WorldWideScience

Sample records for pulse sequence design

  1. Design of control sequence of pulses for the population transfer of high dimensional spin 1/2 quantum systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On the basis of the relationship between the Hamiltonian of spin 1/2 quantum system under control and the energy level structure and transitions, a radio frequency pulse sequence is designed using intuitive and half counter-intuitive sequences of pulse to transfer the population of the 3-qubit system coherently. The effectiveness of the designed control sequence is verified through the system simulation experiment of the evolution of state. In principle, the design method of the control pulse sequence proposed can be generalized to use in the quantum systems of higher dimension.

  2. MRI pulse sequence design with first-order gradient moment nulling in arbitrary directions by solving a polynomial program.

    Science.gov (United States)

    Majewski, Kurt; Heid, Oliver; Kluge, Thomas

    2010-06-01

    We suggest a polynomial program for the calculation of optimized gradient waveforms for magnetic resonance tomography pulse sequences. Such non-linear mathematical programs can describe gradient system capabilities, meet k-space trajectory specifications, and capture sequence timing conditions. Moreover they allow the incorporation of gradient moment nulling constraints in one or several arbitrary spatial directions, which can reduce flow motion artifacts in the images. We report first experiences in solving such automatic pulse sequence design programs with the interior point solver Ipopt.

  3. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  4. A smoothing monotonic convergent optimal control algorithm for NMR pulse sequence design

    CERN Document Server

    Maximov, Ivan I; Salomon, Julien; Turinici, Gabriel

    2010-01-01

    The past decade has demonstrated increasing interests in using optimal control based methods within coherent quantum controllable systems. The versatility of such methods has been demonstrated with particular elegance within nuclear magnetic resonance (NMR) where natural separation between coherent and dissipative spin dynamics processes has enabled coherent quantum control over long periods of time to shape the experiment to almost ideal adoption to the spin system and external manipulations. This has led to new design principles as well as powerful new experimental methods within magnetic resonance imaging, liquid-state and solid-state NMR spectroscopy. For this development to continue and expand, it is crucially important to constantly improve the underlying numerical algorithms to provide numerical solutions which are optimally compatible with implementation on current instrumentation and at same time are numerically stable and offer fast monotonic convergence towards the target. Addressing such aims, we ...

  5. A Pulsed Spectrometer Designed for Feedback NQR

    Science.gov (United States)

    Schiano, J. L.; Ginsberg, M. D.

    2000-02-01

    A pulsed NQR spectrometer specifically designed to facilitate real-time tuning of pulse sequence parameters is described. A modular approach based on the interconnection of several rack-mounted blocks provides easy access to all spectrometer signals and simplifies the task of modifying the spectrometer design. We also present experimental data that demonstrates the ability of the spectrometer to increase the signal to noise ratio of NQR measurements by automatically adjusting the pulse width in the strong off-resonant comb pulse sequence.

  6. High order coherent control sequences of fat pulses

    CERN Document Server

    Pasini, S; Uhrig, G S

    2010-01-01

    We analyze the performance of sequences of fat pulses of various lengths and shapes for dynamic decoupling and we compare it with that of sequences of ideal, instantaneous pulses. The use of second order, shaped pulses represents a significant improvement. Non-equidistant sequences characterized by pulse durations scaled proportional to the duration T of the sequence strikingly outperform the sequences with pulses of constant length for small T. Interestingly, for longer durations sequences of pulses of substantial length are found to suppress dephasing better than sequences of ideal pulses.

  7. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    Science.gov (United States)

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity.

  8. Optimal arbitrarily accurate composite pulse sequences

    Science.gov (United States)

    Low, Guang Hao; Yoder, Theodore

    2014-03-01

    Implementing a single qubit unitary is often hampered by imperfect control. Systematic amplitude errors ɛ, caused by incorrect duration or strength of a pulse, are an especially common problem. But a sequence of imperfect pulses can provide a better implementation of a desired operation, as compared to a single primitive pulse. We find optimal pulse sequences consisting of L primitive π or 2 π rotations that suppress such errors to arbitrary order (ɛn) on arbitrary initial states. Optimality is demonstrated by proving an L = (n) lower bound and saturating it with L = 2 n solutions. Closed-form solutions for arbitrary rotation angles are given for n = 1 , 2 , 3 , 4 . Perturbative solutions for any n are proven for small angles, while arbitrary angle solutions are obtained by analytic continuation up to n = 12 . The derivation proceeds by a novel algebraic and non-recursive approach, in which finding amplitude error correcting sequences can be reduced to solving polynomial equations.

  9. Optimized, Unequal Pulse Spacing in Multiple Echo Sequences Improves Refocusing

    CERN Document Server

    Jenista, Elizabeth; Branca, Rosa; Warren, Warren

    2009-01-01

    A recent quantum computing paper (G. S. Uhrig, Phys Rev Lett 98 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two level system coupled to a bath. The spacings in what has been called a UDD sequence differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different timescales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T2-weighted contrast than do CPMG sequences with the same number of pulses an...

  10. Pulsed DEMO design assessment studies

    CERN Document Server

    Todd, T N

    2013-01-01

    Now that ITER is under construction, interest is increasing in the specification and design of the successor machine, a Demonstration Power Plant (DEMO), which in Europe is coordinated by the EFDA Power Plant Physics and Technology programme. This paper summarises the work carried out for EFDA in 2011-2012 on design issues pertinent to a pulsed version of DEMO, intended to be implemented with little or no extrapolation of technology available today. The work was carried out by the Euratom Fusion Associations CCFE, CEA, CRPP, ENEA and KIT, and in addition to a review of recent relevant literature addressed systems code analyses (pulse length vs. size), erosion of plasma facing components, thermomechanical fatigue in the blanket and first wall, a range of energy storage issues, and fatigue life improvements in Nb3Sn CICC superconductors.

  11. Generating long sequences of high-intensity femtosecond pulses

    CERN Document Server

    Bitter, Martin

    2015-01-01

    We present an approach to create pulse sequences extending beyond 150~picoseconds in duration, comprised of $100~\\mu$J femtosecond pulses. A quarter of the pulse train is produced by a high-resolution pulse shaper, which allows full controllability over the timing of each pulse. Two nested Michelson interferometers follow to quadruple the pulse number and the sequence duration. To boost the pulse energy, the long train is sent through a multi-pass Ti:Sapphire amplifier, followed by an external compressor. A periodic sequence of 84~pulses of 120~fs width and an average pulse energy of 107~$\\mu$J, separated by 2~ps, is demonstrated as a proof of principle.

  12. Dynamic responses under the excitation of pulse sequences

    Institute of Scientific and Technical Information of China (English)

    Dai Junwu(戴君武); Mai Tong; George C. Lee; Qi Xiaozhai(齐霄斋); Bai Wenting(白文婷)

    2004-01-01

    This paper studies the dynamic responses of SDOF system under pulse-dominant excitations. The purpose of the study is to prepare for scrutiny of some near-field pulse-dominant ground motions and their potential to cause structural damage. Extending the single pulse dynamics, we consider the effect of pulse sequences. This kind of excitation was particularly obvious in some of previous earthquakes such as Northridge (1994) and Chi-Chi (1995). Based on the duration,peak and rise and decay era of the main pulse as well as its relationship with the predecessor and successor pulses, we propose a classification for the pulse sequences. Consequent studies have been carried out for acceleration, velocity and displacement response spectra of the main pulse with either a predecessor or a successor pulse. The analysis also includes general response behaviors in different fundamental period segments and special aspects of response at certain points (e.g., the corresponding peak points).

  13. Genetic algorithms and solid state NMR pulse sequences

    CERN Document Server

    Bechmann, Matthias; Sebald, Angelika

    2013-01-01

    The use of genetic algorithms for the optimisation of magic angle spinning NMR pulse sequences is discussed. The discussion uses as an example the optimisation of the C7 dipolar recoupling pulse sequence, aiming to achieve improved efficiency for spin systems characterised by large chemical shielding anisotropies and/or small dipolar coupling interactions. The optimised pulse sequence is found to be robust over a wide range of parameters, requires only minimal a priori knowledge of the spin system for experimental implementations with buildup rates being solely determined by the magnitude of the dipolar coupling interaction, but is found to be less broadbanded than the original C7 pulse sequence. The optimised pulse sequence breaks the synchronicity between r.f. pulses and sample spinning.

  14. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.;

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses...

  15. Coherent optical pulse sequencer for quantum applications.

    Science.gov (United States)

    Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C

    2009-09-10

    The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

  16. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Matsumoto, Yuzuru

    1996-07-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a `flag` which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  17. Design of a Compact Pulsed Power Accelerator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A 100 kA/60 ns compact pulsed power accelerator was designed to study the influence to the X-pinch by the load. It is composed of a Marx generator, a combined pulse forming (PFL), a gas-filled V/N field distortion switch, a transfer line,

  18. Design and construction of a pulse magnetiser

    Science.gov (United States)

    Garcia, M. M.; Gonzalez, F. J. G.; Avalos, E. C.; Rocha, G. G. L.; Llamazares, J. L. S.

    2005-10-01

    In the present paper we present the design and construction of a pulsed field magnetizer that has been set up at the IF-UASLP. The system is based on the discharge of the energy stored in a capacitor bank (C-total = 23.1 mF; U = 1/2CV(2) approximate to 2300 J) into a resistive double-layer copper solenoid supported by reinforcing glass fibers. This magnetizer is capable of generating pulsed magnetic field strengths up to 9.0 T, in a cylindrical volume of 17 mm diameter at the center of the solenoid, with a pulse duration of about 2.0 ms. The principle of operation of the magnetizer as well as the design of the field solenoid are described. A pick-up coil system combined with an electronic integrator is also available in the apparatus to monitor the shape of the field pulse, peak field, and pulse duration.

  19. Molecular beacon sequence design algorithm.

    Science.gov (United States)

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  20. Transient of power pulse and its sequence in power electronics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Various failures and destructions occur in the applications of the power electronic converter. The real practice shows that these failures are connected with the con-centration of the transient power pulse. In allusion to the physical characteristics of power electronic converters,this paper proposed that the power pulse and its se-quence are the basis for power electronics in the perspective of electromagnetic energy. The authors analyzed the transient processes in the power semiconductors,electric conduction loops and controller system and illustrated the power pulse phenomena in high voltage and high power inverters. This investigation on the power pulse sequence is very meaningful for the failure analysis and device pro-tection and has become an important topic in power electronics.

  1. Transient of power pulse and its sequence in power electronics

    Institute of Scientific and Technical Information of China (English)

    ZHAO ZhengMing; BAI Hua; YUAN LiQiang

    2007-01-01

    Various failures and destructions occur in the applications of the power electronic converter, The real practice shows that these failures are connected with the concentration of the transient power pulse. In allusion to the physical characteristics of power electronic converters, this paper proposed that the power pulse and its sequence are the basis for power electronics in the perspective of electromagnetic energy. The authors analyzed the transient processes in the power semiconductors,electric conduction loops and controller system and illustrated the power pulse phenomena in high voltage and high power inverters. This investigation on the power pulse sequence is very meaningful for the failure analysis and device protection and has become an important topic in power electronics.

  2. Optimal control of single flux quantum (SFQ) pulse sequences

    Science.gov (United States)

    Liebermann, Per; Wilhelm, Frank

    Single flux quantum (SFQ) pulses are a natural candidate for on-chip control of superconducting qubits. High accuracy quantum gates are accessible with quantum optimal control methods. We apply trains of SFQ pulses to operate single qubit gates, under the constraint of fixed amplitude and duration of each pulse. Timing of the control pulses is optimized using genetic algorithms and simulated annealing, decreasing the average fidelity errorby several orders of magnitude. Furthermore we are able to reduce the gate time to the quantum speed limit. Leakage out of the qubit subspace as well as timing errors of the pulses are considered, exploring the robustness of our optimized sequence.This takes usone step further to a scalable quantum processor

  3. Pulse Sequence Shaper For Radiospectroscopy And Relaxation Methods In NQR

    Directory of Open Access Journals (Sweden)

    Bobalo Yuriy

    2015-09-01

    Full Text Available A pulse sequence shaper for the pursuance of the research using a wide spectrum of radiospectroscopy and relaxation methods in NQR is proposed. The distinctive feature of this product is its implementation with the application of a multi-functional programmable frequency synthesizer suitable for high-speed amplitude and phase manipulations.

  4. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers.

    Science.gov (United States)

    Lu, George J; Opella, Stanley J

    2013-08-28

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical π/2 Z-rotational symmetry that confers the "motion adapted" property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence "Motion-adapted SAMPI4" and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2π nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments.

  5. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers

    Science.gov (United States)

    Lu, George J.; Opella, Stanley J.

    2013-01-01

    One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on nuclear spins are strongly influenced by these motions. For example, we previously showed that the MSHOT-Pi4 pulse sequence yields spectra with resonance line widths about half of those observed using the conventional pulse sequence when applied to membrane proteins undergoing rapid uniaxial rotational diffusion in phospholipid bilayers. In contrast, the line widths were not changed in microcrystalline samples where the molecules did not undergo global motions. Here, we demonstrate experimentally and describe analytically how some Hamiltonian terms are susceptible to sample motions, and it is their removal through the critical π/2 Z-rotational symmetry that confers the “motion adapted” property to the MSHOT-Pi4 pulse sequence. This leads to the design of separated local field pulse sequence “Motion-adapted SAMPI4” and is generalized to an approach for the design of decoupling sequences whose performance is superior in the presence of molecular motions. It works by cancelling the spin interaction by explicitly averaging the reduced Wigner matrix to zero, rather than utilizing the 2π nutation to average spin interactions. This approach is applicable to both stationary and magic angle spinning solid-state NMR experiments. PMID:24006989

  6. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  7. Designing Of Pulse Phase-Locked Loops

    Directory of Open Access Journals (Sweden)

    A. A. Deryushev

    2006-01-01

    Full Text Available The paper considers pulse phase-locked loops (PPLL in which switching of structure and pa­rameters is used for improvement of dynamic and spectral characteristics Classification of existing switching algorithms is given in the paper. The paper proposes designing methodology that takes into account discrete and non-linear characteristics of the considered devices, and also requirements to synchronism, stability, speed, spectral characteristics, peculiarities of various switching algorithms. Practical approbation of the methodology has been carried out.

  8. Hierarchical Genetic Algorithm Approach to Determine Pulse Sequences in NMR

    CERN Document Server

    Ajoy, Ashok

    2009-01-01

    We develop a new class of genetic algorithm that computationally determines efficient pulse sequences to implement a quantum gate U in a three-qubit system. The method is shown to be quite general, and the same algorithm can be used to derive efficient sequences for a variety of target matrices. We demonstrate this by implementing the inversion-on-equality gate efficiently when the spin-spin coupling constants $J_{12}=J_{23}=J$ and $J_{13}=0$. We also propose new pulse sequences to implement the Parity gate and Fanout gate, which are about 50% more efficient than the previous best efforts. Moreover, these sequences are shown to require significantly less RF power for their implementation. The proposed algorithm introduces several new features in the conventional genetic algorithm framework. We use matrices instead of linear chains, and the columns of these matrices have a well defined hierarchy. The algorithm is a genetic algorithm coupled to a fast local optimizer, and is hence a hybrid GA. It shows fast con...

  9. Pulse Combustor Design, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  10. Investigation of the effect of finite pulse errors on the BABA pulse sequence using the Floquet-Magnus expansion approach

    Science.gov (United States)

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents a study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order ? is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the ? function not present in other schemes. This function provides an easy way for evaluating the spin evolution during the time in between' through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of ? is particularly useful for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provide a natural choice of ? , is ignored. This work uses the ? function to compare the efficiency of the BABA pulse sequence with ? and the BABA pulse sequence with finite pulses. Calculations of ? and ? are presented.

  11. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  12. Selective detection of ordered sodium signals by a jump-and-return pulse sequence

    Science.gov (United States)

    Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2009-09-01

    A simple pulse sequence, derived from the shaped pulse optimally exciting the central transition of a spin 3/2, can be used to selectively detect ordered sodium with a given quadrupolar coupling. The pulse sequence consists of two pulses with opposite phases and separated by a delay, called a quadrupolar jump-and-return (QJR) sequence. This QJR sequence is tested with a phantom made of sodium ions in bacteriophage and in aqueous solution and its feasibility for contrast modification based on the quadrupolar coupling is demonstrated.

  13. Design of a finger base-type pulse oximeter

    Science.gov (United States)

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  14. Benchmarking NMR experiments: a relational database of protein pulse sequences.

    Science.gov (United States)

    Senthamarai, Russell R P; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library (http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of alphaXbeta2 Integrin and 440 amino acids NS3 helicase.

  15. PAM sequence design for dimmable visible light communication

    Science.gov (United States)

    Nuo, Huang; Wang, Jun-Bo; Wang, Jin-Yuan; Guan, Rui; Chen, Ming

    2017-02-01

    In current visible light communication (VLC) systems employing intensity modulation and direct detection (IM/DD), the transmitted optical intensity signal must satisfy the nonnegativity, peak optical intensity and illumination constraints. By taking into account the three constraints, we first present the signal space for the pulse amplitude modulated (PAM) sequences in the maximum flickering time period (MFTP). Then, to minimize the error probability of the VLC systems, we seek to find the PAM sequences providing the largest minimum Euclidean distance. Since the objective function is nonconvex and nondifferentiable, it is difficult to solve the original optimization problem directly. Thus, two methods corresponding to the joint design and greedy algorithm, are proposed to design the PAM sequences in VLC. The two methods offer a tradeoff between the symbol error rate (SER) performance and design complexity.

  16. Broadband echo sequence using a pi composite pulse for the pure NQR of a spin I = 32 powder sample

    Science.gov (United States)

    Odin

    2000-04-01

    This work presents a numerical approach to optimizing sequences with composite pulses for the pure NQR of a spin I = 32 powder sample. The calculations are based on a formalism developed in a previous paper, which allows a fast powder-averaging procedure to be implemented. The framework of the Cayley-Klein matrices to describe space rotations by 2 x 2 unitary and unimodular complex matrices is used to calculate the pulse propagators. The object of such a study is to design a high-performance echo sequence composed of a single preparation pulse and a three-pulse composite transfer pulse. We mean a sequence leading to a large excitation bandwidth with a good signal-to-noise ratio, a flat excitation profile near the irradiation frequency, and a good linearity of the phase as a function of frequency offset. Such a composite echo sequence is intended to give a better excitation profile than the classical Hahn (θ)-tau-(2θ) echo sequence. It is argued that in pure NQR of a powder sample, the sequence must be optimized as a whole since both the excitation and the reception of the signal depend on the relative orientation of the crystallites with respect to the coil axis. To our knowledge, this is the first time such a global approach is presented. An extensive numerical study of the composite echo sequence described above is performed in this article. The key of the discrimination between the sequences lies in using the first five reduced moments of the excitation profile as well as an estimator of the phase linearity. Based on such information, we suggest that the echo sequence that best fulfills our criterion is (1)(0)-tau-(0.35)(0)(2.1)(pi)(0.35)(0), the pulse angles omega(RF)t(p) being in radians. The subscripts are the relative pulse phases. We outlined the way to implement the spin echo mapping method to reconstruct large spectra with this sequence, and it is shown that it reduces the acquisition time by a factor of 1.7 if compared to the classical Hahn echo. Some

  17. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  18. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products

    Science.gov (United States)

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Hargreaves, Brian A.; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-07-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

  19. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  20. EGNAS: an exhaustive DNA sequence design algorithm

    Directory of Open Access Journals (Sweden)

    Kick Alfred

    2012-06-01

    Full Text Available Abstract Background The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences offers the possibility of controlling both interstrand and intrastrand properties. The guanine-cytosine content can be adjusted. Sequences can be forced to start and end with guanine or cytosine. This option reduces the risk of “fraying” of DNA strands. It is possible to limit cross hybridizations of a defined length, and to adjust the uniqueness of sequences. Self-complementarity and hairpin structures of certain length can be avoided. Sequences and subsequences can optionally be forbidden. Furthermore, sequences can be designed to have minimum interactions with predefined strands and neighboring sequences. Results The algorithm is realized in a C++ program. TAG sequences can be generated and combined with primers for single-base extension reactions, which were described for multiplexed genotyping of single nucleotide polymorphisms. Thereby, possible foldback through intrastrand interaction of TAG-primer pairs can be limited. The design of sequences for specific attachment of molecular constructs to DNA origami is presented. Conclusions We developed a new software tool called EGNAS for the design of unique nucleic acid sequences. The presented exhaustive algorithm allows to generate greater sets of sequences than with previous software and equal constraints. EGNAS is freely available for noncommercial use at http://www.chm.tu-dresden.de/pc6/EGNAS.

  1. Design of Digital Hybrid Chaotic Sequence Generator

    Institute of Scientific and Technical Information of China (English)

    RAO Nini; ZENG Dong

    2004-01-01

    The feasibility of the hybrid chaotic sequences as the spreading codes in code divided multiple access(CDMA) system is analyzed.The design and realization of the digital hybrid chaotic sequence generator by very high speed integrated circuit hardware description language(VHDL) are described.A valid hazard canceledl method is presented.Computer simulations show that the stable digital sequence waveforms can be produced.The correlations of the digital hybrid chaotic sequences are compared with those of m-sequences.The results show that the correlations of the digital hybrid chaotic sequences are almost as good as those of m-sequences.The works in this paper explored a road for the practical applications of chaos.

  2. High voltage pulsed cable design: a practical example

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, R.W. Jr.; Boicourt, G.P.

    1979-01-01

    The design of optimum high voltage pulse cable is difficult because very little emperical data are available on performance in pulsed applications. This paper follows the design and testing of one high voltage pulse cable, 40/100 trigger cable. The design was based on an unproven theory and the impressive outcome lends support to the theory. The theory is outlined and it is shown that there exists an inductance which gives a cable of minimum size for a given maximum stress. Test results on cable manufactured according to the design are presented and compared with the test results on the cable that 40/100 replaces.

  3. A generalized slab-wise framework for parallel transmit multiband RF pulse design

    Science.gov (United States)

    Wu, Xiaoping; Schmitter, Sebastian; Auerbach, Edward J.; Uğurbil, Kâmil; de Moortele, Pierre-François Van

    2015-01-01

    Purpose We propose a new slab-wise framework to design parallel transmit multi-band pulses for volumetric simultaneous multi-slice imaging with a large field of view along the slice direction (FOVs). Theory and Methods The slab-wise framework divides FOVs into a few contiguous slabs and optimizes pulses for each slab. Effects of relevant design parameters including slab number and transmit B1 (B1+) mapping slice placement were investigated for human brain imaging by designing pulses with global or local SAR control based on electromagnetic simulations of a 7T head RF array. Pulse design using in-vivo B1+ maps was demonstrated and evaluated with Bloch simulations. Results RF performance with respect to SAR reduction or B1+ homogenization across the entire human brain improved with increasing slabs; however, this improvement was non-linear and leveled off at ~12 slabs when the slab thickness reduced to ~12 mm. The impact of using different slice placements for B1+ mapping was small. Conclusion Compared to slice-wise approaches where each of the many imaging slices requires both B1+ mapping and pulse optimization, the proposed slab-wise design framework is shown to attain comparable RF performance while drastically reducing the number of required pulses; therefore, it can be used to increase time efficiency for B1+ mapping, pulse calculation and sequence preparation. PMID:25994797

  4. Proceedings of Pulsed Magnet Design and Measurement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Shaftan, T.; Heese, R.; Ozaki,S.

    2010-01-19

    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

  5. Simple Arduino based pulse generator design for electroporation

    Science.gov (United States)

    Sulaeman, Muhammad Yangki; Widita, Rena

    2015-09-01

    This research will discuss the design of electroporation generator using Arduino as the pulse controller. The pulse parameters are the most important thing in electroporation method, therefore many researches aimed to produce generator to control its parameters easily. Arduino will be used as the microcontroller to create low amplitude signal trigger to get the high voltage pulse for electroporation. 124.4 VDC will be used and tested in cuvette contained NaCl solution with various concentration between 0% - 1%.

  6. Investigation of the Effect of Finite Pulse Errors on BABA Pulse Sequence Using Floquet-Magnus Expansion Approach.

    Science.gov (United States)

    Mananga, Eugene S; Reid, Alicia E

    This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ1 (t) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during "the time in between" through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ1 (t) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ1 (0) is ignored. This work uses the Λ1 (t) function to compare the efficiency of the BABA pulse sequence with δ - pulses and the BABA pulse sequence with finite pulses. Calculations of Λ1 (t) and F1 are presented.

  7. Design and application of pulse information acquisition and analysis ...

    African Journals Online (AJOL)

    Design and application of pulse information acquisition and analysis system with dynamic ... Log in or Register to get access to full text downloads. ... Methods: To use some flexible sensors to catch the radial artery pressure pulse wave and utilize ... and dynamic recognition, and it was applied to serve for ten healthy adults.

  8. Design of nanosecond pulse laser micromachining system based on PMAC

    Science.gov (United States)

    Liu, Mingyan; Fu, Xing; Xu, Linyan; Lin, Qian; Gu, Shuang

    2012-10-01

    Pulse laser micromachining technology, as a branch of laser processing technology, has been widely used in MEMS device processing, aviation, instruments fabrication, circuit board design etc.. In this paper, a novel nanosecond pulse laser micromachining system is presented, which consists of nanosecond pulse LASER, optical path mechanical structure, transmission system, motion control system. Nanosecond pulse UV laser, with 355 nm wavelength and 40ns pulse width, is chosen as the light source. Optical path mechanical structure is designed to get ideal result of laser focusing. Motion control system, combining PMAC card with the PC software, can control the 3-D motion platform and complete microstructure processing. By CCD monitoring system, researchers can get real-time detection on the effect of laser beam focusing and processing process.

  9. Rotational excitation of molecules with long sequences of intense femtosecond pulses

    CERN Document Server

    Bitter, M

    2016-01-01

    We investigate the prospects of creating broad rotational wave packets by means of molecular interaction with long sequences of intense femtosecond pulses. Using state-resolved rotational Raman spectroscopy of oxygen, subject to a sequence of more than 20 laser pulses with peak intensities exceeding $10^{13}$ W/cm$^{2}$ per pulse, we show that the centrifugal distortion is the main obstacle on the way to reaching high rotational states. We demonstrate that the timing of the pulses can be optimized to partially mitigate the centrifugal limit. The cumulative effect of a long pulse sequence results in high degree of rotational coherence, which is shown to cause an efficient spectral broadening of probe light via cascaded Raman transitions.

  10. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans

    OpenAIRE

    2004-01-01

    It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker, and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine if a single sequence of brief bright light pulses administered during the early biological ni...

  11. An Optimal Sorting of Pulse Amplitude Sequence Based on the Phased Array Radar Beam Tasks

    Institute of Scientific and Technical Information of China (English)

    Chuan Sheng∗,Yongshun Zhang; Wenlong Lu

    2016-01-01

    The study of phased array radar ( PAR) pulse amplitude sequence characteristics is the key to understand the radar’s working state and its beam’s scanning manner. According to the principle of antenna pattern formation and the searching and tracking modes of beams, this paper analyzes the characteristics and differences of pulse amplitude sequence when the radar beams work in searching and tracking modes respectively. Then an optimal sorting model of pulse amplitude sequence is established based on least⁃squares and curve⁃fitting methods. This method is helpful for acquiring the current working state of the radar and recognizing its instantaneous beam pointing by sorting the pulse amplitude sequence without the necessity to estimate the antenna pattern.

  12. Population transfer and coherence in the adiabatic limit by counterintuitive and intuitive pulse sequences

    Institute of Scientific and Technical Information of China (English)

    Zhou Yan-Wei; Ye Cun-Yun

    2005-01-01

    Two approaches of achieving population transfer and coherence are investigated for the three-level A system in the adiabatic limit. The effects of the laser pulse sequence on the population transfer efficiency and coherence are studied.Coherent control of quantum state and population is studied by numerical simulation based on self-consistent set of density matrix equations. It can be seen that the counterintuitive pulse sequence is more efficient in population transfer and coherence than the intuitive one.

  13. High speed sampling circuit design for pulse laser ranging

    Science.gov (United States)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  14. Study of {sup 14}N NQR response to SORC pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Konnai, A., E-mail: konnai@nmri.go.jp; Odano, N. [National Maritime Research Institute, Department of Navigation and System Engineering (Japan); Asaji, T. [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)

    2008-01-15

    The behavior of nuclear quadrupole resonance (NQR) signals between RF pulses of the strong off-resonance comb (SORC) as well as the spin-locking spin-echo (SLSE) pulse sequences was studied as for {sup 14}N NQR line {nu}{sub +} of dimethylnitramine (CH{sub 3}){sub 2}NNO{sub 2} at 77 K. The periodic variation of the signal amplitude observed by using SORC pulse sequence could be reasonably explained by the theoretical expression reported in the literature.

  15. Design of Pulsed Strong Magnetic Fields Generator and Preliminary Application

    Institute of Scientific and Technical Information of China (English)

    WEN Jun; QU Xue-min; WANG Xi-gang; LONG Kai-ping

    2015-01-01

    Objective: This paper aims to designing a pulsed strong magnetic fields generator. Methods: A large value capacitor was used to store electric energy, coil was used for producing magnetic fields, main control, circuit control charge, sampling, discharge, etc. Results: The generator provided a pulsed magnetic field with the ampli-tude of intensity from 0.1-2 T and variable time interval of pulse from 4 s-1 min. It was not only to be operated easily but also performed reliably. Conclusion:The generator will be applied in special clinical diagnosis, therapy and other fields.

  16. Solid State Capacitor Discharge Pulsed Power Supply Design for Railguns

    Science.gov (United States)

    2007-03-01

    CAPACITOR DISCHARGE PULSED POWER SUPPLY DESIGN FOR RAILGUNS by Jesse H. Black March 2007 Thesis Advisor: Alexander L. Julian Co-Advisor...switched power supply capable of providing 50 kJ from a high voltage capacitor to a railgun . The efficiency with which energy is transferred from a...also produce a smaller electromagnetic pulse. Voltage limitations on the thyristors require two in series acting as a single switch. Railgun

  17. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    CAO Gang; WANG Li; TU Tao; LI Hai-Ou; XIAO Ming; GUO Guo-Ping

    2012-01-01

    We propose an effective method to design the working parameters of a pulse-driven charge qubit implemented with double quantum dot.It is shown that intrinsic qubit population leakage to undesired states in the control and measurement process can be determined by the simulation of coherent dynamics of the qubit and minimized by choosing proper working parameters such as pulse shape.The result demonstrated here bodes well for future quantum gate operations and quantum computing applications.

  18. Pulse Sequences for Efficient Multi-Cycle Terahertz Generation in Periodically Poled Lithium Niobate

    CERN Document Server

    Ravi, Koustuban; Kärtner, Franz X

    2016-01-01

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled periodically poled lithium niobate is proposed. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of Mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser-induced damage at Joule-level pumping by 1$\\mu$m lasers to enable multi-cycle terahertz sources with pulse energies >> 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. Unprecedented studies of the ph...

  19. Approximate Design Method for Single Stage Pulse Tube Refrigerators

    Science.gov (United States)

    Pfotenhauer, J. M.; Gan, Z. H.; Radebaugh, R.

    2008-03-01

    An approximate design method is presented for the design of a single stage Stirling type pulse tube refrigerator. The design method begins from a defined cooling power, operating temperature, average and dynamic pressure, and frequency. Using a combination of phasor analysis, approximate correlations derived from extensive use of REGEN3.2, a few `rules of thumb,' and available models for inertance tubes, a process is presented to define appropriate geometries for the regenerator, pulse tube and inertance tube components. In addition, specifications for the acoustic power and phase between the pressure and flow required from the compressor are defined. The process enables an appreciation of the primary physical parameters operating within the pulse tube refrigerator, but relies on approximate values for the combined loss mechanisms. The defined geometries can provide both a useful starting point, and a sanity check, for more sophisticated design methodologies.

  20. Constant time tensor correlation experiments by non-gamma-encoded recoupling pulse sequences.

    Science.gov (United States)

    Mou, Yun; Tsai, Tim W T; Chan, Jerry C C

    2012-10-28

    Constant-time tensor correlation under magic-angle spinning conditions is an important technique in solid-state nuclear magnetic resonance spectroscopy for the measurements of backbone or side-chain torsion angles of polypeptides and proteins. We introduce a general method for the design of constant-time tensor correlation experiments under magic-angle spinning. Our method requires that the amplitude of the average Hamiltonian must depend on all the three Euler angles bringing the principal axis system to the rotor-fixed frame, which is commonly referred to as non-gamma encoding. We abbreviate this novel approach as COrrelation of Non-Gamma-Encoded Experiment (CONGEE), which exploits the orientation-dependence of non-gamma-encoded sequences with respect to the magic-angle rotation axis. By manipulating the relative orientation of the average Hamiltonians created by two non-gamma-encoded sequences, one can obtain a modulation of the detected signal, from which the structural information can be extracted when the tensor orientations relative to the molecular frame are known. CONGEE has a prominent feature that the number of rf pulses and the total pulse sequence duration can be maintained to be constant so that for torsion angle determination the effects of systematic errors owing to the experimental imperfections and/or T(2) effects could be minimized. As a proof of concept, we illustrate the utility of CONGEE in the correlation between the C' chemical shift tensor and the C(α)-H(α) dipolar tensor for the backbone psi angle determination. In addition to a detailed theoretical analysis, numerical simulations and experiments measured for [U-(13)C, (15)N]-L-alanine and N-acetyl-[U-(13)C, (15)N]-D,L-valine are used to validate our approach at a spinning frequency of 20 kHz.

  1. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    I A Pasha; P S Moharir; N Sudarshan Rao

    2000-10-01

    Ternary sequences have superior merit factors but they cannot be transmitted with existing technology. It is proposed that a ternary sequence be coded into a binary sequence for the purpose of transmission. On reception it can be processed as a binary sequence as received and also decoded into a ternary sequence. These two interpretations provide a coincidence detection scheme for efficient target detection provided that the corresponding signal design problem is solved. Such an algorithm is developed by taking the merit factor as desideratum and the Hamming scan as optimization technique. Merit factor values obtained in some cases are further improved by implementing a back-tracking algorithm for bi-alphabetic sequence.

  2. Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields

    Science.gov (United States)

    Heidler, R.; Bachman, H. N.; Johansen, Y.

    2008-12-01

    Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes. Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B0) and dynamic (B1) fields into the formation. Both B0 and B1 profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization. In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B1 and B0 field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.

  3. Design of compact Marx module with square pulse output

    Science.gov (United States)

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m3 and 140 GW/m3, respectively.

  4. SNAD: sequence name annotation-based designer

    Directory of Open Access Journals (Sweden)

    Gorbalenya Alexander E

    2009-08-01

    Full Text Available Abstract Background A growing diversity of biological data is tagged with unique identifiers (UIDs associated with polynucleotides and proteins to ensure efficient computer-mediated data storage, maintenance, and processing. These identifiers, which are not informative for most people, are often substituted by biologically meaningful names in various presentations to facilitate utilization and dissemination of sequence-based knowledge. This substitution is commonly done manually that may be a tedious exercise prone to mistakes and omissions. Results Here we introduce SNAD (Sequence Name Annotation-based Designer that mediates automatic conversion of sequence UIDs (associated with multiple alignment or phylogenetic tree, or supplied as plain text list into biologically meaningful names and acronyms. This conversion is directed by precompiled or user-defined templates that exploit wealth of annotation available in cognate entries of external databases. Using examples, we demonstrate how this tool can be used to generate names for practical purposes, particularly in virology. Conclusion A tool for controllable annotation-based conversion of sequence UIDs into biologically meaningful names and acronyms has been developed and placed into service, fostering links between quality of sequence annotation, and efficiency of communication and knowledge dissemination among researchers.

  5. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    Science.gov (United States)

    Köcher, S. S.; Heydenreich, T.; Zhang, Y.; Reddy, G. N. M.; Caldarelli, S.; Yuan, H.; Glaser, S. J.

    2016-04-01

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.

  6. Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate

    Science.gov (United States)

    Tcypkin, A. N.; Putilin, S. E.

    2017-01-01

    Experimental and numerical modeling techniques demonstrated the possibilities of the spectral-time encoding and decoding for time division multiplexing sequence of femtosecond subpulses with a repetition rate of up to 6.4 THz. The sequence was formed as a result of the interference of two phase-modulated pulses. We report the limits of the application of the developed method of controlling formed sequence at the spectral-temporal coding.

  7. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  8. High-performance pulsed magnets: Theory, design and construction

    Science.gov (United States)

    Li, Liang

    This thesis is an in-depth study of the design and construction of coils for pulsed magnets energised by a capacitor bank, including mathematical modelling and testing of the coils. The magnetic field generated by solenoid magnets with homogeneous and non-homogenous current distribution is calculated with the elliptical integral method. Coupled partial differential equations for magnetic and thermal diffusion and the electric circuits are solved numerically to calculate the pulse shape and the heating in a pulsed magnet. The calculations are in good agreement with test results for a large range of different coils; this provides useful insights for optimised coil design. Stresses and strains in the mid-plane of the coil are analytically calculated by solving the system of equations describing the displacement in each layer of the coil. Non-linear stress-strain characteristics and the propagation of the plastic deformation are taken into account by sub- dividing each layer of the coil in the radial direction and changing the elastic-plastic matrix at each transition point. Conductors, insulating materials and techniques used for pulsed magnets are discussed in detail. More than 80 pulsed magnets with optimised combinations of conductors and reinforcements have been built and tested, with peak fields in the range 45-73 T and a bore size from 8 mm-35 mm. The pulse duration is of the order of 10 milliseconds. A dual stage pulsed magnet for use at a free electron laser has been developed. This has a rise time of 10 microseconds and enables magneto-optical experiments in a parameter range previously inaccessible to condensed matter physicists. The joint of superconducting cables can be modelled by means of distributed circuit elements that characterise current diffusion.

  9. Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging

    Science.gov (United States)

    Epel, Boris; Halpern, Howard J.

    2015-05-01

    Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage.

  10. Theoretical description of depth pulse sequences, on and off resonance, including improvements and extensions thereof.

    Science.gov (United States)

    Bendall, M R; Pegg, D T

    1985-04-01

    A general mathematical description of depth pulse sequences in terms of rotation matrices permits a single matrix, known as a cycle matrix, to be written down for each phase-cycled pulse in the overall sequence, such that the result for the total phase-cycled sequence is the product of the individual cycle matrices. It is straightforward to include the effect of the tilted rf axis off resonance and obtain exact solutions. The two types of phase-cycled pulse used in a depth pulse scheme are 2 theta [+/- x] and 2 theta [+/- x, +/- y] and for the general off-resonance case, four of the off-diagonal elements in the 2 theta [+/- x] cycle matrix, and all of the off-diagonal elements in the 2 theta [+/- x, +/- y] cycle matrix, are zero. These simplifications enable important improvements of depth pulse schemes for the elimination of high-flux signals, the reduction of signals from sample regions experiencing pulse angles differing from 90 degrees, and the avoidance of deleterious off-resonance effects such as the production of dispersion signals. In all cases, the dependence of signal intensity off resonance can be easily and exactly calculated. There are important applications in in vivo spectroscopy.

  11. Excitation Waveform Design for Lamb Wave Pulse Compression.

    Science.gov (United States)

    Lin, Jing; Hua, Jiadong; Zeng, Liang; Luo, Zhi

    2016-01-01

    Most ultrasonic guided wave methods focus on tone burst excitation to reduce the effect of dispersion so as to facilitate signal interpretation. However, the resolution of the output cannot attain a very high value because time duration of the excitation waveform cannot be very small. To overcome this limitation, a pulse compression technique is introduced to Lamb wave propagation to achieve a δ-like correlation so as to obtain a high resolution for inspection. Ideal δ-like correlation is impossible as only a finite frequency bandwidth can propagate. The primary purpose of this paper is to design a proper excitation waveform for Lamb wave pulse compression, which shortens the correlation as close as possible to a δ function. To achieve this purpose, the performance of some typical signals is discussed in pulse compression, which include linear chirp (L-Chirp) signal, nonlinear chirp (NL-Chirp) signal, Barker code (BC), and Golay complementary code (GCC). In addition, how the excitation frequency range influences inspection resolution is investigated. A strategy for the frequency range determination is established subsequently. Finally, an experiment is carried out on an aluminum plate where these typical signals are used as excitations at different frequency ranges. The quantitative comparisons of the pulse compression responses validate the theoretical findings. By utilizing the experimental data, the improvement of pulse compression in resolution compared with tone burst excitation is also validated, and the robustness of the waveform design method to inaccuracies in the dispersion compensation is discussed as well.

  12. Design and Testing of Coils for Pulsed Electromagnetic Forming

    OpenAIRE

    Golovashchenko, S.; Bessonov, N.; Davies, R

    2006-01-01

    Coil design influences the distribution of electromagnetic forces applied to both the blank and the coil. The required energy of the process is usually defined by deformation of the blank. However, the discharge also results in a significant amount of heat being generated and accumulating in the coil. Therefore, EMF process design involves working with three different problems: 1) propagation of an electromagnetic field through the coil-blank system and generation of pulsed electromagnetic pr...

  13. Design, development and testing twin pulse tube cryocooler

    Science.gov (United States)

    Gour, Abhay Singh; Sagar, Pankaj; Karunanithi, R.

    2017-09-01

    The design and development of Twin Pulse Tube Cryocooler (TPTC) is presented. Both the coolers are driven by a single Linear Moving Magnet Synchronous Motor (LMMSM) with piston heads at both ends of the mover shaft. Magnetostatic analysis for flux line distribution was carried-out during design and development of LMMSM based pressure wave generator. Based on the performance of PWG, design of TPTC was carried out using Sage and Computational Fluid Dynamics (CFD) analysis. Detailed design, fabrication and testing of LMMSM, TPTC and their integration tests are presented in this paper.

  14. Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences

    Energy Technology Data Exchange (ETDEWEB)

    Robson, M.D.; Benjamin, M.; Gishen, P.; Bydder, G.M. E-mail: gbydder@ucsd.edu

    2004-08-01

    AIM: To assess the potential value of imaging the Achilles tendon with ultrashort echo time (UTE) pulse sequences. MATERIALS AND METHODS: Four normal controls and four patients with chronic Achilles tendinopathy were examined in the sagittal and transverse planes. Three of the patients were examined before and after intravenous gadodiamide. RESULTS: The fascicular pattern was clearly demonstrated within the tendon and detail of the three distinct fibrocartilaginous components of an 'enthesis organ' was well seen. T2* measurements showed two short T2* components. Increase in long T2 components with reduction in short T2 components was seen in tendinopathy. Contrast enhancement was much more extensive than with conventional sequences in two cases of tendinopathy but in a third case, there was a region of reduced enhancement. CONCLUSION: UTE pulse sequences provide anatomical detail not apparent with conventional sequences, demonstrate differences in T2* and show patterns of both increased and decreased enhancement in tendinopathy.

  15. Broadband Echo Sequence Using a π Composite Pulse for the Pure NQR of a Spin I = {3}/{2} Powder Sample

    Science.gov (United States)

    Odin, Christophe

    2000-04-01

    This work presents a numerical approach to optimizing sequences with composite pulses for the pure NQR of a spin I = {3}/{2} powder sample. The calculations are based on a formalism developed in a previous paper, which allows a fast powder-averaging procedure to be implemented. The framework of the Cayley-Klein matrices to describe space rotations by 2 × 2 unitary and unimodular complex matrices is used to calculate the pulse propagators. The object of such a study is to design a high-performance echo sequence composed of a single preparation pulse and a three-pulse composite transfer pulse. We mean a sequence leading to a large excitation bandwidth with a good signal-to-noise ratio, a flat excitation profile near the irradiation frequency, and a good linearity of the phase as a function of frequency offset. Such a composite echo sequence is intended to give a better excitation profile than the classical Hahn (θ)-τ-(2θ) echo sequence. It is argued that in pure NQR of a powder sample, the sequence must be optimized as a whole since both the excitation and the reception of the signal depend on the relative orientation of the crystallites with respect to the coil axis. To our knowledge, this is the first time such a global approach is presented. An extensive numerical study of the composite echo sequence described above is performed in this article. The key of the discrimination between the sequences lies in using the first five reduced moments of the excitation profile as well as an estimator of the phase linearity. Based on such information, we suggest that the echo sequence that best fulfills our criterion is (1)0-τ-(0.35)0(2.1)π(0.35)0, the pulse angles ωRFtp being in radians. The subscripts are the relative pulse phases. We outlined the way to implement the spin echo mapping method to reconstruct large spectra with this sequence, and it is shown that it reduces the acquisition time by a factor of 1.7 if compared to the classical Hahn echo. Some other

  16. A genetic algorithm for finding pulse sequences for NMR quantum computing

    CERN Document Server

    Rethinam, M J; Behrman, E C; Steck, J E; Skinner, S R

    2004-01-01

    We present a genetic algorithm for finding a set of pulse sequences, or rotations, for a given quantum logic gate, as implemented by NMR. We demonstrate the utility of the method by showing that shorter sequences than have been previously published can be found for both a CNOT and for the central part of Shor's algorithm (for N=15.) Artificial intelligence techniques like the genetic algorithm here presented have an enormous potential for simplifying the implementation of working quantum computers.

  17. Sensitivity of the NMR density matrix to pulse sequence parameters: a simplified analytic approach.

    Science.gov (United States)

    Momot, Konstantin I; Takegoshi, K

    2012-08-01

    We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.

  18. 15 K pulse tube design for ECHO mission

    Science.gov (United States)

    Duval, J. M.; Charles, I.; Chassaing, C.; Butterworth, J.; Aigouy, G.; Mullié, J.

    2014-01-01

    The Exoplanet Characterisation Observatory (EChO) is a proposed space telescope designed to characterize the atmospheres of nearby transiting exoplanets. Its detectors will operate in the 0.4 to 11 micromillimeter range. Two kinds of detectors are currently able to provide the desired sensitivity in this range. Depending on the technology used, cooling to either 6 K or about 30 K will be required. For the former solution, a JT cooler coupled to a pulse tube cooler could be used whereas for the latter, a pulse tube cooler would provide the cooling power. Pulse tube coolers are particularly well adapted for the cryogenics for such mission because of the low level of vibration required and of the temperature range. We developed multistage pulse tube coolers able to cool down to temperature as low as 6 K, with efficient operation from 10 K to 40 K. A design based on our tested prototypes is proposed to fulfill the need for the ECHO missions. This paper describes the experimental results measured with demonstrator models. In particular measured performances of efficient cooling power at 10 K are presented. Several possible configurations for the ECHO cooler will be discussed as well.

  19. Design and testing of a 320 MW pulsed power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, J.B.; Boenig, H.J. [Los Alamos National Lab., NM (United States); Ferner, J.A. [National High Magnetic Field Lab., Tallahassee, FL (United States)] [and others

    1998-03-01

    For a 60 Tesla, 100 millisecond long pulse magnet five 64 MW (87.6 MVA) power converter modules have been installed. Each module provides a no-load voltage of 4.18 kV and a full load voltage of 3.20 kV at the rated current of 20 kA. The modules are connected to a 1,430 MVA/650 MJ inertial energy storage generator set, which is operated at 21 kV and frequencies between 60 and 42 Hz. They are designed to provide the rated power output for 2 seconds once every hour. Each module consists of two 21 kV/3.1 kV cast coil transformers and two 6-pulse rectifiers connected in parallel without an interphase reactor, forming a 12-pulse converter module. As far as possible standard high power industrial converter components were used, operated closer to their allowable limits. The converters are controlled by three programmable high speed controllers. In this paper the design of the pulsed converters, including control and special considerations for protection schemes with the converters supplying a mutually coupled magnet system, is detailed. Test results of the converters driving an ohmic-inductive load for 2 seconds at 20 kA and 3.2 kV are presented.

  20. A Prototype of Reflection Pulse Oximeter Designed for Mobile Healthcare.

    Science.gov (United States)

    Lu, Zhiyuan; Chen, Xiang; Dong, Zhongfei; Zhao, Zhangyan; Zhang, Xu

    2016-09-01

    This paper introduces a pulse oximeter prototype designed for mobile healthcare. In this prototype, a reflection pulse oximeter is embedded into the back cover of a smart handheld device to offer the convenient measurement of both heart rate (HR) and SpO2 (estimation of arterial oxygen saturation) for home or mobile applications. Novel and miniaturized circuit modules including a chopper network and a filtering amplifier were designed to overcome the influence of ambient light and interferences that are caused by embedding the sensor into a flat cover. A method based on adaptive trough detection for improved HR and SpO2 estimation is proposed with appropriate simplification for its implementation on mobile devices. A fast and effective photoplethysmogram validation scheme is also proposed. Clinical experiments have been carried out to calibrate and test our oximeter. Our prototype oximeter can achieve comparable performance to a clinical oximeter with no significant difference revealed by paired t -tests ( p = 0.182 for SpO2 measurement and p = 0.496 for HR measurement). The design of this pulse oximeter will facilitate fast and convenient measurement of SpO2 for mobile healthcare.

  1. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.

    Science.gov (United States)

    Sun, Li; Savory, Joshua J; Warncke, Kurt

    2013-08-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range.

  2. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    Science.gov (United States)

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS's photon absorption spectrum. Tuning and controlling the emission and the absorption are of great interest, e.g., for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180∘ rotation. For small interpulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulse frequency, similar satellite peaks with smaller spectral weights, and the net absorption peaks on the sides. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the pulse control allows shifting the absorption peak to a desired position and locks the overall absorption spectrum to the carrier frequency of the driving pulses. A detailed description of the spectrum and its evolution as a function time, the interpulse spacing, and the detuning is presented.

  3. Utility of the FIESTA pulse sequence in body oncologic imaging: review.

    Science.gov (United States)

    Bhosale, Priya; Ma, Jingfei; Choi, Haesun

    2009-06-01

    The FIESTA (fast imaging employing steady-state acquisition) ultrafast pulse sequence provides high-resolution images with outstanding image contrast and high signal-to-noise ratio relative to the single-shot fast spin-echo (SSFSE) sequence. The purpose of this article is to illustrate the utility of the FIESTA sequence in oncologic imaging. Although the FIESTA technique cannot replace standard imaging techniques, it can be used as an excellent adjunct to conventional T1-and T2-weighted sequences for abdominal imaging and for screening the entire abdomen and pelvis at the beginning of the examination. In addition, the motion-insensitive FIESTA sequence is useful in surgical planning, particularly in patients with retroperitoneal tumors and pancreatic cancer because it offers excellent visualization of the vascular anatomy.

  4. Design of a pulse oximeter for price sensitive emerging markets.

    Science.gov (United States)

    Jones, Z; Woods, E; Nielson, D; Mahadevan, S V

    2010-01-01

    While the global market for medical devices is located primarily in developed countries, price sensitive emerging markets comprise an attractive, underserved segment in which products need a unique set of value propositions to be competitive. A pulse oximeter was designed expressly for emerging markets, and a novel feature set was implemented to reduce the cost of ownership and improve the usability of the device. Innovations included the ability of the device to generate its own electricity, a built in sensor which cuts down on operating costs, and a graphical, symbolic user interface. These features yield an average reduction of over 75% in the device cost of ownership versus comparable pulse oximeters already on the market.

  5. Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR

    Science.gov (United States)

    Skinner, Thomas E.; Reiss, Timo O.; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J.

    2003-07-01

    Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for systematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen design criteria were transformation of Iz→ Ix over resonance offsets of ±20 kHz and RF variability of ±5%, with a pulse length of 2 ms. Simulations of the resulting pulse transform Iz→0.995 Ix over the target ranges in resonance offset and RF variability. Acceptably uniform excitation is obtained over a much larger range of RF variability (˜45%) than the strict design limits. The pulse performs well in simulations that include homonuclear and heteronuclear J-couplings. Experimental spectra obtained from 100% 13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and reducing pulse length, we demonstrate experimental excitation of 1H over ±32 kHz, with phase variations in the spectra 93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible by applying more sophisticated implementations of the optimal control formalism.

  6. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam

    2004-01-01

    size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... by a global hypercapnia-induced BOLD signal. To demonstrate the effectiveness of the BOLD normalization approach, gradient-echo BOLD fMRI at 1.5, 4, and 7 T and spin-echo BOLD fMRI at 4 T were performed in human subjects. For neural stimulation, subjects performed sequential finger movements at 2 Hz, while...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...

  7. Steady state effects in a two-pulse diffusion-weighted sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S. [Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Sydney (Australia); Stilbs, Peter [Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-04-21

    In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state.

  8. [Design and implementation of pulse instrument based on DSP].

    Science.gov (United States)

    Jiao, Qiyu; Pang, Chunying

    2013-03-01

    The Traditional Chinese Medical Pulse Instrument uses the HKG-07B infrared pulse sensor to get pulse signal from the body. It makes full use of the TMS320VC5402 chip to realize time-frequency domain parameters extracting, classification and identification of the pulse signal. The system can store a plenty of pulse signal and realize data communication with the PC via the USB interface. According to acquisition and classification of pulse signal experiments of 200 subjects, the results show that the recognition rate of pulse signal can reach to 87.4%. It is applicable to the clinical diagnosis and detection of the pulse signal and home healthcare.

  9. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  10. An improved pulse sequence and inversion algorithm of T2 spectrum

    Science.gov (United States)

    Ge, Xinmin; Chen, Hua; Fan, Yiren; Liu, Juntao; Cai, Jianchao; Liu, Jianyu

    2017-03-01

    The nuclear magnetic resonance transversal relaxation time is widely applied in geological prospecting, both in laboratory and downhole environments. However, current methods used for data acquisition and inversion should be reformed to characterize geological samples with complicated relaxation components and pore size distributions, such as samples of tight oil, gas shale, and carbonate. We present an improved pulse sequence to collect transversal relaxation signals based on the CPMG (Carr, Purcell, Meiboom, and Gill) pulse sequence. The echo spacing is not constant but varies in different windows, depending on prior knowledge or customer requirements. We use the entropy based truncated singular value decomposition (TSVD) to compress the ill-posed matrix and discard small singular values which cause the inversion instability. A hybrid algorithm combining the iterative TSVD and a simultaneous iterative reconstruction technique is implemented to reach the global convergence and stability of the inversion. Numerical simulations indicate that the improved pulse sequence leads to the same result as CPMG, but with lower echo numbers and computational time. The proposed method is a promising technique for geophysical prospecting and other related fields in future.

  11. 7 CFR 1412.32 - Direct payment yield for designated oilseed and pulse crops.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Direct payment yield for designated oilseed and pulse... oilseed and pulse crops. (a) The direct payment yield for designated oilseeds for which a yield was not established by September 30, 2007, and pulse crops for the farm will be determined by multiplying the...

  12. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  13. Diffusion measurements for molecular capsules: pulse sequences effect on water signal decay.

    Science.gov (United States)

    Avram, Liat; Cohen, Yoram

    2005-04-20

    Diffusion NMR and, more recently, diffusion ordered spectroscopy (DOSY) are gaining popularity as efficient tools for the characterization of supramolecular systems in solution. Here, using diffusion NMR of hydrogen-bond molecular capsules, we demonstrate that the use of different diffusion sequences may have a dramatic effect on exchanging peaks. In fact, we found that the signal decay of the water peak in [(1a)(6)(H(2)O)(8)] is monoexponential in the pulsed gradient spin-echo (PGSE) and stimulated echo (PGSTE) sequences and biexponential in the longitudinal eddy current delay (LED) and the bipolar longitudinal eddy current delay (BPLED) sequences, routinely used in modern DOSY experiments. By performing these diffusion measurements on molecular capsules, in which water is not part of the molecular capsules, we demonstrate that this phenomenon is observed only for water molecules that exchange between two sites that differ considerably in their diffusion coefficients. Degeneration of the LED or the BPLED sequences into PGSTE-type sequences by shortening the te period resulted in the disappearance of the extra slow diffusing component. The origin, as well as the implications of the different results obtained from conventional diffusion sequences, such as the PGSE and PGSTE as compared with the LED and BPLED sequences generally used in DOSY experiments, are briefly discussed.

  14. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  15. ASIC Design and Implementation for Digital Pulse Compression Chip

    Institute of Scientific and Technical Information of China (English)

    高俊峰; 韩月秋; 王巍

    2004-01-01

    A novel ASIC design of changeable-point digital pulse compression (DPC) chip is presented. System hardware resource is reduced to one third of the traditional design method through operations sharing hardware, i.e. let FFT, complex multiplication and IFFT be fulfilled with the same hardware structure. Block-floating-point scaling is used to enhance the dynamic range and computation accuracy. This design applies parallel pipeline structure and the radix-4 butterfly operation to improve the processing speed. In addition, a triple-memory-space(TMS) configuration is used that allows input, computation and output operations to be overlapped, so that the dual-butterfly unit is never left in an idle state waiting for I/O operation. The whole design is implemented with only one chip of XC2V500-5 FPGA. It can implement 1 024-point DPC within 91.6 μs.The output data is converted to floating-point formation to achieve seamless interface with TMS320C6701. The validity of the design is verified by simulation and measurement results.

  16. Development of Nuclear Magnetic Resonance Pulse Sequences and Probes to Study Biomacromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Krishnan, V V; Maxwell, R

    2001-02-26

    The determination of the three dimensional structures at high resolution of biomolecules, such as proteins and nucleic acids, enables us to understand their function at the molecular level. At the present time, there are only two methods available for determining such structures, nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Compared to well-established X-ray diffraction techniques, NMR methodology is relatively new and has many areas in which improvement can still be attained. In this project, we focused on the development of new NMR probes and pulse sequences that were tailored to tackle specific problems that are not adequately addressed by current technology. Probes are the hardware that contain the radio frequency (RF) circuitry used to both excite and detect the NMR signals. Pulse sequences are composed of a series of RF pulses and delays, which are applied to the sample held within the magnetic field by the probe, so as to manipulate the nuclear spins. Typically, a probe is developed for a specific set of nuclei and types of experiments and the pulse sequences are then written to use the probe in an optimal manner. In addition, the inter-development of instrumentation and methods are determined by the specific biological question to be examined. Thus our efforts focused on addressing an area of importance in NMR Structural Biology namely more effective ways to use the phosphorus ({sup 31}P) nucleus. Phosphorus is a very important biological element that is strategically located in nucleic acids, where it imparts negative charge and flexibility to RNA and DNA. It is also a component of the cellular membrane and thus interacts with membrane proteins. It is used in mechanisms to signal, activate or deactivate enzymes; and participates in energy storage and release. However, the phosphorus nucleus exhibits certain properties, such as poor spectral dispersion, low sensitivity of detection, and fast relaxation, which limit its effective use

  17. On the computational complexity of sequence design problems

    Energy Technology Data Exchange (ETDEWEB)

    Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.

    1996-12-31

    Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparent difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. The authors evaluate the practical relevance of two sequence design problems by analyzing their computation complexity. They show that the canonical method of sequence design is intractable, and describe approximation algorithms for this problem. The authors also describe an efficient algorithm that exactly solves the grand canonical method. The analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need to analyze these problems to evaluate their practical relevance.

  18. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    Science.gov (United States)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  19. Electronics for the pulsed rubidium clock: design and characterization.

    Science.gov (United States)

    Calosso, Claudio E; Micalizio, Salvatore; Godone, Aldo; Bertacco, Elio K; Levi, Filippo

    2007-09-01

    Pulsing the different operation phases of a vapor-cell clock (optical pumping, interrogation, and detection) has been recognized as one of the most effective techniques to reduce light shift and then to improve the stability perspectives of vapor cell clocks. However, in order to take full advantage of the pulsed scheme, a fast-gated electronics is required, the times involved being of the order of milliseconds. In this paper we describe the design and the implementation of the electronics that synchronizes the different phases of the clock operation, as well as of the electronics that is mainly devoted to the thermal stabilization of the clock physics package. We also report some characterization measurements, including a measurement of the clock frequency stability. In particular, in terms of Allan deviation, we measured a frequency stability of 1.2 x 10(-12) tao(-1/2) for averaging times up to tao = 10(5) s, a very interesting result by itself and also for a possible space application of such a clock.

  20. Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; PENG Yongzhen; YANG Anming; GUO Jianhua; LI Jianfeng

    2007-01-01

    The feasibility of pH and oxidation reduction potential (ORP) as on-line control parameters to advance nitrogen removal in pulsed sequencing batch reactors (SBR)was evaluated.The pulsed SBR,a novel operational mode of SBR,was utilized to treat real municipal wastewater accompanied with adding ethanol as external carbon source.It was observed that the bending-point (apex and knee) of pH and ORP profiles can be used to control denitrification process at a low influent C/N ratio while dpH/dt can be used to control the nitrification and denitrification process at a high influent C/N ratio.The experimental results demonstrated that the effluent total nitrogen can be reduced to lower than 2 mg/L,and the average total nitrogen (TN) removal efficiency was higher than 98% by using real-time controll strategy.

  1. CANADA: designing nucleic acid sequences for nanobiotechnology applications.

    Science.gov (United States)

    Feldkamp, Udo

    2010-02-01

    The design of nucleic acid sequences for a highly specific and efficient hybridization is a crucial step in DNA computing and DNA-based nanotechnology applications. The CANADA package contains software tools for designing DNA sequences that meet these and other requirements, as well as for analyzing and handling sequences. CANADA is freely available, including a detailed manual and example input files, at http://ls11-www.cs.uni-dortmund.de/molcomp/downloads.

  2. Improved taboo search algorithm for designing DNA sequences

    Institute of Scientific and Technical Information of China (English)

    Kai Zhang; Jin Xu; Xiutang Geng; Jianhua Xiao; Linqiang Pan

    2008-01-01

    The design of DNA sequences is one of the most practical and important research topics in DNA computing.We adopt taboo search algorithm and improve the method for the systematic design of equal-length DNA sequences,which can satisfy certain combinatorial and thermodynamic constraints.Using taboo search algorithm,our method can avoid trapping into local optimization and can find a set of good DNA sequences satisfying required constraints.

  3. A noncontrast-enhanced pulse sequence optimized to visualize human peripheral vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, Kjell-Inge [Sunnmoere MR-Klinikk, Aalesund (Norway); Storaas, Tryggve [Ullevaal University Hospital, Section for Diagnostic Physics, Department of Radiology, Oslo (Norway); Geitung, Jonn-Terje [Haraldsplass University Hospital, Department of Radiology, Bergen (Norway)

    2009-01-15

    The purpose of this paper is to present a pulse sequence optimized to visualize human peripheral vessels. The optimized MR technique is a 3D multi-shot balanced non-SSFP gradient echo pulse sequence with fat suppression. Several imaging parameters were adjusted to find the best compromise between the contrast of vascular structures and muscle, fat, and bone. Most of the optimization was performed in the knee and calf regions using multi-channel SENSE coils. To verify potential clinical use, images of both healthy volunteers and volunteers with varicose veins were produced. The balanced non-SSFP sequence can produce high-spatial-resolution images of the human peripheral vessels without the need for an intravenous contrast agent. Both arteries and veins are displayed along with other body fluids. Due to the high spatial resolution of the axial plane source or reconstructed images, the need for procedures to separate arteries from veins is limited. We demonstrate that high signals from synovial joint fluid and cystic structures can be suppressed by applying an inversion prepulse but at the expense of reduced image signal-to-noise and overall image quality. (orig.)

  4. Compact FPGA-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    CERN Document Server

    Pruttivarasin, Thaned

    2015-01-01

    We present a compact FPGA-based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 TTL channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube (PMT). There are 16 independent direct-digital-synthesizers (DDS) RF sources with fast (rise-time of ~60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  5. Design and Study of Data Acquisition System for Pulsed γ Dose Measurement Device

    Institute of Scientific and Technical Information of China (English)

    DOU; Yu-ling; YANG; Shao-hua; ZHANG; Guo-guang

    2012-01-01

    <正>A data acquisition system for online pulsed gamma dose measurement device was designed and developed (Fig. 1), and its performance was tested. The results show that the data acquisition system in both the continued and pulsed input, output electric charges and input energy have a good linear relationship. Experiments were done respectively on the XRS-3 pulsed source and re-frequency

  6. Influence of potential pulses amplitude sequence in a voltammetric electronic tongue (VET) applied to assess antioxidant capacity in aliso.

    Science.gov (United States)

    Fuentes, Esteban; Alcañiz, Miguel; Contat, Laura; Baldeón, Edwin O; Barat, José M; Grau, Raúl

    2017-06-01

    Four signals configurations were studied, two of them built by small increases of potential and two with bigger increments. The highest current values were obtained when pulses with bigger change of potential were used although the best results were shown by the pulse sequence which included an intermediate pulse before the relevant pulse. A mathematical model based on trolox pattern was developed to predict antioxidant capacity of aliso, employing information obtained from all the electrodes, although model validation could be done only employing the information from gold electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Off-resonance effects in (14)N NQR signals from the pulsed spin-locking (PSL) and three-pulse echo sequence; a study for monoclinic TNT.

    Science.gov (United States)

    Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie

    2015-10-01

    In NQR detection applications signal averaging by the summation of rapidly regenerated signals from multiple pulse sequences of the pulsed spin-locking (PSL) type is often used to improve sensitivity. It is important to characterise and if possible minimise PSL sequence off-resonance effects since they can make it difficult to optimise detection performance. We illustrate this with measurements of the variation of the decay time T2e and the amplitude of PSL signal trains with pulse spacing and excitation offset frequency for the 870 kHz ν+(14)N NQR line of monoclinic TNT under carefully stabilised temperature conditions. We have also carried out a similar study of signals from monoclinic TNT and 1H-1,2,3-triazole generated by a three-pulse echo sequence and the results are shown to agree well with a theoretical treatment appropriate to polycrystalline NQR samples such as TNT for which spin I=1, asymmetry parameter η≠0 and T1≫T2. Based on this theory we derive simple models for calculating TNT PSL signal trains and hence the pulse spacing and off-resonance dependence of signal amplitude and T2e which we compare to our experimental data. We discuss the influence of PSL echo summation on off-resonance effects in detected signal intensity and show how a phase-alternated multiple pulse sequence can be used in combination with the PSL sequence to eliminate variation in detection performance due to off-resonance effects.

  8. FID-SPI pulse sequence for quantitative MRI of fluids in porous media.

    Science.gov (United States)

    Marica, Florea; Goora, Frédéric G; Balcom, Bruce J

    2014-03-01

    MRI has great potential for providing quantitative, spatially resolved information about fluids imbibed in porous media. The pure phase encode SPRITE technique has proven to be a very general method for the generation of density images in porous media; however, low flip-angle RF pulses and broad filter widths, required by short encoding times, yield sub-optimal S/N images. A 1-D phase-encoding sequence for T2(∗) mapping, named FID-SPI, is presented and analyzed in terms of image quality and accuracy of fluid content distribution in porous media. Extension to 2-D and 3-D imaging was straightforward and images of heterogeneous samples are presented. The FID-SPI measurement results in a series of individual T2(∗) weighted images acquired following RF excitation and pulsed phase-encoding gradients. Key to the performance of the FID-SPI method is high quality control of the magnetic field gradient pulse to ensure each FID point has identical spatial encoding. FID-SPI is intended for a quantitative determination of the spatially resolved fluid content in heterogeneous porous media, having the ability to determine the T2(∗) decay for each image pixel. T2(∗) mapping aids in estimation of the local fluid content.

  9. FID-SPI pulse sequence for quantitative MRI of fluids in porous media

    Science.gov (United States)

    Marica, Florea; Goora, Frédéric G.; Balcom, Bruce J.

    2014-03-01

    MRI has great potential for providing quantitative, spatially resolved information about fluids imbibed in porous media. The pure phase encode SPRITE technique has proven to be a very general method for the generation of density images in porous media; however, low flip-angle RF pulses and broad filter widths, required by short encoding times, yield sub-optimal S/N images. A 1-D phase-encoding sequence for T2∗ mapping, named FID-SPI, is presented and analyzed in terms of image quality and accuracy of fluid content distribution in porous media. Extension to 2-D and 3-D imaging was straightforward and images of heterogeneous samples are presented. The FID-SPI measurement results in a series of individual T2∗ weighted images acquired following RF excitation and pulsed phase-encoding gradients. Key to the performance of the FID-SPI method is high quality control of the magnetic field gradient pulse to ensure each FID point has identical spatial encoding. FID-SPI is intended for a quantitative determination of the spatially resolved fluid content in heterogeneous porous media, having the ability to determine the T2∗ decay for each image pixel. T2∗ mapping aids in estimation of the local fluid content.

  10. Comparison of different pulse sequences for in vivo determination of T1 relaxation times in the human brain

    DEFF Research Database (Denmark)

    Kjaer, L; Henriksen, O

    1988-01-01

    ). T1 measurements were performed on the human brain using a whole body MR scanner operating at 1.5 tesla. Three different pulse sequences were compared including two 6-points inversion recovery (IR) sequences with TR = 2.0 s and 4.0, respectively, and a 12-points partial saturation inversion recovery...

  11. Dynamics in Sequence Space for RNA Secondary Structure Design.

    Science.gov (United States)

    Matthies, Marco C; Bienert, Stefan; Torda, Andrew E

    2012-10-01

    We have implemented a method for the design of RNA sequences that should fold to arbitrary secondary structures. A popular energy model allows one to take the derivative with respect to composition, which can then be interpreted as a force and used for Newtonian dynamics in sequence space. Combined with a negative design term, one can rapidly sample sequences which are compatible with a desired secondary structure via simulated annealing. Results for 360 structures were compared with those from another nucleic acid design program using measures such as the probability of the target structure and an ensemble-weighted distance to the target structure.

  12. Statistical design and analysis of RNA sequencing data.

    Science.gov (United States)

    Auer, Paul L; Doerge, R W

    2010-06-01

    Next-generation sequencing technologies are quickly becoming the preferred approach for characterizing and quantifying entire genomes. Even though data produced from these technologies are proving to be the most informative of any thus far, very little attention has been paid to fundamental design aspects of data collection and analysis, namely sampling, randomization, replication, and blocking. We discuss these concepts in an RNA sequencing framework. Using simulations we demonstrate the benefits of collecting replicated RNA sequencing data according to well known statistical designs that partition the sources of biological and technical variation. Examples of these designs and their corresponding models are presented with the goal of testing differential expression.

  13. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms.

  14. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.

    Science.gov (United States)

    Wang, Y Y; Peng, Xiang; Alharbi, M; Dutin, C Fourcade; Bradley, T D; Gérôme, F; Mielke, Michael; Booth, Timothy; Benabid, F

    2012-08-01

    We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500 nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74 μJ, 850 fs, and 40 kHz repetition rate ultrashort pulse at 1550 nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105 μJ laser pulse from 850 fs down to 300 fs has been achieved by operating the fiber in ambient air.

  15. Design Optimisation of Parachute Sequencer Mechanism

    Directory of Open Access Journals (Sweden)

    C. M. Kulkarni

    1992-01-01

    Full Text Available Fragment hit density and hit probability of the warhead are the critical parameters in the selection of a preformed fragment-type missile warhead against ground targets. Hence these factors are to be maximised. The parametric studies of these factors have lead to a new concept of variable mass preformed fragmented (VMPF warhead. A philosophy was evolved for the VMPF-type missile warheads. A computer software for generating the external configuration of the VMPF-type missile warhead was developed and basic algorithm is discussed in this paper. With this new design approach, the fragment hit density and hit probability were improved considerably in the shorter ranges, when compared to that of a uniform mass preformed fragmented warhead of conventional design.

  16. Interferometer design and controls for pulse stacking in high power fiber lasers

    Science.gov (United States)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  17. 11-interval PFG pulse sequence for improved measurement of fast velocities of fluids with high diffusivity in systems with short T2∗

    Science.gov (United States)

    Boyce, C. M.; Rice, N. P.; Sederman, A. J.; Dennis, J. S.; Holland, D. J.

    2016-04-01

    Magnetic resonance (MR) was used to measure SF6 gas velocities in beds filled with particles of 1.1 mm and 0.5 mm in diameter. Four pulse sequences were tested: a traditional spin echo pulse sequence, the 9-interval and 13-interval pulse sequence of Cotts et al. (1989) and a newly developed 11-interval pulse sequence. All pulse sequences measured gas velocity accurately in the region above the particles at the highest velocities that could be achieved (up to 0.1 m s-1). The spin echo pulse sequence was unable to measure gas velocity accurately in the bed of particles, due to effects of background gradients, diffusivity and acceleration in flow around particles. The 9- and 13-interval pulse sequence measured gas velocity accurately at low flow rates through the particles (expected velocity <0.06 m s-1), but could not measure velocity accurately at higher flow rates. The newly developed 11-interval pulse sequence was more accurate than the 9- and 13-interval pulse sequences at higher flow rates, but for velocities in excess of 0.1 m s-1 the measured velocity was lower than the expected velocity. The increased accuracy arose from the smaller echo time that the new pulse sequence enabled, reducing selective attenuation of signal from faster moving nuclei.

  18. Using Novel Pulse Sequences for Magnetic Resonance Imaging of 31Phosphorus in Hard and Soft Solids

    Science.gov (United States)

    Frey, Merideth A.

    Since its invention in 1973, magnetic resonance imaging (MRI) has become an invaluable tool for clinical medicine, fundamental biomedical research, the physical sciences, and engineering. The vast majority of all MRI studies, in medicine and beyond, detect only the signal from a single nuclear isotope, 1H, in liquid water. Extending the reach of MRI to the study of other elements, and to hard or soft solids, opens new frontiers of discovery. In practice, however, the slower motion of the nuclei in solid environments compared to 1H in water results in much broader magnetic resonance (MR) spectra, limiting both the attainable spatial resolution and the signal-to-noise. Our lab recently discovered a novel nuclear magnetic resonance (NMR) pulse sequence while doing fundamental research related to the 'spins in semiconductors' approach to quantum computing. This sequence can greatly narrow the MR linewidth of solids, and it opens a new path to do high-resolution MRI of various nuclei in solids. In this thesis work, I use our quadratic echo line-narrowing pulse sequence to take the highest resolution MR images of 31P in hard and soft solids using a conventional animal MRI system. I also discuss strategies to accelerate the imaging speed by making use of sparse MRI techniques as well as a new algorithm developed in our lab to do fast and accurate image reconstruction from sparse data. For future work, I propose ways to enhance spatial resolution and speed up imaging as well as discuss the potential applications of this work to a wider range of scientific problems.

  19. Facility Layout Based on Sequence Analysis: Design of Flowshops

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; WU Zhi-ming

    2009-01-01

    A computer-aided method to design a hybrid layout-tree-shape planar flowlines is presented. In new-type flowshop layout, the common machines shared by several flowlines could be located together in functional sections. The approach combines traditional cell formation techniques with sequence alignment algorithms. Firstly, a sequence analysis based cell formation procedure is adopted; then the operation sequences for parts are aligned to maximize machines adjacency in hyperedge representations; finally a tree-shape planar flowline will be obtained for each part family. With the help of a sample of operation sequences obtained from industry, this algorithm is illustrated.

  20. Increased signal intensity on fat-suppressed three-dimensional T1-weighted pulse sequences in patellar tendon: magic angle effect?

    Energy Technology Data Exchange (ETDEWEB)

    Karantanas, A.H.; Zibis, A.H. [CT-MRI Dept., Larissa General Hospital, Larissa (Greece); Papanikolaou, N. [Radiology Dept., University of Crete, Heraklion (Greece)

    2001-02-01

    Objective. To assess the frequency of increased signal intensity in the patellar tendon using three-dimensional T1-weighted MRI pulse sequences. Design and patients. Sixty patients were examined with a 1.0 T scanner (15mT/m gradient strength) using a quadrature coil. Three pulse sequences were applied in the sagittal plane: PD turbo spin echo (PD-TSE), 3D T1-weighted gradient echo with fat suppression (3D-T1-FFE-FS) and 3D T1-weighted echo planar imaging with fat suppression (3D-T1-EPI-FS). The high signal intensity areas were measured in their maximum length. The angle of the patellar tendon relative to the main field position was measured in the same slice. In eight patients with anterior knee pain, and in 11 with no anterior knee pain, a fourth T2-weighted TSE pulse sequence (T2-TSE) was obtained to rule out patellar tendinitis. Results. The correlation of the high signal intensity areas with the relative position of the tendon was found to be significant with the 3D sequences (P=0.03 for 3D-T1-FFE-FS and P=0.003 for 3D-T1-EPI-FS). The length of the high signal intensity area in the tendon was 5.4 mm with 3D-T1-FFE-FS, 4.9 mm with 3D-T1-EPI-FS and 3.1 mm with PD-TSE images. No patellar tendinitis was demonstrated on the T2-TSE images. Conclusion. The magic angle effect is commonly observed in the 3D based T1-weighted pulse sequences with fat suppression. The presence of the above sign must be recognized by radiologists, so that misdiagnosis of patellar tendinitis is avoided. (orig.)

  1. Simulation of diagnostic ultrasound image pulse sequences in cavitation bioeffects research.

    Science.gov (United States)

    Miller, Douglas L; Dou, Chunyan; Wiggins, Roger C

    2007-10-01

    Research on cavitational bioeffects of diagnostic ultrasound (DUS) typically involves a diagnostic scanner as the exposure source. However, this can limit the ranges of exposure parameters for experimentation. Anesthetized hairless rats were mounted in a water bath and their right kidneys were exposed to ultrasound. Amplitude modulation with Gaussian envelopes simulated the image pulse sequences (IPSs) produced by diagnostic scanning. A 10 mulkgmin IV dose of Definity((R)) contrast agent was given during 1-5 min exposures. Glomerular capillary hemorrhage was assessed by histology. A stationary exposure approximated the bioeffects induced by DUS within the beam area. However, the use of five closely spaced exposures more faithfully reproduced the total effect produced within a DUS scan plane. Single pulses delivered at 1 s intervals induced the same effect as the simulated DUS. Use of 100 ms triangle-wave modulations for ramp-up or ramp-down of the IPS gave no effect or a large effect, respectively. Finally, an air-backed transducer simulating DUS without contrast agent showed a zero effect even operating at twice the present DUS guideline upper limit. Relatively simple single-element laboratory exposure systems can simulate diagnostic ultrasound exposure and allow exploration of parameter ranges beyond those available on present clinical systems.

  2. Optimal Design and Experimental characterisation of short optical pulse compression using CDPF

    DEFF Research Database (Denmark)

    Yujun, Qian; Quist, S.

    1999-01-01

    We present optimal design and experimental characterisation ofoptical pulse compression using a comblike dispersion-profiled fibre(CDPF). A pulse train at 10GHz with puslewidth of 1ps and side-lobesuppression of 30dB can be obtained.......We present optimal design and experimental characterisation ofoptical pulse compression using a comblike dispersion-profiled fibre(CDPF). A pulse train at 10GHz with puslewidth of 1ps and side-lobesuppression of 30dB can be obtained....

  3. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences.

    Science.gov (United States)

    Peng, Ze; Fan, Wen; Wang, Liping; Paudel, Dev; Leventini, Dante; Tillman, Barry L; Wang, Jianping

    2017-05-10

    Enabled by the next generation sequencing, target enrichment sequencing (TES) is a powerful method to enrich genomic regions of interest and to identify sequence variations. The objective of this study was to explore the feasibility of probe design from transcript sequences for TES application in calling sequence variants in peanut, an important allotetraploid crop with a large genome size. In this study, we applied an in-solution hybridization method to enrich DNA sequences of seven peanut genotypes. Our results showed that it is feasible to apply TES with probes designed from transcript sequences in polyploid peanut. Using a set of 31,123 probes, a total of 5131 and 7521 genes were targeted in peanut A and B genomes, respectively. For each genotype used in this study, the probe target capture regions were efficiently covered with high depth. The average on-target rate of sequencing reads was 42.47%, with a significant amount of off-target reads coming from genomic regions homologous to target regions. In this study, when given predefined genomic regions of interest and the same amount of sequencing data, TES provided the highest coverage of target regions when compared to whole genome sequencing, RNA sequencing, and genotyping by sequencing. Single nucleotide polymorphism (SNP) calling and subsequent validation revealed a high validation rate (85.71%) of homozygous SNPs, providing valuable markers for peanut genotyping. This study demonstrated the success of applying TES for SNP identification in peanut, which shall provide valuable suggestions for TES application in other non-model species without a genome reference available.

  4. VERSE-Guided Numerical RF Pulse Design: A Fast Method for Peak RF Power Control

    Science.gov (United States)

    Lee, Daeho; Grissom, William A.; Lustig, Michael; Kerr, Adam B.; Stang, Pascal P.; Pauly, John M.

    2013-01-01

    In parallel excitation, the computational speed of numerical radiofrequency (RF) pulse design methods is critical when subject dependencies and system nonidealities need to be incorporated on-the-fly. One important concern with optimization-based methods is high peak RF power exceeding hardware or safety limits. Hence, online controllability of the peak RF power is essential. Variable-rate selective excitation pulse reshaping is ideally suited to this problem due to its simplicity and low computational cost. In this work, we first improve the fidelity of variable-rate selective excitation implementation for discrete-time waveforms through waveform oversampling such that variable-rate selective excitation can be robustly applied to numerically designed RF pulses. Then, a variable-rate selective excitation-guided numerical RF pulse design is suggested as an online RF pulse design framework, aiming to simultaneously control peak RF power and compensate for off-resonance. PMID:22135085

  5. A novel constraint for thermodynamically designing DNA sequences.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.

  6. A novel constraint for thermodynamically designing DNA sequences.

    Science.gov (United States)

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.

  7. Design and operation of the multiple-pulse driver line on the OMEGA laser

    Science.gov (United States)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Waxer, L. J.

    2016-05-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separately generated pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes, thereby enabling dynamic bandwidth reduction. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate seed sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last SSD grating. The capability of MPD to reduce dynamic bandwidth has been used on a series of campaigns on OMEGA and the performance data are presented.

  8. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  9. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F. [Univ. of Tuebingen (Germany)

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  10. Design of optimal laser pulses to control molecular rovibrational excitation in a heteronuclear diatomic molecule

    Indian Academy of Sciences (India)

    Sitansh Sharma; Gabriel G Balint-Kurti; Harjinder Singh

    2012-01-01

    Optimal control theory in combination with time-dependent quantum dynamics is employed to design laser pulses which can perform selective vibrational and rotational excitations in a heteronuclear diatomic system. We have applied the conjugate gradient method for the constrained optimization of a suitably designed functional incorporating the desired objectives and constraints. Laser pulses designed for several excitation processes of the molecule were able to achieve predefined dynamical goals with almost 100% yield.

  11. Feasibility of pulse wave velocity estimation from low frame rate US sequences in vivo

    Science.gov (United States)

    Zontak, Maria; Bruce, Matthew; Hippke, Michelle; Schwartz, Alan; O'Donnell, Matthew

    2017-03-01

    The pulse wave velocity (PWV) is considered one of the most important clinical parameters to evaluate CV risk, vascular adaptation, etc. There has been substantial work attempting to measure the PWV in peripheral vessels using ultrasound (US). This paper presents a fully automatic algorithm for PWV estimation from the human carotid using US sequences acquired with a Logic E9 scanner (modified for RF data capture) and a 9L probe. Our algorithm samples the pressure wave in time by tracking wall displacements over the sequence, and estimates the PWV by calculating the temporal shift between two sampled waves at two distinct locations. Several recent studies have utilized similar ideas along with speckle tracking tools and high frame rate (above 1 KHz) sequences to estimate the PWV. To explore PWV estimation in a more typical clinical setting, we used focused-beam scanning, which yields relatively low frame rates and small fields of view (e.g., 200 Hz for 16.7 mm filed of view). For our application, a 200 Hz frame rate is low. In particular, the sub-frame temporal accuracy required for PWV estimation between locations 16.7 mm apart, ranges from 0.82 of a frame for 4m/s, to 0.33 for 10m/s. When the distance is further reduced (to 0.28 mm between two beams), the sub-frame precision is in parts per thousand (ppt) of the frame (5 ppt for 10m/s). As such, the contributions of our algorithm and this paper are: 1. Ability to work with low frame-rate ( 200Hz) and decreased lateral field of view. 2. Fully automatic segmentation of the wall intima (using raw RF images). 3. Collaborative Speckle Tracking of 2D axial and lateral carotid wall motion. 4. Outlier robust PWV calculation from multiple votes using RANSAC. 5. Algorithm evaluation on volunteers of different ages and health conditions.

  12. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  13. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing.

    Science.gov (United States)

    Li, Kelvin; Shrivastava, Susmita; Brownley, Anushka; Katzel, Dan; Bera, Jayati; Nguyen, Anh Thu; Thovarai, Vishal; Halpin, Rebecca; Stockwell, Timothy B

    2012-11-06

    In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute's (JCVI) high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus sequence that encapsulates the allelic variation of the targeted

  14. Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism

    DEFF Research Database (Denmark)

    Torpdahl, Mia; Skov, Marianne N.; Sandvang, Dorthe

    2005-01-01

    subspecies enterica isolates. A total of 25 serotypes were investigated that had been isolated from humans or veterinary sources in Denmark between 1995 and 2001. All isolates were genotyped by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and amplified fragment length...

  15. The NC Power Supply Design of Large Current and Wide Frequency Pulse in SEAM

    Directory of Open Access Journals (Sweden)

    Jianping Zhou

    2013-07-01

    Full Text Available There are a lot of ways to achieve large current pulse power supply, and the more common way is to adopt the inverter switching circuit to achieve pulse power supply. The core of the NC power supply design of large current and wide frequency pulse in SEAM is using two-stage modulation. Combined with inverter technology, DC chopper technology and NC technology, it not only can achieve the adjustability of the output pulse amplitude, but also can realize continuous adjustment of the output pulses and the duty cycle. The front stage of power supply uses DC/DC transformation circuit with the UC3879 integrated control chip as the core. With the microcontroller as the control core, the backward stage uses DC chopper circuit to achieve the NC power supply of multi-parameter adjustable output large current pulse.

  16. Design and performance of a pulse transformer based on Fe-based nanocrystalline core.

    Science.gov (United States)

    Yi, Liu; Xibo, Feng; Lin, Fuchang

    2011-08-01

    A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.

  17. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    Directory of Open Access Journals (Sweden)

    Jascha D Swisher

    Full Text Available High-resolution functional MRI is a leading application for very high field (7 Tesla human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  18. A Novel Pulse Design Based on Hermite Functions for UWB Communications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the design of a class of pulses that are based on Hermite functions for ultra-wideband communication systems. The presented class of pulses can not only meet the power spectral emission constraints of federal communications commission, but also have a short duration for multiple accesses. This paper gives closed form expressions of auto-and cross-correlation functions of the proposed pulses, which can be used to evaluate the performance of the correlator receiver. Furthermore, the paper investigates, under various channel conditions, the spectrum characteristic and the bit error rate of the pulses' waveforms. The investigation conditions include additive white Gaussian noise channels, multipleaccess interference channels, and fading multipath channels. Our results indicate that our systematic algorithm is flexible for designing ultra-wideband pulses that conform to spectral emission constraints and offer good bit error rate performance.

  19. Finite Element Based Optimal Design Approach for High Voltage Pulse Transformers

    CERN Document Server

    Aguglia, D; Viarouge, P; Cros, J

    2014-01-01

    This paper presents an optimal design methodology of monolithic high voltage pulse transformers based on the direct 2D FEA identification of the electrical equivalent circuit parameters. This method is applied to the preliminary optimal design of the monolithic high voltage pulse transformer for the future CLIC modulators under study at CERN. The feasibility of such a transformer with tight specifications is demonstrated. The predicted performances obtained with the direct 2D FEA optimization process is validated by 3D FEA simulation.

  20. Detection of Subarachnoid Hemorrhage at Acute and Subacute/Chronic Stages: Comparison of Four Magnetic Resonance Imaging Pulse Sequences and Computed Tomography

    Directory of Open Access Journals (Sweden)

    Mei-Kang Yuan

    2005-03-01

    Conclusion: FLAIR and GE T2* MRI pulse sequences, and CT scans, are all statistically significant indicators of acute SAH. GE T2*-weighted images are statistically significant indicators of subacute-to-chronic SAH, whereas other MRI pulse sequences, and CT scans, are not.

  1. MPD: multiplex primer design for next-generation targeted sequencing.

    Science.gov (United States)

    Wingo, Thomas S; Kotlar, Alex; Cutler, David J

    2017-01-05

    Targeted resequencing offers a cost-effective alternative to whole-genome and whole-exome sequencing when investigating regions known to be associated with a trait or disease. There are a number of approaches to targeted resequencing, including microfluidic PCR amplification, which may be enhanced by multiplex PCR. Currently, there is no open-source software that can design next-generation multiplex PCR experiments that ensures primers are unique at a genome-level and efficiently pools compatible primers. We present MPD, a software package that automates the design of multiplex PCR primers for next-generation sequencing. The core of MPD is implemented in C for speed and uses a hashed genome to ensure primer uniqueness, avoids placing primers over sites of known variation, and efficiently pools compatible primers. A JavaScript web application ( http://multiplexprimer.io ) utilizing the MPD Perl package provides a convenient platform for users to make designs. Using a realistic set of genes identified by genome-wide association studies (GWAS), we achieve 90% coverage of all exonic regions using stringent design criteria. Using the first 47 primer pools for wet-lab validation, we sequenced ~25Kb at 99.7% completeness with a mean coverage of 300X among 313 samples simultaneously and identified 224 variants. The number and nature of variants we observe are consistent with high quality sequencing. MPD can successfully design multiplex PCR experiments suitable for next-generation sequencing, and simplifies retooling targeted resequencing pipelines to focus on new targets as new genetic evidence emerges.

  2. EasyExonPrimer: automated primer design for exon sequences.

    Science.gov (United States)

    Wu, Xiaolin; Munroe, David J

    2006-01-01

    EasyExonPrimer is a web-based software that automates the design of PCR primers to amplify exon sequences from genomic DNA. EasyExonPrimer is written in Perl and uses Primer3 to design PCR primers based on the genome builds and annotation databases available at the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). It masks repeats and known single nucleotide polymorphism (SNP) sites in the genome and designs standardised primers using optimised conditions. Users can input genes by RefSeq mRNA ID, gene name or keyword. The primer design is optimised for large-scale resequencing of exons. For exons larger than 1 kb, the user has the option of breaking the exon sequence down into overlapping smaller fragments. All primer pairs are then verified using the In-Silico PCR software to test for uniqueness in the genome. We have designed >1000 pairs of primers for 90 genes; 95% of the primer pairs successfully amplified exon sequences under standard PCR conditions without requiring further optimisation. EasyExonPrimer is available from http://129.43.22.27/~primer/. The source code is also available upon request. Xiaolin Wu (forestwu@mail.nih.gov).

  3. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H- beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  4. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  5. Hybrid Design Optimization of High Voltage Pulse Transformers for Klystron Modulators

    CERN Document Server

    Sylvain, Candolfi; Davide, Aguglia; Jerome, Cros

    2015-01-01

    This paper presents a hybrid optimization methodology for the design of high voltage pulse transformers used in klystron modulators. The optimization process is using simplified 2D FEA design models of the 3D transformer structure. Each intermediate optimal solution is evaluated by 3D FEA and correction coefficients of the 2D FEA models are derived. A new optimization process using 2D FEA models is then performed. The convergence of this hybrid optimal design methodology is obtained with a limited number of time consuming 3D FEA simulations. The method is applied to the optimal design of a monolithic high voltage pulse transformer for the CLIC klystron modulator.

  6. Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses.

    Science.gov (United States)

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-02-17

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

  7. Design development of linear pulse motor type control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Ho; Yu, Je Yong; Kim, Jong In [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    The integral reactor SMART is designed for soluble boron free operation and nuclear heating during reactor startup. These design features require the CEDM to have fine-step movement capability as well as high reliability for the fine reactivity control. This report describes the design characteristics of linear pulse motor (LPM) type control element drive mechanism which meets the SMART design requirements. Following items are discussed in this report : - Design concept of LPM type CEDM -Design Requirements - System descriptions -Materials -Design of linear pulse motor -Design of position indicator -Manufacturability of LPM. The results of this report are to be utilized as the starting point for design development of CEDM for SMART. 13 refs., 38 figs., 2 tabs. (Author)

  8. A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and Huffman coding

    Science.gov (United States)

    Jin, Xin; Nie, Rencan; Zhou, Dongming; Yao, Shaowen; Chen, Yanyan; Yu, Jiefu; Wang, Quan

    2016-11-01

    A novel method for the calculation of DNA sequence similarity is proposed based on simplified pulse-coupled neural network (S-PCNN) and Huffman coding. In this study, we propose a coding method based on Huffman coding, where the triplet code was used as a code bit to transform DNA sequence into numerical sequence. The proposed method uses the firing characters of S-PCNN neurons in DNA sequence to extract features. Besides, the proposed method can deal with different lengths of DNA sequences. First, according to the characteristics of S-PCNN and the DNA primary sequence, the latter is encoded using Huffman coding method, and then using the former, the oscillation time sequence (OTS) of the encoded DNA sequence is extracted. Simultaneously, relevant features are obtained, and finally the similarities or dissimilarities of the DNA sequences are determined by Euclidean distance. In order to verify the accuracy of this method, different data sets were used for testing. The experimental results show that the proposed method is effective.

  9. Polyamide platinum anticancer complexes designed to target specific DNA sequences.

    Science.gov (United States)

    Jaramillo, David; Wheate, Nial J; Ralph, Stephen F; Howard, Warren A; Tor, Yitzhak; Aldrich-Wright, Janice R

    2006-07-24

    Two new platinum complexes, trans-chlorodiammine[N-(2-aminoethyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-2) and trans-chlorodiammine[N-(6-aminohexyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-6) have been synthesized as proof-of-concept molecules in the design of agents that can specifically target genes in DNA. Coordinate covalent binding to DNA was demonstrated with electrospray ionization mass spectrometry. Using circular dichroism, these complexes were found to show greater DNA binding affinity to the target sequence: d(CATTGTCAGAC)(2), than toward either d(GTCTGTCAATG)(2,) which contains different flanking sequences, or d(CATTGAGAGAC)(2), which contains a double base pair mismatch sequence. DJ1953-2 unwinds the DNA helix by around 13 degrees , but neither metal complex significantly affects the DNA melting temperature. Unlike simple DNA minor groove binders, DJ1953-2 is able to inhibit, in vitro, RNA synthesis. The cytotoxicity of both metal complexes in the L1210 murine leukaemia cell line was also determined, with DJ1953-6 (34 microM) more active than DJ1953-2 (>50 microM). These results demonstrate the potential of polyamide platinum complexes and provide the structural basis for designer agents that are able to recognize biologically relevant sequences and prevent DNA transcription and replication.

  10. Comparison of potassium and sodium binding in vivo and in agarose samples using TQTPPI pulse sequence

    Science.gov (United States)

    Schepkin, Victor D.; Neubauer, Andreas; Nagel, Armin M.; Budinger, Thomas F.

    2017-04-01

    Potassium and sodium specific binding in vivo were explored at 21.1 T by triple quantum (TQ) magnetic resonance (MR) signals without filtration to achieve high sensitivities and precise quantifications. The pulse sequence used time proportional phase increments (TPPI). During simultaneous phase-time increments, it provided total single quantum (SQ) and TQ MR signals in the second dimension at single and triple quantum frequencies, respectively. The detection of both TQ and SQ signals was performed at identical experimental conditions and the resulting TQ signal equals 60 ± 3% of the SQ signal when all ions experience sufficient time for binding. In a rat head in vivo the TQ percentage relative to SQ for potassium is 41.5 ± 3% and for sodium is 16.1 ± 1%. These percentages were compared to the matching values in an agarose tissue model with MR relaxation times similar to those of mammalian brain tissue. The sodium TQ signal in agarose samples decreased in the presence of potassium, suggesting a competitive binding of potassium relative to sodium ions for the same binding sites. The TQTPPI signals correspond to almost two times more effective binding of potassium than sodium. In vivo, up to ∼69% of total potassium and ∼27% of total sodium can be regarded as bound or experiencing an association time in the range of several milliseconds. Experimental data analyses show that more than half of the in vivo total sodium TQ signal could be from extracellular space, which is an important factor for quantification of intracellular MR signals.

  11. Very short NMR relaxation times of anions in ionic liquids: new pulse sequence to eliminate the acoustic ringing.

    Science.gov (United States)

    Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas

    2014-11-11

    NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2≈0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ≥10(-8) s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.

  12. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  13. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  14. Low Power Design of High Speed CMOS Pulse Stream Neuron Circuit

    Institute of Scientific and Technical Information of China (English)

    陈继伟; 石秉学

    2000-01-01

    A new pulse stream neuron circuit is presented, which can be obtained in the digital CMOS process and combines both the merits of digital circuits and analog ones. The output is expressed by the frequency of the pulses with transfer characteristic, which is correspondent with the ideal sigmoid curve perfectly. Moreover, the pulse-active strategy is introduced into the design of this CMOS pulse stream neuron circuit for the first time in order to reduce the power dissipation, which is applicable to the low-power design of mixed-signal circuits,too. A simple technical process and compact architecture make this circuit work at a higher speed and with lower power dissipation and smaller area.

  15. Design and construction of double-Blumlein HV pulse power supply

    Indian Academy of Sciences (India)

    Deepak K Gupta; P I John

    2001-10-01

    A double Blumlein pulse generator is constructed using a coaxial cable. This power supply is capable of providing a voltage up to 20 kV across a matched load and 40kV across an open load with a charging voltage of 10 kV. It is designed to provide a pulse width of 110ns. A rise time of ∼10ns is obtained with present spark gap. A rotating spark gap is also designed and constructed to get a pulse repetition rate of 25Hz. Although, in the present work this pulse generator is used to study the streamer discharge in air, it is useful in many other applications also.

  16. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    Science.gov (United States)

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  17. Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Science.gov (United States)

    Houts, R. C.; Vaughn, G. L.

    1974-01-01

    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values.

  18. 1H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    OpenAIRE

    Oliveira, Aline L.; Martinelli,Bruno César B.; Lião,Luciano M.; Pereira,Flávia C.; Silveira-Lacerda,Elisangela P.; Alcantara,Glaucia B.

    2014-01-01

    High resolution magic angle spinning ¹H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies.

  19. Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy.

    Science.gov (United States)

    Reynolds, William F; Enríquez, Raúl G

    2002-02-01

    The relative merits of different pairs of two-dimensional NMR pulse sequences (COSY-90 vs COSY-45, NOESY vs T-ROESY, HSQC vs HMQC, HMBC vs CIGAR, etc.) are compared and recommendations are made for the preferred choice of sequences for natural product structure elucidation. Similar comparisons are made between different selective 1D sequences and the corresponding 2D sequences. Many users of 2D NMR use longer than necessary relaxation delays and neglect to use forward linear prediction processing. It is shown that using shorter relaxation delays in combination with forward linear prediction allows one to get better resolved spectra in less time. The relative merits of different probes and likely future probe developments are also discussed.

  20. Design of an efficient pulsing system for a slow-positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Nagayasu; Suzuki, Takenori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Kanazawa, Ikuzo; Ito, Yasuo

    1996-07-01

    In this paper, a new design of a pulsed slow positron system for PALS measurement is reported. By using this new system, it will be possible to obtain a short-pulsed slow-positron beam with high efficiency ({>=}50%) and a relatively low minimum energy ({approx}200 eV). This system is also easy to construct on the laboratory scale. (J.P.N.)

  1. A pulse sequence optimization method for assessment of nucleus size in q-space analysis of idealized cells.

    Science.gov (United States)

    Duane, Gregory S; Wang, Yanwei; Walters, Blake R; Kim, Jae K

    2014-01-01

    To adjust pulse sequences that produce diffusion-weighted MRI signals for increased sensitivity to nucleus size, the impulse-propagator method in q-space is applied to a spherical geometry that would describe each member of a collection of cells and their nuclei, with several possible representations of the extracellular space. The method is extended to allow propagation between nucleus, cytoplasm, and extracellular space through semi-permeable membranes, using an approximate adjustment of intra-compartment propagators. Diffraction patterns are first calculated for the three compartments separately, for PGSE and OGSE pulse sequences, and verified by comparison with Monte Carlo simulations. The detailed patterns from the separate compartments determine the q value for maximum contrast in the total signal between large and small nuclei, an optimization that is not accurate in a Gaussian Phase Distribution (GPD) approximation. Then diffraction patterns are calculated for the case of linked compartments with semi-permeable membranes. The treatment of permeability adequately estimates pulse-sequence parameters for maximum contrast in calculated signal as nucleus size varies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Dual-frequency tissue harmonic suppression using phase-coded pulse sequence: proof of concept using a phantom.

    Science.gov (United States)

    Shen, Che-Chou; Wang, Hui-Ting

    2013-03-01

    The presence of tissue harmonic generation during acoustic propagation is one major limitation in nonlinear detection of microbubble contrast agents. However, conventional solutions for tissue harmonic suppression are not applicable in dual-frequency (DF) harmonic imaging. In DF harmonic imaging, the second harmonic signal at second harmonic (2f(0)) frequency and the inter-modulation harmonic signal at fundamental (f(0)) frequency are simultaneously generated for imaging and both need to be suppressed to improve contrast-to-tissue ratio (CTR). In this study, a novel phase-coded pulse sequence is developed to accomplish DF tissue harmonic suppression. Phase-coded pulse sequence utilizes multiple firings with equidistant transmit phase for harmonic cancellation in the sum of respective echoes. For the f(0) transmit component, the transmit phase comes from the equidistant set of {-2π/3, 0, 2π/3} to suppress the second harmonic signal at 2f(0) frequency. Moreover, in order to provide the inter-modulation harmonic suppression at f(0) frequency, the 2f(0) transmit phase has to be particularly manipulated for the corresponding f(0) transmit phase. The proposed three-pulse sequence can remove not only the second-order harmonic signal but also other higher-order counterparts at both f(0) and 2f(0) frequencies. Measurements were performed at f(0) equal to 2.25 MHz and using hydrophone in water and contrast agents in tissue phantom. Experimental results indicate that the sequence reduces the tissue harmonic magnitude by about 20 dB along the entire axial depths and the corresponding CTR improves at both frequencies. In DF harmonic imaging, the proposed phase-coded sequence can effectively remove the tissue harmonic background at both f(0) and 2f(0) frequencies for improvement of contrast detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Protecting and accelerating adiabatic passage with time-delayed pulse sequences

    CERN Document Server

    Sampedro, Pablo; Sola, Ignacio R

    2016-01-01

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na$_2$ we show that: i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  4. Unimodular sequence design under frequency hopping communication compatibility requirements

    Science.gov (United States)

    Ge, Peng; Cui, Guolong; Kong, Lingjiang; Yang, Jianyu

    2016-12-01

    The integrated design for both radar and anonymous communication has drawn more attention recently since wireless communication system appeals to enhance security and reliability. Given the frequency hopping (FH) communication system, an effective way to realize integrated design is to meet the spectrum compatibility between these two systems. The paper deals with a unimodular sequence design technique which considers optimizing both the spectrum compatibility and peak sidelobes levels (PSL) of auto-correlation function (ACF). The spectrum compatibility requirement realizes anonymous communication for the FH system and provides this system lower probability of intercept (LPI) since the spectrum of the FH system is hidden in that of the radar system. The proposed algorithm, named generalized fitting template (GFT) technique, converts the sequence optimization design problem to a iterative fitting process. In this process, the power spectrum density (PSD) and PSL behaviors of the generated sequences fit both PSD and PSL templates progressively. Two templates are established based on the spectrum compatibility requirement and the expected PSL. As noted, in order to ensure the communication security and reliability, spectrum compatibility requirement is given a higher priority to achieve in the GFT algorithm. This algorithm realizes this point by adjusting the weight adaptively between these two terms during the iteration process. The simulation results are analyzed in terms of bit error rate (BER), PSD, PSL, and signal-interference rate (SIR) for both the radar and FH systems. The performance of GFT is compared with SCAN, CAN, FRE, CYC, and MAT algorithms in the above aspects, which shows its good effectiveness.

  5. Computational design of short pulse laser driven iron opacity experiments

    Science.gov (United States)

    Martin, M. E.; London, R. A.; Goluoglu, S.; Whitley, H. D.

    2017-02-01

    The resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emission requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.

  6. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications.

    Science.gov (United States)

    Ibrahim, El-Sayed H

    2011-07-28

    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this

  7. Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Sayed H

    2011-07-01

    Full Text Available Abstract Cardiovascular magnetic resonance (CMR tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR, scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1 Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM, delay alternating with nutations for tailored excitation (DANTE, and complementary SPAMM (CSPAMM; and 2 Advanced techniques, which include harmonic phase (HARP, displacement encoding with stimulated echoes (DENSE, and strain encoding (SENC. Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention

  8. Accelerated multidimensional radiofrequency pulse design for parallel transmission using concurrent computation on multiple graphics processing units.

    Science.gov (United States)

    Deng, Weiran; Yang, Cungeng; Stenger, V Andrew

    2011-02-01

    Multidimensional radiofrequency (RF) pulses are of current interest because of their promise for improving high-field imaging and for optimizing parallel transmission methods. One major drawback is that the computation time of numerically designed multidimensional RF pulses increases rapidly with their resolution and number of transmitters. This is critical because the construction of multidimensional RF pulses often needs to be in real time. The use of graphics processing units for computations is a recent approach for accelerating image reconstruction applications. We propose the use of graphics processing units for the design of multidimensional RF pulses including the utilization of parallel transmitters. Using a desktop computer with four NVIDIA Tesla C1060 computing processors, we found acceleration factors on the order of 20 for standard eight-transmitter two-dimensional spiral RF pulses with a 64 × 64 excitation resolution and a 10-μsec dwell time. We also show that even greater acceleration factors can be achieved for more complex RF pulses. Copyright © 2010 Wiley-Liss, Inc.

  9. Recent Pulse Sequences for Heteronuclear Long-Range Correlation and More

    DEFF Research Database (Denmark)

    Sørensen, Ole W.

    This talk will give an overview of the key elements and principles of experiments listed on http://www.crc.dk/nmr/, from where also pulse programs in Bruker and Varian format can be downloaded.......This talk will give an overview of the key elements and principles of experiments listed on http://www.crc.dk/nmr/, from where also pulse programs in Bruker and Varian format can be downloaded....

  10. Nonparametric Interference Suppression Using Cyclic Wiener Filtering: Pulse Shape Design and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Anass Benjebbour

    2008-02-01

    Full Text Available In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.

  11. Nonparametric Interference Suppression Using Cyclic Wiener Filtering: Pulse Shape Design and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Benjebbour Anass

    2008-01-01

    Full Text Available Abstract In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.

  12. Design of a variable width pulse generator feasible for manual or automatic control

    Science.gov (United States)

    Vegas, I.; Antoranz, P.; Miranda, J. M.; Franco, F. J.

    2017-01-01

    A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.

  13. Design of Robust Pulses to Insufficient Synchronization for OFDM/OQAM Systems in Doubly Dispersive Channels

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2015-01-01

    Full Text Available This paper presents a pulse shaping method robust to insufficient synchronization in orthogonal frequency division multiplexing with offset quadrature amplitude modulation (OFDM/OQAM systems over doubly dispersive (DD channels. The proposed pulse is designed as a linear combination of several well localized Hermite functions. The coefficients optimization problem is modeled as a nonconvex constrained fractional programming problem based on the signal-to-interference ratio (SIR maximization criterion. An efficient iterative algorithm is applied to simplify the problem to a series of quadratically constrained quadratic program (QCQP problems which can be solved by semidefinite relaxation (SDR method. Simulation results show that the proposed pulse is superior to traditional pulses with respect to SIR performance over DD channels in the presence of carrier frequency offset (CFO and timing offset (TO.

  14. A blind testing design for authenticating ancient DNA sequences.

    Science.gov (United States)

    Yang, H; Golenberg, E M; Shoshani, J

    1997-04-01

    Reproducibility is a serious concern among researchers of ancient DNA. We designed a blind testing procedure to evaluate laboratory accuracy and authenticity of ancient DNA obtained from closely related extant and extinct species. Soft tissue and bones of fossil and contemporary museum proboscideans were collected and identified based on morphology by one researcher, and other researchers carried out DNA testing on the samples, which were assigned anonymous numbers. DNA extracted using three principal isolation methods served as template in PCR amplifications of a segment of the cytochrome b gene (mitochondrial genome), and the PCR product was directly sequenced and analyzed. The results show that such a blind testing design performed in one laboratory, when coupled with phylogenetic analysis, can nonarbitrarily test the consistency and reliability of ancient DNA results. Such reproducible results obtained from the blind testing can increase confidence in the authenticity of ancient sequences obtained from postmortem specimens and avoid bias in phylogenetic analysis. A blind testing design may be applicable as an alternative to confirm ancient DNA results in one laboratory when independent testing by two laboratories is not available.

  15. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences

    Energy Technology Data Exchange (ETDEWEB)

    Rohloff, M.; Das, S. K.; Hoehm, S.; Grunwald, R.; Rosenfeld, A. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Strasse 2A, D-12489 Berlin (Germany); Krueger, J.; Bonse, J. [BAM Bundesanstalt fuer Materialforschung und -pruefung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2011-07-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses ({approx}0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

  16. Modelling and control design for SHARON/Anammox reactor sequence

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work presents a complete model of the SHARON/Anammox reactor sequence. The dynamics of the reactor were explored pointing out the different scales of the rates in the system: slow microbial...... metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics contributed to establish qualitatively the requirements for control of the reactors, both for regulation and for optimal operation. Work in progress on quantitatively analysing different control structure...

  17. The design and analysis of transposon insertion sequencing experiments.

    Science.gov (United States)

    Chao, Michael C; Abel, Sören; Davis, Brigid M; Waldor, Matthew K

    2016-02-01

    Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the computational analysis of TIS data.

  18. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. : Phase delaying efficacy of intermittent bright light

    OpenAIRE

    2004-01-01

    International audience; It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered du...

  19. Railway network design with multiple project stages and time sequencing

    Science.gov (United States)

    Kuby, Michael; Xu, Zhongyi; Xie, Xiaodong

    This paper presents a spatial decision support system for network design problems in which different kinds of projects can be built in stages over time. It was developed by the World Bank and China's Ministry of Railways to plan investment strategies for China's overburdened railway system. We first present a mixed-integer program for the single-period network design problem with project choices such as single or multiple tracks and/or electrification with economies of scale. Then, because such projects can be built all at once or in stages, we developed a heuristic backwards time sequencing procedure with a cost adjustment factor to solve the ``project staging'' problem. Other innovations include a preloading routine; coordinated modeling of arcs, paths, and corridors; and a custom-built GIS.

  20. Response of the Hodgkin-Huxley neuron to a periodic sequence of biphasic pulses

    CERN Document Server

    Borkowski, L S

    2013-01-01

    We study the response of the Hodgkin-Huxley neuron stimulated periodically by biphasic rectangular current pulses. The optimal response for charge-balanced input is obtained for cathodic-first pulses with an inter-phase gap (IPG) approximately equal 5 ms. For short pulses the topology of the global bifurcation diagram in the period-amplitude plane is approximately invariant with respect to the pulse polarity and shape details. If stimuli are delivered at neuron's resonant frequencies the firing rate is a continuous function of pulse amplitude. At nonresonant frequencies the quiescent state and the firing state coexist over a range of amplitude values and the transition to excitability is a discontinuous one. There is a multimodal odd-all transition between the 2:1 and 3:1 locked-in states. A strong antiresonant effect is found between the states 3:1 and 4:1, where the modes (2+3n):1, $n=0,1,2,...$, are entirely absent. At high frequencies the excitation threshold is a nonmonotonic function of the stimulus and...

  1. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes.

  2. Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods.

    Science.gov (United States)

    Grissom, William A; Khalighi, Mohammad-Mehdi; Sacolick, Laura I; Rutt, Brian K; Vogel, Mika W

    2012-11-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods.

  3. Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

    CERN Document Server

    Poellmann, C; Galopin, E; Lemaître, A; Amo, A; Bloch, J; Huber, R; Ménard, J -M

    2016-01-01

    We present a microcavity structure with a shifted photonic stop-band to enable efficient non-resonant injection of a polariton condensate with spectrally broad femtosecond pulses. The concept is demonstrated theoretically and confirmed experimentally for a planar GaAs/AlGaAs multilayer heterostructure pumped with ultrashort near-infrared pulses while photoluminescence is collected to monitor the optically injected polariton density. As the excitation wavelength is scanned, a regime of polariton condensation can be reached in our structure at a consistently lower fluence threshold than in a state-of-the-art conventional microcavity. Our microcavity design improves the polariton injection efficiency by a factor of 4, as compared to a conventional microcavity design, when broad excitation pulses are centered at a wavelength of 740 nm. Most remarkably, this improvement factor reaches 270 when the excitation wavelength is centered at 750 nm.

  4. Design of large-mode-area three layered fiber structure for femtosecond laser pulse delivery

    Science.gov (United States)

    Babita; Rastogi, Vipul; Kumar, Ajeet

    2013-04-01

    This paper presents three layered fiber that has been designed for delivering pulses of 100-fs through the fundamental mode. Design of the fiber ensures no intermodal coupling, low bending loss, and high fabrication tolerances while maintaining large-mode-area. We numerically demonstrate propagation of 55.5-kW peak power, 1550-nm wavelength, 100-fs duration laser pulse through fundamental mode of 4-m long fiber having mode area of 1900 μm2. Mode stability while propagation through the fiber has been ascertained by keeping enough spacing between the effective indices of LP01 and LP11 modes. Distortion-free propagation of the pulse has been achieved by keeping ratio of dispersion to nonlinear length close to 1.

  5. Optimised design of fibre-based pulse compressor for gain-switched DFB laser pulses at 1.5 µm

    OpenAIRE

    Barry, Liam P.; Thomsen, Benn C.; Dudley, John M.; Harvey, John D.

    1999-01-01

    An optical-fibre based pulse compressor for gain-switched DFB laser pulses has been optimised using a systematic procedure based on the initial complete characterisation of the laser pulses, followed by numerical simulations of the pulse propagation in different types of fibre to determine the required lengths for optimum compression. Using both linear and nonlinear compression techniques, an optimum compression factor of 12 is achieved.

  6. Design study of a 60T pulsed magnet with 10 mu s risetime

    NARCIS (Netherlands)

    Li, L.; Van Bockstal, L.; Herlach, F.; van Amersfoort, W.

    1996-01-01

    A 60 T nondestructive pulsed magnet for the ''Free Electron Laser for;Infrared Experiments'' (FELIX) is developed. As a rise time of 10 mu s is required, the magnet is designed consisting of two coils in order to cope with the skin effect and power requirements. Each of the coils

  7. Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo.

    Science.gov (United States)

    1987-06-01

    performance. This thesis involves computer aided design of a functionally robust brushless dc motor position controller using pulse width modulation...Recent interest in positioning cruise missile flight control surfaces using electromechanical actuation has prompted a detailed study of brushless dc ... motor performance in such an application. While the superior response characteristics of these electronically commutated motors are particularly well

  8. Magnetic resonance imaging of the normal pituitary gland using ultrashort TE (UTE) pulse sequences (REV 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Portman, Olivia; Flemming, Stephen; Cox, Jeremy P.D.; Johnston, Desmond G. [Imperial College Faculty of Medicine, St Mary' s Hospital, Endocrinology and Metabolic Medicine, London (United Kingdom); Bydder, Graeme M. [University of California, San Diego, Department of Radiology, San Diego, CA (United States)

    2008-03-15

    The purpose of this study was to examine the normal pituitary gland in male subjects with ultrashort echo time (TE) pulse sequences, describe its appearance and measure its signal intensity before and after contrast enhancement. Eleven male volunteers (mean age 57.1 years; range 36-81 years) were examined with a fat-suppressed ultrashort TE (= 0.08 ms) pulse sequence. The studies were repeated after the administration of intravenous gadodiamide. The MR scans were examined for gland morphology and signal intensity before and after enhancement. Endocrinological evaluation included baseline pituitary function tests and a glucagon stimulatory test to assess pituitary cortisol and growth hormone reserve. High signal intensity was observed in the anterior pituitary relative to the brain in nine of the 11 subjects. These regions involved the whole of the anterior pituitary in three subjects, were localised to one side in two examples and were seen inferiorly in three subjects. Signal intensities relative to the brain increased with age, with a peak around the sixth or seventh decade and decreasing thereafter. Overall, the pituitary function tests were considered to be within normal limits and did not correlate with pituitary gland signal intensity. The anterior pituitary shows increased signal intensity in normal subjects when examined with T{sub 1}-weighted ultrashort TE pulse sequences. The cause of this increased intensity is unknown, but fibrosis and iron deposition are possible candidates. The variation in signal intensity with age followed the temporal pattern of iron content observed at post mortem. No relationship with endocrine status was observed. (orig.)

  9. Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents%Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents

    Institute of Scientific and Technical Information of China (English)

    王春杰; 汲胜昌; 聂济宇; 欧小波; 韩钟健; 张乔根

    2011-01-01

    A novel pancake Rogowski coil without magnetic core is introduced in this paper. Owing to its special pancake winding structure, the coil is of low self-resistance and high self-inductance, and thus has excellent low frequency characteristic in the self-integral mode. Moreover, because of its unique installation method, the coil has a flexible sensitivity and can be applied under situations where toroidal air-core Rogowski coils or printed aircuit board (PCB) coils are not available. The parameters and performance of the pancake Rogowski coil are presented, and the principle of shielding is given. Measurements of step pulse current and oscillating pulse current by the coil are studied experimentally to illustrate its good linearity, reliable and flexible sensitivity and excellent frequency characteristic, especially its advantage in low frequency characteristic. The pancake Rogowski coil can be designed to assume round, square or rectangle shape, and has thus broad prospects in its application to the current measurement in such areas as plasma physics and pulsed power technology.

  10. Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)

    1994-08-01

    In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)

  11. Intestinal lesions in pediatric Crohn disease: comparative detectability among pulse sequences at MR enterography

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Beomseok; Kim, Myung-Joon; Lee, Mi-Jung [Severance Children' s Hospital, Yonsei University, College of Medicine, Department of Radiology and Research Institute of Radiological Science, Seoul (Korea, Republic of); Koh, Hong [Severance Children' s Hospital, Department of Pediatrics, Seoul (Korea, Republic of); Han, Kyung Hwa [Yonsei University, College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2014-07-15

    Variable sequences can be used in MR enterography, and no consensus exists for the best protocol in children with Crohn disease. To compare the lesion detectability of various MR enterography sequences and to correlate the findings of these sequences with the Pediatric Crohn's Disease Activity Index (PCDAI) in children with Crohn disease. Children with clinically or pathologically confirmed Crohn disease underwent MR enterography, including a single-shot fast spin-echo (SSFSE) sequence, motility imaging (coronal 2-D balanced fast field echo), diffusion-weighted imaging (DWI), and dynamic contrast enhancement imaging (including arterial, portal and delayed phases). The lesion detectability of each sequence was graded 0-2 for each involved bowel segment. The lesion detectability and PCDAI result on different sequences were compared using the weighted least squares method and Student's t-test, respectively. Fifteen children (11 boys, 4 girls, mean age 13.7 ± 1.4 years) with a total of 41 lesions were included in this study. All lesions detected in more than two sequences were visible on the single-shot fast spin-echo (SSFSE) sequence. The relative lesion detection rate was 78.1% on motility imaging, 90.2% on DWI, and 92.7% on arterial, 95.1% on portal and 95.1% on delayed phase imaging. Compared to the SSFSE sequence, motility imaging (P < 0.001) and DWI (P = 0.039) demonstrated lower detectability. The mean PCDAI result in the detected lesions was statistically higher only on dynamic enhancement imaging (P < 0.001). All MR enterography sequences were found to have relatively high lesion detectability in children with Crohn disease, while motility imaging showed the lowest lesion detectability. Lesions detected on dynamic enhancement imaging showed a higher PCDAI result, which suggests that this sequence is specific for active inflammation. (orig.)

  12. A strategy for sampling on a sphere applied to 3D selective RF pulse design.

    Science.gov (United States)

    Wong, S T; Roos, M S

    1994-12-01

    Conventional constant angular velocity sampling of the surface of a sphere results in a higher sampling density near the two poles relative to the equatorial region. More samples, and hence longer sampling time, are required to achieve a given sampling density in the equatorial region when compared with uniform sampling. This paper presents a simple expression for a continuous sample path through a nearly uniform distribution of points on the surface of a sphere. Sampling of concentric spherical shells in k-space with the new strategy is used to design 3D selective inversion and spin-echo pulses. These new 3D selective pulses have been implemented and verified experimentally.

  13. Intestinal lesions in pediatric Crohn disease: comparative detectability among pulse sequences at MR enterography.

    Science.gov (United States)

    Sohn, Beomseok; Kim, Myung-Joon; Koh, Hong; Han, Kyung Hwa; Lee, Mi-Jung

    2014-07-01

    Variable sequences can be used in MR enterography, and no consensus exists for the best protocol in children with Crohn disease. To compare the lesion detectability of various MR enterography sequences and to correlate the findings of these sequences with the Pediatric Crohn's Disease Activity Index (PCDAI) in children with Crohn disease. Children with clinically or pathologically confirmed Crohn disease underwent MR enterography, including a single-shot fast spin-echo (SSFSE) sequence, motility imaging (coronal 2-D balanced fast field echo), diffusion-weighted imaging (DWI), and dynamic contrast enhancement imaging (including arterial, portal and delayed phases). The lesion detectability of each sequence was graded 0-2 for each involved bowel segment. The lesion detectability and PCDAI result on different sequences were compared using the weighted least squares method and Student's t-test, respectively. Fifteen children (11 boys, 4 girls, mean age 13.7 ± 1.4 years) with a total of 41 lesions were included in this study. All lesions detected in more than two sequences were visible on the single-shot fast spin-echo (SSFSE) sequence. The relative lesion detection rate was 78.1% on motility imaging, 90.2% on DWI, and 92.7% on arterial, 95.1% on portal and 95.1% on delayed phase imaging. Compared to the SSFSE sequence, motility imaging (P Crohn disease, while motility imaging showed the lowest lesion detectability. Lesions detected on dynamic enhancement imaging showed a higher PCDAI result, which suggests that this sequence is specific for active inflammation.

  14. Optimization of a conical antenna for pulse radiation - An efficient design using resistive loading

    Science.gov (United States)

    Maloney, James G.; Smith, Glenn S.

    1993-07-01

    The conical monopole antenna with a section of continuous resistive loading is considered as a radiator for temporally short, broad-bandwidth pulses. The geometrical details of the coaxial feed and the resistive loading are varied to optimize this structure for pulse radiation. Compared with the perfectly conducting cone, the optimized resistive cone radiates a better reproduction of the pulse excitation with no loss in amplitude, and has internal reflections that are much smaller in amplitude. Graphical displays of the field surrounding the antenna are used to give insight into the physical processes for transient radiation from this antenna. Experimental models were constructed to verify the optimization and demonstrate the practicality of the design. Measurements of both the reflected voltage in the feed line and the time-varying radiated field are in excellent agreement with the theoretical calculations.

  15. Conceptual design for the superconducting magnet system of a pulsed DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.-L., E-mail: jean-luc.duchateau@cea.fr [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France); Hertout, P.; Saoutic, B.; Magaud, P.; Artaud, J.-F.; Giruzzi, G.; Bucalossi, J.; Johner, J.; Sardain, P.; Imbeaux, F.; Ané, J.-M.; Li-Puma, A. [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France)

    2013-10-15

    Highlights: ► A 1D design approach of a pulsed DEMO reactor is presented. ► The main CS and TF conductor design criteria are presented. ► A typical major radius for a 2 GW DEMO is 9 m. ► A typical plasma magnetic field is 4.9 T. ► The pulse duration is 1.85 h for an aspect ratio of 3. -- Abstract: A methodology has been developed to consistently investigate, taking into account main reactor components, possible magnet solutions for a pulsed fusion reactor aiming at a large solenoid flux swing duration within the 2–3 h range. In a conceptual approach, investigations are carried out in the equatorial plane, taking into account the radial extension of the blanket-shielding zone, of the toroidal field magnet system inner leg and of the central solenoid for estimation of the pulsed swing. Design criteria are presented for the radial extension of the superconducting magnets, which is mostly driven by the structures (casings and conductor jacket). Typical available cable current densities are presented as a function of the magnetic field and of the temperature margin. The magnet design criteria have been integrated into SYCOMORE, a code for reactor modeling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modeling task force. Possible solutions are investigated for a 2 GW fusion power reactor with different aspect ratios. The final adjustment of the DEMO pulsed reactor parameters will have to be consistently done, considering all reactor components, when the final goals of the machine will be completely clarified.

  16. rTPPM: Towards Improving Solid-State NMR Two-Pulse Phase-Modulation Heteronuclear Dipolar Decoupling Sequence by Refocusing

    DEFF Research Database (Denmark)

    Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh

    2014-01-01

    We present here a simple refocused modification, r TPPM, of the Two-Pulse Phase-Modulation (TPPM) heteronuclear decoupling method, which improves decoupling and makes the sequence much more robust with respect to essential experimental parameters. The modified sequence is compared with the establ...

  17. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    Energy Technology Data Exchange (ETDEWEB)

    Barana, Oliviero, E-mail: oliviero.barana@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Nouailletas, Rémy; Brémond, Sylvain; Moreau, Philippe; Allegretti, Ludovic; Balme, Stéphane; Ravenel, Nathalie [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Mannori, Simone [ENEA C.R. Brasimone, 40032 Camugnano (Italy); Guillerminet, Bernard; Leroux, Fabrice; Douai, David; Nardon, Eric; Hertout, Patrick; Saint-Laurent, François [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)

    2013-10-15

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra.

  18. [Design and implementation of the pulse wave generator with field programmable gate array based on windkessel model].

    Science.gov (United States)

    Wang, Hao; Fu, Quanhai; Xu, Lisheng; Liu, Jia; He, Dianning; Li, Qingchun

    2014-10-01

    Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave.

  19. Design and application of pulse information acquisition and analysis system with dynamic recognition in traditional Chinese medicine.

    Science.gov (United States)

    Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong

    2014-09-01

    To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.

  20. Thirty-two phase sequences design with good autocorrelation properties

    Indian Academy of Sciences (India)

    S P Singh; K Subba Rao

    2010-02-01

    Polyphase Barker Sequences are finite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difficult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modified Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.

  1. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Jain, Mukesh; Misra, Gopal; Patel, Ravi K; Priya, Pushp; Jhanwar, Shalu; Khan, Aamir W; Shah, Niraj; Singh, Vikas K; Garg, Rohini; Jeena, Ganga; Yadav, Manju; Kant, Chandra; Sharma, Priyanka; Yadav, Gitanjali; Bhatia, Sabhyata; Tyagi, Akhilesh K; Chattopadhyay, Debasis

    2013-06-01

    Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi-type chickpea genome using next-generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520-Mb assembly covers 70% of the predicted 740-Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27,571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA-Seq reads identified several tissue-specific and stress-responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole-genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. Design of UWB pulse radio transceiver using statistical correlation technique in frequency domain

    Directory of Open Access Journals (Sweden)

    M. Anis

    2007-06-01

    Full Text Available In this paper, we propose a new technique to extract low power UWB pulse radio signals, near to noise level, using statistical correlation technique in frequency domain. The receiver consists of many narrow bandpass filters which extract energy either from transmitted UWB signal, interfering channels or noise. Transmitted UWB data can be eliminated by statistical correlation of multiple bandpass filter outputs. Super-regenerative oscillators, tuned within UWB spectrum, are designed as bandpass filters. Summers and comparators perform statistical correlation.

  3. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madison E. [Univ. of Florida, Gainesville, FL (United States)

    2017-05-20

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  4. A mechanical connector design for high-current, high-coulomb pulsed power systems

    Energy Technology Data Exchange (ETDEWEB)

    Susoeff, A.R.; Hawke, R.S.; Leighton, K.S.

    1992-02-25

    A technique to make reliable high-current, high-coulomb electrical contact was developed for transmitting power into railguns. The method uses spring loaded removable connectors that are installed independently from the launcher. The simple rod-type design and absence of fastener holes allow maximum utilization of material mechanical properties. Repeated experiments with 9.5-mm diameter connectors demonstrated reliable pulsed charge transfer of 200 coulombs at currents of over 400kA. 20 refs.

  5. Zero sequence blocking transformers for multi-pulse rectifier in aerospace applications

    DEFF Research Database (Denmark)

    Yao, Wenli; Blaabjerg, Frede; Zhang, Xiaobin

    2014-01-01

    The power electronics technology plays an even more important role in the aerospace applications of More Electric Aircrafts (MEA). AutoTransformer Rectifier Units (ATRU) have been widely adopted in aircrafts due to its simplicity and reliability. In this paper, Zero Sequence Blocking Transformers...

  6. MR arthrography of the shoulder: Optimizing pulse sequence protocols for the evaluation of cartilage and labrum

    Energy Technology Data Exchange (ETDEWEB)

    Guermazi, Ali, E-mail: Ali.Guermazi@aspetar.com [ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, Sport City Street, Near Khalifa Stadium, P.O. Box 29222 (Qatar); Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Jomaah, Nabil [ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, Sport City Street, Near Khalifa Stadium, P.O. Box 29222 (Qatar); Hayashi, Daichi [ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, Sport City Street, Near Khalifa Stadium, P.O. Box 29222 (Qatar); Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Department of Radiology, Bridgeport Hospital, Yale University School of Medicine, 267 Grant Street, Bridgeport, CT 06610 (United States); Jarraya, Mohamed [ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, Sport City Street, Near Khalifa Stadium, P.O. Box 29222 (Qatar); Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Silva, Jose Roberto [Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Niu, Jingbo [Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, 650 Albany Street, Suite 200, Boston, MA 02118 (United States); Almusa, Emad; Landreau, Philippe [ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, Sport City Street, Near Khalifa Stadium, P.O. Box 29222 (Qatar); and others

    2014-08-15

    Objectives: To compare axial T1weighted fat-saturated (T1w fs) and T1w non-fs sequences, and coronal T1w-fs and T2w-fs sequences, for evaluation of cartilage and labrum using CT arthrography (CTA) as the reference. Methods: Patients had MR arthrography (MRA) and CTA of the shoulder on the same day. Cartilage was assessed for superficial and full thickness focal and diffuse damage. Labral lesions were graded for Bankart variants and SLAP lesions. CTA images were read for the same features. The diagnostic performance of MRA including area under the curve (AUC) was evaluated against CTA. Results: When comparing axial sequences, the diagnostic performance for cartilage lesion detection on T1w non-fs was 61.9% (sensitivity) 93.6% (specificity) and 89.5% (accuracy) with AUC 0.782, while that for T1w fs was 61.9%, 94.0%, 89.8% and 0.783. For labral assessment, it was 89.1%, 93.0%, 91.4% and 0.919 for T1w non-fs, and 89.9%, 94.0%, 92.6% and 0.922 for T1w fs. Comparing coronal sequences, diagnostic performance for cartilage was 42.5%, 97.5%, 89.8% and 0.702 for T1w fs, and 38.4%, 98.7%, 90.2%, and 0.686 for T2w fs. For the labrum it was 85.1%, 87.5%, 86.2%, and 0.868 for T1w fs, and 75.7%, 97.5%, 80.8% and 0.816 for T2w fs. Conclusions: Axial T1w fs and T1w non-fs sequences are comparable in their ability to diagnose cartilage and labral lesions. Coronal T1w fs sequence offers slightly higher sensitivity but slightly lower specificity than T2w fs sequence for diagnosis of cartilage and labral lesions.

  7. SP-Designer: a user-friendly program for designing species-specific primer pairs from DNA sequence alignments.

    Science.gov (United States)

    Villard, Pierre; Malausa, Thibaut

    2013-07-01

    SP-Designer is an open-source program providing a user-friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP-Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP-Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP-Designer is Windows-compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php. © 2013 John Wiley & Sons Ltd.

  8. Design and construction of a tunable pulsed Ti:sapphire laser

    Science.gov (United States)

    Panahi, Omid; Nazeri, Majid; Tavassoli, Seyed Hassan

    2015-02-01

    In this paper, design and constr uction of a tunable pulsed Ti:sapphire laser and numerical solution of the corresponding rate equations are reported. Rate equations for a four-level system are written and their numerical solution is examined. Furthermore, an optical setup is introduced. In this setup, a Ti:sapphire crystal is longitudinally pumped by the second harmonics of a Q-Switched Nd:YAG laser, and a prism is used as a wavelength-selective element as well. This setup is established for two 10 and 50 % transmission output couplers. In case of using the 10 % coupler, the output energy of the laser, for the pump energy of 36 mJ, is pulses with 3.5 mJ energy and for the 50 % coupler, with 50 mJ of pump energy, pulses with 10 mJ energy are generated. A wavelength tuning range of more than 160 nm is possible. The repetition rate of this laser is 10 Hz and the temporal duration of the pulses is about 30 ns.

  9. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.

    Science.gov (United States)

    Thompson, Jennifer A; Fielding, Katherine; Hargreaves, James; Copas, Andrew

    2017-08-01

    Background/Aims We sought to optimise the design of stepped wedge trials with an equal allocation of clusters to sequences and explored sample size comparisons with alternative trial designs. Methods We developed a new expression for the design effect for a stepped wedge trial, assuming that observations are equally correlated within clusters and an equal number of observations in each period between sequences switching to the intervention. We minimised the design effect with respect to (1) the fraction of observations before the first and after the final sequence switches (the periods with all clusters in the control or intervention condition, respectively) and (2) the number of sequences. We compared the design effect of this optimised stepped wedge trial to the design effects of a parallel cluster-randomised trial, a cluster-randomised trial with baseline observations, and a hybrid trial design (a mixture of cluster-randomised trial and stepped wedge trial) with the same total cluster size for all designs. Results We found that a stepped wedge trial with an equal allocation to sequences is optimised by obtaining all observations after the first sequence switches and before the final sequence switches to the intervention; this means that the first sequence remains in the control condition and the last sequence remains in the intervention condition for the duration of the trial. With this design, the optimal number of sequences is [Formula: see text], where [Formula: see text] is the cluster-mean correlation, [Formula: see text] is the intracluster correlation coefficient, and m is the total cluster size. The optimal number of sequences is small when the intracluster correlation coefficient and cluster size are small and large when the intracluster correlation coefficient or cluster size is large. A cluster-randomised trial remains more efficient than the optimised stepped wedge trial when the intracluster correlation coefficient or cluster size is small. A

  10. Design and Experiments of the High Voltage Pulsed Electric Fields Sterilization System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihai; FANG Junlong; SHEN Weizheng

    2008-01-01

    This experiment designed the pulsed electric fields (PEF) of high intensity of 100 kV. cml sterilization system. Fluorescent pseudomonas as target cell was operated 180 s in the PEF. By observing the difference of the bacteria before and after the disposal by TEM, it is found that the cell wails of the treated bacteria were broken. Irreversible perforations were formed on the cell membrane. The cell inclusions and cell fragments were leaked. The cell died as a result. The results showed that the PEF sterilization system designed can be used for liquid food sterilization experiments.

  11. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    Science.gov (United States)

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L(-1)) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L(-1) m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  12. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Arkadi, E-mail: rosenfeld@mbi-berlin.de [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Strasse 2A, D-12489 Berlin (Germany); Rohloff, Marcus; Hoehm, Sandra [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Strasse 2A, D-12489 Berlin (Germany); Krueger, Joerg [BAM Bundesanstalt fuer Materialforschung und -pruefung, Unter den Eichen 87, D-12205 Berlin (Germany); Bonse, Joern, E-mail: joern.bonse@bam.de [BAM Bundesanstalt fuer Materialforschung und -pruefung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer LIPSS formation studied for double-fs-pulses (160 fs, 800 nm) of different fluences. Black-Right-Pointing-Pointer Close to the damage threshold predominantly HSFL are observed. Black-Right-Pointing-Pointer The HSFL period remains almost constant {approx}375 nm (delay independent). Black-Right-Pointing-Pointer At high fluences and for short delays a transient metallic state is created (LSFL regime). Black-Right-Pointing-Pointer A transition of the LSFL period from 750 to 530 nm is observed in the sub-ps delay range. - Abstract: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences of parallel polarized Ti:sapphire femtosecond laser pulse pairs (160 fs pulse duration, 800 nm central wavelength) was studied experimentally. For that purpose, a Michelson interferometer was used to generate near-equal-energy double-pulse sequences allowing the temporal pulse delay between the parallel-polarized individual fs-laser pulses to be varied between 0 and 40 ps with {approx}0.2 ps temporal resolution. The surface morphologies of the irradiated surface areas were characterized by means of scanning electron and scanning force microscopy. In the sub-ps delay range a strong decrease of the LIPSS periods and the ablation crater depths with the double-pulse delay was observed indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

  13. A Tapered Chalcogenide Microstructured Optical Fiber for Mid-IR Parabolic Pulse Generation: Design and Performance Study

    CERN Document Server

    Barh, Ajanta; Varshney, Ravi K; Pal, Bishnu P

    2013-01-01

    This paper presents a theoretical design of chalcogenide glass based tapered microstructured optical fiber (MOF) to generate high power parabolic pulses (PPs) at the mid-IR wavelength (~ 2 {\\mu}m). We optimize fiber cross-section by the multipole method and studied pulse evolution by well known Symmetrized Split-Step Fourier Method. Our numerical investigation reveals the possibility of highly efficient PP generation within a very short length (~ 18 cm) of this MOF for a Gaussian input pulse of 60 W peak power and FWHM of 3.5 ps. We examined quality of the generated PP by calculating the misfit parameter including the third order dispersion and fiber loss. Further, the effects of variations in input pulse power, pulse width and pulse energy on generated PP were also studied.

  14. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  15. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  16. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Philip Michael [ORNL; Baity Jr, F Wallace [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Greenough, Nevell [Princeton Plasma Physics Laboratory (PPPL); Nagy, Alex [Princeton Plasma Physics Laboratory (PPPL); Pinsker, R. [General Atomics; Rasmussen, David A [ORNL

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  17. Advanced Techniques and Antenna Design for Pulse Shaping in UWB Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2012-01-01

    Full Text Available Spectrum scarcity has emerged as a primary problem in the communications technology. The combination of cognitive radio (CR and ultra-wideband impulse radio (UWB-IR has been proposed to solve the shortage problem by allowing smart and adaptive spectrum management, leading to UWB-CR. In a UWB-CR scheme, secondary users are supposed to ensure interference avoidance by adaptively selecting the portions of the spectrum not being used by primary users. In this paper, three different techniques for the generation of adaptive UWB pulses are studied. The Parks-McClellan algorithm is employed, a neural network is trained, and a reconfigurable band stop filter is designed to generate an adaptive waveform with nulls at specific frequencies. Simulations, measurements, and analysis show that each generated UWB pulse has remarkable advantages in the frequency utilization, spectrum avoidance, and hardware implementation.

  18. An overview of the mechanical design of the Atlas pulsed power machine

    CERN Document Server

    Bowman, D W; Barr, G W; Bennett, G A; Cochrane, J C; Davis, H A; Davis, T O; Dorr, G; Gribble, R F; Griego, J R; Hood, M; Kimerly, H J; Martínez, A; McCuistian, B T; Miller, R B; Ney, S A; Nielsen, K; Pankuch, P; Parsons, W M; Potter, C; Ricketts, R L; Salazar, H R; Scudder, D W; Shapiro, C; Thompson, M C; Trainor, R J; Valdez, G A; Yonemoto, W; Kirbie, H C

    1999-01-01

    Atlas is a pulsed-power facility being designed at Los Alamos National Laboratory to perform high-energy density experiments in support of Science-Based Stockpile Stewardship and basic research programs. Atlas will consist of 24 individual maintenance units, each consisting of 4 240-kV Marx units. Maintenance units are contained in large oil tanks arrayed in a circle about a central target chamber. Total stored energy of the capacitor bank will be 23 MJ. Maintenance units will discharge through an output shorting switch into a vertical tri-plate transmission line, and from there into a transition area/collector inside a large vacuum chamber. An overview of mechanical design aspects of the Atlas machine is presented. These include maintenance unit design and design of the tri-plate transmission line and transition region. Findings from fabrication and testing of prototype systems are discussed. (2 refs).

  19. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO/sub 2/ fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject.

  20. Degenerative primer design and gene sequencing validation for select turkey genes.

    Science.gov (United States)

    Hutsko, Stephanie L; Lilburn, Michael S; Wick, Macdonald

    2016-06-01

    We successfully designed and validated degenerative primers for turkey genes MUC2, RPS13, TBP and TFF2 based on chicken sequences in order to use gene transcription analysis to evaluate (quantify) the mucin transcription to probiotic supplementation in turkeys. Primers were designed for the genes MUC2, TFF2, RPS13 and TBP using a degenerative primer design method based on the available Gallus gallus sequences. All primer sets, which produced a single PCR amplicon of the expected sizes, were cloned into the TOPO(®) vector and then transformed into TOP 10(®) competent cells. Plasmid DNA isolation was performed on the TOP10(®) cell culture and sent for sequencing. Sequences were analyzed using NCBI BLAST. All genes sequenced had over 90% homology with both the chicken and predicted turkey sequences. The sequences were used to design new 100% homologous primer sets for the genes of interest. © 2016 Poultry Science Association Inc.

  1. Influence of pulse sequence parameters at 1.5 T and 3.0 T on MRI artefacts produced by metal-ceramic restorations.

    Science.gov (United States)

    Cortes, A R G; Abdala-Junior, R; Weber, M; Arita, E S; Ackerman, J L

    2015-01-01

    Susceptibility artefacts from dental materials may compromise MRI diagnosis. However, little is known regarding MRI artefacts of dental material samples with the clinical shapes used in dentistry. The present phantom study aims to clarify how pulse sequences and sequence parameters affect MRI artefacts caused by metal-ceramic restorations. A phantom consisting of nickel-chromium metal-ceramic restorations (i.e. dental crowns and fixed bridges) and cylindrical reference specimens immersed in agar gel was imaged in 1.5 and 3.0 T MRI scanners. Gradient echo (GRE), spin echo (SE) and ultrashort echo time (UTE) pulse sequences were used. The artefact area in each image was automatically calculated from the pixel values within a region of interest. Mean values for similar pulse sequences differing in one parameter at a time were compared. A comparison between mean artefact area at 1.5 and 3.0 T, and from GRE and SE was also carried out. In addition, a parametric correlation between echo time (TE) and artefact area was performed. A significant correlation was found between TE and artefact area in GRE images. Higher receiver bandwidth significantly reduced artefact area in SE images. UTE images yielded the smallest artefact area at 1.5 T. In addition, a significant difference in mean artefact area was found between images at 1.5 and 3.0 T field strengths (p = 0.028) and between images from GRE and SE pulse sequences (p = 0.005). It is possible to compensate the effect of higher field strength on MRI artefacts by setting optimized pulse sequences for scanning patients with metal-ceramic restorations.

  2. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  3. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  4. Design and development of micro pulse lidar for cloud and aerosol studies

    Science.gov (United States)

    Dubey, P. K.; Arya, B. C.; Ahammed, Y. Nazeer; Kumar, Arun; Kulkarni, P. S.; Jain, S. L.

    2008-12-01

    A micro pulse lidar (MPL) has been indigenously designed and developed at the National Physical Laboratory, New Delhi using a 532 nm, 500 pico second pulsed laser having average power of 50mW (at 7.5 KHz PRR). Photon counting technique has been incorporated using the conventional optics, multichannel scaler (Stanford Research Systems SR430) and high sensitive photomultiplier tube. The sensitivity, range and bin etc are computer controlled in the present system. The interfacing between MPL and computer has been achieved by serial (RS232) and parallel printer port. The necessary software and graphical user interface has been developed using visual basic. In addition to this the telescope cover status sensing circuit has been incorporated to avoid conflict between dark count and background acquisition. The micro pulse lidar will be used for the aerosol, boundary layer and the cloud studies at a bin resolution of 6 meters. In the present communication the details of the system and preliminary results will be presented.

  5. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    Science.gov (United States)

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2014-03-01

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ˜1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  6. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Mohsen, E-mail: sajadi@fhi-berlin.mpg.de; Wolf, Martin; Kampfrath, Tobias [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-03-03

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ∼1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  7. The design and artificial realization of a controller of pulse coupling feedback

    Institute of Scientific and Technical Information of China (English)

    Lü Ling; Guo Zhi-An; Luan Ling; Zou Cheng-Ye; Zhao Hong-Yan

    2006-01-01

    In this paper a controller of pulse coupling feedback (PCF) is designed to control chaotic systems. Control principles and the technique to select the feedback coefficients are introduced. This controller is theoretically studied with a three dimensional (3D) chaotic system. The artificial simulation results show that the chaotic system can be stabilized to different periodic orbits by using the PCF method, and the number of the periodic orbits are 2n ×3mp (n and m are integers). Therefore, this control method is effective and practical.

  8. Different approach to pulsed high-voltage vacuum-insulation design

    Directory of Open Access Journals (Sweden)

    John G. Leopold

    2007-06-01

    Full Text Available A theoretical methodology promising improved design of vacuum insulation in high-voltage pulsed-power systems is described. It consists of shaping the electromagnetic fields within the system in such a way that charged particles which can in principle initiate vacuum surface breakdown are deflected away from the insulator surface, and secondary electrons, if emitted, are prevented from restriking the surface. Thus, vacuum surface breakdown is prevented before it is able to develop. Our methodology is presented here by a set of case studies.

  9. Effects of in-pulse transverse relaxation in 3D ultrashort echo time sequences: analytical derivation, comparison to numerical simulation and experimental application at 3T.

    Science.gov (United States)

    Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D; Schick, Fritz

    2010-09-01

    The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.

  10. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities

    NARCIS (Netherlands)

    Uil, T.G.; Haisma, H.J.; Rots, Marianne

    2003-01-01

    Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger protein

  11. antaRNA: ant colony-based RNA sequence design

    National Research Council Canada - National Science Library

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-01-01

    ... ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online.

  12. Design of a Large Bore 60-T Pulse Magnet for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    LESCH,B.; LI,L.; PERNAMBUCO-WISE,P.; ROVANG,DEAN C.; SCHNEIDER-MUNTAU,H.J.

    1999-09-23

    The design of a new pulsed magnet system for the generation of intense electron beams is presented. Determined by the required magnetic field profile along the axis, the magnet system consists of two coils (Coil No.1 and No.2) separated by a 32-mm axial gap. Each coil is energized independently. Both coils are internally reinforced with HIM Zylon fiber/epoxy composite. Coil No.1 made with AI-15 Glidcop wire has a bore of 110-mm diameter and is 200-mm long; it is energized by a 1.3-MJ, 13-kV capacitor bank. The magnetic field at the center of this coil is 30 T. Coil No.2 made with CuNb wire has a bore of 45 mm diameter, generates 60 T with a pulse duration of 60 ms, and is powered by a 4.0-MJ, 17.7-kV capacitor bank. We present design criteria, the coupling of the magnets, and the normal and the fault conditions during operation.

  13. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Wang, Xiaofeng

    2016-08-01

    Highlights: • An annular cathode for HCPEB irradiation of circular components was designed. • The processing window for the annular cathode is obtained. • Irradiation thickness uniformity along the circumferential direction exceeds 90%. - Abstract: In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  14. A small-size pulsed lidar designed for obstacles detection in natural underwater environment

    Science.gov (United States)

    Zeng, Xianjiang; Xia, Min; Cheng, Zao; Li, Lei; Chen, Junyao; Du, Peng; Yang, Kecheng

    2015-10-01

    In this paper, we designed a pint-sized underwater pulsed lidar system for underwater obstacles detection based on a 532nm Nd-YAG pulsed laser as a source and a Hamamatsu photomultiplier tube (PMT) as a detector. In order to acquire the location of the obstacles, an algorithm was devised to handle the echo signal. Through this algorithm, the background noise was suppressed and the accurate range information of the target was obtained. A high-capacity lithium battery was employed to support this lidar system operating as long as eight hours continuously. To ensure our lidar system working steady in the natural underwater environment, a stable waterproof housing was designed for the system which has good water-tightness at 40m depth underwater. This system is small, compact and hand-held. An experiment was conducted in laboratory which proof that the system can achieve target detection within 25m. At last, this lidar system was tested in natural underwater environment of Fuxian Lake in Yunnan Province. There are lots of organic particles and other impurity particles in Fuxian Lake and the attenuation coefficient of the lake is about 0.67m-1. The results showed that this small-size lidar system was able to catch sight of the target within 20 meters and perform smoothly in the natural underwater environment.

  15. Sequence and Chance: Design and control methods for entertainment robots

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Millar, Philip; Nuñez, David

    2016-01-01

    This paper describes innovative approaches to the design and control of entertainment robots. Live performance is a useful testbed for developing and evaluating what makes robots expressive [10] [13] [18]; it is also a platform for designing creative solutions for robot design and control...... mechanisms for believable and expressive robots. Entertainment robots require creative approaches to robot design and control, including motion planning, coordination and hybrid control systems. The exigencies of live performance require situated, embodied robots to move autonomously or semi......-autonomously alongside human actors and in coordination with human operators. Using design and control approaches from traditional puppetry, engineers can design creative solutions for generating expressive robot motion. We outline some of these creative approaches as they are used in live theatre performances...

  16. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    Science.gov (United States)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  17. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaplan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  18. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    Science.gov (United States)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-08-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  19. Can Computationally Designed Protein Sequences Improve Secondary Structure Prediction?

    Science.gov (United States)

    2011-01-01

    with the structural classification of proteins ( SCOP ) database of known structural domains (Kuhlman and Baker, 2000; Rohl et al., 2004). Secondary...reported in the literature. Methods In this work, the Astral SCOP 1.75 (Murzin et al., 1995; Hubbard et al., 1999) structural domain database filtered...entry matching the query test sequence can be left out. A total of 6511 SCOP 1.75 domains were used after some domains were discarded due to large

  20. Design of an on-line measuring system for 0.14 THz high-power terahertz pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guangqiang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Wang Jianguo; Li Xiaoze; Tong Changjiang; Wang Xuefeng, E-mail: wgq02@mails.tsinghua.edu.cn [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2011-02-01

    An on-line measuring system, including an aperture-coupling structure and a novel high-power pulse detector, is proposed in this paper to measure the output pulses from high-power 0.14THz surface wave oscillator (SWO). At first a T-type coupling structure between the TM{sub 01} mode of circular waveguide with radius of 6mm and TE{sub 10} mode of rectangular waveguide WR6 is designed. Based on loose coupling theory,the coupling degree of this structure is derived and calculated, reaching about -47dB with the aperture radius of 0.4mm and length of 0.5mm. The reasonable coincidence is found between the theoretical computation and numerical simulation employing the three-dimensional finite difference time domain method. Then a novel high-power terahertz pulse detector based on hot electron effect in semiconductors is developed for the detection of output pulses from T-type coupling structure. With hot electron theory, the working principle of the detector is elucidated, also its sensitivity is simply analyzed, showing that this detector is capable of handling the pulse power as high as 2kW. The present 0.14THz on-line measuring system would be convenient to monitor the terahertz pulse shape and pulse power during the application researches of SWO besides increasing the accuracy of its pulse power measurement.

  1. Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences

    Science.gov (United States)

    Höhm, S.; Rohloff, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2013-03-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica and silicon with multiple ( N DPS) irradiation sequences consisting of linearly polarized femtosecond laser pulse pairs (pulse duration ˜150 fs, central wavelength ˜800 nm) is studied experimentally. Nearly equal-energy double-pulse sequences are generated allowing the temporal pulse delay Δ t between the cross-polarized individual fs-laser pulses to be varied from -40 ps to +40 ps with a resolution of ˜0.2 ps. The surface morphologies of the irradiated surface areas are characterized by means of scanning electron and scanning force microscopy. Particularly for dielectrics in the sub-ps delay range striking differences in the orientation and spatial characteristics of the LIPSS can be observed. For fused silica, a significant decrease of the LIPSS spatial periods from ˜790 nm towards ˜550 nm is demonstrated for delay changes of less than ˜2 ps. In contrast, for silicon under similar irradiation conditions, the LIPSS periods remain constant (˜760 nm) for delays up to 40 ps. The results prove the impact of laser-induced electrons in the conduction band of the solid and associated transient changes of the optical properties on fs-LIPSS formation.

  2. Design of an Inductive Adder for the FCC injection kicker pulse generator

    Science.gov (United States)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  3. The theoretic design of NMR pulses program of arbitrary N-qubit Grover's algorithm and the NMR experiment proof

    Institute of Scientific and Technical Information of China (English)

    杨晓冬; 缪希茄

    2002-01-01

    Grover's quantum searching algorithm is most widely studied in the current quantum computation research, and has been implemented experimentally by NMR (Nuclear Magnetic Resonance) technique. In this article, we design arbitrary N-qubit NMR pulses program of Grover's algorithm based on the multiple-quantum operator algebra theory and demonstrate 2-qubit pulses program experimentally. The result also proves the validity of the multiple-quantum operator algebra theory.

  4. Design and application of robust rf pulses for toroid cavity NMR spectroscopy

    CERN Document Server

    Skinner, Thomas E; Woelk, Klaus; Gershenzon, Naum I; Glaser, Steffen J

    2010-01-01

    We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B1 field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 microsec) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR sp...

  5. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.

  6. Design of the plasma grid for a short pulse negative ion source experimental setup at HUST

    Science.gov (United States)

    Zuo, C.; Li, D.; Chen, D.; Zhao, P.; Xu, Q.; Liao, Z.

    2017-08-01

    An experimental setup of a radio frequency (RF) driven negative hydrogen ion source has been developed at Huazhong University of Science and Technology (HUST). The setup without cesium oven and an extraction system had been completed and the plasma was ignited in the driver successfully in 2014. An extraction system with small area (5540 mm2) for short pulse (˜ 4 s) was designed to extract the negative hydrogen ions. Generally, the plasma grid temperature is controlled to reach 150 °C by the cooling channels inside the grid. But another method that we could use the PG current to raise the temperature is being considered only for the short pulse condition. An experiment was introduced to prove the feasibility of this method. A magnetic field produced by current flowing through the plasma grid is required to reduce the electron temperature and suppress the co-extraction electrons. The filter field homogeneity has been studied in detail by finite element method. There have been significant improvements regarding the field homogeneity by means of the grid geometry optimization.

  7. Design of High Frequency Pulse Tube Cryocooler for Onboard Space Applications

    Science.gov (United States)

    Srikanth, Thota; Padmanabhan; Gurudath, C. S.; Amrit, A.; Basavaraj, S.; Dinesh, K.

    2017-02-01

    To meet the growing demands of on-board applications such as cooling meteorological payloads and the satellite operational constraints like power, lower mass, reduced size and redundancy; a Pulse Tube Cryocooler (PTC) is designed by arriving at an operating frequency of 100 Hz and Helium gas pressure of 35 bar based on insights obtained from combination of phasor diagram, pulse tube and regenerator geometries with overall system mass of ≤ 2.0 kg. High frequency operation would allow reducing the size and mass of pressure wave modulator for a given input power. High Frequency also helps in reducing the volume of regenerator for a given cooling power, which increases the power density and leads to faster cool down. A component level modelling of the regenerator for optimising length and diameter for maximum Coefficient of Performance (COP) is carried out using REGEN3.3. The overall system level modelling of PTC is carried out using 1-D software SAGE. The cold end mass flow rate of the optimised regenerator is taken as reference for the system modelling. The performance achieved in REGEN3.3 is 2.15 W of net heat lift against the performance of 1.02 W of net heat lift at 80 K in SAGE.

  8. PRISE (PRImer SElector): software for designing sequence-selective PCR primers.

    Science.gov (United States)

    Fu, Qi; Ruegger, Paul; Bent, Elizabeth; Chrobak, Marek; Borneman, James

    2008-03-01

    This report presents PRImer Selector (PRISE), a new software package that implements several features that improve and streamline the design of sequence-selective PCR primers. The PRISE design process involves two main steps. In the first step, target and non-target DNA sequences are identified. In the second step, primers are designed to amplify target (but not non-target) sequences. One important feature of PRISE is that it automates the task of placing primer-template mismatches at the 3' end of the primers - a property that is crucial for sequence selectivity. Once a list of candidate primers has been produced, sorting tools in PRISE speed up the selection process by allowing a user to sort the primers by properties such as amplicon length, GC content and sequence selectivity. PRISE can be used to design primers with a range of specificities, targeting individual sequences as well as diverse assemblages of genes. PRISE also allows user-defined primers to be analyzed, enabling their properties to be examined in relation to target and non-target sequences. The utility of PRISE was demonstrated by using it to design sequence-selective PCR primers for an rRNA gene from the fungus Pochonia chlamydosporia.

  9. A novel non-linear recursive filter design for extracting high rate pulse features in nuclear medicine imaging and spectroscopy.

    Science.gov (United States)

    Sajedi, Salar; Kamal Asl, Alireza; Ay, Mohammad R; Farahani, Mohammad H; Rahmim, Arman

    2013-06-01

    Applications in imaging and spectroscopy rely on pulse processing methods for appropriate data generation. Often, the particular method utilized does not highly impact data quality, whereas in some scenarios, such as in the presence of high count rates or high frequency pulses, this issue merits extra consideration. In the present study, a new approach for pulse processing in nuclear medicine imaging and spectroscopy is introduced and evaluated. The new non-linear recursive filter (NLRF) performs nonlinear processing of the input signal and extracts the main pulse characteristics, having the powerful ability to recover pulses that would ordinarily result in pulse pile-up. The filter design defines sampling frequencies lower than the Nyquist frequency. In the literature, for systems involving NaI(Tl) detectors and photomultiplier tubes (PMTs), with a signal bandwidth considered as 15 MHz, the sampling frequency should be at least 30 MHz (the Nyquist rate), whereas in the present work, a sampling rate of 3.3 MHz was shown to yield very promising results. This was obtained by exploiting the known shape feature instead of utilizing a general sampling algorithm. The simulation and experimental results show that the proposed filter enhances count rates in spectroscopy. With this filter, the system behaves almost identically as a general pulse detection system with a dead time considerably reduced to the new sampling time (300 ns). Furthermore, because of its unique feature for determining exact event times, the method could prove very useful in time-of-flight PET imaging.

  10. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    Science.gov (United States)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  11. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  12. Design and implementation of a sigma delta technology based pulse oximeter's acquisition stage

    Science.gov (United States)

    Rossi, E. E.; Peñalva, A.; Schaumburg, F.

    2011-12-01

    Pulse oximetry is a widely used tool in medical practice for estimating patient's fraction of hemoglobin bonded to oxygen. Conventional oximetry presents limitations when changes in the baseline, or low amplitude of signals involved occur. The aim of this paper is to simultaneously solve these constraints and to simplify the circuitry needed, by using ΣΔ technology. For this purpose, a board for the acquisition of the needed signals was developed, together with a PC managed software which controls it, and displays and processes in real time the information acquired. Also laboratory and field tests where designed and executed to verify the performance of this equipment in adverse situations. A simple, robust and economic instrument was achieved, capable of obtaining signals even in situations where conventional oximetry fails.

  13. Cryogenic Sapphire Oscillator using a low-vibration design pulse-tube cryocooler: First results

    CERN Document Server

    Hartnett, John G; Wang, Chao; Floch, Jean-Michel Le

    2010-01-01

    A Cryogenic Sapphire Oscillator has been implemented at 11.2 GHz using a low-vibration design pulse-tube cryocooler. Compared with a state-of-the-art liquid helium cooled CSO in the same laboratory, the square root Allan variance of their combined fractional frequency instability is $\\sigma_y = 1.4 \\times 10^{-15}\\tau^{-1/2}$ for integration times $1 < \\tau < 10$ s, dominated by white frequency noise. The minimum $\\sigma_y = 5.3 \\times 10^{-16}$ for the two oscillators was reached at $\\tau = 20$ s. Assuming equal contributions from both CSOs, the single oscillator phase noise $S_{\\phi} \\approx -96 \\; dB \\; rad^2/Hz$ at 1 Hz offset from the carrier.

  14. DESIGN NOTE: A fast high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, Jankee; Navathe, C. P.

    2006-07-01

    A high-voltage pulse generator based on a self-matched transmission line with variable pulse amplitude and duration is developed. Two avalanche transistor stacks are used as switches. The pulse width is varied by adjusting the delay in triggering two switches whereas amplitude is adjusted by adjusting load resistance. A pulse with amplitude of 800 V to 3.8 kV and width of 5 ns to 38 ns can be obtained using this circuit.

  15. Design and performance of Huffman sequences in medical ultrasound coded excitation.

    Science.gov (United States)

    Polpetta, Alessandro; Banelli, Paolo

    2012-04-01

    This paper deals with coded-excitation techniques for ultrasound medical echography. Specifically, linear Huffman coding is proposed as an alternative approach to other widely established techniques, such as complementary Golay coding and linear frequency modulation. The code design is guided by an optimization procedure that boosts the signal-to-noise ratio gain (GSNR) and, interestingly, also makes the code robust in pulsed-Doppler applications. The paper capitalizes on a thorough analytical model that can be used to design any linear coded-excitation system. This model highlights that the performance in frequency-dependent attenuating media mostly depends on the pulse-shaping waveform when the codes are characterized by almost ideal (i.e., Kronecker delta) autocorrelation. In this framework, different pulse shapers and different code lengths are considered to identify coded signals that optimize the contrast resolution at the output of the receiver pulse compression. Computer simulations confirm that the proposed Huffman codes are particularly effective, and that there are scenarios in which they may be preferable to the other established approaches, both in attenuating and non-attenuating media. Specifically, for a single scatterer at 150 mm in a 0.7-dB/(MHz·cm) attenuating medium, the proposed Huffman design achieves a main-to-side lobe ratio (MSR) equal to 65 dB, whereas tapered linear frequency modulation and classical complementary Golay codes achieve 35 and 45 dB, respectively.

  16. Contrast-enhanced ultrasonography using cadence-contrast pulse sequencing technology for targeted biopsy of the prostate.

    Science.gov (United States)

    Aigner, Friedrich; Pallwein, Leo; Mitterberger, Michael; Pinggera, Germar M; Mikuz, Gregor; Horninger, Wolfgang; Frauscher, Ferdinand

    2009-02-01

    To evaluate contrast-enhanced ultrasonography (US) using cadence-contrast pulse sequencing (CPS) technology, compared with systematic biopsy for detecting prostate cancer, as grey-scale US has low sensitivity and specificity for detecting prostate cancer. In all, 44 men with suspicious prostate-specific antigen (PSA) levels and CPS findings were assessed; all had CPS-targeted and systematic biopsy. Transrectal CPS images were taken with a low mechanical index (0.14). A microbubble contrast agent (SonoVue, Bracco International BV, Amsterdam, the Netherlands) was administered as a bolus, with a maximum dose of 4.8 mL. CPS was used to assess prostatic vascularity. Areas with a rapid and increased contrast enhancement within the peripheral zone were defined as suspicious for prostate cancer. Up to five CPS targeted biopsies were taken and subsequently a 10-core systematic biopsy was taken. Cancer detection rates for the two techniques were compared. Overall, cancer was detected in 35 of 44 patients (80%), with a mean PSA level of 3.8 ng/mL. Lesions suspicious on CPS showed cancer in 35 of 44 patients (80%) and systematic biopsy detected cancer in 15 of 44 patients (34%). CPS-targeted cores were positive in 105 of 220 cores (47.7%) and in 41 of 440 systematic biopsy cores (9.3%) (P biopsy was 6.7 and for CPS-targeted biopsy 6.8 (P > 0.05). The sensitivity of CPS for detecting cancer was 100% (confidence interval, 95%). However, limitations in the series included that only CPS-positive cases were investigated, and CPS-targeted biopsy should be evaluated in a more extended biopsy scheme. Contrast-enhanced US using CPS enables excellent visualization of the microvasculature associated with prostate cancer, and can improve the detection of prostate cancer compared with systematic biopsy.

  17. Designing and Evaluating Research-Based Instructional Sequences for Introducing Magnetic Fields

    Science.gov (United States)

    Guisasola, Jenaro; Almudi, Jose Manuel; Ceberio, Mikel; Zubimendi, Jose Luis

    2009-01-01

    This study examines the didactic suitability of introducing a teaching sequence when teaching the concept of magnetic fields within introductory physics courses at the university level. This instructional sequence was designed taking into account students' common conceptions, an analysis of the course content, and the history of the development of…

  18. Comprehensive primer design for analysis of population genetics in non-sequenced organisms.

    Directory of Open Access Journals (Sweden)

    Ayumi Tezuka

    Full Text Available Nuclear sequence markers are useful tool for the study of the history of populations and adaptation. However, it is not easy to obtain multiple nuclear primers for organisms with poor or no genomic sequence information. Here we used the genomes of organisms that have been fully sequenced to design comprehensive sets of primers to amplify polymorphic genomic fragments of multiple nuclear genes in non-sequenced organisms. First, we identified a large number of candidate polymorphic regions that were flanked on each side by conserved regions in the reference genomes. We then designed primers based on these conserved sequences and examined whether the primers could be used to amplify sequences in target species, montane brown frog (Rana ornativentris, anole lizard (Anolis sagrei, guppy (Poecilia reticulata, and fruit fly (Drosophila melanogaster, for population genetic analysis. We successfully obtained polymorphic markers for all target species studied. In addition, we found that sequence identities of the regions between the primer sites in the reference genomes affected the experimental success of DNA amplification and identification of polymorphic loci in the target genomes, and that exonic primers had a higher success rate than intronic primers in amplifying readable sequences. We conclude that this comparative genomic approach is a time- and cost-effective way to obtain polymorphic markers for non-sequenced organisms, and that it will contribute to the further development of evolutionary ecology and population genetics for non-sequenced organisms, aiding in the understanding of the genetic basis of adaptation.

  19. Comprehensive primer design for analysis of population genetics in non-sequenced organisms.

    Science.gov (United States)

    Tezuka, Ayumi; Matsushima, Noe; Nemoto, Yoriko; Akashi, Hiroshi D; Kawata, Masakado; Makino, Takashi

    2012-01-01

    Nuclear sequence markers are useful tool for the study of the history of populations and adaptation. However, it is not easy to obtain multiple nuclear primers for organisms with poor or no genomic sequence information. Here we used the genomes of organisms that have been fully sequenced to design comprehensive sets of primers to amplify polymorphic genomic fragments of multiple nuclear genes in non-sequenced organisms. First, we identified a large number of candidate polymorphic regions that were flanked on each side by conserved regions in the reference genomes. We then designed primers based on these conserved sequences and examined whether the primers could be used to amplify sequences in target species, montane brown frog (Rana ornativentris), anole lizard (Anolis sagrei), guppy (Poecilia reticulata), and fruit fly (Drosophila melanogaster), for population genetic analysis. We successfully obtained polymorphic markers for all target species studied. In addition, we found that sequence identities of the regions between the primer sites in the reference genomes affected the experimental success of DNA amplification and identification of polymorphic loci in the target genomes, and that exonic primers had a higher success rate than intronic primers in amplifying readable sequences. We conclude that this comparative genomic approach is a time- and cost-effective way to obtain polymorphic markers for non-sequenced organisms, and that it will contribute to the further development of evolutionary ecology and population genetics for non-sequenced organisms, aiding in the understanding of the genetic basis of adaptation.

  20. Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7T.

    Science.gov (United States)

    Massire, Aurélien; Cloos, Martijn A; Vignaud, Alexandre; Le Bihan, Denis; Amadon, Alexis; Boulant, Nicolas

    2013-05-01

    At ultra-high magnetic field (≥ 7T), B1 and ΔB0 non-uniformities cause undesired inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting parallel transmission have been shown to mitigate these phenomena. However, the design of large flip angle excitations, a prerequisite for many clinical applications, remains challenging due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient ascent pulse engineering to design non-selective spin-echo refocusing pulses that simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method lays in the optimization of the rotation matrices themselves as opposed to magnetization states. Consequently, the commonly used linear class of large tip angle approximation can be eliminated from the optimization procedure. This approach, combined with optimal control, provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, and allows the derivative of the performance criterion to be found analytically. The method was experimentally validated on an 8-channel transmit array at 7T, using a water phantom with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum Process Tomography. The results are complemented with a series of spin-echo measurements comparing the proposed method against commonly used alternatives. Both experiments confirm very good performance, while simultaneously maintaining a low energy deposition and pulse duration compared to well-known adiabatic solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Design and Performance Evaluation of Sequence Partition Algorithms

    Institute of Scientific and Technical Information of China (English)

    Bing Yang; Jing Chen; En-Yue Lu; Si-Qing Zheng

    2008-01-01

    Tradeoffs between time complexities and solution optimalities are important when selecting algorithms for an NP-hard problem in different applications. Also, the distinction between theoretical upper bound and actual solution optimality for realistic instances of an NP-hard problem is a factor in selecting algorithms in practice. We consider the problem of partitioning a sequence of n distinct numbers into minimum number of monotone (increasing or decreasing) case. We introduce a new algorithm, the modified version of the Yehuda-Fogel algorithm, that computes a solution of no on three algorithms, a known approximation algorithm of approximation ratio 1.71 and time complexity O(n3), a known greedy algorithm of time complexity O(n1.5 log n), and our new modified Yehuda-Fogel algorithm. Our results show that the solutions computed by the greedy algorithm and the modified Yehuda-Fogel algorithm are close to that computed by the approximation algorithm even though the theoretical worst-case error bounds of these two algorithms are not proved to be within a constant time of the optimal solution. Our study indicates that for practical use the greedy algorithm and the modified Yehuda-Fogel algorithm can be good choices if the running time is a major concern.

  2. 1D and 2D diffusion pore imaging on a preclinical MR system using adaptive rephasing: Feasibility and pulse sequence comparison

    Science.gov (United States)

    Bertleff, Marco; Domsch, Sebastian; Laun, Frederik B.; Kuder, Tristan A.; Schad, Lothar R.

    2017-05-01

    Diffusion pore imaging (DPI) has recently been proposed as a means to acquire images of the average pore shape in an image voxel or region of interest. The highly asymmetric gradient scheme of its sequence makes it substantially demanding in terms of the hardware of the NMR system. The aim of this work is to show the feasibility of DPI on a preclinical 9.4 T animal scanner. Using water-filled capillaries with an inner radius of 10 μm, four different variants of the DPI sequence were compared in 1D and 2D measurements. The pulse sequences applied cover the basic implementation using one long and one temporally narrow gradient pulse, a CPMG-like variant with multiple refocusing RF pulses as well as two variants splitting up the long gradient and distributing it on either side of the refocusing pulse. Substantial differences between the methods were found in terms of signal-to-noise ratio, contrast, blurring, deviations from the expected results and sensitivity to gradient imperfections. Each of the tested sequences was found to produce characteristic gradient mismatches dependent on the absolute value, direction and sign of the applied q-value. Read gradients were applied to compensate these mismatches translating them into time shifts, which enabled 1D DPI yielding capillary radius estimations within the tolerances specified by the manufacturer. For a successful DPI application in 2D, a novel gradient amplitude adaption scheme was implemented to correct for the occurring time shifts. Using this adaption, higher conformity to the expected pore shape, reduced blurring and enhanced contrast were achieved. Images of the phantom's pore shape could be acquired with a nominal resolution of 2.2 μm.

  3. Ultrasonic position and velocity measurement for a moving object by M-sequence pulse compression using Doppler velocity estimation by spectrum-pattern analysis

    Science.gov (United States)

    Ikari, Yohei; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    Pulse compression using a maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo in the pulse-echo method. In the case of a moving object, however, the echo is modulated owing to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal that corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation by spectrum-pattern analysis of a cyclic M-sequence-modulated signal and cross correlations with Doppler-shifted reference signals that correspond to the estimated Doppler velocities has been proposed. In this paper, measurements of the position and velocity of a moving object by the proposed method are described. First, Doppler velocities of the object are estimated using a microphone array. Secondly, the received signal from each microphone is correlated with each Doppler-shifted reference signal. Then, the position of the object is determined from the B-mode image formed from all cross-correlation functions. After that, the velocity of the object is calculated from velocity components estimated from the Doppler velocities and the position. Finally, the estimated Doppler velocities, determined positions, and calculated velocities are evaluated.

  4. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins.

    Science.gov (United States)

    Sharma, Kshama; Madhu, Perunthiruthy K; Mote, Kaustubh R

    2016-08-01

    One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text]  can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.

  5. Deterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Designs and System Identification

    CERN Document Server

    Saligrama, Venkatesh

    2008-01-01

    In this paper we present a new family of discrete sequences having ``random like'' uniformly decaying auto-correlation properties. The new class of infinite length sequences are higher order chirps constructed using irrational numbers. Exploiting results from the theory of continued fractions and diophantine approximations, we show that the class of sequences so formed has the property that the worst-case auto-correlation coefficients for every finite length sequence decays at a polynomial rate. These sequences display doppler immunity as well. We also show that Toeplitz matrices formed from such sequences satisfy restricted-isometry-property (RIP), a concept that has played a central role recently in Compressed Sensing applications. Compressed sensing has conventionally dealt with sensing matrices with arbitrary components. Nevertheless, such arbitrary sensing matrices are not appropriate for linear system identification and one must employ Toeplitz structured sensing matrices. Linear system identification p...

  6. Theoretical tools for the design of NMR relaxation dispersion pulse sequences.

    Science.gov (United States)

    Salvi, Nicola

    2015-08-01

    Recent decades have witnessed tremendous progress in the development of new experimental methods for studying biomolecules, particularly in the field of NMR relaxation dispersion. Here we review the theoretical frameworks that provided the insights necessary for such progress. The effect of radio-frequency manipulations on spin systems is discussed using Average Hamiltonian Theory (AHT), Average Liouvillian Theory (ALT), and Bloch-Wangsness-Redfield (BWR) relaxation theory. We illustrate these concepts using the case of Heteronuclear Double Resonance (HDR) methods.

  7. Design of a laboratory for experiments with a pulsed neutron source.

    Science.gov (United States)

    Memoli, G; Trusler, J P M; Ziver, A K

    2009-06-01

    We present the results of a neutron shielding design and optimisation study performed to reduce the exposure to radiological doses arising from a 14 MeV pulsed neutron generator (PNG) having a maximum emission strength of 2.0 x 10(8) neutrons s(-1). The source was intended to be used in a new irradiation facility for the realisation of an experiment on acoustical cavitation in liquids. This paper describes in detail how the facility was designed to reduce both neutron and gamma-ray dose rates to acceptable levels, taking into account the ALARP principle in following the steps of optimisation. In particular, this work compares two different methods of optimisation to assess neutron dose rates: the use of analytical methods and the use of Monte Carlo simulations (MCNPX 2.4). The activation of the surrounding materials during operation was estimated using the neutron spectra as input to the FISPACT 3.0 code. The limitations of a first-order analytical model to determine the neutron activation levels are highlighted. The impact that activation has on the choice of the materials to be used inside the laboratory and on the waiting time before anyone can safely enter the room after the neutron source is switched off is also discussed.

  8. Design of shielded encircling send-receive type pulsed eddy current probe using numerical analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electircal Engineeirng, Kunsan National University, Kunsan (Korea, Republic of)

    2013-12-15

    An encircling send-receive type pulsed eddy current (PEC) probe is designed for use in aluminum tube inspection. When bare receive coils located away from the exciter were used, the peak time of the signal did not change although the distance from the exciter increased. This is because the magnetic flux from the exciter coil directly affects the receive coil signal. Therefore, in this work, both the exciter and the sensor coils were shielded in order to reduce the influence of direct flux from the exciter coil. Numerical simulation with the designed shielded encircling PEC probe showed the corresponding increase of the peak time as the sensor distance increased. Ferrite and carbon steel shields were compared and results of the ferrite shielding showed a slightly stronger peak value and a quicker peak time than those of the carbon steel shielding. Simulation results showed that the peak value increased as the defect size (such as depth and length) increased regardless of the sensor location. To decide a proper sensor location, the sensitivity of the peak value to defect size variation was investigated and found that the normalized peak value was more sensitive to defect size variation when the sensor was located closer to the exciter.

  9. Design of encircling send-receive type pulsed eddy current probe

    Science.gov (United States)

    Shin, Young-Kil

    2014-02-01

    An encircling send-receive type pulsed eddy current (PEC) probe is designed for use in the tube inspection. When bare receive coils, which are located away from the exciter, are used, the peak time of the signal does not change although the distance from the exciter increases. This is because the magnetic fields from exciter coil arrive directly at the receive coil without passing through the tube. Therefore, in this work, both exciter and sensor coils are shielded to reduce the influence of direct fields from the exciter coil. Numerical simulation with the designed shielded encircling PEC probe shows the corresponding increase of peak time as the sensor distance increases. Ferrite and carbon steel shields are compared and found that the ferrite shielding results in slightly stronger peak value and quicker peak time than the carbon steel shielding. Sensitivity of peak value to defect depth variation is also investigated and found that the normalized peak value is more sensitive when the sensor is located closer to the exciter for aluminum tube. In the case of magnetic tube, however, all the characteristics are opposite to those obtained from nonmagnetic aluminum tube.

  10. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler

    Science.gov (United States)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata

    2017-02-01

    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  11. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    Science.gov (United States)

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  12. Evaluation of knee meniscus lesions using MRI - a comparative study of pulse sequences; Avaliacao da lesao meniscal por meio de ressonancia magnetica do joelho - estudo comparativo das sequencias

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Artur da Rocha C.; Vilela, Sonia de Aguiar; Turrini, Elisabeth; Lederman, Henrique M. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    1997-05-01

    The frequency of knee disability after injuries has become higher, in this context meniscal lesions keep an important role. This study evaluated 34 MR exams using 1.5-T system (Signa; GE). In this group 26 had 4 sequences (5 acquisitions); 2 coronal (T1, MPGR), 3 sagittal (T1, T2, proton density). The aim of this study was to evaluate the MR pulse sequence`s reproducibility and observer variability. Two readers (A and B) reviewed the exams using the same criteria. The reader A reviewed all sequences for each patient; the reader B reviewed the individual sequences at random on two separate occasions, 6 months apart. The signal expression of meniscal lesion is more evident with T1 (short TR/short TE) sagittal; however, in this sequence the results were less consistent. The sagittal proton density (long TR/short TE) was very close to be the idea sequence: had good concordance among the readings of readers A and B. Kappa concordance test showed best result for sagittal proton density images (Kw = 0.84). (author) 47 refs., 17 figs., 2 tabs.

  13. Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis.

    Science.gov (United States)

    Noller, Anna C; McEllistrem, M Catherine; Stine, O Colin; Morris, J Glenn; Boxrud, David J; Dixon, Bruce; Harrison, Lee H

    2003-02-01

    Escherichia coli O157:H7 is a major cause of foodborne illness in the United States. Pulsed-field gel electrophoresis (PFGE) is the molecular epidemiologic method mostly commonly used to identify food-borne outbreaks. Although PFGE is a powerful epidemiologic tool, it has disadvantages that make a DNA sequence-based approach potentially attractive. Multilocus sequence typing (MLST) analyzes the internal fragments of housekeeping genes to establish genetic relatedness between isolates. We sequenced selected portions of seven housekeeping genes and two membrane protein genes (ompA and espA) of 77 isolates that were diverse by PFGE to determine whether there was sufficient sequence variation to be useful as an epidemiologic tool. There was no DNA sequence diversity in the sequenced portions of the seven housekeeping genes and espA. For ompA, all but five isolates had sequence identical to that of the reference strains. E. coli O157:H7 has a striking lack of genetic diversity in the genes we explored, even among isolates that are clearly distinct by PFGE. Other approaches to identify improved molecular subtyping methods for E. coli 0157:H7 are needed.

  14. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  15. Fast design of local N-gram-specific absorption rate-optimized radiofrequency pulses for parallel transmit systems

    NARCIS (Netherlands)

    Sbrizzi, Alessandro; Hoogduin, Hans; Lagendijk, Jan J.; Luijten, Peter; Sleijpen, Gerard L. G.; van den Berg, Cornelis A. T.

    2012-01-01

    Designing multidimensional radiofrequency pulses for clinical application must take into account the local specific absorption rate (SAR) as controlling the global SAR does not guarantee suppression of hot spots. The maximum peak SAR, averaged over an N grams cube (local NgSAR), must be kept under c

  16. Design of Excitatory Signal and Matched Filter for Compressed Pulsed Radar

    Directory of Open Access Journals (Sweden)

    Argel Gonzalez Padilla

    2013-11-01

    Full Text Available In this paper is presented pulse compression technique in radar, focusing on Linear Frequency Modulation (LFM. Matched Filter characteristics are the elements considered for pulse compression, algebraic operations are derived to avoid the signal phase effect received by detection capacity. A hardware system for pulse compression in language description hardware is implemented. The product obtained is a first step in radar techniques to improve resolution capacity.

  17. Tracing outbreaks of Streptococcus equi infection (strangles) in horses using sequence variation in the seM gene and pulsed-field gel electrophoresis.

    Science.gov (United States)

    Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna

    2011-11-21

    Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi.

  18. A primer design strategy for PCR amplification of GC-rich DNA sequences.

    Science.gov (United States)

    Li, Li-Yan; Li, Qiang; Yu, Yan-Hong; Zhong, Mei; Yang, Lei; Wu, Qing-Hong; Qiu, Yu-Rong; Luo, Shen-Qiu

    2011-06-01

    To establish a primer design method for amplification of GC-rich DNA sequences. A group of 15 pairs of primers with higher T(m) (>79.7°C) and lower level ΔT(m) (designed to amplify GC-rich sequences (66.0%-84.0%). The statistical analysis of primer parameters and GC content of PCR products was performed and compared with literatures. Other control experiments were conducted using shortened primers for GC-rich PCR amplifications in this study, and the statistical analysis of shortened primer parameters and GC content of PCR products was performed compared with primers not shortened. A group of 26 pairs of primers were designed to test the applicability of this primer designing strategy in amplifications of non-GC-rich sequences (35.2%-53.5%). All the DNA sequences in this study were successfully amplified. Statistical analyses show that the T(m) and ΔT(m) were the main factors influencing amplifications. This primer designing strategy offered a perfect tool for amplification of GC-rich sequences. It proves that the secondary structures cannot be formed at higher annealing temperature conditions (>65°C), and we can overcome this difficulty easily by designing primers and using higher annealing temperature. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  19. Optimal design of basic pulse waveforms for THSS UWB radio systems

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Zhang Zhongzhao

    2005-01-01

    Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also,the polarity of these short basic pulses does not affect the performance of UWB radio system.

  20. Physics Design of the ETA-II/Snowtron Double Pulse Target Experiment

    CERN Document Server

    Chen, Y J; McCarrick, J F; Paul, A C; Sampayan, S E; Wang, L F; Weir, J T; Chen, Yu-Jiuan; Ho, Darwin D.-M.; Mccarrick, James F.; Paul, Arthur C.; Sampayan, Stephen; Wang, Li-Fang; Weir, John T.

    2000-01-01

    We have modified the single pulse target experimental facility[ ] on the Experimental Test Accelerator II (ETA-II) to perform the double pulse target experiments to validate the DARHT-II[, ] multi-pulse target concept. The 1.15 MeV, 2 kA Snowtron injector will provide the first electron pulse. The 6 MeV, 2 kA ETA-II beam will be used as the probe beam. Our modeling indicates that the ETA-II/Snowtron experiment is a reasonable scaling experiment.

  1. Rationally Designing Aptamer Sequences with Reduced Affinity for Controlled Sensor Performance

    Directory of Open Access Journals (Sweden)

    Lauren R. Schoukroun-Barnes

    2015-03-01

    Full Text Available The relative ease of predicting the secondary structure of nucleic acid sequences lends itself to the design of sequences to perform desired functions. Here, we combine the utility of nucleic acid aptamers with predictable control over the secondary structure to rationally design sequences with controlled affinity towards a target analyte when employed as the recognition element in an electrochemical sensor. Specifically, we present a method to modify an existing high-gain aptamer sequence to create sequences that, when employed in an electrochemical, aptamer-based sensor, exhibit reduced affinity towards a small molecule analyte tobramycin. Sensors fabricated with the high-gain parent sequence saturate at concentrations much below the therapeutic window for tobramycin (7–18 µM. Accordingly, the rationale behind modifying this high-gain sequence to reduce binding affinity was to tune sensor performance for optimal sensitivity in the therapeutic window. Using secondary structure predictions and analysis of the NMR structure of an aminoglycoside RNA aptamer bound to tobramycin, we are able to successfully modify the aptamer sequence to tune the dissociation constants of electrochemical aptamer-based sensors between 0.17 and 3 µM. The guidelines we present represent a general strategy to lessening binding affinity of sensors employing aptamer-modified electrodes.

  2. Design of a zinc finger protein binding a sequence upstream of the A20 gene

    Directory of Open Access Journals (Sweden)

    Cui Xiaoping

    2008-03-01

    Full Text Available Abstract Background Artificial transcription factors (ATFs are composed of DNA-binding and functional domains. These domains can be fused together to create proteins that can bind a chosen DNA sequence. To construct a valid ATF, it is necessary to design suitable DNA-binding and functional domains. The Cys2-His2 zinc finger motif is the ideal structural scaffold on which to construct a sequence-specific protein. A20 is a cytoplasmic zinc finger protein that inhibits nuclear factor kappa-B activity and tumor necrosis factor (TNF-mediated programmed cell death. A20 has been shown to prevent TNF-induced cytotoxicity in a variety of cell types including fibroblasts, B lymphocytes, WEHI 164 cells, NIH 3T3 cells and endothelial cells. Results In order to design a zinc finger protein (ZFP structural domain that binds specific target sequences in the A20 gene promoter region, the structure and sequence composition of this promoter were analyzed by bioinformatics methods. The target sequences in the A20 promoter were submitted to the on-line ZF Tools server of the Barbas Laboratory, Scripps Research Institute (TSRI, to obtain a specific 18 bp target sequence and also the amino acid sequence of a ZFP that would bind to it. Sequence characterization and structural modeling of the predicted ZFP were performed by bioinformatics methods. The optimized DNA sequence of this artificial ZFP was recombined into the eukaryotic expression vector pIRES2-EGFP to construct pIRES2-EGFP/ZFP-flag recombinants, and the expression and biological activity of the ZFP were analyzed by RT-PCR, western blotting and EMSA, respectively. The ZFP was designed successfully and exhibited biological activity. Conclusion It is feasible to design specific zinc finger proteins by bioinformatics methods.

  3. Integrating heterogeneous sequence information for transcriptome-wide microarray design; a Zebrafish example

    Directory of Open Access Journals (Sweden)

    de Leeuw Wim C

    2010-07-01

    Full Text Available Abstract Background A complete gene-expression microarray should preferably detect all genomic sequences that can be expressed as RNA in an organism, i.e. the transcriptome. However, our knowledge of a transcriptome of any organism still is incomplete and transcriptome information is continuously being updated. Here, we present a strategy to integrate heterogeneous sequence information that can be used as input for an up-to-date microarray design. Findings Our algorithm consists of four steps. In the first step transcripts from different resources are grouped into Transcription Clusters (TCs by looking at the similarity of all transcripts. TCs are groups of transcripts with a similar length. If a transcript is much smaller than a TC to which it is highly similar, it will be annotated as a subsequence of that TC and is used for probe design only if the probe designed for the TC does not query the subsequence. Secondly, all TCs are mapped to a genome assembly and gene information is added to the design. Thirdly TC members are ranked according to their trustworthiness and the most reliable sequence is used for the probe design. The last step is the actual array design. We have used this strategy to build an up-to-date zebrafish microarray. Conclusions With our strategy and the software developed, it is possible to use a set of heterogeneous transcript resources for microarray design, reduce the number of candidate target sequences on which the design is based and reduce redundancy. By changing the parameters in the procedure it is possible to control the similarity within the TCs and thus the amount of candidate sequences for the design. The annotation of the microarray is carried out simultaneously with the design.

  4. BatchPrimer3: a high throughput web application for PCR and sequencing primer design.

    Science.gov (United States)

    You, Frank M; Huo, Naxin; Gu, Yong Qiang; Luo, Ming-Cheng; Ma, Yaqin; Hane, Dave; Lazo, Gerard R; Dvorak, Jan; Anderson, Olin D

    2008-05-29

    Microsatellite (simple sequence repeat - SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded. A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR), as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated in several laboratories. BatchPrimer3 is a

  5. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia.

    Science.gov (United States)

    Zuiter, Afnan Saeid; Sawwan, Jammal; Al Abdallat, Ayed

    2012-08-10

    Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  6. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    Directory of Open Access Journals (Sweden)

    Zuiter Afnan

    2012-08-01

    Full Text Available Abstract Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  7. Efficient newly designed primers for the amplification and sequencing of bird mitochondrial genomes.

    Science.gov (United States)

    Amer, Sayed A M; Ahmed, Mohamed Mohamed; Shobrak, Mohammed

    2013-01-01

    In the present study, 27 mitochondrial genomes of diverse avian supra-orders were collected from the Genbank database and their genes were aligned separately. From the alignments, the conserved sequences were selected to design novel conserved primers for amplification and sequencing of the different mitochondrial genes. The reproducibility of these primers was tested in the amplification and sequencing of diverse avian supra-order mitochondrial genomes and was confirmed. This method helped in designing a new set of primers to accelerate both the amplification and the sequencing of bird mitogenomes. It also aids in building mitogenome markers in studying the genetic framework of endemic birds as a preliminary strategy for conservation management of them.

  8. Design and implementation of a CMOS light pulse receiver cell array for spatial optical communications.

    Science.gov (United States)

    Sarker, Md Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  9. Design considerations for pulsed-flow comprehensive two-dimensional GC: dynamic flow model approach.

    Science.gov (United States)

    Harvey, Paul McA; Shellie, Robert A; Haddad, Paul R

    2010-04-01

    A dynamic flow model, which maps carrier gas pressures and carrier gas flow rates through the first dimension separation column, the modulator sample loop, and the second dimension separation column(s) in a pulsed-flow modulation comprehensive two-dimensional gas chromatography (PFM-GCxGC) system is described. The dynamic flow model assists design of a PFM-GCxGC modulator and leads to rapid determination of pneumatic conditions, timing parameters, and the dimensions of the separation columns and connecting tubing used to construct the PFM-GCxGC system. Three significant innovations are introduced in this manuscript, which were all uncovered by using the dynamic flow model. A symmetric flow path modulator improves baseline stability, appropriate selection of the flow restrictors in the first dimension column assembly provides a generally more stable and robust system, and these restrictors increase the modulation period flexibility of the PFM-GCxGC system. The flexibility of a PFM-GCxGC system resulting from these innovations is illustrated using the same modulation interface to analyze Special Antarctic Blend (SAB) diesel using 3 s and 9 s modulation periods.

  10. Design and Implementation of A CMOS Light Pulse Receiver Cell Array for Spatial Optical Communications

    Directory of Open Access Journals (Sweden)

    Shoji Kawahito

    2011-02-01

    Full Text Available A CMOS light pulse receiver (LPR cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  11. Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Kuan-Hao [Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106 and Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Hu, Lingzhi; Traughber, Melanie [Philips Healthcare, Cleveland, Ohio 44143 (United States); Stehning, Christian; Helle, Michael [Philips Research, Hamburg 22335 (Germany); Qian, Pengjiang [School of Digital Media, Jiangnan University, Jiangsu 214122 (China); Thompson, Cheryl L. [Departments of Family Medicine and Community Health and Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106 and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Pereira, Gisele C.; Traughber, Bryan J., E-mail: bryan.traughber@case.edu [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Jordan, David W. [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Herrmann, Karin A. [Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Muzic, Raymond F. [Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

    2015-08-15

    Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2{sup ∗} images (1/T2{sup ∗}) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2{sup ∗}, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of

  12. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression

    Science.gov (United States)

    Wang, Y. Y.; Peng, Xiang; Alharbi, M.; Dutin, C. F.; Bradley, T. D.; Mielke, Michael; Booth, Timothy; Benabid, F.

    2012-03-01

    We report on recent design and fabrication of Kagome type hollow-core photonic crystal fiber (HC-PCF) for the purpose of high power fast laser beam transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all Kagome fibers) of 40dB/km over a broadband transmission centered at 1500nm. We show that the large core size, low attenuation, broadband transmission, single modedness, low dispersion and relatively low banding loss makes it an ideal host for high power laser beam transportation. By filling the fiber with helium gas, a 74μJ, 850fs and 40kHz repetition rate ultra-short pulse at 1550nm has been faithfully delivered with little propagation pulse distortion. Compression of a 105μJ laser pulse from 850fs to 300fs has been achieved by operating the fiber in ambient air.

  13. Design considerations for massively parallel sequencing studies of complex human disease.

    Directory of Open Access Journals (Sweden)

    Bing-Jian Feng

    Full Text Available Massively Parallel Sequencing (MPS allows sequencing of entire exomes and genomes to now be done at reasonable cost, and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as complex relationships between genotype and phenotype. Such considerations include careful selection of samples for sequencing and a well-developed strategy for identifying the few "true" disease susceptibility genes from among the many irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases, sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important guidelines for study design.

  14. Design evolution enhances patient compliance for low-intensity pulsed ultrasound device usage

    Directory of Open Access Journals (Sweden)

    Pounder NM

    2016-11-01

    Full Text Available Neill M Pounder, John T Jones, Kevin J Tanis Bioventus LLC, Durham, NC, USA Abstract: Poor patient compliance or nonadherence with prescribed treatments can have a significant unfavorable impact on medical costs and clinical outcomes. In the current study, voice-of-the-customer research was conducted to aid in the development of a next-generation low-intensity pulsed ultrasound (LIPUS bone healing product. An opportunity to improve patient compliance reporting was identified, resulting in the incorporation into the next-generation device of a visual calendar that provides direct feedback to the patient, indicating days for which they successfully completed treatment. Further ­investigation was done on whether inclusion of the visual calendar improved patient adherence to the prescribed therapy (20 minutes of daily treatment over a 6-month period. Thus, 12,984 data files were analyzed from patients prescribed either the earlier- or the next-generation LIPUS device. Over the 6-month period, overall patient compliance was 83.8% with the next-generation LIPUS device, compared with 74.2% for the previous version (p<0.0001. Incorporation of the calendar feature resulted in compliance never decreasing below 76% over the analysis period, whereas compliance with the earlier-generation product fell to 51%. A literature review on the LIPUS device shows a correlation between clinical effectiveness and compliance rates more than 70%. Incorporation of stakeholder feedback throughout the design and innovation process of a next-generation LIPUS device resulted in a measurable improvement in patient adherence, which may help to optimize clinical outcomes. Keywords: LIPUS, ultrasound, compliance, patient adherence, medical device design

  15. Formal Learning Sequences and Progression in the Studio: A Framework for Digital Design Education

    Directory of Open Access Journals (Sweden)

    Pontus Wärnestål

    2016-02-01

    Full Text Available This paper examines how to leverage the design studio learning environment throughout long-term Digital Design education in order to support students to progress from tactical, well-defined, device-centric routine design, to confidently design sustainable solutions for strategic, complex, problems for a wide range of devices and platforms in the digital space. We present a framework derived from literature on design, creativity, and theories on learning that: (a implements a theory of formal learning sequences as a user-centered design process in the studio; and (b describes design challenge progressions in the design studio environment modeled in seven dimensions. The framework can be used as a tool for designing, evaluating, and communicating course progressions within – and between series of – design studio courses. This approach is evaluated by implementing a formal learning sequence framework in a series of design studio courses that progress in an undergraduate design-oriented Informatics program. Reflections from students, teachers, and external clients indicate high student motivation and learning goal achievement, high teacher satisfaction and skill development, and high satisfaction among external clients.

  16. Arbitrary precision composite pulses for NMR quantum computing.

    Science.gov (United States)

    Alway, William G; Jones, Jonathan A

    2007-11-01

    We discuss the implementation of arbitrary precision composite pulses developed using the methods of Brown et al. [K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70 (2004) 052318]. We give explicit results for pulse sequences designed to tackle both the simple case of pulse length errors and the more complex case of off-resonance errors. The results are developed in the context of NMR quantum computation, but could be applied more widely.

  17. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    Science.gov (United States)

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  18. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  19. incaRNAfbinv: a web server for the fragment-based design of RNA sequences.

    Science.gov (United States)

    Drory Retwitzer, Matan; Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme; Barash, Danny

    2016-07-08

    In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv.

  20. Time-of-flight diffractometer with multiple pulse overlap - an example for the application of modern tools for instrument design

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U.; Bauer, G.S.; Wagner, W. [Paul Scherrer Institut, Villigen (Switzerland)

    1997-09-01

    A Time-of-Flight Diffractometer with high pulse rates, allowing multiple frame overlap, is a completely novel design of an instrument dedicated for high resolution strain-field mapping. We elaborated a detailed concept of this instrument applying analytical calculations and Monte Carlo computer simulations. Having established the instrument concept, the computer simulations will now be extended to optimize the total performance of the instrument. To illustrate the necessity and possibilities of applying modem tools for instrument design, we describe, as an example, the different steps towards the development of the detailed design of this instrument, which we intend to build at the Swiss spallation. source SINQ in the near future.

  1. Conversion of recoilless gamma-radiation into a periodic sequence of ultrashort pulses in a set of dispersive and absorptive resonant media

    CERN Document Server

    Radeonychev, Y V; Vagizov, F G; Shakhmuratov, R N; Kocharovskaya, Olga

    2015-01-01

    An efficient technique to produce a periodic sequence of ultrashort pulses of recoilless gamma-radiation via its transmission through the optically thick vibrating resonant absorber was demonstrated recently [Nature, 508, 80 (2014)]. In this work we extend the theoretical analysis to the case of a set of multiple absorbers. We consider an analytical model describing the control of spectral content of a frequency modulated gamma-radiation by selective correction of amplitudes and initial phases of some spectral components, using, respectively, the resonant absorption or dispersion of nuclei. On the basis of the analytical solutions we determine the ultimate possibilities of the proposed technique.

  2. Novel computational methods for increasing PCR primer design effectiveness in directed sequencing

    Directory of Open Access Journals (Sweden)

    Busam Dana

    2008-04-01

    Full Text Available Abstract Background Polymerase chain reaction (PCR is used in directed sequencing for the discovery of novel polymorphisms. As the first step in PCR directed sequencing, effective PCR primer design is crucial for obtaining high-quality sequence data for target regions. Since current computational primer design tools are not fully tuned with stable underlying laboratory protocols, researchers may still be forced to iteratively optimize protocols for failed amplifications after the primers have been ordered. Furthermore, potentially identifiable factors which contribute to PCR failures have yet to be elucidated. This inefficient approach to primer design is further intensified in a high-throughput laboratory, where hundreds of genes may be targeted in one experiment. Results We have developed a fully integrated computational PCR primer design pipeline that plays a key role in our high-throughput directed sequencing pipeline. Investigators may specify target regions defined through a rich set of descriptors, such as Ensembl accessions and arbitrary genomic coordinates. Primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the specified target regions. As part of the tiling process, primer pairs are computationally screened to meet the criteria for success with one of two PCR amplification protocols. In the process of improving our sequencing success rate, which currently exceeds 95% for exons, we have discovered novel and accurate computational methods capable of identifying primers that may lead to PCR failures. We reveal the laboratory protocols and their associated, empirically determined computational parameters, as well as describe the novel computational methods which may benefit others in future primer design research. Conclusion The high-throughput PCR primer design pipeline has been very successful in providing the basis for high-quality directed sequencing results and for minimizing

  3. Exact solution of the CPMG pulse sequence with phase variation down the echo train: application to R₂ measurements.

    Science.gov (United States)

    Bain, Alex D; Kumar Anand, Christopher; Nie, Zhenghua

    2011-04-01

    An implicit exact algebraic solution of CPMG experiments is presented and applied to fit experiments. Approximate solutions are also employed to explore oscillations and effective decay rates of CPMG experiments. The simplest algebraic approximate solution has illustrated that measured intensities will oscillate in the conventional CPMG experiments and that using even echoes can suppress errors of measurements of R₂ due to the imperfection of high-power pulses. To deal with low-power pulses with finite width, we adapt the effective field to calculate oscillations. An optimization model with the effective field approximation and dimensionless variables is proposed to quantify oscillations of measured intensities of CPMG experiments of different phases of the π pulses. We show, as was known using other methods, that repeating one group of four pulses with different phases in CPMG experiments, which we call phase variation, but others call phase alternation or phase cycling, can significantly smooth the dependence of measured intensities on frequency offset in the range of ±½γB₁. In this paper, a second-order expression with respect to the ratio of frequency offset to π-pulse amplitude is developed to describe the effective R₂ of CPMG experiments when using a group phase variation scheme. Experiments demonstrate that (1) the exact calculation of CPMG experiments can remarkably eliminate systematic errors in measured R₂s due to the effects of frequency offset, even in the absence of phase variation; (2) CPMG experiments with group phase variation can substantially remove oscillations and effects of the field inhomogeneity; (3) the second-order expression of the effective decay rate with phase variation is able to provide reliable estimates of R₂ when offsets are roughly within ±½γB₁; and, most significantly, (4) the more sophisticated optimization model using an exact solution of the discretized CPMG experiment extends, to ±γB₁, the range of

  4. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Robles José A

    2012-09-01

    Full Text Available Abstract Background RNA sequencing (RNA-Seq has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  5. SEVERAL PROBLEMS IN DESIGNING DBS SYSTEMS FOR AIRBORNE PULSE DOPPLER RADAR

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Some bases are presented for determining and calculating the airborne pulse doppler radar's DBS system parameters.Major problems discussed here are the limitation to the beam sharpening ratio and azimuth resolution, and the limitation to maximum pitch angle and minimum azimuth angle.Some basic formulas are given for calculating the batch processing period, framescan time and antenna rotating speed.Also discussed are the limiting condition and determining principle of the pulse repetition frequency.

  6. Design and Simulation of Sub Nanosecond Pulse Generator for Uitra-Wideband Communication

    Institute of Scientific and Technical Information of China (English)

    XU Ping-ping; OUYANG Yong-yan; FAN Xiang-ning

    2003-01-01

    A new sub-nanosecond pulse generator scheme is proposed in the opinion of frequency field in this paper.The filtering techniques used in the UWB (ultra-wideband) generator make the circuit simple and suitable for integration. The theoretical analysis and simulation results show that monocycle form generated in the scheme have a good balance between positive and negative shape and small traipse by circuit parameter control and has improved the quality of UWB pulse form.

  7. Design and performance analysis of transmission line-based nanosecond pulse multiplier

    Indian Academy of Sciences (India)

    Rishi Verma; A Shyam; Kunal G Shah

    2006-10-01

    Conventionally, Marx generators are used for the production of short duration, high voltage pulses but since many discharge gap switches are utilized for stepping up the voltage, there are many disadvantages. Here, an alternative and much simpler technique for the multiplication of nanosecond high voltage pulses has been presented in which multiplication takes place by switching single spark gap providing voltage gain of $‘nxV’$ where is the subsequent number of stages. Stepped up high voltage pulse with fixed voltage gain of defined shape with fast rise time and good flat top is produced without using additional pulse-forming network. Its operation has been made repetitive by switching single spark gap. Multipurpose use, low cost, small size, light weight (weighing less than 50 kg) and portability are the additional benefits of the system. The reported nanosecond pulser has been made by cascading three stages of Blumlein. To cross check its performance the parasitic impedance of the system has been evaluated to realize its adverse effect on the voltage gain and pulse shape. Also its operation has been simulated by PSPICE circuit simulator program and good agreement has been obtained between simulated and experimental results. Applications of this pulse generator include X-ray generation, breakdown tests, ion implantation, streamer discharge studies and ultra wideband generation, among others.

  8. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    Science.gov (United States)

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  9. Two-Phase and Family-Based Designs for Next-Generation Sequencing Studies

    Directory of Open Access Journals (Sweden)

    Duncan C Thomas

    2013-12-01

    Full Text Available The cost of next-generation sequencing is now approaching that of early GWAS panels, but is still out of reach for large epidemiologic studies and the millions of rare variants expected poses challenges for distinguishing causal from non-causal variants. We review two types of designs for sequencing studies: two-phase designs for targeted follow-up of genomewide association studies using unrelated individuals; and family-based designs exploiting co-segregation for prioritizing variants and genes.Two-phase designs subsample subjects for sequencing from a larger case-control study jointly on the basis of their disease and carrier status; the discovered variants are then tested for association in the parent study. The analysis combines the full sequence data from the substudy with the more limited SNP data from the main study. We discuss various methods for selecting this subset of variants and describe the expected yield of true positive associations in the context of an on-going study of second breast cancers following radiotherapy.While the sharing of variants within families means that family-based designs are less efficient for discovery than sequencing unrelated individuals, the ability to exploit co-segregation of variants with disease within families helps distinguish causal from non-causal ones. Furthermore, by enriching for family history, the yield of causal variants can be improved and use of identity-by-descent information improves imputation of genotypes for other family members. We compare the relative efficiency of these designs with those using unrelated individuals for discovering and prioritizing variants or genes for testing association in larger studies. While associations can be tested with single variants, power is low for rare ones. Recent generalizations of burden or kernel tests for gene-level associations to family-based data are appealing. These approaches are illustrated in the context of a family-based study of

  10. Multilocus sequence typing and pulsed-field gel electrophoresis analysis of Oenococcus oeni from different wine-producing regions of China.

    Science.gov (United States)

    Wang, Tao; Li, Hua; Wang, Hua; Su, Jing

    2015-04-16

    The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics.

  11. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    Directory of Open Access Journals (Sweden)

    Colin A Smith

    Full Text Available Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface, interactions between and within parts of the structure (e.g. domains can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  12. An Approach to the Design of Mathematical Task Sequences: Conceptual Learning as Abstraction

    Science.gov (United States)

    Simon, Martin A.

    2016-01-01

    This paper describes an emerging approach to the design of task sequences and the theory that undergirds it. The approach aims at promoting particular mathematical concepts, understood as the result of reflective abstraction. Central to this approach is the identification of available student activities from which students can abstract the…

  13. A design for computer nucleic-acid-sequence storage, retrieval, and manipulation

    OpenAIRE

    1982-01-01

    We have designed and built a data-base system for the storage of nucleic-acid sequences. The system consists of a data base (“the library”) and software that manages and provides access to that data base (“the Librarian”).

  14. Using the Box-Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation.

    Science.gov (United States)

    Liu, Huolong; Wang, Ke; Schlindwein, Walkiria; Li, Mingzhong

    2013-05-20

    In this work, the influence factors of pulsed frequency, binder spray rate and atomisation pressure of a top-spray fluidised bed granulation process were studied using the Box-Behnken experimental design method. Different mathematical models were developed to predict the mean size of granules, yield, relative width of granule distribution, Hausner ratio and final granule moisture content. The study has supported the theory that the granule size can be controlled through the liquid feed pulsing. However, care has to be taken when the pulsed frequency is chosen for controlling the granule size due to the nonlinear quadratic relation in the regression model. The design space of the ranges of operating parameters has been determined based on constraints of the mean size of granules and granule yield. High degree of prediction obtained from validation experiments has shown the reliability and effectiveness of using the Box-Behnken experimental design method to study a fluidised bed granulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    Science.gov (United States)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  16. Degenerative diseases of the cervical spine: comparison of a multiecho data image combination sequence with a magnetisation transfer saturation pulse and cervical myelography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Dorenbeck, U. [Department of Neuroradiology, University Hospital of the Saarland, 66421, Homburg (Germany); Department of Diagnostic Radiology, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93042, Regensburg (Germany); Schreyer, A.G.; Held, P.; Feuerbach, S.; Seitz, J. [Department of Diagnostic Radiology, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93042, Regensburg (Germany); Schlaier, J. [Department of Neurosurgery, University Hospital of Regensburg, Franz-Josef-Strauss Allee 11, 93042, Regensburg (Germany)

    2004-04-01

    Assessing degenerative disease in the cervical spine remains a challenge. There is much controversy about imaging the cervical spine using MRI. Our aim in this prospective study was to compare a T2*-weighted 2D spoiled gradient-echo multiecho sequence (MEDIC) with a magnetisation transfer saturation pulse with cervical myelography and postmyelographic CT. Using an assessment scale we looked at the vertebral bodies, intervertebral discs, neural foramina, anterior and posterior nerve roots, grey matter, ligamenta flava, oedema in the spinal cord and stenosis of the spinal canal. We also evaluated postmyelography CT and the MEDIC sequence for assessing narrowing of the neural foramina in a cadaver cervical spine. We examined 67 disc levels in 18 patients, showing 18 disc prolapses and 21 osteophytes narrowing the spinal canal or the neural foramina. All MRI studies showed these abnormalities findings equally well. Postmyelography CT was significantly better for showing the bony structures and the anterior and posterior nerve roots. The MEDIC sequence provided excellent demonstration of soft-tissue structures such as the intervertebral disc and ligamentum flavum. No statistical differences between the imaging modalities were found in the assessment of narrowing of the neural foramina or the extent of spinal stenosis. The cadaver measurements showed no overestimation of abnormalities using the MEDIC sequence. (orig.)

  17. Statistical approach of measurement of signal to noise ratio in according to change pulse sequence on brain MRI meningioma and cyst images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eul Kyu [Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Choi, Kwan Woo [Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [The Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [The Soonchunhyang University, Asan (Korea, Republic of); Kim, Ki Won [Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Son, Soon Yong [The Wonkwang Health Science University, Iksan (Korea, Republic of); Min, Jung Whan; Son, Jin Hyun [The Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    The purpose of this study was to needed basis of measure MRI CAD development for signal to noise ratio (SNR) by pulse sequence analysis from region of interest (ROI) in brain magnetic resonance imaging (MRI) contrast. We examined images of brain MRI contrast enhancement of 117 patients, from January 2005 to December 2015 in a University-affiliated hospital, Seoul, Korea. Diagnosed as one of two brain diseases such as meningioma and cysts SNR for each patient's image of brain MRI were calculated by using Image J. Differences of SNR among two brain diseases were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p < 0.05). We have analysis socio-demographical variables, SNR according to sequence disease, 95% confidence according to SNR of sequence and difference in a mean of SNR. Meningioma results, with the quality of distributions in the order of T1CE, T2 and T1, FLAIR. Cysts results, with the quality of distributions in the order of T2 and T1, T1CE and FLAIR. SNR of MRI sequences of the brain would be useful to classify disease. Therefore, this study will contribute to evaluate brain diseases, and be a fundamental to enhancing the accuracy of CAD development.

  18. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.

    Directory of Open Access Journals (Sweden)

    Javier Estrada

    Full Text Available DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.

  19. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.

    Science.gov (United States)

    Estrada, Javier; Ruiz-Herrero, Teresa; Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.

  20. Design of a Tunable All-Digital UWB Pulse Generator CMOS Chip for Wireless Endoscope.

    Science.gov (United States)

    Chul Kim; Nooshabadi, S

    2010-04-01

    A novel tunable all-digital, ultrawideband pulse generator (PG) has been implemented in a standard 0.18-¿ m complementary metal-oxide semiconductor (CMOS) process for implantable medical applications. The chip shows that an ultra-low dynamic energy consumption of 27 pJ per pulse without static current flow at a 200-MHz pulse repetition frequency (PRF) with a 1.8-V power supply and low area of 90 × 50 ¿m(2). The PG generates tunable pulsewidth, amplitude, and transmit (Tx) power by using simple circuitry, through precise timing control of the H-bridge output stage. The all-digital architecture allows easy integration into a standard CMOS process, thus making it the most suitable candidate for in-vivo biotelemetry applications.

  1. Conceptual design and implementation of Pulse Automation and Scheduling System for KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woongryol, E-mail: wrlee@nfri.re.kr; Lee, Taegu; Park, Jinseop; Hong, Jaesic; Hahn, Sanghee; Han, Hyunsun; Woo, Minho; Park, Kaprai

    2015-10-15

    Highlights: • The world clock based automatic sequential operation manipulator. • Configuration of the Pulse Automation System (PAS) and the Pulse Scheduling System (PSS) • Providing of operational information in voice through an Ethernet interface. • A perceptional operation status, easy time manipulator, and intuitive man machine interface for the purpose of the Tokamak operation. • Generation of the plasma disruption information. - Abstract: The world clock based automatic sequential operation manipulator has been developed and begin to work on the 7th campaign in KSTAR Tokamak. The Pulse Automation and Scheduling System (PASS) divided into Pulse Automation System (PAS) and Pulse Scheduling System (PSS). The PAS is on the online control system and it has communicated with many other local control systems. Before PASS, the plasma experiment was performed manually by using Central Control System (CCS). However the PASS currently manipulates the sequential operation of KSTAR with the programmed shot interval time. It provides readiness check routine, shot time handler, and local system monitoring functions. The PASS has no hardware dependency and it was configured with EPICS extensions. The Real Time Monitoring System, PCS-GATE, Automatic Reporting System, Central Control System, and Timing Synchronization System are well organized and they communicate to each other. The PASS provides perceptual operation status, easy time manipulator, and intuitive man machine interface. The plasma disruption information which is used in the KSTAR standard software framework also comes from the PASS. We describe the functions and system architecture of the Pulse Automation System in this paper. The PSS will be specified inside PASS for the purpose of intelligent system parameterization.

  2. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    Science.gov (United States)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  3. Design of long-pulse fast wave current drive antennas for DIII-D

    Science.gov (United States)

    Baity, F. W.; Batchelor, D. B.; Bills, K. C.; Fogelman, C. H.; Jaeger, E. F.; Ping, J. L.; Riemer, B. W.; Ryan, P. M.; Stallings, D. C.; Taylor, D. J.; Yugo, J. J.

    1994-10-01

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90° phasing into a low-density plasma (˜4×1019m-3) with hot electrons (˜10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  4. PRISE2: software for designing sequence-selective PCR primers and probes.

    Science.gov (United States)

    Huang, Yu-Ting; Yang, Jiue-in; Chrobak, Marek; Borneman, James

    2014-09-25

    PRISE2 is a new software tool for designing sequence-selective PCR primers and probes. To achieve high level of selectivity, PRISE2 allows the user to specify a collection of target sequences that the primers are supposed to amplify, as well as non-target sequences that should not be amplified. The program emphasizes primer selectivity on the 3' end, which is crucial for selective amplification of conserved sequences such as rRNA genes. In PRISE2, users can specify desired properties of primers, including length, GC content, and others. They can interactively manipulate the list of candidate primers, to choose primer pairs that are best suited for their needs. A similar process is used to add probes to selected primer pairs. More advanced features include, for example, the capability to define a custom mismatch penalty function. PRISE2 is equipped with a graphical, user-friendly interface, and it runs on Windows, Macintosh or Linux machines. PRISE2 has been tested on two very similar strains of the fungus Dactylella oviparasitica, and it was able to create highly selective primers and probes for each of them, demonstrating the ability to create useful sequence-selective assays. PRISE2 is a user-friendly, interactive software package that can be used to design high-quality selective primers for PCR experiments. In addition to choosing primers, users have an option to add a probe to any selected primer pair, enabling design of Taqman and other primer-probe based assays. PRISE2 can also be used to design probes for FISH and other hybridization-based assays.

  5. Polarization-transfer methods in solid-state magic-angle-spinning NMR: adiabatic CN pulse sequences.

    Science.gov (United States)

    Verel, René; Meier, Beat H

    2004-06-21

    An adiabatic double-quantum polarization-transfer experiment is described. It can be characterized as an adiabatic variant of the POST-C7 experiment. A continuous variation of the phase increment between pulses leads to the introduction of a fictitious Zeeman field that allows for an adiabatic passage through the recoupling condition. This results in a chemical-shift-offset-compensated adiabatic experiment, which leads to an efficient and broadbanded polarization transfer or to a double-quantum excitation. Similar variations of other C- or R-type experiments can be envisioned.

  6. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Fatemi, A [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy. The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.

  7. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth

    2014-01-01

    . With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...

  8. Array design considerations for exploitation of stable weakly dispersive modal pulses in the deep ocean

    Science.gov (United States)

    Udovydchenkov, Ilya A.

    2017-07-01

    Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.

  9. Design and performance of the pulsed positron beam at Chalmers University of Technology

    Science.gov (United States)

    Mileshina, L.; Nordlund, A.

    2009-09-01

    A slow monoenergetic pulsed positron beam at Chalmers University of Technology has been built. The system consists mainly of chopper, buncher and accelerator. The achieved positron energy range is in range between 230 eV and 15 keV. The FWHM of the beam resolution function is around 700 ps. The beam intensity is around 103 cps.

  10. Design and Construction of a Microcontroller-Based Ventilator Synchronized with Pulse Oximeter.

    Science.gov (United States)

    Gölcük, Adem; Işık, Hakan; Güler, İnan

    2016-07-01

    This study aims to introduce a novel device with which mechanical ventilator and pulse oximeter work in synchronization. Serial communication technique was used to enable communication between the pulse oximeter and the ventilator. The SpO2 value and the pulse rate read on the pulse oximeter were transmitted to the mechanical ventilator through transmitter (Tx) and receiver (Rx) lines. The fuzzy-logic-based software developed for the mechanical ventilator interprets these values and calculates the percentage of oxygen (FiO2) and Positive End-Expiratory Pressure (PEEP) to be delivered to the patient. The fuzzy-logic-based software was developed to check the changing medical states of patients and to produce new results (FiO2 ve PEEP) according to each new state. FiO2 and PEEP values delivered from the ventilator to the patient can be calculated in this way without requiring any arterial blood gas analysis. Our experiments and the feedbacks from physicians show that this device makes it possible to obtain more successful results when compared to the current practices.

  11. Fault detection on the Large Hadron Collider at CERN: design, simulation and realization of a High Voltage Pulse Generator

    CERN Document Server

    Cavicchioli, C; Biagi, E; Bozzini, D

    2007-01-01

    This project was developed inside the Quality Assurance Plan (ELQA) of the LHC. The superconducting circuits of the collider show a great complexity concerning the control system, because of various reasons: the tunnel is placed around 50 to 175 m underground, the circuits work at temperatures of 1.9 K, all the structure should be perfectly aligned and the electronic part has considerable dimensions. To maximize the running time of the collider, it is necessary to develop methods for the diagnostic of defects and for the precise localization of the segment of the accelerator that contains the fault. From my studies it emerged that a possible way to localize electrical faults in the LHC superconducting circuits is to combine the use of time domain reflectometry methods and high voltage pulses. Therefore, I have designed and realized a high voltage pulse generator that will be an important instrument for the fault location among the accelerator.

  12. Mud pulse logging while drilling telemetry system: design, development, and demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Spinnler, R.F.; Stone, F.A.

    1978-07-01

    Mud pulse telemetry is a method of transmitting information from the vicinity of the drill bit to the surface drilling platform while drilling. Information can be conveyed through a flowing column of drilling mud by the presence or absence of pressure pulses arranged in a binary code. Pressure in the flowing mud column is periodically modulated at a point downhole by mechanical means, and the resulting periodic pressure pulses appearing at the surface end of the mud column are detected by a pressure transducer conveniently located in the standpipe. Although the concept of mud-pulse telemetry is not new, only recently have sophisticated systems embodying mud-powered turbine generators and solid-state electronics been developed to the point of being able to withstand the hostile downhole environment. After ten years of active technology development and over $10 million of R and D expenditures, Teleco has demonstrated through field tests carried out in the Gulf of Mexico during 1977, that equipment reliability necessary for commercial operation is essentially at hand. Three generations of prototype systems were tested under actual drilling conditions during 1968 through 1977. Using eight new production systems, Teleco began a Pilot Service Demonstration in August 1977, under a contract with the U.S. Department of Energy and six major oil companies. Each system consisting of a sensor assembly and mud pulse telemetry transmitter measures borehole azimuth, inclination, and tool facing. Accurate directional measurements have been provided from kick-off through to target depth with minimum interruption to the drilling operation. Tool face information has been used to successfully kick-off directional wells using both mud motor and jet deflection techniques. Equipment reliability, as indicated by recent test runs of 254 and 272 hours of drilling with two separate systems, without failure, is approaching the level needed for commercial service.

  13. Development of a two semester sequence of design oriented composites courses

    Energy Technology Data Exchange (ETDEWEB)

    O`Toole, B.J. [Univ. of Nevada, Las Vegas, NV (United States). Mechanical Engineering Dept.

    1994-12-31

    A two semester series of courses has been developed which is an introduction to the design, analysis, manufacturing and testing of composite materials. The courses are ideal for junior or senior level undergraduates or beginning graduate students who have no prior knowledge of composites. This sequence is well suited for a department starting to add composites courses and research activity and which only has a small number of interested faculty members. Some of the topics in this two course sequence are taken and condensed from six separate courses taught at the University of Delaware. Details about suitable textbooks, software, handouts, and resource requirements are discussed. The first course, titled ``Introduction to Composite Materials,`` includes an overview of material systems and manufacturing methods, microstructural analysis, lamina and laminate theory, design procedures, failure analysis, and the use of composites analysis software. The class is divided into small groups of students and each group selects a project early in the semester. The objective of each group is to learn enough to make competent decisions about material selection, fabrication techniques (prototype and mass production), laminate design, and failure prediction. The second course is a laboratory course which includes experimental procedures for material characterization, wet lay-up, mold making, autoclave, and pultrusion manufacturing techniques, and the design of experiments for component testing, The design groups expand their previous paper studies by fabricating and testing their designs. Student reaction has been positive and teaching these courses is enjoyable but time consuming.

  14. Comparison of different pulse sequences for in vivo determination of T1 relaxation times in the human brain

    DEFF Research Database (Denmark)

    Kjaer, L; Henriksen, O

    1988-01-01

    (PSIR) sequence with TR varying between 0.24 and 8.0 s. The median T1 relaxation times obtained in cortical grey matter and cerebrospinal fluid were significantly shorter in the IR experiments at TR = 2 s than in those carried out at TR = 4 s. Concerning white matter the discrepancy was much less...

  15. Design and Fabrication of a Breadboard, Fully Conductively Cooled, 2-Micron, Pulsed Laser for the 3-D Winds Decadal Survey Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Design and fabricate a space-qualifiable, fully conductively cooled, 2-micron pulsed laser breadboard meeting the projected 3-D Winds mission requirements. Utilize...

  16. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    Science.gov (United States)

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  17. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Subashi, Ergys [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States); Choudhury, Kingshuk R. [Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States); Johnson, G. Allan, E-mail: gjohnson@duke.edu [Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States); Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model

  18. 3D FIESTA pulse sequence for assessing renal artery stenosis: is it a reliable application in unenhanced magnetic resonance angiography?

    Science.gov (United States)

    Gaudiano, Caterina; Busato, Fiorenza; Ferramosca, Emiliana; Cecchelli, Carlo; Corcioni, Beniamino; De Sanctis, Lucia Barbara; Santoro, Antonio; Golfieri, Rita

    2014-12-01

    To assess the capability of the three-dimensional (3D) Fast Imaging Employing Steady-State Acquisition (FIESTA) sequence in evaluating renal artery stenosis (RAS). We retrospectively analysed 79 patients referred for suspected RAS, examined by 3D FIESTA and contrast-enhanced magnetic resonance angiography (CE-MRA), using a 1.5T whole-body scanner. Image quality was assessed as well as the presence and grade of RAS. Patients with RAS ≥ 50% were evaluated for possible digital subtraction angiography (DSA). Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of 3D FIESTA were calculated with ROC analysis using CE-MRA and DSA as the standard of reference. A total of 186 renal arteries were assessed; 36 had RAS ≥ 50 % demonstrated by CE-MRA. Ten patients underwent DSA, for a total evaluation of 22 arteries. Sensitivity, specificity, NPV, PPV, and accuracy of 3D FIESTA were 91.7%, 100%, 98%, 100%, and 98%, respectively, as compared to CE-MRA, and 88.2%, 100%, 71.4%, 100%, and 91%, respectively, as compared to DSA. The area under the ROC curve (AUC) of 3D FIESTA as compared to CE-MRA and DSA was 0.958 and 0.941, respectively. Our study demonstrated the capability of the 3D FIESTA sequence in evaluating RAS, with high-quality images and good diagnostic accuracy. The 3D FIESTA sequence provides a robust evaluation of RAS. The 3D FIESTA sequence allows non-invasive evaluation of the renal arteries. The 3D FIESTA sequence could be a useful tool in evaluating RAS.

  19. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Timothy A.; Chevalier, Aaron; Song, Yifan; Dreyfus, Cyrille; Fleishman, Sarel J.; De Mattos, Cecilia; Myers, Chris A.; Kamisetty, Hetunandan; Blair, Patrick; Wilson, Ian A.; Baker, David (UWASH); (Scripps); (NRL)

    2012-06-19

    We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.

  20. A Sequence of Assignments to Teach Object-Oriented Programming: a Constructivism Design-First Approach

    Directory of Open Access Journals (Sweden)

    Kleanthis C. THRAMBOULIDIS

    2003-04-01

    Full Text Available A constructivism-based approach to teach the object-oriented (OO programming paradigm in introductory computer courses was developed and used for several years. A multi-entity system from every-day life was adopted, to exploit the novice programmer's existing knowledge and build on it the OO conceptual framework. A sequence of assignments has been designed and developed to allow students exposed to this approach to experiment with Java programming and see how the OO conceptual framework is implemented. In this paper, this sequence of assignments is presented, discussed and evaluated in the context of the defined approach. The set of assignments that is based on a software-engineering-centered view and more precisely on a design-first approach, comes with the description of the strategy and graded hints that lead students to the final solution. Although it was first implemented as supplementary material, it quickly became the core component of the course.

  1. Comparison of pulsed-field gel electrophoresis & repetitive sequence-based PCR methods for molecular epidemiological studies of Escherichia coli clinical isolates

    Directory of Open Access Journals (Sweden)

    Il Kwon Bae

    2014-01-01

    Full Text Available Background & objectives: PFGE, rep-PCR, and MLST are widely used to identify related bacterial isolates and determine epidemiologic associations during outbreaks. This study was performed to compare the ability of repetitive sequence-based PCR (rep-PCR and pulsed-field gel electrophoresis (PFGE to determine the genetic relationships among Escherichia coli isolates assigned to various sequence types (STs by two multilocus sequence typing (MLST schemes. Methods: A total of 41 extended-spectrum β-lactamase- (ESBL- and/or AmpC β-lactamase-producing E. coli clinical isolates were included in this study. MLST experiments were performed following the Achtman′s MLST scheme and the Whittam′s MLST scheme, respectively. Rep-PCR experiments were performed using the DiversiLab system. PFGE experiments were also performed. Results: A comparison of the two MLST methods demonstrated that these two schemes yielded compatible results. PFGE correctly segregated E. coli isolates belonging to different STs as different types, but did not group E. coli isolates belonging to the same ST in the same group. Rep-PCR accurately grouped E. coli isolates belonging to the same ST together, but this method demonstrated limited ability to discriminate between E. coli isolates belonging to different STs. Interpretation & conclusions: These results suggest that PFGE would be more effective when investigating outbreaks in a limited space, such as a specialty hospital or an intensive care unit, whereas rep-PCR should be used for nationwide or worldwide epidemiology studies.

  2. Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface.

    Science.gov (United States)

    Shin, Yeong Jae; Wang, Lingfei; Kim, Yoonkoo; Nahm, Ho-Hyun; Lee, Daesu; Kim, Jeong Rae; Yang, Sang Mo; Yoon, Jong-Gul; Chung, Jin-Seok; Kim, Miyoung; Chang, Seo Hyoung; Noh, Tae Won

    2017-08-16

    With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.

  3. Fluorescence Detection of H5N1 Virus Gene Sequences Based on Optical Tweezers with Two-Photon Excitation Using a Single Near Infrared Nanosecond Pulse Laser.

    Science.gov (United States)

    Li, Cheng-Yu; Cao, Di; Kang, Ya-Feng; Lin, Yi; Cui, Ran; Pang, Dai-Wen; Tang, Hong-Wu

    2016-04-19

    We present an analytical platform by combining near-infrared optical tweezers with two-photon excitation for fluorescence detection of H5N1 virus gene sequences. A heterogeneous enrichment strategy, which involved polystyrene (PS) microsphere and quantum dots (QDs), was adopted. The final hybrid-conjugate microspheres were prepared by a facile one-step hybridization procedure by using PS microspheres capturing target DNA and QDs tagging, respectively. Quantitative detection was achieved by the optical tweezers setup with a low-cost 1064 nm nanosecond pulse laser for both optical trapping and two-photon excitation for the same hybrid-conjugate microsphere. The detection limits for both neuraminidase (NA) gene sequences and hemagglutinin (HA) gene sequences are 16-19 pM with good selectivity for one-base mismatch, which is approximately 1 order of magnitude lower than the most existing fluorescence-based analysis method. Besides, because of the fact that only signal from the trapped particle is detected upon two-photon excitation, this approach showed extremely low background in fluorescence detection and was successfully applied to directly detect target DNA in human whole serum without any separation steps and the corresponding results are very close to that in buffer solution, indicating the strong anti-interference ability of this method. Therefore, it can be expected to be an emerging alternative for straightforward detecting target species in complex samples with a simple procedure and high-throughput.

  4. STAMP: Extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design.

    Science.gov (United States)

    Kraemer, Lars; Beszteri, Bánk; Gäbler-Schwarz, Steffi; Held, Christoph; Leese, Florian; Mayer, Christoph; Pöhlmann, Kevin; Frickenhaus, Stephan

    2009-01-30

    Microsatellites (MSs) are DNA markers with high analytical power, which are widely used in population genetics, genetic mapping, and forensic studies. Currently available software solutions for high-throughput MS design (i) have shortcomings in detecting and distinguishing imperfect and perfect MSs, (ii) lack often necessary interactive design steps, and (iii) do not allow for the development of primers for multiplex amplifications. We present a set of new tools implemented as extensions to the STADEN package, which provides the backbone functionality for flexible sequence analysis workflows. The possibility to assemble overlapping reads into unique contigs (provided by the base functionality of the STADEN package) is important to avoid developing redundant markers, a feature missing from most other similar tools. Our extensions to the STADEN package provide the following functionality to facilitate microsatellite (and also minisatellite) marker design: The new modules (i) integrate the state-of-the-art tandem repeat detection and analysis software PHOBOS into workflows, (ii) provide two separate repeat detection steps - with different search criteria - one for masking repetitive regions during assembly of sequencing reads and the other for designing repeat-flanking primers for MS candidate loci, (iii) incorporate the widely used primer design program PRIMER3 into STADEN workflows, enabling the interactive design and visualization of flanking primers for microsatellites, and (iv) provide the functionality to find optimal locus- and primer pair combinations for multiplex primer design. Furthermore, our extensions include a module for storing analysis results in an SQLite database, providing a transparent solution for data access from within as well as from outside of the STADEN Package. The STADEN package is enhanced by our modules into a highly flexible, high-throughput, interactive tool for conventional and multiplex microsatellite marker design. It gives the user

  5. Probing the effect of promoters on noise in gene expression using thousands of designed sequences.

    Science.gov (United States)

    Sharon, Eilon; van Dijk, David; Kalma, Yael; Keren, Leeat; Manor, Ohad; Yakhini, Zohar; Segal, Eran

    2014-10-01

    Genetically identical cells exhibit large variability (noise) in gene expression, with important consequences for cellular function. Although the amount of noise decreases with and is thus partly determined by the mean expression level, the extent to which different promoter sequences can deviate away from this trend is not fully known. Here, we present a high-throughput method for measuring promoter-driven noise for thousands of designed synthetic promoters in parallel. We use it to investigate how promoters encode different noise levels and find that the noise levels of promoters with similar mean expression levels can vary more than one order of magnitude, with nucleosome-disfavoring sequences resulting in lower noise and more transcription factor binding sites resulting in higher noise. We propose a kinetic model of gene expression that takes into account the nonspecific DNA binding and one-dimensional sliding along the DNA, which occurs when transcription factors search for their target sites. We show that this assumption can improve the prediction of the mean-independent component of expression noise for our designed promoter sequences, suggesting that a transcription factor target search may affect gene expression noise. Consistent with our findings in designed promoters, we find that binding-site multiplicity in native promoters is associated with higher expression noise. Overall, our results demonstrate that small changes in promoter DNA sequence can tune noise levels in a manner that is predictable and partly decoupled from effects on the mean expression levels. These insights may assist in designing promoters with desired noise levels.

  6. Design of Long Period Pseudo-Random Sequences from the Addition of m -Sequences over 𝔽 p

    Directory of Open Access Journals (Sweden)

    Ren Jian

    2004-01-01

    Full Text Available Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of m -sequences with pairwise-prime linear spans (AMPLS. Using m -sequences as building blocks, the proposed method proved to be an efficient and flexible approach to construct long period pseudo-random sequences with desirable properties from short period sequences. Applying the proposed method to 𝔽 2 , a signal set ( ( 2 n − 1 ( 2 m − 1 , ( 2 n + 1 ( 2 m + 1 , ( 2 ( n + 1 / 2 + 1 ( 2 ( m + 1 / 2 + 1 is constructed.

  7. DESIGN NOTE: A video synchronization unit for capture of pulsed laser parameters

    Science.gov (United States)

    Oak, S. M.; Navathe, C. P.

    1996-04-01

    An electronic circuit called a video synchronization unit (VSU) is developed to synchronize TV grade CCTV cameras, CCTV monitors and video frame grabbers for the capture of pulsed laser parameters. The VSU accepts a video signal from the camera and generates triggers for the laser and frame grabber at required times. It also generates a trigger at any pre-set horizontal line in the video signal, so that the intensity profile of the selected line can be viewed on an oscilloscope. The unit can drive a laser or be driven by the laser either in single-shot or in repetitive mode of operation. With the help of this unit, a video system is built for the capture of pulsed laser beam profiles and fluorescence traces of a picosecond autocorrelator. It is an inexpensive and more readily available alternative to commercial asynchronous video systems.

  8. Design of long-pulse fast wave current drive antennas for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Baity, F.W.; Batchelor, D.B.; Bills, K.C.; Fogelman, C.H.; Jaeger, E.F.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Stallings, D.C.; Taylor, D.J.; Yugo, J.J. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States))

    1994-10-15

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90[degree] phasing into a low-density plasma ([similar to]4[times]10[sup 19]m[sup [minus]3]) with hot electrons ([similar to]10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  9. Novel design of multicapillary arrays for high-throughput DNA sequencing.

    Science.gov (United States)

    Tsupryk, Andriy; Gorbovitski, Michael; Kabotyanski, Evgeni A; Gorfinkel, Vera

    2006-07-01

    A novel approach to design and optimize linear multicapillary arrays (LMCAs) for high-throughput DNA sequencing is proposed. A significant increase in the number of capillary lanes is obtained due to the use of composite insertions alternately placed between working capillaries of the array and a specific combination of refractive indices of the DNA separation matrix, capillary glass, the insertions and a medium which surrounds the capillary array. Theoretical and experimental studies showed that in conjunction with a dual-side laser illumination scheme, the proposed LMCA design allows a simultaneous uniform irradiation of as many as 550 working capillaries.

  10. Design, Construction and Testing of a Pulsed High Energy Inductive Superconducting Energy Storage System

    Science.gov (United States)

    1975-09-01

    10,000 tim;es larger tnan the resistive voltaje and can be !-½vce evough to de;tr,)y electronic equip-ient. This task car. be accu)rplmshrd by...2.67 kH. FA 2483 231 E cNu 42 1 o Time 0.2 ms/cm Figure 128 Single pulse of current to 0.2 2 load delivered by helium switch. Firingj voltaj - 2,000 V

  11. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yee, S; Ionascu, D; Wilson, G [William Beaumont Hospital, Royal Oak, MI (United States); Thapa, R [Oakland University, Rochester, MI (United States)

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitation RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.

  12. Optimum design of phase opposition disposition pulse width modulation logic circuit for switching seven level cascaded half bridge inverter

    Directory of Open Access Journals (Sweden)

    Nentawe Y. Goshwe

    2016-06-01

    Full Text Available Theevolution of multilevel inverters (MLIs has made it possible to extract power from direct current (DC sources to alternating current (AC power. This paper presents the design of a novel phase opposition disposition pulse width modulation scheme (PODPWM logic circuit for a conventional single phase seven level cascaded H-Bridge (CHB inverter using Matlab/Simulink. The minimum switching logic circuit for the single phase seven level CHB inverter was obtained by modeling the logic equations that could be used with any number of levels depending on the number of modulating and carrier signals involved. The reduction in total harmonic distortion (THD of the output voltage for the MLI using low switching frequency at different modulation indixes is also investigated. The logic equations have made it easier to design a PODPWM circuit for any CHB inverter and the logic gates designed gave an optimum THD value of 16.73 % at modulation index of 0.20.

  13. MV级近方波Marx发生器的设计%Design of MV level rectangle pulse Marx generator

    Institute of Scientific and Technical Information of China (English)

    张江华; 杨汉武; 梁波; 田希文; 张华

    2011-01-01

    The paper analyzes the high voltage rectangle pulse generator with a Marx generator and a LC circuit in theory, and designs a pulse generator of this kind. The Marx generator is constituted of sixteen 100 kV, 400 nF capacitors, with a pre-triggered S-type circuit. The LC circuit is made by five capacitors the same as that of the Marx generator and a inductor of 1. 5 μH inductance. The simulation of Spice shows a 1. 1 MV, 300 ns, rectangle pulse produced by this pulse generator. The middle stage of the Marx generator is used to trigger the LC circuit in order to synchronize this two parts.%分析了Marx发生器与正弦振荡回路组合直接输出方波脉冲的近方波Marx发生器理论,并设计了一个该类型的方波发生器装置.其中,Marx发生器由16个充电电压为100 kV、容值为40 nF的电容器组成,采用正负充电的S型超前触发回路,正弦振荡回路由5个与Marx发生器同类型的电容器和1个0.5 μH的电感组成.通过Spice模拟,在负载为100 Ω时,输出脉冲电压为1.1 MV,脉宽约300 ns.提出了利用Marx发生器触发LC回路的方法,以解决Marx与LC回路的同步触发问题,使输出电压能够有效叠加.

  14. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  15. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  16. Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive.

    Directory of Open Access Journals (Sweden)

    Takeru Nakazato

    Full Text Available High-throughput sequencing technology, also called next-generation sequencing (NGS, has the potential to revolutionize the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public primary data archive, the Sequence Read Archive (SRA. As of January 2013, data from more than 14,000 projects have been submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs from SRA and full-text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA entries by disease keywords, according to the Medical Subject Headings (MeSH extracted from articles assigned to each SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We previously developed feature profiles of diseases in a system called "Gendoo". We generated hyperlinks between diseases extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this study are available at our web service, called "DBCLS SRA" (http://sra.dbcls.jp/. This service will improve accessibility to high-quality data from SRA.

  17. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  18. Experiences with intercropping design - a survey about pulse cereal-combinations in Europe

    DEFF Research Database (Denmark)

    von Fragstein und Niemsdorff, P.; Knudsen, Marie Trydeman; Gooding, M.J.

    2008-01-01

    A survey was carried out within five European countries with regard to the practice of cereal grain legume intercropping. The mostly given combination was spring barleyspring pea beside 27 other combinations between pulses and cereals. 72 % of all examples consisted of spring varieties, the rest...... of winter varieties, mainly a special case of the French South West with mild winter climate. Intercrops were mainly used for feeding purposes. Best experiences were named as better yield stability, effective weed suppression, and good quality of feed. Of the negative experiences complicated mechanical weed...

  19. A methodological approach for designing and sequencing product families in Reconfigurable Disassembly Systems

    Directory of Open Access Journals (Sweden)

    Ignacio Eguia

    2011-10-01

    Full Text Available Purpose: A Reconfigurable Disassembly System (RDS represents a new paradigm of automated disassembly system that uses reconfigurable manufacturing technology for fast adaptation to changes in the quantity and mix of products to disassemble. This paper deals with a methodology for designing and sequencing product families in RDS. Design/methodology/approach: The methodology is developed in a two-phase approach, where products are first grouped into families and then families are sequenced through the RDS, computing the required machines and modules configuration for each family. Products are grouped into families based on their common features using a Hierarchical Clustering Algorithm. The optimal sequence of the product families is calculated using a Mixed-Integer Linear Programming model minimizing reconfigurability and operational costs. Findings: This paper is focused to enable reconfigurable manufacturing technologies to attain some degree of adaptability during disassembly automation design using modular machine tools. Research limitations/implications: The MILP model proposed for the second phase is similar to the well-known Travelling Salesman Problem (TSP and therefore its complexity grows exponentially with the number of products to disassemble. In real-world problems, which a higher number of products, it may be advisable to solve the model approximately with heuristics. Practical implications: The importance of industrial recycling and remanufacturing is growing due to increasing environmental and economic pressures. Disassembly is an important part of remanufacturing systems for reuse and recycling purposes. Automatic disassembly techniques have a growing number of applications in the area of electronics, aerospace, construction and industrial equipment. In this paper, a design and scheduling approach is proposed to apply in this area. Originality/value: This paper presents a new concept called Reconfigurable Disassembly System

  20. Laboratory Investigation of Salmonella enterica serovar Poona Outbreak in California: Comparison of Pulsed-Field Gel Electrophoresis (PFGE) and Whole Genome Sequencing (WGS) Results

    Science.gov (United States)

    Kozyreva, Varvara K.; Crandall, John; Sabol, Ashley; Poe, Alyssa; Zhang, Peng; Concepción-Acevedo, Jeniffer; Schroeder, Morgan N.; Wagner, Darlene; Higa, Jeffrey; Trees, Eija; Chaturvedi, Vishnu

    2016-01-01

    Introduction: Recently, Salmonella enterica serovar Poona caused a multistate outbreak, with 245 out of 907 cases occurring in California. We report a comparison of pulsed-field gel electrophoresis (PFGE) results with whole genome sequencing (WGS) for genotyping of Salmonella Poona isolates. Methods: CA Salmonella Poona isolates, collected from July to August 2015, were genotyped by PFGE using XbaI restriction enzyme. WGS was done using Nextera XT library kit with 2x300 bp or 2x250 bp sequencing chemistry on the Illumina MiSeq Sequencer.  Reads were mapped to the de novo assembled serovar Poona draft genome (48 contigs, N50= 223,917) from the outbreak using CLCbio GW 8.0.2. The phylogenetic tree was generated based on hqSNPs calling. Genomes were annotated with CGE and PHAST online tools. In silico MLST was performed using the CGE online tool. Results: Human (14) and cucumber (2) Salmonella Poona isolates exhibited 3 possibly related PFGE patterns (JL6X01.0018 [predominant], JL6X01.0375, JL6X01.0778).  All isolates that were related by PFGE also clustered together according to the WGS. One isolate with a divergent PFGE pattern (JL6X01.0776) served as an outlier in the phylogenetic analysis and substantially differed from the outbreak clade by WGS. All outbreak isolates were assigned to MLST sequence type 447. The majority of the outbreak-related isolates possessed the same set of Salmonella Pathogenicity Islands with few variations. One outbreak isolate was sequenced and analyzed independently by CDC and CDPH laboratories; there was 0 SNP difference in results. Additional two isolates were sequenced by CDC and the raw data was processed through CDPH and CDC analysis pipelines. Both data analysis pipelines also generated concordant results.  Discussion: PFGE and WGS results for the recent CA Salmonella enterica serovar Poona outbreak provided concordant assignment of the isolates to the outbreak cluster. WGS allowed more robust determination of genetic

  1. Enhancing the branching ratios in the dissociation channels for O16O16O18 molecule by designing optimum laser pulses: A study using stochastic optimization

    Science.gov (United States)

    Talukder, Srijeeta; Sen, Shrabani; Shandilya, Bhavesh K.; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2015-10-01

    We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O18 + O16O16 and O16 + O16O18) in O16O16O18 molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.

  2. Enhancing the branching ratios in the dissociation channels for O(16)O(16)O(18) molecule by designing optimum laser pulses: A study using stochastic optimization.

    Science.gov (United States)

    Talukder, Srijeeta; Sen, Shrabani; Shandilya, Bhavesh K; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2015-10-14

    We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O(18) + O(16)O(16) and O(16) + O(16)O(18)) in O(16)O(16)O(18) molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.

  3. The mechanical design of spider silks: from fibroin sequence to mechanical function.

    Science.gov (United States)

    Gosline, J M; Guerette, P A; Ortlepp, C S; Savage, K N

    1999-12-01

    Spiders produce a variety of silks, and the cloning of genes for silk fibroins reveals a clear link between protein sequence and structure-property relationships. The fibroins produced in the spider's major ampullate (MA) gland, which forms the dragline and web frame, contain multiple repeats of motifs that include an 8-10 residue long poly-alanine block and a 24-35 residue long glycine-rich block. When fibroins are spun into fibres, the poly-alanine blocks form (&bgr;)-sheet crystals that crosslink the fibroins into a polymer network with great stiffness, strength and toughness. As illustrated by a comparison of MA silks from Araneus diadematus and Nephila clavipes, variation in fibroin sequence and properties between spider species provides the opportunity to investigate the design of these remarkable biomaterials.

  4. Design and Evaluation of a Low-Cost Smartphone Pulse Oximeter

    Directory of Open Access Journals (Sweden)

    Christian L. Petersen

    2013-12-01

    Full Text Available Infectious diseases such as pneumonia take the lives of millions of children in low- and middle-income countries every year. Many of these deaths could be prevented with the availability of robust and low-cost diagnostic tools using integrated sensor technology. Pulse oximetry in particular, offers a unique non-invasive and specific test for an increase in the severity of many infectious diseases such as pneumonia. If pulse oximetry could be delivered on widely available mobile phones, it could become a compelling solution to global health challenges. Many lives could be saved if this technology was disseminated effectively in the affected regions of the world to rescue patients from the fatal consequences of these infectious diseases. We describe the implementation of such an oximeter that interfaces a conventional clinical oximeter finger sensor with a smartphone through the headset jack audio interface, and present a simulator-based systematic verification system to be used for automated validation of the sensor interface on different smartphones and media players. An excellent agreement was found between the simulator and the audio oximeter for both oxygen saturation and heart rate over a wide range of optical transmission levels on 4th and 5th generations of the iPod TouchTM and iPhoneTM devices.

  5. Short-Pulse Limits in Optical Instrumentation Design for the SLAC Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.

    2005-01-31

    The source properties of linac-driven X-Ray Free-Electron Lasers (XRFELs) operating in the Self-Amplified Spontaneous Emission (SASE) regime differ markedly from those of ordinary insertion devices on synchrotron storage rings. In the case of the 1.5 {angstrom} SLAC Linac Coherent Light Source (LCLS), the longitudinal output profile typically consists of a randomly-distributed train of fully-transversely-coherent micropulses of randomly varying intensity and an average length (corresponding to the source coherence length) two to three orders of magnitude smaller than the transverse diameter of the beam. Total pulse lengths are typically of the same order of size as the beam diameter. Both of these properties can be shown to significantly impact the performance of otherwise conventional synchrotron radiation optics; viz., mirrors, lenses, zone plates, crystals, multilayers, etc. In this paper we outline an analysis of short-pulse effects on selected optical components for the SLAC LCLS and discuss the implications for critical applications such as microfocusing and monochromatization.

  6. Genetic characterization of atypical enteropathogenic Escherichia coli isolates from ewes' milk, sheep farm environments, and humans by multilocus sequence typing and pulsed-field gel electrophoresis.

    Science.gov (United States)

    Otero, Verónica; Rodríguez-Calleja, José-María; Otero, Andrés; García-López, María-Luisa; Santos, Jesús A

    2013-10-01

    A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes' milk and suggest a transmission route for this emerging pathogen through contaminated water.

  7. Molecular Typing of Fluoroquinolone-Resistant Campylobacter jejuni Isolated from Broilers in Japan Using Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis.

    Science.gov (United States)

    Ozawa, Manao; Hiki, Mototaka; Kawanishi, Michiko; Abo, Hitoshi; Kojima, Akemi; Asai, Tetsuo; Hamamoto, Shuichi

    2016-01-01

    Fluoroquinolone-resistant Campylobacter jejuni isolates from broilers in Japan were characterized using multilocus sequence typing and pulsed-field gel electrophoresis (PFGE) in order to elucidate the genetic relationship between these strains. Forty-three of the isolates were classified into 20 sequence types and were clustered into 21 PFGE types with 70% similarity. The most dominant clonal complex (CC) was CC-21 (41.9%). Diverse PFGE patterns were observed within the same CC, but the combined analysis of PFGE type and CC revealed that the strains with the same combination were isolated from the same district or neighboring districts. On the other hand, strains with the same combination pattern were also isolated from geographically distant districts. Our results elucidate two possible reasons for the prevalence of fluoroquinolone-resistant C. jejuni among broiler farms: (1) the resistant C. jejuni is clonally disseminated within the limited area, and (2) susceptible C. jejuni acquired fluoroquinolone resistance during the use of fluoroquinolone on the farms.

  8. High genetic diversity of Enterococcus faecium and Enterococcus faecalis clinical isolates by pulsed-field gel electrophoresis and multilocus sequence typing from a hospital in Malaysia.

    Science.gov (United States)

    Weng, Poh Leng; Ramli, Ramliza; Shamsudin, Mariana Nor; Cheah, Yoke-Kqueen; Hamat, Rukman Awang

    2013-01-01

    Little is known on the genetic relatedness and potential dissemination of particular enterococcal clones in Malaysia. We studied the antibiotic susceptibility profiles of Enterococcus faecium and Enterococcus faecalis and subjected them to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). E. faecium and E. faecalis displayed 27 and 30 pulsotypes, respectively, and 10 representative E. faecium and E. faecalis isolates (five each) yielded few different sequence types (STs): ST17 (2 isolates), ST78, ST203, and ST601 for E. faecium, and ST6, ST16, ST28, ST179, and ST399 for E. faecalis. Resistance to tazobactam-piperacillin and ampicillin amongst E. faecium isolates was highly observed as compared to E. faecalis isolates. All of the isolates were sensitive to vancomycin and teicoplanin. The presence of epidemic and nosocomial strains of selected E. faecium STs: 17, 78, and 203 and E. faecalis ST6 as well as high rates of resistance to multiple antibiotics amongst E. faecium isolates is of a particular concern.

  9. Assessment of myocardial infarction in mice by Late Gadolinium Enhancement MR imaging using an inversion recovery pulse sequence at 9.4T

    Directory of Open Access Journals (Sweden)

    Herlihy Amy H

    2008-01-01

    Full Text Available Abstract Purpose To demonstrate the feasibility of using an inversion recovery pulse sequence and to define the optimal inversion time (TI to assess myocardial infarction in mice by late gadolinium enhancement (LGE MRI at 9.4T, and to obtain the maximal contrast between the infarcted and the viable myocardium. Methods MRI was performed at 9.4T in mice, two days after induction of myocardial infarction (n = 4. For cardiovascular MR imaging, a segmented magnetization-prepared fast low angle shot (MP-FLASH sequence was used with varied TIs ranging from 40 to 420 ms following administration of gadolinium-DTPA at 0.6 mmol/kg. Contrast-to-noise (CNR and signal-to-noise ratio (SNR were measured and compared for each myocardial region of interest (ROI. Results The optimal TI, which corresponded to a minimum SNR in the normal myocardium, was 268 ms ± 27.3. The SNR in the viable myocardium was significantly different from that found in the infarcted myocardium (17.2 ± 2.4 vs 82.1 ± 10.8; p = 0.006 leading to a maximal relative SI (Signal Intensity between those two areas (344.9 ± 60.4. Conclusion Despite the rapid heart rate in mice, our study demonstrates that LGE MRI can be performed at 9.4T using a protocol similar to the one used for clinical MR diagnosis of myocardial infarction.

  10. Design of a secondary ionization target for direct production of a C(-) beam from CO2 pulses for online AMS.

    Science.gov (United States)

    Salazar, Gary; Ognibene, Ted

    2013-01-01

    We designed and optimized a novel device "target" that directs a CO2 gas pulse onto a Ti surface where a Cs(+) beam generates C(-) from the CO2. This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO2 in the negative mode to measure (14)C/(12)C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of (12)C(-) produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs(+) beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.

  11. Burst design and signal processing for the speed of sound measurement of fluids with the pulse-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Dubberke, Frithjof H.; Baumhögger, Elmar; Vrabec, Jadran, E-mail: jadran.vrabec@upb.de [Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn (Germany)

    2015-05-15

    The pulse-echo technique determines the propagation time of acoustic wave bursts in a fluid over a known propagation distance. It is limited by the signal quality of the received echoes of the acoustic wave bursts, which degrades with decreasing density of the fluid due to acoustic impedance and attenuation effects. Signal sampling is significantly improved in this work by burst design and signal processing such that a wider range of thermodynamic states can be investigated. Applying a Fourier transformation based digital filter on acoustic wave signals increases their signal-to-noise ratio and enhances their time and amplitude resolutions, improving the overall measurement accuracy. In addition, burst design leads to technical advantages for determining the propagation time due to the associated conditioning of the echo. It is shown that the according operation procedure enlarges the measuring range of the pulse-echo technique for supercritical argon and nitrogen at 300 K down to 5 MPa, where it was limited to around 20 MPa before.

  12. FONZIE: An optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets

    Directory of Open Access Journals (Sweden)

    Balesdent Marie-Hélène

    2010-11-01

    Full Text Available Abstract Background Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process. Results FONZIE was designed to successively 1 perform a search for markers via the external software Tandem Repeat Finder, 2 exclude user-defined specific genomic regions, 3 screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4 evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome using BLAST2.0, 5 design minisatellite primer pairs via the external software Primer3, and 6 check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus Leptosphaeria maculans, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers. Conclusion FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie

  13. A Review of Study Designs and Statistical Methods for Genomic Epidemiology Studies using Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Qian eWang

    2015-04-01

    Full Text Available Results from numerous linkage and association studies have greatly deepened scientists’ understanding of the genetic basis of many human diseases, yet some important questions remain unanswered. For example, although a large number of disease-associated loci have been identified from genome-wide association studies (GWAS in the past 10 years, it is challenging to interpret these results as most disease-associated markers have no clear functional roles in disease etiology, and all the identified genomic factors only explain a small portion of disease heritability. With the help of next-generation sequencing (NGS, diverse types of genomic and epigenetic variations can be detected with high accuracy. More importantly, instead of using linkage disequilibrium to detect association signals based on a set of pre-set probes, NGS allows researchers to directly study all the variants in each individual, therefore promises opportunities for identifying functional variants and a more comprehensive dissection of disease heritability. Although the current scale of NGS studies is still limited due to the high cost, the success of several recent studies suggests the great potential for applying NGS in genomic epidemiology, especially as the cost of sequencing continues to drop. In this review, we discuss several pioneer applications of NGS, summarize scientific discoveries for rare and complex diseases, and compare various study designs including targeted sequencing and whole-genome sequencing using population-based and family-based cohorts. Finally, we highlight recent advancements in statistical methods proposed for sequencing analysis, including group-based association tests, meta-analysis techniques, and annotation tools for variant prioritization.

  14. Design pattern mining using distributed learning automata and DNA sequence alignment.

    Directory of Open Access Journals (Sweden)

    Mansour Esmaeilpour

    Full Text Available CONTEXT: Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. OBJECTIVE: This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA and deoxyribonucleic acid (DNA sequences alignment. METHOD: The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. RESULTS: The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. CONCLUSION: The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns.

  15. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    Science.gov (United States)

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  16. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  17. An approach to the design of mathematical task sequences: Conceptual learning as abstraction

    Directory of Open Access Journals (Sweden)

    Martin A. Simon

    2016-06-01

    Full Text Available This paper describes an emerging approach to the design of task sequences and the theory that undergirds it. The approach aims at promoting particular mathematical concepts, understood as the result of reflective abstraction. Central to this approach is the identification of available student activities from which students can abstract the intended ideas. The approach differs from approaches in which learning to solve the problem posed is the intended learning. The paper illustrates the approach through data from a teaching experiment on division of fractions.

  18. Functional design and implementation with on-line programmable technology in optical fiber communication pulse code modulation test system

    Science.gov (United States)

    Xu, Yuan; Ding, Huan; Gao, Youtang

    2010-10-01

    In order to complete the functional design in the fiber optical communication pulse code modulation test system, taking advantage of CPLD / FPGA and SOPC technology, software solutions used to design system hardware features and control functions, thereby the whole system could attain optimisation in the logic control as well as encoding and decoding functional designs on the motherboard, enabling this system fulfill the capacities varying from simple digital simulation transmission modulate to the high speed fiber optical communication network information encoding and decoding functions. Simultaneously the application of logarithmic pressure companding technique, PCM encoding and decoding system to improve the small signal quantizing SNR(Signal-to-Noise Ratio), TP3067 adopting A rate thirteen broken lines to carry on signal pressure companding. When the signal at a certain stage, the quantizing SNR is invariable(as signal receives uniform quantization in this phase, therefore the quantizing SNR drops along with signal amplititude decreasing). Test results are as follows: ideal various signal encoding and decoding system waveforms, high performance parameters , achieve the desired designing aim, a entirely new approach to realize different kinds of information encoding and decoding model building and implementation, saving development costs, improving design efficiency, satisfactory actual results, stable operation.

  19. Test sequencing problem arising at the design stage for reducing life cycle cost

    Institute of Scientific and Technical Information of China (English)

    Zhang Shigang; Hu Zheng; Wen Xisen

    2013-01-01

    Previous test sequencing algorithms only consider the execution cost of a test at the application stage.Due to the fact that the placement cost of some tests at the design stage is considerably high compared with the execution cost,the sequential diagnosis strategy obtained by previous methods is actually not optimal from the view of life cycle.In this paper,the test sequencing problem based on life cycle cost is presented.It is formulated as an optimization problem,which is non-deterministic polynomial-time hard (NP-hard).An algorithm and a strategy to improve its computational efficiency are proposed.The formulation and algorithms are tested on various simulated systems and comparisons are made with the extant test sequencing methods.Application on a pump rotational speed control (PRSC) system of a spacecraft is studied in detail.Both the simulation results and the real-world case application results suggest that the solution proposed in this paper can significantly reduce the life cycle cost of a sequential fault diagnosis strategy.

  20. Coverage tradeoffs and power estimation in the design of whole-genome sequencing experiments for detecting association

    OpenAIRE

    Shen, Yufeng; Song, Ruijie; Pe'er, Itsik

    2011-01-01

    Motivation: Whole-genome sequencing (WGS) allows direct interrogation of previously undetected uncommon or rare variants, which potentially contribute to the missing heritability of human disease. However, cost of sequencing large numbers of samples limits its application in case–control association studies. Here, we describe theoretical and empirical design considerations for such sequencing studies, aimed at maximizing the power of detecting association under the constraint of study-wide co...

  1. Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators.

    Science.gov (United States)

    Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L

    2011-04-15

    A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency.

  2. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  3. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Science.gov (United States)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  4. Design of a pulsed angular selective electron gun for the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Winzen, Daniel; Hannen, Volker; Ortjohann, Hans-Werner; Zacher, Michael; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany); Collaboration: KATRIN-Collaboration

    2012-07-01

    The KATRIN (KArlsruhe TRItium Neutrino mass) experiment will study the tritium {beta}-spectrum near the endpoint of 18.6 keV, aiming to measure the mass of the electron antineutrino. Using an electrostatic retarding spectrometer (MAC-E-Filter), the projected sensitivity for m{sub ve} is 200 meV/c{sup 2} at 90% C.L. In order to map out the electric and magnetic fields in the main spectrometer, an angular selective electron gun is currently being developed. The e-gun uses an UV-Laser to produce electrons via the photo-electric effect from a copper substrate which are then accelerated electrostatically. It features a small energy spread of approx. 0.1 eV, a sharp emission angle and will be able to cover the whole magnetic flux tube of KATRIN. Using a pulsed laser it is also possible to investigate the time of flight (TOF) of electrons through the spectrometer, offering enhanced sensitivity to spectrometer properties far away from the analysing plane. By comparing information from transmission function measurements and TOF data with Monte Carlo simulations of the setup, one will be able to achieve a detailed understanding of the spectrometer properties.

  5. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M. [Department of Diagnostic Radiology, University Hospital Freiburg (Germany); Ihling, C. [Department of Pathology, University Hospital Freiburg, Freiburg (Germany); Conca, W. [Department of Rheumatology, University Hospital Freiburg (Germany)

    1998-12-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.) With 5 figs., 19 refs.

  6. Optimization for Discharge Sequence of Pulsed Power Supply for Electromagnetic Railgun Based on Improved Genetic Algorithm%基于改进遗传算法的电磁轨道炮电源时序优化

    Institute of Scientific and Technical Information of China (English)

    马萍; 胡玉伟; 杨明; 刘志钊; 王子才

    2014-01-01

    针对电磁轨道炮电流波形平稳性的特殊要求,提出了一种基于改进遗传算法的电源时序优化方法。根据脉冲电源时序放电的特点,将电磁轨道炮的工作过程分成相互关联的多个阶段,采用多阶段优化策略。各阶段运用引入了精英保留、自适应变异和交叉3种策略共同作用的改进遗传算法产生新种群,克服早熟及收敛速度慢的缺陷;优化过程中逐步动态更新缩小设计变量的搜索空间,以进一步提高搜索能力。以使用金属电枢的电磁轨道炮多个脉冲电源时序设计为例进行分析比较,结果表明,该方法不但增强了搜索能力,改善了求解的质量,而且电流波形非常平稳,提高了优化结果的实用性,是确定电磁轨道炮脉冲电源时序的一种有效方法。%Aiming at the stable requirement of current waveform during launch,an optimization ap-proach on the basis of improved genetic algorithm was proposed to design discharge sequence of pulsed power supplies.According to the discharge characteristics of powers with delay time,the launch process of electromagnetic railgun was divided into multi-stage,and the optimization of discharge sequence was performed.The strategies of elitist selection,adaptive crossover and adaptive mutation were adopted to overcome the defects of premature convergence and slow con-vergence in simple genetic algorithm.During the optimization process,the design variable space was dynamically reduced to further enhance the search capability.By the improved genetic algorithm,the optimization of discharge sequence was performed in each stage.In a case of railgun with solid armature supplied by multiple pulsed power supplies,the optimization results were obtained from different methods.The results show that the proposed approach has better search capabilities and gives better optimization solution,and moreover it increases the usability of opti-mization results for

  7. Design and development of an ultra-compact drum-shaped chamber for combinatorial pulsed laser deposition

    Science.gov (United States)

    Katayama, M.; Itaka, K.; Matsumoto, Y.; Koinuma, H.

    2006-01-01

    We have designed a compact combinatorial pulsed laser deposition (PLD) chamber as a building block of a desktop laboratory for advanced materials research. Development of small-size systems for the growth and characterization of films would greatly help in interconnecting a variety of analytical tools for rapid screening of advanced materials. This PLD chamber has four special features: (1) a drum-shaped growth chamber, (2) a waterwheel-like combinatorial masking system, (3) a multi-target system having one feedthrough, and (4) a small reflection high-energy electron diffraction (RHEED) system. The performance of this system is demonstrated by the RHEED intensity oscillation during homoepitaxial growth of SrTiO 3 as well as by simultaneous fabrication of a ternary phase diagram of rare earth-doped Y 2O 3 phosphors.

  8. Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault

    2012-02-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences.

  9. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing.

    Science.gov (United States)

    Schill, Kristin M; Wang, Yun; Butler, Robert R; Pombert, Jean-François; Reddy, N Rukma; Skinner, Guy E; Larkin, John W

    2015-10-30

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. Copyright © 2015, American Society for Microbiology. All

  10. Seq4SNPs: new software for retrieval of multiple, accurately annotated DNA sequences, ready formatted for SNP assay design

    Directory of Open Access Journals (Sweden)

    Dunning Alison M

    2009-06-01

    Full Text Available Abstract Background In moderate-throughput SNP genotyping there was a gap in the workflow, between choosing a set of SNPs and submitting their sequences to proprietary assay design software, which was not met by existing software. Retrieval and formatting of sequences flanking each SNP, prior to assay design, becomes rate-limiting for more than about ten SNPs, especially if annotated for repetitive regions and adjacent variations. We routinely process up to 50 SNPs at once. Implementation We created Seq4SNPs, a web-based, walk-away software that can process one to several hundred SNPs given rs numbers as input. It outputs a file of fully annotated sequences formatted for one of three proprietary design softwares: TaqMan's Primer-By-Design FileBuilder, Sequenom's iPLEX or SNPstream's Autoprimer, as well as unannotated fasta sequences. We found genotyping assays to be inhibited by repetitive sequences or the presence of additional variations flanking the SNP under test, and in multiplexes, repetitive sequence flanking one SNP adversely affects multiple assays. Assay design software programs avoid such regions if the input sequences are appropriately annotated, so we used Seq4SNPs to provide suitably annotated input sequences, and improved our genotyping success rate. Adjacent SNPs can also be avoided, by annotating sequences used as input for primer design. Conclusion The accuracy of annotation by Seq4SNPs is significantly better than manual annotation (P Using Seq4SNPs to incorporate all annotation for additional SNPs and repetitive elements into sequences, for genotyping assay designer software, minimizes assay failure at the design stage, reducing the cost of genotyping. Seq4SNPs provides a rapid route for replacement of poor test SNP sequences. We routinely use this software for assay sequence preparation. Seq4SNPs is available as a service at http://moya.srl.cam.ac.uk/oncology/bio/s4shome.html and http://moya.srl

  11. A Guide RNA Sequence Design Platform for the CRISPR/Cas9 System for Model Organism Genomes

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2013-01-01

    Full Text Available Cas9/CRISPR has been reported to efficiently induce targeted gene disruption and homologous recombination in both prokaryotic and eukaryotic cells. Thus, we developed a Guide RNA Sequence Design Platform for the Cas9/CRISPR silencing system for model organisms. The platform is easy to use for gRNA design with input query sequences. It finds potential targets by PAM and ranks them according to factors including uniqueness, SNP, RNA secondary structure, and AT content. The platform allows users to upload and share their experimental results. In addition, most guide RNA sequences from published papers have been put into our database.

  12. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    Science.gov (United States)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  13. EFFICIENCY OF LINEAR PULSE ELECTROMECHANICAL CONVERTERS DESIGNED TO CREATE IMPACT LOADS AND HIGH SPEEDS

    Directory of Open Access Journals (Sweden)

    V.F. Bolyukh

    2015-06-01

    Full Text Available Considered linear impulse electromechanical converters (LIEC are used to create a significant impact and high-acceleration actuators on a short active site. The most effective types of LIEC are induction-dynamic (IDC, electro-dynamic (EDC and electro-magnetic (EMC converters. In all these types of short-term excitement LIEC carried briefly of the inductor from a pulsed source. This occurs when the magnetic field of the inductor causes the electro-dynamic or electromagnetic forces, leading to a linear movement of the armature. However, the issue at evaluating the effects of IDC, EDC and EMC, for creating a shock simultaneously with high speed to the specified criteria in the presence of ferromagnetic core virtually unexplored. The paper presents the simulated computer-WIDE 2D model of LIEC of coaxial configuration with ferromagnetic core by using software package COMSOL Multiphysics 4.4, taking into account the related electro-magnetic, thermal, and magnetic fields. In addition a synthesis of high-performance IDC, EDC and EMC to ensure maximum impact and speed of the operating element, whereby the comparative analysis of the effectiveness of the IDC, EDC and EMC via an integral index, taking into account the maximum value and momentum of electro-dynamic or electromagnetic force acting on the armature, maximum and average speed armature, efficiency, mass and dimensions performance transducer stray field, the maximum current density in the inductor is carried out. On the basis of the eight selection policies set the most efficient types of power and speed LIEC. It is shown that any one of the strategies IDC selection is not the best. To ensure maximum impact force is the most effective EMC and to ensure the greatest speed – EDC.

  14. Design of Zero Correlation Zone Sequences via Interleaving Perfect Sequence%基于交织最佳自相关序列的ZCZ序列设计

    Institute of Scientific and Technical Information of China (English)

    王龙业; 王献

    2012-01-01

    To reduce the limit on the relevant parameters during constructing zero correlation zone (ZCZ) sequences, a novel construction method was proposed to design the near-optimal sequence set with ZCZ. Using the interleaving technique and recursive algorithm, a new ZCZ sequence set can be generated from an arbitrary perfect sequence with a period longer than 4. With the size (I. E. The number of sequences) of the new sequence set kept unchanged, the length and ZCZ width of the new sequence can be doubled by each recursive operation. The constructed near-optimal ZCZ sequence set can approach the mathematical bound, and can successfully provide quasi-synchronous CDMA communication without co-channel interference.%为了减少零相关区序列设计中对相关参数的限制,基于任意一个周期大于4的最佳自相关序列,运用交织技术和递归运算,提出了一类新型的接近最优零相关区序列集的构造方法.通过递归运算,在保持ZCZ( zero correlation zone)序列集包含的序列数目不变的条件下,可以将序列长度和零相关区宽度成倍扩展.构造的ZCZ序列集接近理论界,可应用于准同步CDMA (code division multiple access)通信系统,消除共道干扰,提高通信质量.

  15. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    SYSTEM DESIGN USING LITHIUM-ION BATTERIES AND ONE CHARGER PER BATTERY by Frank E. Filler December 2009 Thesis Advisor: Alexander L. Julian...Author: Frank E. Filler Approved by: Alexander L. Julian Thesis Advisor Roberto Crisiti Second Reader Jeffrey B. Knorr Chairman...Battery Management System BNC Bayonet Neill -Concelman CC Constant Current CCCV Constant Current Constant Voltage CV Constant Voltage D

  16. User-centered design of multi-gene sequencing panel reports for clinicians.

    Science.gov (United States)

    Cutting, Elizabeth; Banchero, Meghan; Beitelshees, Amber L; Cimino, James J; Fiol, Guilherme Del; Gurses, Ayse P; Hoffman, Mark A; Jeng, Linda Jo Bone; Kawamoto, Kensaku; Kelemen, Mark; Pincus, Harold Alan; Shuldiner, Alan R; Williams, Marc S; Pollin, Toni I; Overby, Casey Lynnette

    2016-10-01

    The objective of this study was to develop a high-fidelity prototype for delivering multi-gene sequencing panel (GS) reports to clinicians that simulates the user experience of a final application. The delivery and use of GS reports can occur within complex and high-paced healthcare environments. We employ a user-centered software design approach in a focus group setting in order to facilitate gathering rich contextual information from a diverse group of stakeholders potentially impacted by the delivery of GS reports relevant to two precision medicine programs at the University of Maryland Medical Center. Responses from focus group sessions were transcribed, coded and analyzed by two team members. Notification mechanisms and information resources preferred by participants from our first phase of focus groups were incorporated into scenarios and the design of a software prototype for delivering GS reports. The goal of our second phase of focus group, to gain input on the prototype software design, was accomplished through conducting task walkthroughs with GS reporting scenarios. Preferences for notification, content and consultation from genetics specialists appeared to depend upon familiarity with scenarios for ordering and delivering GS reports. Despite familiarity with some aspects of the scenarios we proposed, many of our participants agreed that they would likely seek consultation from a genetics specialist after viewing the test reports. In addition, participants offered design and content recommendations. Findings illustrated a need to support customized notification approaches, user-specific information, and access to genetics specialists with GS reports. These design principles can be incorporated into software applications that deliver GS reports. Our user-centered approach to conduct this assessment and the specific input we received from clinicians may also be relevant to others working on similar projects.

  17. Design and implementation of microcontroller-based automatic sequence counting and switching system

    Directory of Open Access Journals (Sweden)

    Joshua ABOLARINWA

    2015-05-01

    Full Text Available Technological advancement and its influence on human being have been on the increase in recent time. Major areas of such influence, include monitoring and control activities. In order to keep track of human movement in and out of a particular building, there is the need for an automatic counting system. Therefore, in this paper, we present the design and implementation of a microcontroller-based automatic sequence counting and switching system. This system was designed and developed to save cost, time, energy, and to achieve seamless control in the event of switching on or off of electrical appliances within a building. Top-down modular design approach was used in conjunction with the versatility of microcontroller. The system is able to monitor, sequentially count the number of entry and exit of people through an entrance, afterwards, automatically control any electrical device connected to it. From various tests and measurements obtained, there are comparative benefits derived from the deployment of this system in terms of simplicity and accuracy over similar system that is not microcontroller-based. Therefore, this system can be deployed at commercial quantity with wide range of applications in homes, offices and other public places.

  18. Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design

    Directory of Open Access Journals (Sweden)

    Malloch Gaynor

    2007-11-01

    Full Text Available Abstract Background The green peach aphid, Myzus persicae (Sulzer, is a world-wide insect pest capable of infesting more than 40 plant families, including many crop species. However, despite the significant damage inflicted by M. persicae in agricultural systems through direct feeding damage and by its ability to transmit plant viruses, limited genomic information is available for this species. Results Sequencing of 16 M. persicae cDNA libraries generated 26,669 expressed sequence tags (ESTs. Aphids for library construction were raised on Arabidopsis thaliana, Nicotiana benthamiana, Brassica oleracea, B. napus, and Physalis floridana (with and without Potato leafroll virus infection. The M. persicae cDNA libraries include ones made from sexual and asexual whole aphids, guts, heads, and salivary glands. In silico comparison of cDNA libraries identified aphid genes with tissue-specific expression patterns, and gene expression that is induced by feeding on Nicotiana benthamiana. Furthermore, 2423 genes that are novel to science and potentially aphid-specific were identified. Comparison of cDNA data from three aphid lineages identified single nucleotide polymorphisms that can be used as genetic markers and, in some cases, may represent functional differences in the protein products. In particular, non-conservative amino acid substitutions in a highly expressed gut protease may be of adaptive significance for M. persicae feeding on different host plants. The Agilent eArray platform was used to design an M. persicae oligonucleotide microarray representing over 10,000 unique genes. Conclusion New genomic resources have been developed for M. persicae, an agriculturally important insect pest. These include previously unknown sequence data, a collection of expressed genes, molecular markers, and a DNA microarray that can be used to study aphid gene expression. These resources will help elucidate the adaptations that allow M. persicae to develop compatible

  19. Antenna Parts and Waveguide Transmission Line of Short Pulse Radar System Design

    Directory of Open Access Journals (Sweden)

    M. E. Golubcov

    2014-01-01

    Full Text Available The main point of this research was работы являлось to create a stand to explore the application of short pulse radio signals in radar. The stand consists of antenna and waveguide elements. Each element out to guarantee operation in X-band with 10 percent working bank and 5 percent instantaneous bandwidth and the power output gotta be 1.5 kW. The form of the antenna beam patten need to be similar to cosecant pattern Side-lobe level need to be less than -25 dB. Background level got to be at least -30 dB. Wave friction, which is radiated from the antenna aperture, got to simultaneous formed in a space.As the most easily realizing variant of such antenna cutting parabolic mirror antenna with offset irradiator was chosen. The irradiator phase centre is shifted from the focal point of the paraboloid to form a cosecant pattern. Method of physical optics is used for the analysis of antennas. Calculating pattern of horn irradiator and mirror antenna which were met the requirements was received. The construction choice was limited by the preproduction possibilities, mass and dimensions. Mirror antenna consists of skeleton framing with mirroring elements which are fixing on it. Mirroring plane is multiplex and consists off rectangular planes made by hydroforming method. Antenna was tested and adjusted at the antenna darkroom after fabricating. The results were meted requirements.Besides the mirror antenna and the horn antenna waveguide elements, waveguide bends and rotating joints were calculated, manufactured and researched. All calculations included the manufacturers tolerances, technological corner R etc. As the construction base of rotating joint coaxial waveguide was chosen. The decision on the one hand: let keep the axial symmetry of excited wave at rotating part of the waveguide, on the other hand there’s no necessary to apply resonant rings, which are plug into dielectric beads for the transition from rotating ring part to

  20. Boronic acid functionalized peptidyl synthetic lectins: Combinatorial library design, peptide sequencing, and selective glycoprotein recognition

    Science.gov (United States)

    Bicker, Kevin L.; Sun, Jing; Lavigne, John J.; Thompson, Paul R.

    2011-01-01

    Aberrant glycosylation of cell membrane and secreted glycoproteins is a hallmark of various disease states, including cancer. The natural lectins currently used in the recognition of these glycoproteins are costly, difficult to produce, and unstable towards rigorous use. Herein we describe the design and synthesis of several boronic acid functionalized peptide-based synthetic lectin (SL) libraries, as well as the optimized methodology for obtaining peptide sequences of these SLs. SL libraries were subsequently used to identify SLs with as high as 5-fold selectivity for various glycoproteins. SLs will inevitably find a role in cancer diagnositics, given that they do not suffer from the drawbacks of natural lectins and that the combinatorial nature of these libraries allows for the identification of an SL for nearly any glycosylated biomolecule. PMID:21405093

  1. Transmitter and translating receiver design for 64-ary pulse position modulation (PPM)

    Science.gov (United States)

    Mendez, Antonio J.; Hernandez, Vincent J.; Gagliardi, Robert M.; Bennett, Corey V.

    2010-02-01

    This paper explores the architecture and design of an optically-implemented 64-ary PPM transmitter and direct-translating receiver that effectively translates incoming electrically-generated bit streams into optical PPM symbols (and vice-versa) at > 1 Gb/s data rates. The PPM transmitter is a cascade of optical switches operating at the frame rate. A corresponding receiver design is more difficult to architect and implement, since increasing data rates lead to correspondingly shorter decision times (slot times and frame times). We describe a solution in the form of a time-to-space mapping arrayed receiver that performs a translating algorithm represented as a code map. The technique for generating the code map is described, and the implementation of the receiver as a planar lightwave circuit is given. The techniques for implementing the transmitter and receiver can be generalized for any case of M-ary PPM.

  2. Transmitter and Translating Receiver Design For 64-ary Pulse Position Modulation (PPM)

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2010-01-20

    This paper explores the architecture and design of an optically-implemented 64-ary PPM transmitter and direct-translating receiver that effectively translates incoming electrically-generated bit streams into optical PPM symbols (and vice-versa) at > 1 Gb/s data rates. The PPM transmitter is a cascade of optical switches operating at the frame rate. A corresponding receiver design is more difficult to architect and implement, since increasing data rates lead to correspondingly shorter decision times (slot times and frame times). We describe a solution in the form of a time-to-space mapping arrayed receiver that performs a translating algorithm represented as a code map. The technique for generating the code map is described, and the implementation of the receiver as a planar lightwave circuit is given. The techniques for implementing the transmitter and receiver can be generalized for any case of M-ary PPM.

  3. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    Science.gov (United States)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  4. Note: Design and tests of a 13 kA-6.5 kV thyristor switch for a pulsed inductive vacuum ultraviolet source.

    Science.gov (United States)

    Teske, C; Lee, B-J; Jacoby, J; Schweizer, W; Sun, J Chao

    2010-04-01

    In this paper, the design, construction, and test procedure of a closing switch prototype based on thyristors is described. In particular, details are given about the design criteria and about the triggering board architecture, which is a high side biased, self supplied unit using the electrical energy derived from a local snubber network for the gate drive. The structure guarantees a hard firing gate pulse for the required high dI/dt application. Further, the results of the prototype tests are presented and discussed. The stack assembly has a holding voltage of 6.5 kV and is used for switching a series resonant circuit with a ringing frequency of 12 kHz for a pulsed inductive vacuum ultraviolet source. Maximum current amplitudes of 13 kA and pulse energies of more than 600 J were switched during the test procedure.

  5. Design and implementation of a bluetooth-based band-aid pulse rate sensor

    Science.gov (United States)

    Kumar, Prashanth S.; Oh, Sechang; Rai, Pratyush; Kwon, Hyeokjun; Banerjee, Nilanjan; Varadan, Vijay K.

    2011-04-01

    Remote patient monitoring systems capable of collecting vital patient data such as blood pressure readings, Electrocardiograph (ECG) waveforms, and heart rate can obviate the need for repeated visits to the hospital. Moreover, such systems that continuously monitor the human physiology can provide valuable data to prognosticate the onset of critical health problems. The key to such remote health diagnostics is the design of minimally intrusive, low cost sensors that do not impede a patient's quotidian life but at the same time collect reliable noise free data. To this end, in this paper, we design and implement a Bluetooth-based wireless sensor system with a disposable sensor element and a reusable wireless component that can be worn as a "band-aid". The sensor is a piezoelectric polymer film placed on the wrist in proximity to the radial artery. The band-aid sized sensor allows non-intrusive monitoring of the pulsatile flow of blood in the artery. The sensor, using the Bluetooth module, can communicate with any Bluetooth enabled computer, mobile phone, or PDA. The data collected from the patient can be remotely viewed and analyzed by a physician.

  6. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    Science.gov (United States)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  7. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Science.gov (United States)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  8. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G. [Dipartimento di Fisica, Università degli studi di Milano, Via Celoria 16, 20133 Milano (Italy); Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Petrov, V. N. [Saint Petersburg State Polytechnical University, Politechnicheskaya Street 29, 195251 Saint Petersburg (Russian Federation); Brajnik, G.; Carrato, S. [Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Lollobrigida, V. [Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Sergo, R.; Gubertini, A.; Cautero, G. [Sincrotrone Trieste S.C.p.A, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy)

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  9. Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: first results.

    Science.gov (United States)

    Hartnett, John; Nand, Nitin; Wang, Chao; Floch, Jean-Michel

    2010-05-01

    A cryogenic sapphire oscillator (CSO) has been implemented at 11.2 GHz using a low-vibration design pulsetube cryocooler. Compared with a state-of-the-art liquid helium cooled CSO in the same laboratory, the square root Allan variance of their combined fractional frequency instability is sigma(y) = 1.4 x 10(-15)tau(-1/2) for integration times 1 < tau < 10 s, dominated by white frequency noise. The minimum sigmay = 5.3 x 10(-16) for the two oscillators was reached at tau = 20 s. Assuming equal contributions from both CSOs, the single oscillator phase noise S(phi) approximately -96 dB x rad(2)/Hz at 1 Hz set from the carrier.

  10. Process design of microdomains with quantum mechanics for giant pulse lasers.

    Science.gov (United States)

    Sato, Yoichi; Akiyama, Jun; Taira, Takunori

    2017-09-06

    The power scaling of laser devices can contribute to the future of humanity. Giant microphotonics have been advocated as a solution to this issue. Among various technologies in giant microphotonics, process control of microdomains with quantum mechanical calculations is expected to increase the optical power extracted per unit volume in gain media. Design of extensive variables influencing the Gibbs energy of controlled microdomains in materials can realize desired properties. Here we estimate the angular momentum quantum number of rare-earth ions in microdomains. Using this process control, we generate kilowatt-level laser output from orientation-controlled microdomains in a laser gain medium. We also consider the limitations of current samples, and discuss the prospects of power scaling and applications of our technology. This work overturns at least three common viewpoints in current advanced technologies, including material processing based on magnetohydrodynamics, grain-size control of transparent polycrystals in fine ceramics, and the crystallographic symmetry of laser ceramics in photonics.

  11. Design of time-pulse coded optoelectronic neuronal elements for nonlinear transformation and integration

    Science.gov (United States)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.

    2008-03-01

    In the paper the actuality of neurophysiologically motivated neuron arrays with flexibly programmable functions and operations with possibility to select required accuracy and type of nonlinear transformation and learning are shown. We consider neurons design and simulation results of multichannel spatio-time algebraic accumulation - integration of optical signals. Advantages for nonlinear transformation and summation - integration are shown. The offered circuits are simple and can have intellectual properties such as learning and adaptation. The integrator-neuron is based on CMOS current mirrors and comparators. The performance: consumable power - 100...500 μW, signal period- 0.1...1ms, input optical signals power - 0.2...20 μW time delays - less 1μs, the number of optical signals - 2...10, integration time - 10...100 of signal periods, accuracy or integration error - about 1%. Various modifications of the neuron-integrators with improved performance and for different applications are considered in the paper.

  12. Design of efficient single stage chirped pulse difference frequency generation at 7 {\\mu}m driven by a dual wavelength Ti:sapphire laser

    CERN Document Server

    Erny, Christian

    2013-01-01

    We present a design for a high-energy single stage mid-IR difference frequency generation adapted to a two-color Ti:sapphire amplifier system. The optimized mixing process is based on chirped pulse difference frequency generation (CP-DFG), allowing for a higher conversion efficiency, larger bandwidth and reduced two photon absorption losses. The numerical start-to-end simulations include stretching, chirped pulse difference frequency generation and pulse compression. Realistic design parameters for commercially available non linear crystals (GaSe, AgGaS2, LiInSe2, LiGaSe2) are considered. Compared to conventional un-chirped DFG directly pumped by Ti:sapphire technology we report a threefold increase of the quantum efficiency. Our CP-DFG scheme provides up to 340 {\\mu}J pulse energy directly at 7.2 {\\mu}m when pumped with 3 mJ and supports a bandwidth of up to 350 nm. The resulting 240 fs mid-IR pulses are inherently phase stable.

  13. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    Science.gov (United States)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  14. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-01-01

    Automated repetitive polymerase chain reaction (PCR) (DiversiLab, bioMérieux, St. Laurent, Quebec, Canada) and single locus sequence typing of the Staphylococcus protein A (spa) gene with spa-type assignment by StaphType RIDOM software were compared to pulsed-field gel electrophoresis (PFGE) as the "gold standard" method for methicillin-resistant Staphylococcus aureus (MRSA) typing. Fifty-four MRSA isolates were typed by all methods: 10 of known PFGE CMRSA type and 44 clinical isolates. Correct assignment of CMRSA type or cluster occurred for 47 of 54 (87%) of the isolates when using a rep-PCR similarity index (SI) of ≥95%. Rep-PCR gave 7 discordant results [CMRSA1 (3), CMRSA2 (1), CMRSA4 (1), and CMRSA10 (2)], and some CMRSA clusters were not distinguished (CMRSA10/5/9, CMRSA 7/8, and CMRSA3/6). Several spa types occurred within a single PFGE or repetitive PCR types among the 19 different spa types found. spa type t037 was shared by CMRSA3 and CMRSA6 strains, and CMRSA9 and most CMRSA10 strains shared spa type t008. Time to results for PFGE, repetitive PCR, and spa typing was 3-4 days, 24 h, and 48 h, respectively. The annual costs of using spa or repetitive PCR were 2.4× and 1.9× higher, respectively, than PFGE but routine use of spa typing would lower annual labor costs by 0.10 full-time equivalents compared to PFGE. Repetitive PCR is a good method for rapid outbreak screening, but MRSA isolates that share the same repetitive PCR or PFGE patterns can be distinguished by spa typing. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. [Femtosecond laser-assisted lens surgery depending on interface design and laser pulse energy: results of the first 200 cases].

    Science.gov (United States)

    Mayer, W J; Klaproth, O K; Ostovic, M; Hengerer, F H; Kohnen, T

    2014-12-01

    This study was designed to evaluate the effectiveness and safety of femtosecond laser-assisted lens surgery depending on interface design and laser pulse energy settings. In this non-randomized, consecutive case series200 eyes underwent femtosecond laser-assisted (LenSx, Alcon) lens surgery between November 2012 and June 2013. Group 1 consisted of 85 eyes with 60 cataracts and 25 refractive lens exchanges (RLE) which were treated with a curved direct contact interface, and group 2 consisting of 115 eyes with 72 cataracts and 43 RLEs treated with a modified interface using an additional soft contact lens (SoftFit™, Alcon) between the corneal surface and the interface. The degree of opacity of the lens in cataract eyes was measured with a Scheimpflug camera. Afterwards, phacoemulsification was performed with intraocular lens (IOL) implantation in all eyes. Primary endpoints were the effective phacoemulsification time (EPT), the average laser treatment time and the occurrence of intraoperative complications. The mean EPT in group 1 was 1.62 ± 1.12 s (cataract 1.94 ± 1.31 s, RLE 1.29 ± 1.01 s) and in group 2 the mean EPT was 1.66 ± 0.92 s (cataract 1.98 ± 1.28 s, RLE 1.33 ± 1.22 s, p = 0.32 between groups). The laser treatment lasted on average 48.90 ± 2.45 s (group 1) and 49.70 ± 2.87 s (group 2) with an average lens fragmentation thickness of 3401.48 ± 401.12 µm (all groups). In four cases of group 1, a second applanation of the interface was necessary. Furthermore, one anterior capsule tear, 39 cases of intraoperative wrinkling of the corneal surface and 21 cases in which the corneal incision had to be opened manually were documented in group 1. In group 2 no second applanation of the interface, no anterior capsule tears and no corneal wrinkling but 9 cases with a manual opening of corneal incisions were documented (p interface and reduced laser pulse energy.

  16. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Science.gov (United States)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  17. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Energy Technology Data Exchange (ETDEWEB)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  18. Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing.

    Directory of Open Access Journals (Sweden)

    Degui Zhi

    Full Text Available Recently, whole-genome sequencing, especially exome sequencing, has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. However, it is unclear whether this approach can be generalized and effectively applied to other Mendelian diseases with high locus heterogeneity. Moreover, the current exome sequencing approach has limitations such as false positive and false negative rates of mutation detection due to sequencing errors and other artifacts, but the impact of these limitations on experimental design has not been systematically analyzed. To address these questions, we present a statistical modeling framework to calculate the power, the probability of identifying truly disease-causing genes, under various inheritance models and experimental conditions, providing guidance for both proper experimental design and data analysis. Based on our model, we found that the exome sequencing approach is well-powered for mutation detection in recessive, but not dominant, Mendelian diseases with high locus heterogeneity. A disease gene responsible for as low as 5% of the disease population can be readily identified by sequencing just 200 unrelated patients. Based on these results, for identifying rare Mendelian disease genes, we propose that a viable approach is to combine, sequence, and analyze patients with the same disease together, leveraging the statistical framework presented in this work.

  19. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    Science.gov (United States)

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  20. Design, construction, and validation of a modular library of sequence diversity standards for polymerase chain reaction.

    Science.gov (United States)

    Baum, Paul D; Young, Jennifer J; Zhang, Qianjun; Kasakow, Zeljka; McCune, Joseph M

    2011-04-01

    Methods to measure the sequence diversity of polymerase chain reaction (PCR)-amplified DNA lack standards for use as assay calibrators and controls. Here we present a general and economical method for developing customizable DNA standards of known sequence diversity. Standards ranging from 1 to 25,000 sequences were generated by directional ligation of oligonucleotide "words" of standard length and GC content and then amplified by PCR. The sequence accuracy and diversity of the library were validated using AmpliCot analysis (DNA hybridization kinetics) and Illumina sequencing. The library has the following features: (i) pools containing tens of thousands of sequences can be generated from the ligation of relatively few commercially synthesized short oligonucleotides; (ii) each sequence differs from all others in the library at a minimum of three nucleotide positions, permitting discrimination between different sequences by either sequencing or hybridization; (iii) all sequences have identical length, GC content, and melting temperature; (iv) the identity of each standard can be verified by restriction digestion; and (v) once made, the ends of the library may be cleaved and replaced with sequences to match any PCR primer pair. These standards should greatly improve the accuracy and reproducibility of sequence diversity measurements.

  1. Single-Shot-RARE for rapid 3D hyperpolarized metabolic ex vivo tissue imaging: RF-pulse design for semi-dense spectra

    DEFF Research Database (Denmark)

    Magnusson, P.O.; Jensen, Pernille Rose; Dyrby, Tim Bjørn;

    the diagnosis given a sensitive marker that can be efficiently imaged in tissue after homogenous injection. The entire sample can be confined within the imaged volume giving the possibility of complete spatial non-selectivity of the radio frequency (RF) pulses in the RF pulse design with no chemical shift...... localization errors. Since only a few product signals are of interest for this application, a combination of under-sampled temporal encoding, frequency selective excitation and the Single-Shot-RAREsequence offers favourable SNR characteristics. Small peak separations are challenging, however, since...

  2. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  3. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    Directory of Open Access Journals (Sweden)

    Domenico Zito

    2008-01-01

    Full Text Available A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported.

  4. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    Science.gov (United States)

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. © 2012 IEEE

  5. Expressed Sequence Tags Analysis and Design of Simple Sequence Repeats Markers from a Full-Length cDNA Library in Perilla frutescens (L.

    Directory of Open Access Journals (Sweden)

    Eun Soo Seong

    2015-01-01

    Full Text Available Perilla frutescens is valuable as a medicinal plant as well as a natural medicine and functional food. However, comparative genomics analyses of P. frutescens are limited due to a lack of gene annotations and characterization. A full-length cDNA library from P. frutescens leaves was constructed to identify functional gene clusters and probable EST-SSR markers via analysis of 1,056 expressed sequence tags. Unigene assembly was performed using basic local alignment search tool (BLAST homology searches and annotated Gene Ontology (GO. A total of 18 simple sequence repeats (SSRs were designed as primer pairs. This study is the first to report comparative genomics and EST-SSR markers from P. frutescens will help gene discovery and provide an important source for functional genomics and molecular genetic research in this interesting medicinal plant.

  6. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Francesco Pennacchio

    2017-07-01

    Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  7. Tailored RF pulse optimization for magnetization inversion at ultra high field

    CERN Document Server

    Hurley, Aaron C; Li, Bai; Aickelin, Uwe; Coxon, Ron; Glover, Paul; Gowland, Penny A

    2010-01-01

    The radiofrequency (RF) transmit field is severely inhomogeneous at ultrahigh field due to both RF penetration and RF coil design issues. This particularly impairs image quality for sequences that use inversion pulses such as magnetization prepared rapid acquisition gradient echo and limits the use of quantitative arterial spin labeling sequences such as flow-attenuated inversion recovery. Here we have used a search algorithm to produce inversion pulses tailored to take into account the heterogeneity of the RF transmit field at 7 T. This created a slice selective inversion pulse that worked well (good slice profile and uniform inversion) over the range of RF amplitudes typically obtained in the head at 7 T while still maintaining an experimentally achievable pulse length and pulse amplitude in the brain at 7 T. The pulses used were based on the frequency offset correction inversion technique, as well as time dilation of functions, but the RF amplitude, frequency sweep, and gradient functions were all generate...

  8. Design Methodology for a Maximum Sequence Length MASH Digital Delta-Sigma Modulator

    OpenAIRE

    Tao Xu; Marissa Condon

    2009-01-01

    The paper proposes a novel structure for a MASH digital delta-sigma modulator (DDSM) in order to achieve a long sequence length. The expression for the sequence length is derived. The condition to produce the maximum sequence length is also stated. It is proved that the modulator output only depends on the structure of the first-order error feedback modulator (EFM1) which is the first stage of a Multi-stAge noise SHaping (MASH) modulator.

  9. Primers are designed for amplification and direct sequencing of ITS region of rDNA from Myxomycetes.

    Science.gov (United States)

    Martín, María P; Lado, Carlos; Johansen, Steinar

    2003-01-01

    Four new primers were designed, based on comparison of Physarum polycephalum sequences retrieved from Genbank (primers PHYS-5 and PHYS-4) and our own sequences (primers PHYS-3 and PHYS-2), to amplify the ITS regions of rDNA, including the 5.8S gene segment from Lamproderma species. Sequencing analysis shows that Lamproderma contains ITS1-5.8S-ITS2 regions of approximately 900 bp, which is similar in size to most eukaryotes. However, the corresponding region in another common myxomycete, Fuligo septica, is more than 2000 bp due to the presence of large direct-repeat motifs in ITS1. Myxomycete rDNA ITS regions are interesting both as phylogenetic markers in taxonomic studies and as model sequences for molecular evolution.

  10. De novo design of signal sequences to localize cargo to the 1,2-propanediol utilization microcompartment.

    Science.gov (United States)

    Jakobson, Christopher M; Slininger Lee, Marilyn F; Tullman-Ercek, Danielle

    2017-05-01

    Organizing heterologous biosyntheses inside bacterial cells can alleviate common problems owing to toxicity, poor kinetic performance, and cofactor imbalances. A subcellular organelle known as a bacterial microcompartment, such as the 1,2-propanediol utilization microcompartment of Salmonella, is a promising chassis for this strategy. Here we demonstrate de novo design of the N-terminal signal sequences used to direct cargo to these microcompartment organelles. We expand the native repertoire of signal sequences using rational and library-based approaches and show that a canonical leucine-zipper motif can function as a signal sequence for microcompartment localization. Our strategy can be applied to generate new signal sequences localizing arbitrary cargo proteins to the 1,2-propanediol utilization microcompartments. © 2017 The Protein Society.

  11. Time-domain training sequences design for MIMO OFDM channel estimation

    Institute of Scientific and Technical Information of China (English)

    Zhen LU; Jian-hua GE

    2008-01-01

    This paper describes a Least Squares (LS) channel estimation scheme for MIMO OFDM systems based on time-domain training sequence. We first compute the minimum mean square error (MSE) of the LS channel estimation, and then derive the optimal criteria of the training sequence with respect to the minimum MSE. It is shown that optimal time-domain training sequence should satisfy two criteria. First, the autocorrelation of the sequence transmitted from the same antenna is an impulse function in a region longer than the channel maximum delay. Second, the cross-correlation between sequences transmitted from different antennas is zero in this region. Simulation results show that the estimator using optimal time-domain training sequences has better performance than that using optimal frequency training sequence at low signal-to-noise ratio (SNR). To reduce the training overhead, a suboptimal training sequence is also proposed. Comparing with optimal training sequence, it has low computation complexity and high transmission efficiency at the expense of little performance degradation.

  12. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2009-09-01

    Full Text Available Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. Results ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. Conclusion ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  13. The General Configuration of CEV1 Electric Vehicle's Electrical System and the Design of Its Control Sequence

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The general configuration of CEV1 electric vehicle's electrical system and the design scheme of its control sequence are presented, which are modularized by using VMU as master control unit, PMU as power management unit, BMU as battery management unit. It is a rather advanced and practical general design scheme of electric vehicle, because the division of its module function is definite, which is advantage for research, manufacture and maintenance.

  14. Four pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2016-11-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called four pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ°(π/2) 180 ° + ϕ°(3π/2) 180 ° where ϕ = π/n (ϕ° = 180°/n) , and n is number of blocks in a two rotor period. The heteronuclear recoupling pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ1 °(π/2) 180 ° +ϕ1 °(3π/2) 180 ° and (π/2) 0 °(3π/2) ϕ2 °(π/2) 180 ° +ϕ2 °(3π/2) 180 ° on channel I and S, where ϕ1 = 3π/2n, ϕ2 = π2/n and n is number of blocks in a two rotor period. The recoupling pulse sequences mix the y magnetization. We show that four pulse recoupling is more broadband compared to three pulse recoupling [1]. Experimental quantification of this method is shown for 13Cα-13CO, homonuclear recoupling in a sample of Glycine and 15N-13Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF).

  15. PermVeg: A model to design crop sequences for permanent vegetable production systems in the Red River Delta, Vietnam

    NARCIS (Netherlands)

    Pham Thi Thu Huong, Huong; Everaarts, A.P.; Berg, van den W.; Neeteson, J.J.; Struik, P.C.

    2014-01-01

    The constraints in current vegetable production systems in the Red River Delta, Vietnam, in which vegetables are rotated with flooded rice, called for the design of alternative systems of permanent vegetable production. The practical model, PermVeg, was developed to generate vegetable crop sequences

  16. De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth.

    Directory of Open Access Journals (Sweden)

    Michael A Fisher

    Full Text Available A central challenge of synthetic biology is to enable the growth of living systems using parts that are not derived from nature, but designed and synthesized in the laboratory. As an initial step toward achieving this goal, we probed the ability of a collection of >10(6 de novo designed proteins to provide biological functions necessary to sustain cell growth. Our collection of proteins was drawn from a combinatorial library of 102-residue sequences, designed by binary patterning of polar and nonpolar residues to fold into stable 4-helix bundles. We probed the capacity of proteins from this library to function in vivo by testing their abilities to rescue 27 different knockout strains of Escherichia coli, each deleted for a conditionally essential gene. Four different strains--ΔserB, ΔgltA, ΔilvA, and Δfes--were rescued by specific sequences from our library. Further experiments demonstrated that a strain simultaneously deleted for all four genes was rescued by co-expression of four novel sequences. Thus, cells deleted for ∼0.1% of the E. coli genome (and ∼1% of the genes required for growth under nutrient-poor conditions can be sustained by sequences designed de novo.

  17. Design for Sequencing Spelling-to-Sound Correspondences in Mod 2 Reading Program, Volume 1 and 11.

    Science.gov (United States)

    Berdiansky, Betty; And Others

    The purpose of the study contained in this report is to provide research and design data for the Southwest Regional Laboratory (SWRL) Mod 2 Reading Program, a four-year program (K-3) for teaching reading skills to primary-grade children. The report is divided into two volumes. Volume one describes sequencing and methodology, and the specific rule…

  18. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    Science.gov (United States)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  19. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.

    Science.gov (United States)

    Disney, Matthew D; Angelbello, Alicia J

    2016-12-20

    The discovery of RNA catalysis in the 1980s and the dissemination of the human genome sequence at the start of this century inspired investigations of the regulatory roles of noncoding RNAs in biology. In fact, the Encyclopedia of DNA Elements (ENCODE) project has shown that only 1-2% of the human genome encodes protein, yet 75% is transcribed into RNA. Functional studies both preceding and following the ENCODE project have shown that these noncoding RNAs have important roles in regulating gene expression, developmental timing, and other critical functions. RNA's diverse roles are often a consequence of the various folds that it adopts. The single-stranded nature of the biopolymer enables it to adopt intramolecular folds with noncanonical pairings to lower its free energy. These folds can be scaffolds to bind proteins or to form frameworks to interact with other RNAs. Not surprisingly, dysregulation of certain noncoding RNAs has been shown to be causative of disease. Given this as the background, it is easy to see why it would be useful to develop methods that target RNA and manipulate its biology in rational and predictable ways. The antisense approach has afforded strategies to target RNAs via Watson-Crick base pairing and has typically focused on targeting partially unstructured regions of RNA. Small molecule strategies to target RNA would be desirable not only because compounds could be lead optimized via medicinal chemistry but also because structured regions within an RNA of interest could be targeted to directly interfere with RNA folds that contribute to disease. Additionally, small molecules have historically been the most successful drug candidates. Until recently, the ability to design small molecules that target non-ribosomal RNAs has been elusive, creating the perception that they are "undruggable". In this Account, approaches to demystify targeting RNA with small molecules are described. Rather than bulk screening for compounds that bind to singular

  20. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.

    Science.gov (United States)

    Shephard, Jonathan D; Couny, Francois; Russell, Phillip St J; Jones, Julian D C; Knight, Jonathan C; Hand, Duncan P

    2005-07-20

    We report the delivery of high-energy nanosecond pulses (approximately 65 ns pulse width) from a high-repetition-rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a hollow-core photonic crystal fiber (HC-PCF) at 1064 nm. The guided mode in the HC-PCF has a low overlap with the glass, allowing delivery of pulses with energies above those attainable with other fibers. Energies greater than 0.5 mJ were delivered in a single spatial mode through the hollow-core fiber, providing the pulse energy and high beam quality required for micromachining of metals. Practical micromachining of a metal sheet by fiber delivery has been demonstrated.

  1. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  2. 新体制雷达信号 PRI 样本子图周期搜索提取方法%A New System Radar Signal Extraction Method by Searching PRI Pulse Sequence Subpattern Cycle

    Institute of Scientific and Technical Information of China (English)

    孟祥豪; 罗景青; 马贤同

    2015-01-01

    alming at the problem of radar signal extraction of interleaved pulse sequences intercepted by reconnalssance receiver,according to the description technique of pulse recurrence interval(PRI),a pulse extraction algorithm is proposed based on the searching of PRI pulse sequence subpattern(PSS)cycle.In this algorithm,the idea of searching adjacent pul-ses intervals in traditional PRI searching algorithm is replaced by that of searching the PRI-PSS cycle.A two-dimensional extraction function consisting of time of arrival and paracycle of PRI PSS is constructed to store the number of matching pul-ses which conform to a certaln assumed PRI-PSS cycle during the searching process.Then the PRI-PSS cycle is determined according to the maximum value of the function,thus the equivalent pulses can be extracted,realizing the signal extraction of complex type of PRI radar signals.The validity of this method has been verified by simulation experiments.%针对侦察接收机截获的交错脉冲序列中雷达信号的提取问题,在脉冲重复周期(PRI)样本子图描述技术的基础上,提出一种基于 PRI 样本子图周期搜索的脉冲提取算法。算法改传统 PRI 搜索法中的相邻脉冲间隔搜索思想为 PRI 样本子图周期搜索思想,通过构造由脉冲到达时间和准 PRI 样本子图周期构成的二维提取函数,将搜索过程中符合某一假定 PRI 样本子图周期的匹配脉冲数存储于二维提取函数中,然后根据二维提取函数的最大值确定 PRI 样本子图周期,提取对应的脉冲,实现复杂 PRI 类型的雷达信号提取。仿真结果验证了该方法的有效性。

  3. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  4. On Variant Strategies To Solve The Magnitude Least Squares Optimization Problem In Parallel Transmission Pulse Design And Under Strict SAR And Power Constraints

    CERN Document Server

    Hoyos-Iruarrizaga, Andres; Massire, Aurélien; Amadon, Alexis; Boulant, Nicolas

    2013-01-01

    Parallel transmission has been a very promising candidate technology to mitigate the inevitable radio-frequency field inhomogeneity in magnetic resonance imaging (MRI) at ultra-high field (UHF). For the first few years, pulse design utilizing this technique was expressed as a least squares problem with crude power regularizations aimed at controlling the specific absorption rate (SAR), hence the patient safety. This approach being suboptimal for many applications sensitive mostly to the magnitude of the spin excitation, and not its phase, the magnitude least squares (MLS) problem then was first formulated in 2007. Despite its importance and the availability of other powerful numerical optimization methods, this problem yet has been faced exclusively by the pulse designer with the so-called variable exchange method. In this paper, we investigate other strategies and incorporate directly the strict SAR and hardware constraints. Different schemes such as sequential quadratic programming (SQP), interior point (I-...

  5. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Mössbauer Spectroscopy

    Science.gov (United States)

    Velásquez, A. A.; Gancedo, J. R.; Trujillo, J. M.; Morales, A. L.; Tobón, J. E.; Reyes, L.

    2005-04-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Mössbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Mössbauer spectrometer.

  6. 100 Gbps Wireless System and Circuit Design Using Parallel Spread-Spectrum Sequencing

    Science.gov (United States)

    Scheytt, J. Christoph; Javed, Abdul Rehman; Bammidi, Eswara Rao; KrishneGowda, Karthik; Kallfass, Ingmar; Kraemer, Rolf

    2017-08-01

    In this article mixed analog/digital signal processing techniques based on parallel spread-spectrum sequencing (PSSS) and radio frequency (RF) carrier synchronization for ultra-broadband wireless communication are investigated on system and circuit level.

  7. Benchmarking of Whole Exome Sequencing and Ad Hoc Designed Panels for Genetic Testing of Hereditary Cancer

    Science.gov (United States)

    Feliubadaló, Lídia; Tonda, Raúl; Gausachs, Mireia; Trotta, Jean-Rémi; Castellanos, Elisabeth; López-Doriga, Adriana; Teulé, Àlex; Tornero, Eva; del Valle, Jesús; Gel, Bernat; Gut, Marta; Pineda, Marta; González, Sara; Menéndez, Mireia; Navarro, Matilde; Capellá, Gabriel; Gut, Ivo; Serra, Eduard; Brunet, Joan; Beltran, Sergi; Lázaro, Conxi

    2017-01-01

    Next generation sequencing panels have been developed for hereditary cancer, although there is some debate about their cost-effectiveness compared to exome sequencing. The performance of two panels is compared to exome sequencing. Twenty-four patients were selected: ten with identified mutations (control set) and fourteen suspicious of hereditary cancer but with no mutation (discovery set). TruSight Cancer (94 genes) and a custom panel (122 genes) were assessed alongside exome sequencing. Eighty-three genes were targeted by the two panels and exome sequencing. More than 99% of bases had a read depth of over 30x in the panels, whereas exome sequencing covered 94%. Variant calling with standard settings identified the 10 mutations in the control set, with the exception of MSH6 c.255dupC using TruSight Cancer. In the discovery set, 240 unique non-silent coding and canonic splice-site variants were identified in the panel genes, 7 of them putatively pathogenic (in ATM, BARD1, CHEK2, ERCC3, FANCL, FANCM, MSH2). The three approaches identified a similar number of variants in the shared genes. Exomes were more expensive than panels but provided additional data. In terms of cost and depth, panels are a suitable option for genetic diagnostics, although exomes also identify variants in non-targeted genes. PMID:28050010

  8. Formal Learning Sequences and Progression in the Studio: A Framework for Digital Design Education

    Science.gov (United States)

    Wärnestål, Pontus

    2016-01-01

    This paper examines how to leverage the design studio learning environment throughout long-term Digital Design education in order to support students to progress from tactical, well-defined, device-centric routine design, to confidently design sustainable solutions for strategic, complex, problems for a wide range of devices and platforms in the…

  9. Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes

    Science.gov (United States)

    Gholamzadeh, R.; Jafari, K.; Gharooni, M.

    2017-01-01

    A sensitive half-bridge MEMS accelerometer fabricated by sequential and pulsed-mode processes is presented in this paper. The proposed accelerometer is analyzed by using conventional equations and the finite element method. The micromachining technology used in this work relies on two processes: sequential and pulsed-mode. In the sequential deep reactive ion etching process, a mixture of hydrogen and oxygen with a trace value of SF6 is used instead of polymeric material in the passivation step. The pulsed-mode process employs periodic hydrogen pulses in continuous fluorine plasma. Because of the continuous nature of this process, plus the in situ passivation caused by the hydrogen pulses, scallop-free sidewalls are achieved and the etch rate is also relatively high. Furthermore, the functional characteristics of the fabricated accelerometer sensor are measured and reported. Measurement results, which are in good agreement with simulations, show that the functional characteristics of the fabricated sensor are as follows: resonance frequency of about 2 kHz, sensitivity of 76 mV g-1 and Brownian noise equivalent acceleration of 4.74~μ g {{\\sqrt{\\text{Hz}}}-1} .

  10. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  11. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  12. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design

    Science.gov (United States)

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R.; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S.; Williams, Steven A.

    2016-01-01

    Background The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world’s most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Methodology/Principal Findings Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. Conclusions/Significance The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other

  13. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  14. Modeling and design of lossy waveguide structures for generation of broadband terahertz pulses through difference frequency mixing

    Science.gov (United States)

    Vallejo Monsalve, Felipe Antonio

    We present an integral coupled mode theory (CMT), suited to account for high optical losses, to model ultra-broadband terahertz (THz) waveguide emitters (0.1- 20 THz) based on difference frequency generation (DFG) pumped by femtosecond infrared (IR) optical pulses. This integral model works even in the situation where the DFG occurs between several IR and THz modes. We also present a simplified CMT approximation that reproduces the results of the rigorous integral CMT for situations where the THz generation is mediated through single-IR-mode to single-THz-mode interactions. Using the simplified approach we derive a new expression that incorporates loss effects into the coherence length for optical rectification (OR). The expression that we derived for the coherence length can be adapted to describe other second order nonlinear processes such as second harmonic generation. We apply both models to study waveguide emitters whose nonlinear cores are composed of poled guest-host electro-optic (EO) polymer composites, which belong to the 1mm symmetry class and have high nonlinearities. We apply the models to a generic, symmetric, five-layer, metal/cladding/core waveguide structure and provide design strategies for efficient ultra-broadband THz emitters. Two different design strategies are analyzed, one in which the waveguides are designed to have a single-IR-mode and a single-THz-mode guided within the structure, and other where the waveguide is made with a single-THz-mode but admits several IR guided modes. In both strategies the waveguide geometric parameters are optimized to obtain the highest THz conversion efficiencies and broader output bandwidth. The simplified CMT approach is much faster to implement than the integral CMT. Thus, we use the simplified approach to perform a parametric study for different waveguide parameters and pumping wavelengths, in the telecom and short wavelength infrared region, to establish under what conditions the five-layered structure

  15. T1 ρ-weighted MRI using a surface coil to transmit spin-lock pulses

    Science.gov (United States)

    Borthakur, Arijitt; Charagundla, Sridhar R.; Wheaton, Andrew; Reddy, Ravinder

    2004-04-01

    T1 ρ-weighted MRI is a novel basis for generating tissue contrast. However, it suffers from sensitivity to B1 inhomogeneity. First, excitation with a spatially varying B1 causes flip-angle artifacts and second, spin locking with an inhomogeneous B1 results in non-uniform T1 ρ contrast. In this study, we overcome the former complication with a specially designed spin-locking pulse sequence and we successfully obtain T1 ρ-weighted images with a surface coil. In this pulse sequence, the spin-lock pulse was divided into segments of equal duration and alternating phase. This "self-compensating" T1 ρ-preparatory pulse sequence was analyzed and the effect of an inhomogeneous B1 field was simulated using the Bloch equations. T1 ρ-weighted MR images of a phantom and a human knee joint in vivo were obtained on a clinical scanner with a surface coil to demonstrate the utility of the pulse sequence. The self-compensating T1 ρ-prepared pulses sequence resulted in substantially reduced image artifacts compared to the conventional, single-phase spin-lock pulse.

  16. 顺序控制中PLC的程序设计方法%PLC Programming Design of Sequence Control

    Institute of Scientific and Technical Information of China (English)

    金芬

    2011-01-01

    结合实例介绍顺序控制的编程思想和顺序功能图的设计方法,针对步进顺控指令编程法、起保停电路编程法、置位复位指令编程法和移位指令编程法4种PLC程序设计方法,给出了将顺序功能图转换成梯形图的方法,总结归纳了4种编程方法的设计要点,为程序的优化设计提供参考.%The paper introduces the programming ideas of sequence control and the design of sequence function chart by using examples.It discusses four PLC programming methods: stepping sequence control instructions programming method,start-keep-stop circuit programming method,set and reset instructions programming method and shift instructions programming method.It puts forward the method of converting sequence function chart into ladder.It summarizes the key points for the design of four programming methods,which provides reference for program optimization.

  17. Characterization of Mycoplasma hyosynoviae strains by amplified fragment length polymorphism analysis, pulsed-field gel electrophoresis and 16S ribosomal DNA sequencing

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, N.F.; Ahrens, Peter

    2002-01-01

    , were investigated by analysis of amplified fragment length polymorphisms of the Bgl II and Mfe I restriction sites and by pulsed-field gel electrophoresis of a Bss HII digest of chromosomal DNA. Both methods allowed unambiguous differentiation of the analysed strains and showed similar discriminatory...

  18. The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing nmr spectroscopy

    CERN Document Server

    Nimbalkar, Manoj; Skinner, Thomas E; Neves, Jorge L; Gershenzon, Naum I; Kobzar, Kyryl; Bermel, Wolfgang; Glaser, Steffen J

    2012-01-01

    We present highly robust, optimal control-based shaped pulses designed to replace all 90{\\deg} and 180{\\deg} hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90{\\deg} and 180{\\deg} point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz (1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of (+/-)15% (1H) and (+/-)10% (13C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600 MHz. The experimental performance of conventional hard-pulse ...

  19. MRI of the wrist: Comparison of high resolution pulse sequences and different fat-suppression techniques; Magnetresonanztomographie des Handgelenks - Vergleich hochaufloesender Pulssequenzen und unterschiedlicher Fettsignalunterdrueckungen an Leichenpraeparaten

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, A.; Spieker, A.; Bonel, H.; Glaser, C.; Reiser, M. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Radiologische Diagnostik; Schrank, C.; Putz, R. [Muenchen Univ. (Germany). Anatomische Anstalt; Petsch, R. [Siemens AG, Erlangen (Germany). Unternehmensbereich Medizinische Technik

    2000-02-01

    Purpose: To evaluate high resolution sequences with and without fat-suppression techniques for MR imaging of the wrist. Results: The highest homogeneity and the least artifacts were achieved by the T{sub 1}-w SE sequence. For the STIR and PD-FS TSE sequence high rankings were found for the detection of free water. The PD FS sequence had high ranking also for visualization of the SL ligament and the triangular fibrocartilage. The best sequence for the assessment of hyaline cartilage was the FLASH-FS sequence. For detailed analysis of bony structures the CISS sequence performed best. Conclusion: The isolated use of a PD-FS-TSE sequence enables for evaluation of all clinically relevant structures at the wrist. Dedicated questions for hyaline cartilage are answered best by the use of a FLASH 3D-FS sequence. Selective water excitation reduces acquisition time to 60%, nevertheless FS sequences are still diagnostically superior to WE sequences. (orig./AJ) [German] Ziel: Beurteilung der Wertigkeit hochaufloesender MRT-Sequenzen ohne und mit Fettsignalunterdrueckung (FS) und selektiver Wasseranregung (WE) fuer Untersuchungen des Handgelenkes. Ergebnisse: SE-T{sub 1} zeigte die hoechste Signalhomogenitaet bei geringsten Artefakten. Die STIR und PD FS-Sequenz stellten Signal von freiem Wasser am besten dar. Die beste Knorpeldarstellung erreicht die FLASH 3D-FS-Sequenz. Die Kortikalis und die Spongiosa konnten am besten mit der CISS-Sequenz beurteilt werden. Die FS-Sequenzen waren den WE-Sequenzen diagnostisch ueberlegen. Schlussfolgerungen: Mit der PD FS TSE-Sequenz mit verlaengerter Echozeit ist eine gute Beurteilung aller klinisch wichtigen Strukturen moeglich. Die beste Darstellung des hyalinen Knorpels wird mit der FLASH-3D-FS-, des Knochens mit der CISS-Sequenz erreicht. Die selektive Wasseranregung bei FLASH- und DESS-Sequenzen reduziert die Aufnahmezeit, ohne die diagnostische Aussagekraft der FS-Sequenzen zu erreichen. (orig./AJ)

  20. A Quality Control Design for Validating Hierarchical Sequencing of Programed Instruction.

    Science.gov (United States)

    Tennyson, Robert D.; Boutwell, Richard C.

    A quality control model is proposed to facilitate development of effective instructional programs. The theories of R. M. Gagne and of M. D. Merrill provide the foundations for a theory of sequencing behavior into a hierarchical order in order to improve the learning potential of an instructional program. The initial step in the procedural model is…

  1. Efficient Pulsed Quadrupole

    CERN Document Server

    Petzenhauser, I.; Spiller, P.; Tenholt, C.

    2016-01-01

    In order to raise the focusing gradient in case of bunched beam lines, a pulsed quadrupole was designed. The transfer channels between synchrotrons as well as the final focusing for the target line are possible applications. The quadrupole is running in a pulsed mode, which means an immense saving of energy by avoiding standby operation. Still the high gradients demand high currents. Hence a circuit had to be developed which is able to recover a significant amount of the pulsing energy for following shots. The basic design of the electrical circuit of the quadrupole is introduced. Furthermore more energy efficient circuits are presented and the limits of adaptability are considered.

  2. Design and Control of Thermally Coupled Reactive Distillation Sequence for Biodiesel Production

    Institute of Scientific and Technical Information of China (English)

    Li Lumin; Sun Lanyi; Xie Xu; Tian Yanan; Shang Jianlong; Tian Yuanyu

    2016-01-01

    Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic beneifts than the side-rectiifer one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.

  3. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.

    Science.gov (United States)

    Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael

    2013-12-01

    Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.

  4. Designing a transcriptome next-generation sequencing project for a nonmodel plant species.

    Science.gov (United States)

    Strickler, Susan R; Bombarely, Aureliano; Mueller, Lukas A

    2012-02-01

    The application of next-generation sequencing (NGS) to transcriptomics, commonly called RNA-seq, allows the nearly complete characterization of transcriptomic events occurring in a specific tissue. It has proven particularly useful in nonmodel species, which often lack the resources available for sequenced organisms. Mainly, RNA-seq does not require a reference genome to gain useful transcriptomic information. In this review, the application of RNA-seq to nonmodel plant species will be addressed. Important experimental considerations from presequencing issues to postsequencing analysis, including sample and platform selection, and useful bioinformatics tools for assembly and data analysis, are covered. Methods of assembling RNA-seq data and analyses commonly performed with RNA-seq data, including single nucleotide polymorphism detection and analysis of differential expression, are explored. In addition, studies that have used RNA-seq to elucidate nonmodel plant transcriptomics are highlighted.

  5. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    Directory of Open Access Journals (Sweden)

    Cardle Linda

    2008-12-01

    Full Text Available Abstract Background Microsatellites or single sequence repeats (SSRs are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAGn, (AGGn and (AGCn were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae. This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as

  6. DNA sequence analyses of blended herbal products including synthetic cannabinoids as designer drugs.

    Science.gov (United States)

    Ogata, Jun; Uchiyama, Nahoko; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2013-04-10

    In recent years, various herbal products adulterated with synthetic cannabinoids have been distributed worldwide via the Internet. These herbal products are mostly sold as incense, and advertised as not for human consumption. Although their labels indicate that they contain mixtures of several potentially psychoactive plants, and numerous studies have reported that they contain a variety of synthetic cannabinoids, their exact botanical contents are not always clear. In this study, we investigated the origins of botanical materials in 62 Spice-like herbal products distributed on the illegal drug market in Japan, by DNA sequence analyses and BLAST searches. The nucleotide sequences of four regions were analyzed to identify the origins of each plant species in the herbal mixtures. The sequences of "Damiana" (Turnera diffusa) and Lamiaceae herbs (Mellissa, Mentha and Thymus) were frequently detected in a number of products. However, the sequences of other plant species indicated on the packaging labels were not detected. In a few products, DNA fragments of potent psychotropic plants were found, including marijuana (Cannabis sativa), "Diviner's Sage" (Salvia divinorum) and "Kratom" (Mitragyna speciosa). Their active constituents were also confirmed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), although these plant names were never indicated on the labels. Most plant species identified in the products were different from the plants indicated on the labels. The plant materials would be used mainly as diluents for the psychoactive synthetic compounds, because no reliable psychoactive effects have been reported for most of the identified plants, with the exception of the psychotropic plants named above.

  7. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm.

    Science.gov (United States)

    Yang, Cheng-Hong; Chang, Hsueh-Wei; Ho, Chang-Hsuan; Chou, Yii-Cheng; Chuang, Li-Yeh

    2011-03-18

    Complete mitochondrial (mt) genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR) amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO), all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. In conclusion, it can be said that our proposed sliding window-based PSO algorithm provides the necessary primer sets for the entire mt genome amplification and

  8. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: Complete mitochondrial (mt genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO, all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. CONCLUSIONS/SIGNIFICANCE: In conclusion, it can be said that our proposed sliding window-based PSO

  9. Design Engineering Instrumental Carotid Pulse System in Analitical Heart’s Dinamyc With Continuous Wavelet Transform Method

    OpenAIRE

    2016-01-01

    Klasifikasi sinyal Carotid Pulse sangat penting untuk mengetahui proses terjadinya tekanan darah dalam mengalirkan darah melewati katup-katup jantung menuju ruang-ruang jantung dan paru-paru serta mendukung analisa suara jantung yang ada untuk mendeteksi murmur, mengklasifikasikan suara jantung normal dan tidak normal, serta untuk menjelaskan dinamika jantung, oleh sebab itu pada penelitian ini dilakukan beberapa pekerjaan pendahuluan pada pembuatan instrumentasi pendeteksian sinyal tekanan d...

  10. Interpretation of custom designed Illumina genotype cluster plots for targeted association studies and next-generation sequence validation

    Directory of Open Access Journals (Sweden)

    Tindall Elizabeth A

    2010-02-01

    Full Text Available Abstract Background High-throughput custom designed genotyping arrays are a valuable resource for biologically focused research studies and increasingly for validation of variation predicted by next-generation sequencing (NGS technologies. We investigate the Illumina GoldenGate chemistry using custom designed VeraCode and sentrix array matrix (SAM assays for each of these applications, respectively. We highlight applications for interpretation of Illumina generated genotype cluster plots to maximise data inclusion and reduce genotyping errors. Findings We illustrate the dramatic effect of outliers in genotype calling and data interpretation, as well as suggest simple means to avoid genotyping errors. Furthermore we present this platform as a successful method for two-cluster rare or non-autosomal variant calling. The success of high-throughput technologies to accurately call rare variants will become an essential feature for future association studies. Finally, we highlight additional advantages of the Illumina GoldenGate chemistry in generating unusually segregated cluster plots that identify potential NGS generated sequencing error resulting from minimal coverage. Conclusions We demonstrate the importance of visually inspecting genotype cluster plots generated by the Illumina software and issue warnings regarding commonly accepted quality control parameters. In addition to suggesting applications to minimise data exclusion, we propose that the Illumina cluster plots may be helpful in identifying potential in-put sequence errors, particularly important for studies to validate NGS generated variation.

  11. Design and Simulation of Dc-Dc Converter for Fuel Cell Operated Vehicle with Single Reference Six Pulse Modulation

    Directory of Open Access Journals (Sweden)

    1V.Chaitanya,P.G.scholar,

    2015-10-01

    Full Text Available : Even though electrical vehicle concept is introduced in early 1800’s, it gained importance in past couple of decades due to growing conscience on environmental aspects. Different types of electrical vehicles are manufactured in the past centuries and now onboard generation is seems to be promising by fulfilling the needs of a vehicle. Fuel cells or fuel cell stack produces typically 32-68V of EMF, which has to be conditioned before it fed to motor. The conditioning involves two stages DCDC conversion and then to DC-AC conversion .DC-AC conversion is done through inverter. For DC-DC to conversion various topologies are proposed such as fly back, forward, buck-boost are proposed. This paper deals with the front end DC-DC converter and inverter switching. A hybrid modulation scheme is used to produce pulses to switch the source end full bridge rectifier and inverter at load end. In this modulation scheme high frequency pulses given to full bridge rectifier and 33% modulation scheme based pulses are produced for inverter switching.

  12. Design of Pulsed Eddy Current Exciting Source Based on Virtual Instrument%基于虚拟仪器的脉冲涡流激励源设计

    Institute of Scientific and Technical Information of China (English)

    邱选兵; 魏计林; 崔小朝; 黄祥康; 刘路路

    2013-01-01

    Pulsed eddy current testing is a new research field of eddy current testing technology. A square waveform with adjusting duty is employed as exciting source. Combined with virtual instrument technology, the pulsed eddy current exciting source of direct digital synthesizer is designed based on USB interface. The experimental results indicate that the exciting source has the performance of the continuous adjustable frequency (0. 5 — 500 kHz) and duty (10% — 90%), high resolution (0. 011 6 Hz) , stability, friendly interface and so on. It is very suitable for the driving requirements of the pulsed eddy current probe, and has some application prospect.%脉冲涡流检测是电涡流检测技术的一个最新研究,激励源采用一定占空比的方波信号.结合虚拟仪器技术,设计了一种USB接口的直接数字合成的脉冲涡流激励源.实验结果表明该激励源有占空比(10%~90%),频率(0.5 k~500 kHz)连续可调,分辨率高(0.011 6 Hz),稳定可靠,界面友好等优点,能够满足脉冲涡流探头驱动要求,具有一定应用前景.

  13. Modulating semiconductor surface electronic properties by inorganic peptide-binders sequence design.

    Science.gov (United States)

    Matmor, Maayan; Ashkenasy, Nurit

    2012-12-19

    The use of proteins and peptides as part of biosensors and electronic devices has been the focus of intense research in recent years. However, despite the fact that the interface between the bioorganic molecules and the inorganic matter plays a significant role in determining the properties of such devices, information on the electronic properties of such interfaces is sparse. In this work, we demonstrate that the identity and position of single amino acid in short inorganic binding protein-segments can significantly modulate the electronic properties of semiconductor surfaces on which they are bound. Specifically, we show that the introduction of tyrosine or tryptophan, both possessing an aromatic side chain which higher occupied molecular orbitals are positioned in proximity to the edge of GaAs valence band, to the sequence of a peptide that binds to GaAs (100) results in changes of both the electron affinity and surface potential of the semiconductor. These effects were found to be more pronounced than the effects induced by the same amino acids once bound on the surface in a head-tail configuration. Furthermore, the relative magnitude of each effect was found to depend on the position of the modification in the sequence. This sequence dependent behavior is induced both indirectly by changes in the peptide surface coverage, and directly, probably, due to changes in the orientation and proximity of the tyrosine/tryptophan side group with respect to the surface due to the preferred conformation the peptide adopts on the surface. These studies reveal that despite the use of short protein oligomers and aiming at a non-natural-electronic task, the well-known relations between the proteins' structure and function is preserved. Combining the ability to tune the electronic properties at the interface with the ability to direct the growth of inorganic materials makes peptides promising building blocks for the construction of novel hybrid electronic devices and biosensors.

  14. A FPGA-based Multi-channel Pulse Amplitude Analyzer Design%基于FPGA的多道脉冲幅度分析器的设计

    Institute of Scientific and Technical Information of China (English)

    周春枚; 田正凯; 曾军

    2012-01-01

    This paper presents a method of FPGA (Field-Programmable Gate Array) based on the mul-ti-channel pulse amplitude analyzer (MCA) design.In terms of hardware,A3P250 FPGA is the core de- vice.First of alI,A3P250 FPGA through the ADC sampling module,the data sample to FPGA internal,then make use of peak modules to baseline discriminate and judge the pulse is coming.When a pulse arrival, seeking peak module use of comparison method to extract maximum pulse.Then open the spectrum module and it start into spectrum function.At the same time,the spectrum results and real time data will be sent to the computer.%介绍了一种基于FPGA(Field—Programmable Gate Array)的多道脉冲幅度分析器(MCA)的设计。硬件上使用A3P250FPGA作为核心器件。首先,A3P250FPGA通过ADC采样模块,将数据采样到FPGA内部,然后利用寻峰模块进行基线判别,判断脉冲是否到来。当有脉冲到来时,寻峰模块使用比较法提取脉冲的最大值,接着成谱模块启动成谱功能,与此同时将成谱结果及实时数据发送给计算机。

  15. QuickProbs--a fast multiple sequence alignment algorithm designed for graphics processors.

    Science.gov (United States)

    Gudyś, Adam; Deorowicz, Sebastian

    2014-01-01

    Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors.

  16. QuickProbs—A Fast Multiple Sequence Alignment Algorithm Designed for Graphics Processors

    Science.gov (United States)

    Gudyś, Adam; Deorowicz, Sebastian

    2014-01-01

    Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors. PMID:24586435

  17. QuickProbs--a fast multiple sequence alignment algorithm designed for graphics processors.

    Directory of Open Access Journals (Sweden)

    Adam Gudyś

    Full Text Available Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors.

  18. Optimum stacking sequence design of composite sandwich panel using genetic algorithms

    Science.gov (United States)

    Bir, Amarpreet Singh

    Composite sandwich structures recently gained preference for various structural components over conventional metals and simple composite laminates in the aerospace industries. For most widely used composite sandwich structures, the optimization problems only requires the determination of the best stacking sequence and the number of laminae with different fiber orientations. Genetic algorithm optimization technique based on Darwin's theory of survival of the fittest and evolution is most suitable for solving such optimization problems. The present research work focuses on the stacking sequence optimization of composite sandwich panels with laminated face-sheets for both critical buckling load maximization and thickness minimization problems, subjected to bi-axial compressive loading. In the previous studies, only balanced and even-numbered simple composite laminate panels have been investigated ignoring the effects of bending-twisting coupling terms. The current work broadens the application of genetic algorithms to more complex composite sandwich panels with balanced, unbalanced, even and odd-numbered face-sheet laminates including the effects of bending-twisting coupling terms.

  19. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants

    Energy Technology Data Exchange (ETDEWEB)

    Regier, M.; Kaul, M.G.; Ittrich, H.; Bansmann, P.M.; Kemper, J.; Nolte-Ernsting, C.; Adam, G. [University Hospital of Hamburg, Center for Diagnostic Imaging and Image Guided Therapy, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Kandel, S.; Hoffmann, B.; Heller, M.; Biederer, J. [University Hospital of Kiel, Department of Diagnostic Radiology, Kiel (Germany)

    2007-05-15

    To evaluate two MR imaging sequences for the detection of artificial pulmonary nodules inside porcine lung explants. 67 agarose nodules ranging 3-20 mm were injected into ten porcine lungs within a dedicated chest phantom. The signal on T1-weighted images and radiopacity were adjusted by adding 0.125 mmol/l Gd-DTPA and 1.5 g/l of iodine. A T1-weighted three-dimensional gradient-echo (T1-3D-GRE; TR/TE:3.3/1.1 ms, slice:8 mm, flip-angle:10 ) and a T2-weighted half-Fourier fast-spin echo sequence (T2-HF-FSE; TR/TE:2000/66 ms, slice:7 mm, flip-angle:90 ) were applied in axial orientation using a 3-T system (Intera, Philips Medical Systems, Best, The Netherlands), followed by CT (16 x 0.5 mm) as reference. Nodule sizes and locations were assessed by three blinded observers. In nodules of >10 mm, sensitivity was 100% using 3D-GRE-MRI and 94% using the HF-FSE sequence. For nodules 6-10 mm, the sensitivity of MRI was lower than with CT (3D-GRE:92%; T2-HF-FSE:83%). In lesions smaller than 5 mm, the sensitivity declined to 80% (3D-GRE) and 53% (HF-FSE). Small lesion diameters were overestimated with both sequences, particularly with HF-FSE. This study confirms the feasibility of 3 T-MRI for lung nodule detection. In lesions greater than 5 mm, the sensitivity of the 3D-GRE sequence approximated CT (>90%), while sensitivity and PPV with the HF-FSE sequence were slightly inferior. (orig.)

  20. Code length limit in phase-sensitive OTDR using ultralong (>1M bits) pulse sequences due to fading induced by fiber optical path drifts

    Science.gov (United States)

    Martins, H. F.; Shi, K.; Thomsen, B. C.; Martin-Lopez, S.; Gonzalez-Herraez, M.; Savory, S. J.

    2017-04-01

    Recently, it has been demonstrated that by recovering the amplitude and phase of the backscattered optical signal, a ΦOTDR using pulse coding can be treated as a fully linear system in terms of trace coding/decoding, thus allowing for the use of tens of thousands of bits with a dramatic improvement of the system performance. In this communication, as a continuation of previous work by the same authors, a preliminary study aiming at characterizing the limits of the system in terms of maximum usable code length is presented. Using a code exceeding 1million bits over a duration of 0.26ms, it is observed that fiber optical path variations exceeding ≍π occurring over a time inferior to the pulse code length can lead to localized fading in the ΦOTDR trace. The occurrence, positions and form of the fading points along the ΦOTDR trace is observed to be strongly dependent on the type, frequency and amplitude of the perturbations applied to the fiber.

  1. Recent Progress in the Design of Monodisperse, Sequence-Defined Macromolecules.

    Science.gov (United States)

    Solleder, Susanne C; Schneider, Rebekka V; Wetzel, Katharina S; Boukis, Andreas C; Meier, Michael A R

    2017-05-01

    This review describes different synthetic strategies towards sequence-defined, monodisperse macromolecules, which are built up by iterative approaches and lead to linear non-natural polymer structures. The review is divided in three parts: solution phase-, solid phase-, and fluorous- and polymer-tethered approaches. Moreover, synthesis procedures leading to conjugated and non-conjugated macromolecules are considered and discussed in the respective sections. A major focus in the evaluation is the applicability of the different approaches in polymer chemistry. In this context, simple procedures for monomer and oligomer synthesis, overall yields, scalability, purity of the oligomers, and the achievable level of control (side-chains, backbone, stereochemistry) are important benchmarks. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Phase I clinical trial design of anticancer agents--a Fibonacci and a modified Fibonacci sequence].

    Science.gov (United States)

    Kusaba, H; Tamura, T

    2000-05-01

    A Phase I clinical trial of an anticancer agent is the first evaluation in humans, and it is an important step in drug development. From the ethical point of view, the goal is to escalate to the maximum tolerated dose quickly, yet safely, to minimize the likelihood of treating patients at doses that are too low or high. It is expected that the contradictions between safety and efficacy in the Phase I clinical trials will be solved by developing methods. The modified Fibonacci sequence has been generally adopted for dose escalation, although it includes some problems. It is necessary to recognize that the method used for Phase I clinical trials for anticancer agents remains unsatisfactory, and that it is also necessary to develop more ethical and scientific methods.

  3. Designedly Incomplete Utterances: A Pedagogical Practice for Eliciting Knowledge Displays in Error Correction Sequences.

    Science.gov (United States)

    Koshik, Irene

    2002-01-01

    Uses a conversation analytic framework to analyze a practice used by teachers in 1-0-1, second language writing conferences when eliciting self-correction of students' written language errors. This type of turn used to elicit a knowledge display from the student is labeled designedly incomplete utterance (DIU). Teachers use DIUs made up of…

  4. Implementation of a Three-Semester Concurrent Engineering Design Sequence for Lower-Division Engineering Students

    Science.gov (United States)

    Bertozzi, N.; Hebert, C.; Rought, J.; Staniunas, C.

    2007-01-01

    Over the past decade the software products available for solid modeling, dynamic, stress, thermal, and flow analysis, and computer-aiding manufacturing (CAM) have become more powerful, affordable, and easier to use. At the same time it has become increasingly important for students to gain concurrent engineering design and systems integration…

  5. Designedly Incomplete Utterances: A Pedagogical Practice for Eliciting Knowledge Displays in Error Correction Sequences.

    Science.gov (United States)

    Koshik, Irene

    2002-01-01

    Uses a conversation analytic framework to analyze a practice used by teachers in 1-0-1, second language writing conferences when eliciting self-correction of students' written language errors. This type of turn used to elicit a knowledge display from the student is labeled designedly incomplete utterance (DIU). Teachers use DIUs made up of…

  6. Genomic relationships of Actinobacillus pleuropneumoniae serotype 2 strains evaluated by ribotyping, sequence analysis of ribosomal intergenic regions, and pulsed-field gel electrophoresis

    DEFF Research Database (Denmark)

    Fussing, V.

    1998-01-01

    The aim of the present study was to examine the genomic relationship among 112 Actinobacillus pleuropneumoniae serotype 2 strains obtained throughout Europe and North America. HindIII ribotyping of the strains resulted in five ribotypes of high similarity (87-98%). Sequence analysis of the riboso...

  7. A Ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen

    2010-01-01

    We report a photodiode for use in a reflectance pulse oximeter for use in autonomous and low-power homecare applications. The novelty of the reflectance pulse oximeter is a large ring shaped backside silicon pn photodiode. The ring-shaped photodiode gives optimal gathering of light and thereby en...... is demonstrated to work in a laboratory setup with a Ledtronics dual LED with wavelengths of 660 and 940 nm. Using this setup photoplethysmograms which clearly show the cardiovascular cycle have been recorded. The sensor is shown to work very well with low currents of less than 10 mA....... a radius of 3.68 mm and a width of 0.78 mm giving an area of 18 mm2. The capacitance of the photodiode is measured to 34.5 nF. The quantum efficiency of the photodiode is measured to 55% and 62% at 660 nm and 940 nm, respectively. It is acceptable for this prototype but can be improved. The sensor also has...

  8. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    Science.gov (United States)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  9. SU-E-J-231: Comparison of Delineation Variability of Soft Tissue Volume and Position in Head-And-Neck Between Two T1-Weighted Pulse Sequences Using An MR-Simulator with Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Wong, O; Lo, G; Yuan, J; Law, M; Ding, A; Cheng, K; Chan, K; Cheung, K; Yu, S [Hong Kong Sanatorium & Hospital, Hong Kong (Hong Kong)

    2015-06-15

    Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest. Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed

  10. A Competence-Based Approach to the Design of a Teaching Sequence about Oral and Dental Health and Hygiene: A Case Study

    Science.gov (United States)

    Blanco-López, Ángel; Franco-Mariscal, Antonio Joaquín; España-Ramos, Enrique

    2016-01-01

    We present a case study to illustrate the design and implementation of a teaching sequence about oral and dental health and hygiene. This teaching sequence was aimed at year 10 students (age 15-16) and sought to develop their scientific competences. In line with the PISA assessment framework for science and the tenets of a context-based approach…

  11. A Competence-Based Approach to the Design of a Teaching Sequence about Oral and Dental Health and Hygiene: A Case Study

    Science.gov (United States)

    Blanco-López, Ángel; Franco-Mariscal, Antonio Joaquín; España-Ramos, Enrique

    2016-01-01

    We present a case study to illustrate the design and implementation of a teaching sequence about oral and dental health and hygiene. This teaching sequence was aimed at year 10 students (age 15-16) and sought to develop their scientific competences. In line with the PISA assessment framework for science and the tenets of a context-based approach…

  12. Consecutive Bright Pulses in the Vela Pulsar

    CERN Document Server

    Palfreyman, Jim L; Dickey, John M; Young, Timothy G; Hotan, Claire E; 10.1088/2041-8205/735/1/L17

    2011-01-01

    We report on the discovery of consecutive bright radio pulses from the Vela pulsar, a new phenomenon that may lead to a greater understanding of the pulsar emission mechanism. This results from a total of 345 hr worth of observations of the Vela pulsar using the University of Tasmania's 26 m radio telescope to study the frequency and statistics of abnormally bright pulses and sub-pulses. The bright pulses show a tendency to appear consecutively. The observations found two groups of six consecutive bright pulses and many groups of two to five bright pulses in a row. The strong radio emission process that produces the six bright pulses lasts between 0.4 and 0.6 s. The numbers of bright pulses in sequence far exceed what would be expected if individual bright pulses were independent random events. Consecutive bright pulses must be generated by an emission process that is long lived relative to the rotation period of the neutron star.

  13. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Science.gov (United States)

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  14. Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface.

    Directory of Open Access Journals (Sweden)

    Chung-Ming Yu

    Full Text Available Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes.

  15. Sustainable Design of EPA's Campus in Research Triangle Park, NC—Environmental Performance Specifications in Construction Contracts—Section 01450 Sequence of Finishes Installation

    Science.gov (United States)

    Learn more about the special construction scheduling/sequencing requirements and procedures necessary to assure achievement of designed Indoor Air Quality (IAQ) levels for the completed project required by the EPA IAQ Program.

  16. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  17. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    Science.gov (United States)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  18. The high performance readout chain for the DSSC 1Megapixel detector, designed for high throughput during pulsed operation mode

    Science.gov (United States)

    Kirchgessner, M.; Soldat, J.; Kugel, A.; Donato, M.; Porro, M.; Fischer, P.

    2015-01-01

    The readout chain of the DSSC 1M pixel detector currently built at DESY, Hamburg for the European X-Ray Free Electron Laser is described. The system operates in pulsed operation mode comparable to the new ILC. Each 0.1 seconds 800 images of 1M pixels are produced and readout by the DSSC DAQ electronics. The total data production rate of the system is about 134 Gbit/s. In order to deal with the high data rates, latest technology components like the Xilinx Kintex 7 FPGA are used to implement fast DDR3-1600 image buffers, high speed serial FPGA to FPGA communication and 10 GB Ethernet links concentrated in one 40 Gbit/s QSFP+ transceiver.

  19. Synchronization Analysis and Design of Coupled Boolean Networks Based on Periodic Switching Sequences.

    Science.gov (United States)

    Zhang, Huaguang; Tian, Hui; Wang, Zhanshan; Hou, Yanfang

    2016-12-01

    A novel synchronization analysis method is developed to solve the complete synchronization problem of many Boolean networks (BNs) coupled in the leader-follower configuration. First, an error system is constructed in terms of the algebraic representation using the semitensor product of matrices. Then, the synchronization problem of coupled BNs is converted into a problem whether all the trajectories of the error system are convergent to the zero vector. Second, according to the structure analysis of this error system, which is in the form of a switched system with leader BN states as the switching signal, a necessary and sufficient synchronization condition is derived. An algorithm is developed, which helps to determine as soon as possible whether complete synchronization among coupled BNs is achieved. Finally, a constructive design approach to follower BNs is provided. All of these follower BNs designed by our approach can completely synchronize with a given leader BN from the (Tt+1) th step at most, where Tt is the transient period of the leader BN.

  20. BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments

    Science.gov (United States)

    Ehni, Sebastian; Luy, Burkhard

    2013-07-01

    Shaped pulses designed for broadband excitation, inversion and refocusing are important tools in modern NMR spectroscopy to achieve robust pulse sequences especially in heteronuclear correlation experiments. A large variety of mostly computer-optimized pulse shapes exist for different desired bandwidths, available rf-field strengths, and tolerance to B1-inhomogeneity. They are usually derived for a single spin 1/2, neglecting evolution due to J-couplings. While pulses with constant resulting phase are selfcompensated for heteronuclear coupling evolution as long as they are applied exclusively on a single nucleus, the situation changes for concurrently applied pulse shapes. Using the example of a 1H,13C two spin system, two J-compensated pulse pairs for the application in INEPT-type transfer elements were optimized: a point-to-point pulse sandwich called BEBEtr, consisting of a broadband excitation and time-reversed excitation pulse, and a combined universal rotation and point-to-point pulse pair called BUBI, which acts as a refocusing pulse on 1H and a corresponding inversion pulse on 13C. After a derivation of quality factors and optimization protocols, a theoretical and experimental comparison with conventionally derived BEBOP, BIBOP, and BURBOP-180° pulses is given. While the overall transfer efficiency of a single pulse pair is only reduced by approximately 0.1%, resulting transfer to undesired coherences is reduced by several percent. In experiments this can lead to undesired phase distortions for pairs of uncompensated pulse shapes and even differences in signal intensities of 5-10% in HSQC and up to 68% in more complex COB-HSQC experiments.