained show a distinct increase of plasma temperature and electronic density as well as a longer decay time in the double-pulse case. The plasma temperature increase is in agreement with the observed dependence of the emission intensity enhancement on the upper energy level of the corresponding spectral line. Namely, intensity enhancement of emission lines originating from higher lying levels is more profound compared to that of lines arising from lower energy levels. Finally, a substantial decrease of the plasma threshold fluence was observed in the double-pulse arrangement; this enables sensitive analysis with minimal damage on the sample surface.

  12. Non-thermal emission from extragalactic radio sources a high resolution broad band (radio to X-rays) approach

    CERN Document Server

    Brunetti, G

    2002-01-01

    In the framework of the study of extragalactic radio sources, we will focus on the importance of the spatial resolution at different wavelengths, and of the combination of observations at different frequency bands. In particular, a substantial step forward in this field is now provided by the new generation X-ray telescopes which are able to image radio sources in between 0.1--10 keV with a spatial resolution comparable with that of the radio telescopes (VLA) and of the optical telescopes. After a brief description of some basic aspects of acceleration mechanisms and of the radiative processes at work in the extragalactic radio sources, we will focus on a number of recent radio, optical and X-ray observations with arcsec resolution, and discuss the deriving constraints on the physics of these sources.

  13. Searching for the inverse-Compton emission from bright cluster-centre radio galaxies

    CERN Document Server

    Hardcastle, M J

    2010-01-01

    We use deep archival Chandra and XMM-Newton observations of three of the brightest cluster-centre radio galaxies in the sky, Cygnus A, Hercules A and Hydra A, to search for inverse-Compton emission from the population of electrons responsible for the low-frequency radio emission. Using simulated observations, we derive robust estimates for the uncertainties on the normalization of an inverse-Compton component in the presence of the variations in background thermal temperature actually seen in our target objects. Using these, together with the pressures external to the lobes, we are able to place interesting upper limits on the fraction of the energy density in the lobes of Hydra A and Her A that can be provided by a population of relativistic electrons with standard properties, assuming that the magnetic field is not dominant; these limits are consistent with the long-standing idea that the energy density in these lobes is dominated by a non-radiating particle population. In Cygnus A, we find evidence in the ...

  14. Particle acceleration and radio emission for SGRs/AXPs as white dwarf pulsars

    Science.gov (United States)

    Lobato, R. V.; Coelho, Jaziel; Malheiro, M.

    2015-07-01

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [6][4], usually named as magnetars. In this model the magnetized white dwarfs can have surface magnetic field B ∼ 107 — 1010G and rotate very fast with frequencies ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron stars pulsars with strong magnetic fields. In our study we consider two possible processes associated with the particle acceleration: in one we have the pair production near to the star polar caps i.e., inside the light cylinder where magnetic-field lines are closed, on the other the creation of pair is in the Outer Magnetosphere i.e., far away of the star surface where magnetic field are open [1]. This analysis of the possibility of radio emission was done for all the 23 SGRs/AXPs of the McGill Online Magnetar Catalog [7] that contains the current information available on these sources. Our work is a first attempted to find an explanation for the puzzle why for all the SGRs/AXPs was expected radio emission, but it was observed in only four of them.

  15. High Frequency Cut-off and Changing of Radio Emission Mechanism in Pulsars

    CERN Document Server

    Kontorovich, V M

    2012-01-01

    Pulsars are the fast rotating neutron stars with strong magnetic field emitting over a wide frequency range. In spite of the efforts during 40 years after the discovery of pulsars, the mechanism of their radio emission remains to be unknown so far. We propose a new approach to solving this problem. The object of our study is a sample of pulsars with a high-frequency break of the spectrum from Pushchino catalogue. A theoretical explanation of the observed dependence of the high-frequency break from the pulsar period is given. The dependence of the break position from the magnetic field is predicted. This explanation is based on a new mechanism for electron emission in the inner polar gap. Radiation occurs when electrons are accelerated in the electric field rising from zero at the star surface. Acceleration passes through a maximum and tends to zero when the electron velocity approaches the velocity of light. The all radiated power is allocated to the radio band. The averaging over the polar cap, with some nat...

  16. Thermal radio emission from novae & symbiotics with the Square Kilometre Array

    CERN Document Server

    O'Brien, Tim; Chomiuk, Laura; Ribeiro, Valerio; Bode, Michael; Sokoloski, Jennifer; Woudt, Patrick

    2015-01-01

    The thermal radio emission of novae during outburst enables us to derive fundamental quantities such as the ejected mass, kinetic energy, and density profile of the ejecta. Recent observations with newly-upgraded facilities such as the VLA and e-MERLIN are just beginning to reveal the incredibly complex processes of mass ejection in novae (ejections appear to often proceed in multiple phases and over prolonged timescales). Symbiotic stars can also exhibit outbursts, which are sometimes accompanied by the expulsion of material in jets. However, unlike novae, the long-term thermal radio emission of symbiotics originates in the wind of the giant secondary star, which is irradiated by the hot white dwarf. The effect of the white dwarf on the giant's wind is strongly time variable, and the physical mechanism driving these variations remains a mystery (possibilities include accretion instabilities and time-variable nuclear burning on the white dwarf's surface). The exquisite sensitivity of SKA1 will enable us to su...

  17. The influence of circumnuclear environment on the radio emission from TDE jets

    CERN Document Server

    Generozov, A; Metzger, B D; Stone, N C; Giannios, D; Aloy, M A

    2016-01-01

    Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavorable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear medium which includes mass and energy input from a stellar population. Near the jet Sedov radius of 10$^{18}$ cm, we find gas densities in the range of $n_{18} \\sim$ 0.5$-$2000 cm$^{-3}$ across a wide range of plausible star formation histories. Using one- and two-dimensional relativistic hydrodynamical simulations, we calcula...

  18. Diffuse radio foregrounds: all-sky polarisation and anomalous microwave emission

    Science.gov (United States)

    Vidal Navarro, M. A.

    2014-07-01

    plane. We study the foreground contamination in a region of the sky. We also discuss some properties of the diffuse synchrotron emission observed on the Galactic plane by QUIET.Using interferometric observations at 31 GHz, we studied AME in the translucent cloud LDN 1780. Interferometric data at 31 GHz and different ancillary data were used. We study the connection between the radio emission and the interstellar dust present in the cloud. The spinning dust hypothesis for the origin of AME is tested and we conclude that it can explain the radio properties observed in this cloud.

  19. SiOx Ink-Repellent Layer Deposited by Radio Frequency(RF) Plasmas in Continuous Wave and Pulse Mode

    Institute of Scientific and Technical Information of China (English)

    CHEN Qiang; FU Ya-bo; PANG Hua; ZHANG Yue-fei; ZHANG Guang-qiu

    2007-01-01

    Low surface energy layers,proposed application for non-water printing in computer to plate (CTP) technology,are deposited in both continuous wave and pulse radio frequency (13.56 MHz) plasma with hexamethyldisiloxane (HMDSO) as precursor.It is found that the plasma mode dominates the polymer growth rate and the surface composition.Derived from the spectra of X-ray photoelectron spectroscopy (XPS) and combined with printable test it is concluded that concentration of Si in coatings plays an important role for the ink printability and the ink does not adhere on the surface with high silicon concentration.

  20. Constraints on photoevaporation models from (lack of) radio emission in the Corona Australis protoplanetary disks

    CERN Document Server

    Galván-Madrid, Roberto; Manara, Carlo Felice; Forbrich, Jan; Pascucci, Ilaria; Carrasco-González, Carlos; Goddi, Ciriaco; Hasegawa, Yasuhiro; Takami, Michihiro; Testi, Leonardo; .,

    2014-01-01

    Photoevaporation due to high-energy stellar photons is thought to be one of the main drivers of protoplanetary disk dispersal. The fully or partially ionized disk surface is expected to produce free-free continuum emission at centimeter (cm) wavelengths that can be routinely detected with interferometers such as the upgraded Very Large Array (VLA). We use deep (rms noise down to 8 $\\mu$Jy beam$^{-1}$ in the field of view center) 3.5 cm maps of the nearby (130 pc) Corona Australis (CrA) star formation (SF) region to constrain disk photoevaporation models. We find that the radio emission from disk sources in CrA is surprisingly faint. Only 3 out of 10 sources within the field of view are detected, with flux densities of order $10^2$ $\\mu$Jy. However, a significant fraction of their emission is non-thermal. Typical upper limits for non-detections are $3\\sigma\\sim 60~\\mu$Jy beam$^{-1}$. Assuming analytic expressions for the free-free emission from extreme-UV (EUV) irradiation, we derive stringent upper limits to ...

  1. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    Science.gov (United States)

    Daksha, M.; Berger, B.; Schuengel, E.; Korolov, I.; Derzsi, A.; Koepke, M.; Donkó, Z.; Schulze, J.

    2016-06-01

    A computationally assisted spectroscopic technique to measure secondary electron emission coefficients (γ-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of phase resolved optical emission spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient γ. This sensitvity, in turn, allows γ to be determined by comparing experimental excitation profiles and simulation data obtained with various γ-coefficients. The diagnostic, tested here in a geometrically symmetric argon discharge, yields an effective secondary electron emission coefficient of γ =0.066+/- 0.01 for stainless steel electrodes.

  2. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  3. Are the infrared-faint radio sources pulsars?

    CERN Document Server

    Keith, A D Cameron M J; Norris, R P; Mao, M Y; Middelberg, E

    2011-01-01

    Infrared-Faint Radio Sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50% duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  4. Effect of Duty Cycle on the Characteristics of Pulse-Modulhted Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    LI Xuechun; WANG Huan; DING Zhenfeng; WANG Younian

    2012-01-01

    Using a one-dimensional fluid model, the pulse-modulated radio-frequency dielectric barrier discharge in atmospheric helium is described. The influences of the pulse duty cycle on the discharge characteristics are studied. The numerical results show that the dependence of discharge characteristics on the duty cycle is sensitive in the region of around 40% duty cycle under the given simulation parameters. In the case of a larger duty cycle, the plasma density is higher, the discharge becomes more intense, but the power consumption is higher. When the duty cycle is lower, one can get a weaker discharge, lower plasma density and higher electron temperature in the bulk plasma. In practical applications, in order to get a higher plasma density and a lower power consumption, it is more important to choose a suitable duty cycle to modulate the RF power supply.

  5. LIGHT SOURCE: Terahertz emission in tenuous gases irradiated by ultrashort laser pulses

    Science.gov (United States)

    Wang, Wei-Min; Sheng, Zheng-Ming; Wit, Hui-Chun; Chen, Min; Li, Chun; Zhang, Jie; Mima, K.

    2009-06-01

    Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.

  6. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  7. Investigations of low amplitude radio frequency pulses at and awayfro m rotary resonance conditions for I = 5/2 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Logan, John W.; Urban, Jeffry T.; Walls, Jamie D.; Lim, KwangHun; Jerschow, Alexej; Pines, Alexander

    2002-04-15

    Additional experimental evidence of rotary resonance effects for multiple-quantum coherence conversion in a spin-5/2 system is presented. Two dimensional plots of the relative efficiency of MQ excitation and conversion are given as a function of radio frequency (rf) amplitude and pulse width. Data are presented for the excitation of five-quantum coherence (5QC), as well as for 5QC to three-quantum coherence (3QC) conversion, 5QC to 1QC (the central transition coherence) conversion, and 3QC to 1QC conversion. A two-fold increase in the signal-to-noise ratio is achieved by substituting low amplitude rf pulses in place of hard rf pulses for 5QC excitation and 5QC to 3QC conversion in a mixed multiple-quantum MAS (MMQMAS) experiment. The anisotropic line shape for the low amplitude rf pulse version of the MMQMAS experiment was observed to be distorted from the MAS line shape. The cause and implications of the distortion are discussed.

  8. An inverse Compton scattering (ICS) model of pulsar emission II. frequency behavior of pulse profiles

    CERN Document Server

    Qiao, G J; Zhang, B; Han, J L

    2001-01-01

    The shapes of pulse profiles, especially their variations with respect to observing frequencies, are very important to understand emission mechanisms of pulsars, while no previous attempt has been made in interpreting the complicated phenomenology. In this paper, we present theoretical simulations for the integrated pulse profiles and their frequency evolution within the framework of the inverse Compton scattering (ICS) model proposed by Qiao (1988) and Qiao & Lin (1998). Using the phase positions of the pulse components predicted by the ``beam-frequency figure'' of the ICS model, we present Gaussian fits to the multi-frequency pulse profiles for some pulsars. It is shown that the model can reproduce various types of the frequency evolution behaviors of pulse profiles observed.

  9. The Nuclear Region of Low Luminosity Flat Radio Spectrum Sources. II. Emission-Line Spectra

    CERN Document Server

    Gonçalves, A C

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marcha's et al. (1996) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. T...

  10. Disentangling the Nature of the Radio Emission in Wolf-Rayet Stars

    Science.gov (United States)

    Montes, Gabriela; Pérez-Torres, Miguel A.; Alberdi, Antonio; González, Ricardo F.

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  11. The non-thermal emission of extended radio galaxy lobes with curved electron spectra

    CERN Document Server

    Duffy, Peter

    2011-01-01

    The existing theoretical framework for the energies stored in the synchrotron-emitting lobes of radio galaxies and quasars doesn't properly account for the curved spectral shape that many of them exhibit. We characterise these spectra using parameters that are straightforwardly observable in the era of high-resolution, low-frequency radio astronomy: the spectral curvature and the turnover in the frequency spectrum. This characterisation gives the Lorentz factor at the turnover in the energy distribution (we point out that this is distinctly different from the Lorentz factor corresponding to the turnover frequency in a way that depends on the amount of curvature in the spectrum) and readily gives the equipartition magnetic field strength and the total energy of the radiating plasma obviating the need for any assumed values of the cutoff frequencies to calculate these important physical quantities. This framework readily yields the form of the X-ray emission due to inverse-Compton (IC) scattering of Cosmic Micr...

  12. Intranight Optical Variability of Radio-Quiet Weak Emission Line Quasars-IV

    CERN Document Server

    Kumar, Parveen; Gopal-Krishna,

    2016-01-01

    We report an extension of our program to search for radio-quiet BL Lac candidates using intra-night optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars' (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intra-night CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 hours. For each session, differential light curves (DLCs) of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of $\\sim 3\\%$ for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude $\\psi >$ 10\\%), hence blazar-like. We briefly point o...

  13. Intranight optical variability of radio-quiet weak emission line quasars - IV

    Science.gov (United States)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna

    2016-09-01

    We report an extension of our programme to search for radio-quiet BL Lac candidates using intranight optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars' (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intranight CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 h. For each session, differential light curves of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of ˜3 per cent for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude ψ > 10 per cent), hence blazar-like. We briefly point out the prospects of an appreciable rise in the estimated INOV duty cycle for RQWLQs with a relatively modest increase in sensitivity for monitoring these rather faint objects.

  14. HerMES: SPIRE/Sub-millimetre Emission from Radio Selected AGN

    CERN Document Server

    Seymour, N; Page, M

    2015-01-01

    We examine the rest-frame far-infrared emission from powerful radio sources with 1.4GHz luminosity densities of 25<=log(L_1.4/WHz^-1)<=26.5 in the extragalactic Spitzer First Look Survey field. We combine Herschel/SPIRE flux densities with Spitzer/IRAC and MIPS infrared data to obtain total (8-1000um) infrared luminosities for these radio sources. We separate our sources into a moderate, 0.4

  15. Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events

    CERN Document Server

    Croft, S; Tingay, S J; Murphy, T; Bell, M E; Rowlinson, A; Adrian-Martinez, S; Ageron, M; Albert, A; Andre, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Fusco, L A; Galata, S; Gay, P; Geisselsoder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Hossl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kiessling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefevre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martinez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldana, M; Samtleben, D F E; Sanchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schussler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, T; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Turpin, D; Tonnis, C; Vallage, B; Vallee, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zuniga, J; Klotz, A; Boer, M; Van Suu, A Le; Akerlof, C; Zheng, W

    2016-01-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic counterparts to two candidate high energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.4 degrees, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ~20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources consistent with the neutrino positions. No such counterparts are detected, and we set a 5 sigma upper limit for low-frequency radio emission of ~1E37 erg/s for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z > 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical...

  16. Disentangling the Nature of the Radio Emission in Wolf Rayet Stars

    CERN Document Server

    Montes, Gabriela; Alberdi, Antxon; Gonzalez, Ricardo F

    2008-01-01

    We present simultaneous, multi-frequency VLA observations at 4.8, 8.4, and 22.5 GHz, of a sample of 13 Wolf Rayet (WR) stars, aimed at disentangling the nature of their radio emission. We detected 12 of them, and derived spectral indices for 10 of the stars in the sample. Five of the stars in our sample were identified as non-thermal sources: three of them (WR 8, 98 and 133) were determined as such for the first time, and two of them (WR 79a and WR 105) confirmed. We also present upper limits for the mass loss rate of the WR stars detected in our sample, derived from their flux density at 8.4 GHz. We present and discuss the spectral index and flux density variability shown by the stars of our sample, which suggest that scenarios other than the "standard" stellar wind scenario (electron density ~ r^(-2), completely ionized, steady, spherically symmetric wind), might need to be invoked to explain the radio behavior displayed by some of the stars in our sample.

  17. Emission line outflows in PKS1549-79 the effects of the early stages of radio source evolution?

    CERN Document Server

    Tadhunter, C N; Morganti, R; Oosterloo, T A; Dickson, R

    2001-01-01

    We present new spectroscopic observations of the southern radio galaxy PKS1549-79 (z =0.152).Despite the flat spectrum character of the radio emission from this source, our optical spectra show no sign of the broad permitted lines and non-stellar continuum characteristic of quasar nuclei and broad line radio galaxies. However, the high ionization forbidden lines, including [OIII]5007,4959, are unusually broad for a narrow line radio galaxy (FWHM 1350 km/s), and are blueshifted by 600 km/s relative to the low ionization lines such as[OII]3726,3729. The [OII] lines are also considerably narrower (FWHM 650 km/s) than the [OIII] lines, and have a redshift consistent with that of the recently-detected HI 21cm absorption line system. Whereas the kinematics of the [OIII] emission lines are consistent with outflow in an inner narrow line region, the properties of the [OII] emission lines suggest that they are emitted by a more extended and quiescent gaseous component. We argue that, given the radio properties of the ...

  18. Stochastic reacceleration of relativistic electrons by turbulent reconnection: a mechanism for cluster-scale radio emission ?

    CERN Document Server

    Brunetti, G

    2016-01-01

    In this paper we investigate a situation where relativistic particles are reaccelerated diffusing across regions of reconnection and magnetic dynamo in super-Alfvenic, incompressible large-scale turbulence. We present an exploratory study of this mechanism in the intra-cluster-medium (ICM). In view of large-scale turbulence in the ICM we adopt a reconnection scheme that is based on turbulent reconnection and MHD turbulence. In this case particles are accelerated and decelerated in a systematic way in reconnecting and magnetic-dynamo regions, respectively, and on longer time-scales undergo a stochastic process diffusing across these sites (similar to second-order Fermi). Our study extends on larger scales numerical studies that focused on the acceleration in and around turbulent reconnecting regions. We suggest that this mechanism may play a role in the reacceleration of relativistic electrons in galaxy clusters providing a new physical scenario to explain the origin of cluster-scale diffuse radio emission. In...

  19. Galactic synchrotron emission and the FIR-radio correlation at high redshift

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2016-01-01

    Galactic magnetic fields in the local Universe are strong and omnipresent. Now evidence accumulates that galaxies were magnetized already in the early Universe. Theoretical scenarios including the turbulent small-scale dynamo predict magnetic energy densities comparable to the one of turbulence. Based on the assumption of this energy equipartition, we determine the galactic synchrotron flux as a function of redshift. The conditions in the early Universe are different from the present day, in particular the galaxies have more intense star formation. To cover a large range of conditions we consider models based on two different types of galaxies: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. Turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infr...

  20. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  1. Seasonal variations of Saturn's auroral acceleration region deduced from spectra of auroral radio emissions

    Science.gov (United States)

    Kimura, T.; Lamy, L.; Tao, C.; Badman, S. V.; Cecconi, B.; Zarka, P.; Morioka, A.; Miyoshi, Y.; Kasaba, Y.; Maruno, D.; Fujimoto, M.

    2012-09-01

    Multi-instrumental surveys of Saturn's magnetosphere by Cassini have indicated that auroral radio emissions (Saturnian Kilometric Radiation, SKR), aurorae at UV and IR wavelengths and Energetic Neutral Atoms (ENA) from the inner magnetosphere exhibit periodic behavior at around Saturn's rotational period with the north-south asymmetry and seasonal variations [e.g., Gurnett et al., 2010; Mitchell et al., 2009; Nichols et al., 2010]. These rotationally periodic phenomena are suggestive of distinct magnetosphere-ionosphere coupling current systems, rotating at different periods in the northern and southern hemispheres [e.g., Andrews et al., 2010]. These phenomena suggest that the magnetosphere-ionosphere coupling process and associated energy dissipation process (aurora & SKR) are dynamically dependent on both magnetospheric rotations and long-term conditions of the magnetosphere/ionosphere.

  2. A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs

    CERN Document Server

    Burningham, Ben; Nichols, J D; Casewell, S L; Littlefair, S P; Stark, C; Burleigh, M R; Metchev, S; Tannock, M E; van Weeren, R J; Williams, W L; Wynn, G A

    2016-01-01

    We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5+093347, WISEPC J150649.97+702736.0, and WISEPA J174124.26+255319.5. We have placed robust 3-sigma upper limits on the flux density in the 111 - 169 MHz frequency range for these targets: WISE 1506: < 0.72 mJy; WISE 1741: < 0.87 mJy; SIMP 0136: < 0.66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources.

  3. Radio emission from RS CVn binaries. II. Polarization and spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Mutel, R.L.; Morris, D.H.; Doiron, D.J.; Lestrade, J.F.

    1987-05-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields. 35 references.

  4. Low frequency observations of transient quasi-periodic radio emission from the solar atmosphere

    CERN Document Server

    Raja, K Sasikumar

    2016-01-01

    We report low frequency observations of the quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was $\\approx$ 5.2 s and their average degree of circular polarization ($dcp$) was $\\approx 0.12$. We calculated the associated magnetic field $B$ : (1) using the empirical relationship between the $dcp$ and $B$ for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in $B \\approx$ 4.2 G at the location of the 80 MHz plasma level (radial distance $r \\approx 1.3~\\rm R_{\\odot}$) in the active region corona.

  5. Pulsed laser deposition of graphite in air and in vacuum for field emission studies

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Harshada; Singh, A.K.; Sinha, Sucharita, E-mail: ssinha@barc.gov.in

    2015-07-15

    A comparative study of pulsed laser deposition (PLD) based carbon films when deposited either, in atmospheric air, or under vacuum, has been performed. Micro-structural characterization of deposited films was carried out employing X-ray diffraction and Raman spectroscopic techniques. While, nanocrystalline graphite phase was observed in carbon films deposited in air, PLD films deposited under vacuum were largely amorphous in nature. Field emission (FE) properties of films deposited in air and under vacuum were investigated. Superior FE behavior characterized by a lower turn-on field (2.72 V/μm) and high field enhancement factor (∼2580) was observed for PLD films deposited in air. This improved field emission demonstrated by carbon films deposited via PLD in air can be attributed to presence of nanocrystalline graphite aggregates in such carbon films and local field enhancement near the sp{sup 2} sites. Our results therefore, establish PLD in air as a simple technique for deposition of carbon films having good field emission capability. - Highlights: • Pulsed laser deposition of graphite films, deposited in air and in vacuum. • Micro-structural, X-ray diffraction and micro-Raman spectroscopic characterization of deposited films. • Field emission properties of deposited films investigated. • Superior field emission behavior observed for films deposited in air than in vacuum. • Pulsed laser deposition in air leads to carbon films with excellent field emission capability.

  6. PERCEPTION LEVEL EVALUATION OF RADIO ELECTRONIC MEANS TO A PULSE OF ELECTROMAGNETIC RADIATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The method for evaluating the perception level of electronic means to pulsed electromagnetic radiation is consid- ered in this article. The electromagnetic wave penetration mechanism towards the elements of electronic systems and the impact on them are determined by the intensity of the radiation field on the elements of electronic systems. The impact of electromagnetic radiation pulses to the electronic systems refers to physical and analytical parameters of the relationship between exposure to pulses of electromagnetic radiation and the sample parameters of electronic systems. A physical and mathematical model of evaluating the perception level of electronic means to pulsed electromagnetic radiation is given. The developed model was based on the physics of electronics means failure which represents the description of electro- magnetic, electric and thermal processes that lead to the degradation of the original structure of the apparatus elements. The conditions that lead to the total equation electronic systems functional destruction when exposed to electromagnetic radia- tion pulses are described. The internal characteristics of the component elements that respond to the damaging effects are considered. The ratio for the power failure is determined. A thermal breakdown temperature versus pulse duration of expo- sure at various power levels is obtained. The way of evaluation the reliability of electronic systems when exposed to pulses of electromagnetic radiation as a destructive factor is obtained.

  7. Initial Results from a Search for Lunar Radio Emission from Interactions of $\\geq 10^{19}$ eV Neutrinos and Cosmic Rays

    CERN Document Server

    Gorham, P W; Naudet, C J

    1999-01-01

    Using the NASA Goldstone 70m antenna DSS 14 both singly and in coincidence with the 34 m antenna DSS 13 (21.7 km to the southeast), we have acquired approximately 12 hrs of livetime in a search for predicted pulsed radio emission from extremely-high energy cascades induced by neutrinos or cosmic rays in the lunar regolith. In about 4 hrs of single antenna observations, we reduced our sensitivity to impulsive terrestrial interference to a negligible level by use of a veto afforded by the unique capability of DSS 14. In the 8 hrs of dual-antenna observations, terrestrial interference is eliminated as a background. In both observing modes the thermal noise floor limits the sensitivity. We detected no events above statistical background. We report here initial limits based on these data which begin to constrain several predictions of the flux of EHE neutrinos.

  8. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    CERN Document Server

    ,

    2016-01-01

    We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about ~ 2 - 3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus ...

  9. Chandra measurements of non-thermal X-ray emission from massive, merging, radio-halo clusters

    CERN Document Server

    Million, E T

    2008-01-01

    We report the discovery of spatially-extended, non-thermal or hot, quasi-thermal emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio halos: Abell 665, 2163, 2255, 2319, and 1E0657-56. The emission components can be fitted by power-law models with mean photon indices in the range 1.4 20 keV. A control sample of regular, dynamically relaxed clusters without radio halos but with comparable thermal temperatures and luminosities shows no evidence for similar components in their Chandra spectra. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. We report the discovery of a clear, large-scale shock front in Abell 2219. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power law X-ray emission, highest thermal pressure, and brightest 1.34GHz radio halo emission in this cluster. The integrated flux and mean spectral index of the...

  10. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of contro

  11. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of contro

  12. Measuring the pulse of GRB 090618: A Simultaneous Spectral and Timing Analysis of the Prompt Emission

    CERN Document Server

    RupalBasak,

    2011-01-01

    We develop a new method for simultaneous timing and spectral studies of Gamma Ray Burst (GRB) prompt emission and apply it to make a pulse-wise description of the prompt emission of GRB 090618, the brightest GRB detected in the Fermi era. We exploit the large area (and sensitivity) of Swift/BAT and the wide band width of Fermi/GBM to derive the parameters for a complete spectral and timing description of the individual pulses of this GRB, based on the various empirical relations suggested in the literature. We demonstrate that this empirical model correctly describes the other observed properties of the burst like the variation of the lag with energy and the pulse width with energy. The measurements also show an indication of an increase in pulse width as a function of energy at low energies for some of the pulses, which is naturally explained as an off-shoot of some particular combination of the model parameters. We argue that these model parameters, particularly the peak energy at the beginning of the pulse...

  13. Remote creation of strong and coherent emissions in air with two-color ultrafast laser pulses

    CERN Document Server

    Yao, Jinping; Jing, Chenrui; Zeng, Bin; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xie, Hongqiang; Zhang, Chaojin; Li, Helong; Xu, Huailiang; Chin, See Leang; Cheng, Ya; Xu, Zhizhan

    2012-01-01

    We experimentally demonstrate generation of strong narrow-bandwidth emissions with excellent coherent properties at ~391 nm and ~428 nm from molecular ions of nitrogen inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 nm and 428 nm are measured to be ~2.4 ps and ~7.8 ps respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an "instantaneous" population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.

  14. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  15. RadioAstron space VLBI imaging of polarized radio emission in the high-redshift quasar 0642+449 at 1.6 GHz

    CERN Document Server

    Lobanov, A P; Bruni, G; Kovalev, Y Y; Anderson, J; Bach, U; Kraus, A; Zensus, J A; Lisakov, M M; Sokolovsky, K V; Voytsik, P A

    2015-01-01

    Polarization of radio emission in extragalactic jets at a sub-milliarcsecond angular resolution holds important clues for understanding the structure of the magnetic field in the inner regions of the jets and in close vicinity of the supermassive black holes in the centers of active galaxies. Space VLBI observations provide a unique tool for polarimetric imaging at a sub-milliarcsecond angular resolution and studying the properties of magnetic field in active galactic nuclei on scales of less than 10^4 gravitational radii. A space VLBI observation of high-redshift quasar TXS 0642+449 (OH 471), made at a wavelength of 18 cm (frequency of 1.6 GHz) as part of the Early Science Programme (ESP) of the RadioAstron} mission, is used here to test the polarimetric performance of the orbiting Space Radio Telescope (SRT) employed by the mission, to establish a methodology for making full Stokes polarimetry with space VLBI at 1.6 GHz, and to study the polarized emission in the target object on sub-milliarcsecond scales. ...

  16. X-ray and radio emission from Type In supernova SN 2010jl

    CERN Document Server

    Chandra, Poonam; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M

    2015-01-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR and Swift-XRT. The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for \\chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day $\\sim 300$. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with t...

  17. An Improved Model of Diffuse Galactic Radio Emission from 10 MHz to 5 THz

    Science.gov (United States)

    Zheng, H.; Tegmark, M.; Dillon, J. S.; Kim, D. A.; Liu, A.; Neben, A. R.; Jonas, J.; Reich, P.; Reich, W.

    2016-10-01

    We present an improved Global Sky Model (GSM) of diffuse Galactic radio emission from 10 MHz to 5 THz, whose uses include foreground modeling for CMB and 21 cm cosmology. Our model improves on past work both algorithmically and by adding new data sets such as the Planck maps and the enhanced Haslam map. Our method generalises the Principal Component Analysis approach to handle non-overlapping regions, enabling the inclusion of 29 sky maps with no region of the sky common to all. We also perform a blind separation of our GSM into physical components with a method that makes no assumptions about physical emission mechanisms (synchrotron, free-free, dust, etc). Remarkably, this blind method automatically finds five components that have previously only been found "by hand", which we identify with synchrotron, free-free, cold dust, warm dust, and the CMB anisotropy. Computing the cross-power spectrum between these blindly extracted components and Planck component maps, we find a strong correlation at all angular scales. The improved GSM is available online at http://github.com/jeffzhen/gsm2016.

  18. The Emission Nebula Sh 2-174: A Radio Investigation of the Surrounding Region

    CERN Document Server

    Ransom, R R; Geisbuesch, J; Reich, W; Landecker, T L

    2014-01-01

    Sh 2-174 is believed to be either a planetary nebula (PN) or ionized, ambient interstellar medium (ISM). We present in this paper 1420 MHz polarization, 1420 MHz total intensity (Stokes-I), and neutral hydrogen (HI) images of the region around Sh 2-174. The radio images address not only the nature of the object, but also the history of the relationship between Sh 2-174 and its surrounding environment. The HI images show that Sh 2-174 sits presently at the center of a 1.2 deg x 0.4 deg cloud. The Stokes-I image shows thermal emission peaks coincident with the R-band optical nebula, as well as low-surface-brightness emission from an ionized "halo" around Sh 2-174 and from an ionized "plateau" extending southeast from the cloud. The polarization images reveal Faraday-rotation structures along the projected trajectory of Sh 2-174, including a high-contrast structure with "arms" that run precisely along the eastern edge of the HI cloud and a wide central region which merges with the downstream edge of Sh 2-174. Th...

  19. An Improved Model of Diffuse Galactic Radio Emission from 10 MHz to 5 THz

    CERN Document Server

    Zheng, H; Dillon, J; Liu, A; Neben, A; Jonas, J; Reich, P; Reich, W

    2016-01-01

    We present an improved Global Sky Model (GSM) of diffuse galactic radio emission from 10 MHz to 5 THz, whose uses include foreground modeling for CMB and 21 cm cosmology. Our model improves on past work both algorithmically and by adding new data sets such as the Planck maps and the enhanced Haslam map. Our method generalizes the Principal Component Analysis approach to handle non-overlapping regions, enabling the inclusion of 29 sky maps with no region of the sky common to all. We also perform a blind separation of our GSM into physical components with a method that makes no assumptions about physical emission mechanisms (synchrotron, free-free, dust, etc). Remarkably, this blind method automatically finds five components that have previously only been found "by hand", which we identify with synchrotron, free-free, cold dust, warm dust, and the CMB anisotropy, with maps and spectra agreeing with previous work but in many cases with smaller error bars. The improved GSM is available online at github.com/jeffzh...

  20. An improved model of diffuse galactic radio emission from 10 MHz to 5 THz

    Science.gov (United States)

    Zheng, H.; Tegmark, M.; Dillon, J. S.; Kim, D. A.; Liu, A.; Neben, A. R.; Jonas, J.; Reich, P.; Reich, W.

    2017-01-01

    We present an improved Global Sky Model (GSM) of diffuse Galactic radio emission from 10 MHz to 5 THz, whose uses include foreground modelling for cosmic microwave background (CMB) and 21 cm cosmology. Our model improves on past work both algorithmically and by adding new data sets such as the Planck maps and the enhanced Haslam map. Our method generalizes the principal component analysis approach to handle non-overlapping regions, enabling the inclusion of 29 sky maps with no region of the sky common to all. We also perform a blind separation of our GSM into physical components with a method that makes no assumptions about physical emission mechanisms (synchrotron, free-free, dust, etc). Remarkably, this blind method automatically finds five components that have previously only been found `by hand', which we identify with synchrotron, free-free, cold dust, warm dust, and the CMB anisotropy. Computing the cross-power spectrum between these blindly extracted components and Planck component maps, we find a strong correlation at all angular scales. The improved GSM is available online at http://github.com/jeffzhen/gsm2016.

  1. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    Science.gov (United States)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-05-01

    Multi-epoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries (mainly of the RS CVn class) are reported. The median luminosity of four well-studied systems ranged from 16.2 ≤ log(LR) ≤ 17.1 erg s-1Hz-1. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies f ≥ 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with non-eclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. These spectral and polarization characteristics, combined with direct measurements of the brightness temperature using previously published VLBI observations, strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields. The source emission region is probably cospatial with the large coronal loops deduced from X-ray observations.

  2. Diffuse x-ray emission around high-redshift, radio-loud QSOs

    CERN Document Server

    Bartelmann, M; Matthias Bartelmann; Peter Schneider

    1994-01-01

    We announce the detection of correlations on angular scales of \\ga10' between optically bright, high-redshift, radio-loud QSOs with diffuse X-ray emission seen by ROSAT in the {\\it All-Sky Survey}. These correlations reach significance levels of up to 99.8\\%. A comparison of the results with a sample of control fields, bootstrapping analyses, and Kolmogorov-Smirnov tests provide unambiguous support for the statistical significance of the correlations found. We argue that the detected enhanced diffuse X-ray emission is in the foreground of the QSOs, and that it is probably due to galaxy clusters which magnify the QSOs by their gravitational lensing effect, thereby giving rise to a magnification bias in the background source sample. A comparison of the results presented below with correlations previously found between the same QSO sample and either Lick or IRAS galaxies provides further evidence for this interpretation, and identifies positions in the sky where weak gravitational lensing may be detected by sear...

  3. Electron emission properties of gated silicon field emitter arrays driven by laser pulses

    Science.gov (United States)

    Shimawaki, Hidetaka; Nagao, Masayoshi; Neo, Yoichiro; Mimura, Hidenori; Wakaya, Fujio; Takai, Mikio

    2016-10-01

    We report optically modulated electron emission from gated p-type silicon field emitter arrays (Si-FEAs). The device's "volcano" structure is designed to control the photoexcitation of electrons by transmitting light through the small gate aperture, thereby minimizing the photogeneration of slow diffusion carriers outside the depletion region in the tip. Compared to that in the dark, the emission current was enhanced by more than three orders of magnitude in the high field region when irradiated with blue laser pulses. Results from the time-resolved measurements of photoassisted electron emission showed that these possess the same response as the laser pulse with no discernible delay. These results indicate that the volcano device structure is effective at eliminating the generation of diffusion carriers and that a fully optimized FEA is promising as a photocathode for producing high-speed modulated electron beams.

  4. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed

  5. Star formation in high-redshift quasars: excess [O II] emission in the radio-loud population

    CERN Document Server

    Kalfountzou, E; Bonfield, D G; Hardcastle, M J

    2012-01-01

    We investigate the [O II] emission line properties of 18,508 quasars at z38.6, tend to have the same level of [O II] emission. On the other hand, at lower optical luminosities \\log(L_opt/W)<38.6, there is a clear [O II] emission excess for the RLQs. As an additional check of our results we use the [O III] emission line as a tracer of the bolometric accretion luminosity, instead of the i'-band absolute magnitude, and we obtain similar results. Radio jets appear to be the main reason for the [O II] emission excess in the case of RLQs. In contrast, we suggest AGN feedback ensures that the two populations acquire the same [O II] emission at higher optical luminosities.

  6. The 1.6 micron near infrared nuclei of 3C radio galaxies: Jets, thermal emission or scattered light?

    CERN Document Server

    Baldi, R D; Capetti, A; Sparks, W; Macchetto, F D; O'Dea, C P; Axon, D J; Baum, S A; Quillen, A C

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6-micron near infrared nuclear luminosities of 100 3CR radio galaxies with z<0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multi-wavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FRI and FRII, and LIG (low-ionization galaxies), HIG (high-ionization galaxies) and BLO (broad-lined objects) using the radio morphology and optical spectra, respectively. The correlations among near infrared, optical, and radio nuclear luminosity support the idea that the near infrared nuclear emission of FRIs has a non-thermal origin. Despite the difference in radio morphology, the multi-wavelength properties of FRII LIG nuclei are statistically indistinguishable from those of FRIs, an indication of a common structure of the central engine. All BLOs show an unresolved near infrared nucleus and a large near infrared excess with respect to FRI...

  7. Detection of radio emission from the gamma-ray pulsar J1732-3131 at 327 MHz

    Science.gov (United States)

    Maan, Yogesh; Krishnakumar, M. A.; Naidu, Arun K.; Roy, Subhashis; Joshi, Bhal Chandra; Kerr, Matthew; Manoharan, P. K.

    2017-10-01

    Although originally discovered as a radio-quiet gamma-ray pulsar, J1732-3131 has exhibited intriguing detections at decameter wavelengths. We report an extensive follow-up of the pulsar at 327 MHz with the Ooty radio telescope. Using the previously observed radio characteristics, and with an effective integration time of 60 h, we present a detection of the pulsar at a confidence level of 99.82 per cent. The 327 MHz mean flux density is estimated to be 0.5-0.8 mJy, which establishes the pulsar to be a steep spectrum source and one of the least luminous pulsars known to date. We also phase-aligned the radio and gamma-ray profiles of the pulsar, and measured the phase-offset between the main peaks in the two profiles to be 0.24 ± 0.06. We discuss the observed phase-offset in the context of various trends exhibited by the radio-loud gamma-ray pulsar population, and suggest that the gamma-ray emission from J1732-3131 is best explained by outer magnetosphere models. Details of our analysis leading to the pulsar detection, and measurements of various parameters and their implications relevant to the pulsar's emission mechanism are presented.

  8. Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

    Science.gov (United States)

    Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.

    2017-09-01

    We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

  9. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    CERN Document Server

    Neilsen, Joseph; Fender, Rob; Lee, Julia C; Ponti, Gabriele; Tzioumis, Tasso; Edwards, Phil; Broderick, Jess W

    2014-01-01

    Recently, Diaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra High-Energy Transmission Grating Spectrometer. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite $\\sim5\\times$ brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is $\\gtrsim20\\times$ weaker than the line observed by Diaz Trigo et al. We explore several scenarios that could explain our di...

  10. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    Science.gov (United States)

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-08

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  11. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    Science.gov (United States)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  12. A low-power high-speed ultra-wideband pulse radio transmission system.

    Science.gov (United States)

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  13. Detection of Dispersed Radio Pulses: A machine learning approach to candidate identification and classification

    CERN Document Server

    Devine, Thomas; McLaughlin, Maura

    2016-01-01

    Searching for extraterrestrial, transient signals in astronomical data sets is an active area of current research. However, machine learning techniques are lacking in the literature concerning single-pulse detection. This paper presents a new, two-stage approach for identifying and classifying dispersed pulse groups (DPGs) in single-pulse search output. The first stage identified DPGs and extracted features to characterize them using a new peak identification algorithm which tracks sloping tendencies around local maxima in plots of signal-to-noise ratio vs. dispersion measure. The second stage used supervised machine learning to classify DPGs. We created four benchmark data sets: one unbalanced and three balanced versions using three different imbalance treatments.We empirically evaluated 48 classifiers by training and testing binary and multiclass versions of six machine learning algorithms on each of the four benchmark versions. While each classifier had advantages and disadvantages, all classifiers with im...

  14. High-power radio-frequency binary pulse-compression experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, T.L.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Spalek, G.; Wilson, P.B.

    1991-05-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at power levels up to 25-MW input (from an X-Band klystron) and up to 120-MW output (compressed to 60 nsec). Peak power gains greater than 5.2 have been measured. 5 refs., 6 figs., 5 tabs.

  15. Properties of La and Nb-modified PZT thin films grown by radio frequency assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Verardi, P. [CNR-Istituto di Acustica, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Craciun, F. [CNR-Istituto dei Sistemi Complessi, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Dinescu, M. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania)]. E-mail: dinescum@ifin.nipne.ro; Scarisoreanu, N. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Moldovan, A. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Purice, A. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Galassi, C. [CNR-ISTEC, Via Granarolo 64, I 48018 Faenza (Italy)

    2005-04-25

    Lead zirconate titanate ferroelectric thin films added with La and Nb has been grown by radio frequency assisted pulsed laser deposition on Pt/Si, starting from sintered targets. The dielectric properties were measured in a large frequency range and their dependence on the a.c. driving field amplitude has been investigated. A linear decreasing of the dielectric permittivity with frequency logarithm increasing has been evidenced. The most important factor for the driving field amplitude influence on the dielectric properties is the type of vacancies introduced by La and Nb substitutions, which indicates that the dynamics involved in a.c. field behavior is controlled by interaction mechanisms between ferroelectric domain or nanodomain walls and pinning (vacancies) centers.

  16. Room temperature radio-frequency plasma-enhanced pulsed laser deposition of ZnO thin films

    Science.gov (United States)

    Huang, S.-H.; Chou, Y.-C.; Chou, C.-M.; Hsiao, V. K. S.

    2013-02-01

    In this study, we compared the crystalline structures, optical properties, and surface morphologies of ZnO thin films deposited on silicon and glass substrates by conventional pulsed laser deposition (PLD) and radio-frequency (RF) plasma-enhanced PLD (RF-PEPLD). The depositions were performed at room temperature under 30-100 mTorr pressure conditions. The RF-PEPLD process was found to have deposited a ZnO structure with preferred (0 0 2) c-axis orientation at a higher deposition rate; however, the RF-PEPLD process generated more defects in the thin films. The application of oxygen pressure to the RF-PEPLD process reduced defects effectively and also increased the deposition rate.

  17. One-Dimensional Fluid Model of Pulse Modulated Radio-Frequency SiH4/N2/O2 Discharge

    Institute of Scientific and Technical Information of China (English)

    王燕; 刘相梅; 宋远红; 王友年

    2012-01-01

    Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions, neutrals, radicals and excited species) are involved in this simulation. Time evolution of the particle densities and electron temperature with different duty cycles are obtained, as well as the electronegativity nsiH-3 /ne of the main negative ion (Sill3 ). The results show that, by reducing the duty cycle, higher electron temperature and particle density can be achieved for the same average dissipated power, and the ion energy can also be effectively reduced, which will offer evident improvement in plasma deposition processes compared with the case of continuous wave discharge.

  18. Recording sub-picosecond pulses in emission from neodymium dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Brekhov, O.M.; Lebedev, V.B.; Luzanov, V.B.; Maranichenko, N.I.; Prokhorenko, V.I.; Stepanov, B.M.; Tikhonov, E.A.

    1981-01-01

    Using the ''Agent-04M'' experimental optico -electronic camera, the sub-picosecond fluctuation structure at the output of a neodymium laser is recorded. The laser consists of a master oscillator whose non-dispersive resonator uses a tray containing 3274-M dye for passive mode locking, a system for isolating a single 8 to 25 picosecond pulse from the pulse train, and a five-stage amplifier with an output power of 1 gigawatt. The minimum duration of the substructure pulses, detected by the camera wtih a contrast of greater than or equal to 40%, does not exceed .3 picoseconds. The total width of the emission spectrum at the output of this amplifier is 9 nanometers, which in the hypothesis on the Gaussian shape of the pulses corresponds to their minimum duration of 2 picoseconds. The emission from the power amplifier is used to pump a superfluorescence 6zh rhodamine dye laser. Here the pulse duration is measured using both a camera and an autocorrelation method.

  19. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  20. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.