WorldWideScience

Sample records for pulse combustion

  1. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  2. Pulse combustion: an assessment of opportunities for increased efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D.L.; Bomelburg, H.J.

    1984-12-01

    The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

  3. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-02

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  4. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  5. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  6. Pulsed cavity ring-down spectroscopy in combustion environments

    NARCIS (Netherlands)

    Evertsen, Rogier

    2002-01-01

    This thesis gives an introduction to pulsed cavity ring-down absorption spectroscopy (CRDS) and its application in combustion research. Experimental results have been compared to numerical simulations, providing a means to validate reaction mechanisms and numerical approaches. Up to now, the

  7. Pulsed combustion process for black liquor gasification

    Energy Technology Data Exchange (ETDEWEB)

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  8. Application of pulse combustion technology in spray drying process

    Directory of Open Access Journals (Sweden)

    I. Zbicinski

    2000-12-01

    Full Text Available The paper presents development of valved pulse combustor designed for application in drying process and drying tests performed in a specially built installation. Laser technique was applied to investigate the flow field and structure of dispersed phase during pulse combustion spray drying process. PDA technique was used to determine initial atomization parameters as well as particle size distribution, velocity of the particles, mass concentration of liquid phase in the cross section of spray stream, etc., in the drying chamber during drying tests. Water was used to estimate the level of evaporation and 5 and 10% solutions of sodium chloride to carry out drying tests. The Computational Fluid Dynamics technique was used to perform theoretical predictions of time-dependent velocity, temperature distribution and particle trajectories in the drying chamber. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber.

  9. Feasibility of pulse combustion in micro gas turbines

    Science.gov (United States)

    Honkatukia, Juha; Saari, Esa; Knuuttila, Timo; Larjola, Jaakko; Backman, Jari

    2012-10-01

    In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas turbine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator is in the order of 25 %, but the efficiency of a very small gas turbine (2...6 kW) in the order of 4...6 % (or 8...12 % with an optimal recuperator). This is mainly a result of the efficiency decrease in kinetic compressors, due to the Reynolds number effect. Losses in decelerating flow in a flow passage are sensitive to the Reynolds number effects. In contrary to the compression, the efficiency of expansion in turbines is not so sensitive to the Reynolds number; very small turbines are made with rather good efficiency because the flow acceleration stabilizes the boundary layer. This study presents a system where the kinetic compressor of a gas turbine is replaced with a pulse combustor. The combustor is filled with a combustible gas mixture, ignited, and the generated high pressure gas is expanded in the turbine. The process is repeated frequently, thus producing a pulsating flow to the turbine; or almost a uniform flow, if several parallel combustors are used and triggered alternately in a proper way. Almost all the compression work is made by the temperature increase from the combustion. This gas turbine type is investigated theoretically and its combustor also experimentally with the conclusion that in a 2 kW power size, the pulse flow gas turbine is not as attractive as expected due to the big size and weight of parallel combustors and due to the efficiency being in the order of 8 % to 10 %. However, in special applications having a very low power demand, below 1000 W, this solution has better properties when compared to the conventional gas turbine and it could be worth of a more detailed investigation.

  10. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    Science.gov (United States)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  11. Studies of solid propellant combustion with pulsed radiography

    Science.gov (United States)

    Godai, T.; Tanemura, T.; Fujiwara, T.; Shimizu, M.

    1987-01-01

    Pulsed radiography was applied to observe solid propellant surface regression during rocket motor operation. Using a 150 KV flash X-ray system manufactured by the Field Emission Corporation and two kinds of film suppliers, images of the propellant surface of a 5 cm diameter end burning rocket motor were recorded on film. The repetition frame rate of 8 pulses per second and the pulse train length of 10 pulses are limited by the capability of the power supply and the heat build up within the X-ray tube, respectively. The experiment demonstrated the effectiveness of pulsed radiography for observing solid propellant surface regression. Measuring the position of burning surface images on film with a microdensitometer, quasi-instantaneous burning rate as a function of pressure and the variation of characteristic velocity with pressure and gas stay time were obtained. Other research items to which pulsed radiography can be applied are also suggested.

  12. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  13. Resonant Pulse Combustors: A Reliable Route to Practical Pressure Gain Combustion

    Science.gov (United States)

    Paxson, Dan

    2017-01-01

    A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC. The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.

  14. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  15. EXPERIMENTAL STUDY AND COMPUTATIONAL MODELLING OF GAS FIRED PULSE COMBUSTION

    Directory of Open Access Journals (Sweden)

    I. Smajevic

    2010-06-01

    Full Text Available The paper presents some results of computational modelling of a gas-fired pulse combustor with aerodynamic valves. The development of the model followed experimental investigations during which the combustor geometry and operating conditions were defined. A simple 'tank and tube' approach was adopted by decomposing the combustor into several elements which were modelled separately, together with the interconnecting processes. The solution was obtained by marching integration in time over several cycles. The model reproduced reasonably well the recorded time history and averaged values of all basic parameters and is expected to complement the experiments aiming to develop a pulse combustor as a device for to cleaning the outer sides of power plants’ boiler heating surfaces during operation.

  16. A nonlinear dynamical system for combustion instability in a pulse model combustor

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi

    2016-11-01

    We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.

  17. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  18. Single-pulse CARS spectra in solid propellant combustion at atmosphere pressure

    Institute of Scientific and Technical Information of China (English)

    Zhiyun Hu(胡志云); Jingru Liu(刘晶儒); Zhenrong Zhang(张振荣); Xiaowei Guan(关小伟); Meisheng Huang(黄梅生); Xisheng Ye(叶锡生)

    2003-01-01

    The unstable-resonator spatially enhanced detection (USED) coherent anti-stokes Raman spectroscopy (CARS) measurements of temperature and N2 concentration in the combustion of solid propellant at atmosphere pressure are reported. The USED CARS measurement system has a high spatial solution of ~ 0.1 mm in diameter and 3 mm in length, and permits instantaneous measurement at 10-Hz rate. The single-pulse N2 Q-branch CARS spectra have been obtained from the propellant combustion. The temperatures and N2 concentrations of the propellant flame at different height have been achieved by fitting the experimental data to theoretical spectra. The results indicate that the temperature is up to~2500 K with N2 concentration in a range from 10% to 26%.

  19. Method for Thermal Spraying of Coatings Using Resonant-Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E.

    2008-01-01

    A method has been devised for high-volume, high-velocity surface deposition of protective metallic coatings on otherwise vulnerable surfaces. Thermal spraying is used whereby the material to be deposited is heated to the melting point by passing through a flame. Rather than the usual method of deposition from the jet formed from the combustion products, this innovation uses non-steady combustion (i.e. high-frequency, periodic, confined bursts), which generates not only higher temperatures and heat transfer rates, but exceedingly high impingement velocities an order of magnitude higher than conventional thermal systems. Higher impingement rates make for better adhesion. The high heat transfer rates developed here allow the deposition material to be introduced, not as an expensive powder with high surface-area-to-volume, but in convenient rod form, which is also easier and simpler to feed into the system. The nonsteady, resonant combustion process is self-aspirating and requires no external actuation or control and no high-pressure supply of fuel or air. The innovation has been demonstrated using a commercially available resonant combustor shown in the figure. Fuel is naturally aspirated from the tank through the lower Tygon tube and into the pulsejet. Air for starting is ported through the upper Tygon tube line. Once operation commences, this air is no longer needed as additional air is naturally aspirated through the inlet. A spark plug on the device is needed for starting, but the process carries on automatically as the operational device is resonant and reignites itself with each 220-Hz pulse.

  20. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  1. Pulse combustion reactor as a fast and scalable synthetic method for preparation of Li-ion cathode materials

    Science.gov (United States)

    Križan, Gregor; Križan, Janez; Dominko, Robert; Gaberšček, Miran

    2017-09-01

    In this work a novel pulse combustion reactor method for preparation of Li-ion cathode materials is introduced. Its advantages and potential challenges are demonstrated on two widely studied cathode materials, LiFePO4/C and Li-rich NMC. By exploiting the nature of efficiency of pulse combustion we have successfully established a slightly reductive or oxidative environment necessary for synthesis. As a whole, the proposed method is fast, environmentally friendly and easy to scale. An important advantage of the proposed method is that it preferentially yields small-sized powders (in the nanometric range) at a fast production rate of 2 s. A potential disadvantage is the relatively high degree of disorder of synthesized active material which however can be removed using a post-annealing step. This additional step allows a further tuning of materials morphology as shown and commented in some detail.

  2. Application of pulsed laser photoacoustic analysis to pollutant chemistry in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stenberg, J.; Hernberg, R. [Tampere Univ. of Technology (Finland). Physics Dept.

    1994-12-31

    A technique for gas analysis based on pulsed laser induced photoacoustic spectroscopy (LIPS) in the uv and visible is presented. The analysis takes place in a test cell located at the end of a tubular probe and subject to the temperature and pressure prevailing in the combustion process. The instrument response has been calibrated for N{sub 2}O, NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and H{sub 2}S at atmospheric pressure between 20 and 910 deg C. The response of the probe was found to increase with pressure for N{sub 2}O, NO, NH{sub 3} and NO{sub 2} up to 12 bar pressure. Some tests for analyzing a homogeneous, premixed CH{sub 4}/O{sub 2}/HCN/N{sub 2} -flame photoacoustically have been performed at pressures between 1-10 bar and temperatures 800-860 deg C. In these tests the formation of NO and NH{sub 3} was detected in post- flame conditions. OH-radical was detected inside the flame. (orig.)

  3. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  4. Characteristics and energy distribution of modulated multi-pulse injection modes based diesel HCCI combustion and their effects on engine thermal efficiency and emissions

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; SU Wanhua; WANG Hui; HUANG Haozhong

    2007-01-01

    Cycle fuel energy distribution and combustion characteristics of early in-cylinder diesel homogenous charge compression ignition (HCCI) combustion organized by modulated multi-pulse injection modes are studied by the engine test.It is found that heat loss due to unburned fuel droplets and CO emission can be decreased effectively by injection mode regulation,and thermal efficiency can be potentially increased by 4%-12%.From the analyses of combustion process,it is also found that diesel HCCI combustion is a process with a finite reaction rate and is very sensitive to injection timing and injection mode.At injection timing of-90℃A ATDC,extra low NOx emissions can be obtained along with high thermal efficiency.

  5. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  6. Time-resolved temperature and O atom measurements in nanosecond pulse discharges in combustible mixtures

    Science.gov (United States)

    Lanier, Suzanne; Bowman, Sherrie; Burnette, David; Adamovich, Igor V.; Lempert, Walter R.

    2014-11-01

    The paper presents results of time-resolved rotational temperature measurements, by pure rotational coherent anti-Stokes Raman spectroscopy and absolute O atom number density measurements, by two-photon absorption laser induced fluorescence. The experiments were conducted in nanosecond pulse discharges in H2-O2-Ar and C2H4-O2-Ar mixtures, initially at room temperature, operated at a high pulse repetition rate of 40 kHz, in a plane-to-plane double dielectric barrier geometry at a pressure of 40 Torr. Intensified charge-coupled device images show that O2-Ar and H2-O2-Ar plasmas remain diffuse and volume-filling during the entire burst. Images taken in C2H4-O2-Ar plasma demonstrate significant discharge filamentation and constriction along the center plane and in the corners of the test section. The experimental results demonstrate high accuracy of pure rotational psec CARS for thermometry measurements at low partial pressures of oxygen in nonequilibrium plasmas. The results are compared with kinetic modeling calculations, using two different H2-O2 chemistry and C2H4-O2 chemistry mechanisms. In H2-O2-Ar mixtures, the kinetic modeling predictions are in fairly good agreement with the data, predicting temperature rise and O atom accumulation in long discharge bursts, up to 450 pulses. The results show that adding hydrogen to the mixture results in an additional temperature rise, due to its partial oxidation by radicals generated in the plasma, essentially without chain branching. In C2H4-O2-Ar mixtures, the model consistently underpredicts both temperature and O atom number density. The most likely reason for the difference between the experimental data and model predictions is discharge filamentation developing when ethylene is added to the O2-Ar mixture, at fairly low temperatures.

  7. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    Directory of Open Access Journals (Sweden)

    Moon Soo Bak

    2012-01-01

    Full Text Available Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  8. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  9. Characteristics of plasma induced by interaction of a free-oscillated laser pulse with a coal target in air and combustible gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiansuo; Peng, Zhimin [Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Bei-si-huan-xi-lu No.15, Beijing 100190 (China)

    2010-05-15

    Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10{sup 2-3} W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B{sup 2} sum {sup +} {yields} X{sup 2} sum {sup +} band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10{sup 6-8} W are also discussed. (author)

  10. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  11. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  12. Applied combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  13. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  14. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  15. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  16. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  17. Measuring Combustion Advance in Solid Propellants

    Science.gov (United States)

    Yang, L. C.

    1986-01-01

    Set of gauges on solid-propellant rocket motor with electrically insulating case measures advance of combustion front and local erosion rates of propellant and insulation. Data furnished by gauges aid in motor design, failure analysis, and performance prediction. Technique useful in determining propellant uniformity and electrical properties of exhaust plum. Gauges used both in flight and on ground. Foilgauge technique also useful in basic research on pulsed plasmas or combustion of solids.

  18. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  19. Comparative analysis of alternative fuels in detonation combustion

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    Detonation combustion prominently exhibits high thermodynamic efficiency which leads to better performance. As compared to the conventionally used isobaric heat addition in a Brayton cycle combustor, detonation uses a novel isochoric Humphrey cycle which utilises shocks and detonation waves to provide pressure-rise combustion. Such unsteady combustion has already been explored in wave rotor, pulse detonation engine and rotating detonation engine configurations as alternative technologies for ...

  20. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  1. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  2. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  3. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  4. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  5. Aerospace applications of pulsed plasmas

    Science.gov (United States)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  6. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  7. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  8. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  9. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  10. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  11. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  12. Design factors for stable lean premix combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.

    1995-10-01

    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  13. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  14. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  15. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  16. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  17. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  18. Pulse Combustors—Performance and Control

    Institute of Scientific and Technical Information of China (English)

    MichaelZeutzius; ToshiakiSetoguchi; 等

    2000-01-01

    Limited resources of fossil energy require the search for new energy conversion preocesses and the increase of the efficiency of power plants to ensure the energy household in the future,Basically,changing the combustion mode from steady to pulse combustion makes an enormous reduction of fuel consumption possible,Active control systems for pulse combustors installed into the inlet further improve the efficiency and extend the operating range considerably.The control algorithm including fuel rate-air rate-pressure characteristics and control strategies as well are presented.

  19. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginni

  20. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginni

  1. Lectures on combustion theory

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A. (eds.)

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  2. Fifteenth combustion research conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  3. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  4. Combustion of coffee husks

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Hartge, E.-U.; Werther, J. [Technical Univ. Hamburg-Harburg, Chemical Engineering 1, Hamburg (Germany); Ogada, T.; Siagi, Z. [Moi Univ., Dept. of Production Engineering, Eldoret (Kenya)

    2001-05-01

    Combustion mechanisms of two types of coffee husks have been studied using single particle combustion techniques as well as combustion in a pilot-scale fluidized bed facility (FBC), 150 mm in diameter and 9 m high. Through measurements of weight-loss and particle temperatures, the processes of drying, devolatilization and combustion of coffee husks were studied. Axial temperature profiles in the FBC were also measured during stationary combustion conditions to analyse the location of volatile release and combustion as a function of fuel feeding mode. Finally the problems of ash sintering were analysed. The results showed that devolatilization of coffee husks (65-72% volatile matter, raw mass) starts at a low temperature range of 170-200degC and takes place rapidly. During fuel feeding using a non water-cooled system, pyrolysis of the husks took place in the feeder tube leading to blockage and non-uniform fuel flow. Measurements of axial temperature profiles showed that during under-bed feeding, the bed and freeboard temperatures were more or less the same, whereas for over-bed feeding, freeboard temperatures were much higher, indicating significant combustion of the volatiles in the freeboard. A major problem observed during the combustion of coffee husks was ash sintering and bed agglomeration. This is due to the low melting temperature of the ash, which is attributed to the high contents of K{sub 2}O (36-38%) of the coffee husks. (Author)

  5. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Hoagland, M.C.; Hubbard, R.L.; Schaub, F.S.

    1981-12-22

    A method of combusting natural gas fuel in a two cycle, turbocharged internal combustion engine substantially reduces the production of nitrogen-oxygen emissions. An improved turbocharger design provides increased air charging pressure, produces a controlled lean air/fuel mixture and lowers peak combustion temperatures. A jet cell ignition device ensures uniform, reliable ignition of the lean air/fuel mixture under all operating conditions and the lean air/fuel mixture in turn encourages complete fuel combustion and provides excellent combustion characteristics with methane, ethane and heavier paraffinic hydrocarbon fuels. These structural modifications and adjustment of other operating parameters combine to reduce nitric oxide (NO) and nitrogen dioxide (NO/sub 2/) emissions by as much as 75% while effecting only a negligible increase in fuel consumption.

  6. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  7. Standardization of Rocket Engine Pulse Time Parameters

    Science.gov (United States)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs

  8. Combustion Enhancement with a Silent Discharge Plasma

    Science.gov (United States)

    Rosocha, Louis

    2003-10-01

    It is well known that the application of an external electric field to a flame can affect its propagation speed, stability, and combustion chemistry (Lawton & Weinberg 1969). External electrodes, arc discharges, and plasma jets have been employed to allow combustible gas mixtures to operate outside their flammability limits by gas heating, injection of free radicals, and field-promoted flame stabilization (Yagodnikov & Voronetskii 1994). Other investigators have carried out experiments with silent electrical discharges applied to propagating flames (Inomata et al 1983, Kim et al 2003). These have demonstrated that the flame propagation velocity is actually decreased (combustion retarded) when a silent discharge is applied directly to the flame region, but that the flame propagation velocity is increased (combustion promoted) when a silent discharge is applied to the unburned gas mixture upstream of a flame. Two other recent works have considered the possibility of combustion enhancement in aircraft gas turbine engine combustor mixers by using a plasma-generating fuel nozzle, that employs an electric-arc or microwave plasma generator, to produce dissociated fuel or ionized fuel (Johnson et al 2001); and pulsed corona-enhanced detonation of fuel-air mixtures in jet engines (Wang et al 2003). In contrast to these prior works, we have employed a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals or other active species in a gas stream before the fuel is mixed with an oxidizer and combusted. In experiments reported here, a cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks are observed (e.g., propane fragments decrease and water and carbon dioxide increase). This indicates that the combustion process is

  9. Apparatus and method for gas turbine active combustion control system

    Science.gov (United States)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  10. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  11. CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection

    Directory of Open Access Journals (Sweden)

    Lipeng Lu

    2011-03-01

    Full Text Available A multi-pulse injection strategy for premixed charge compression ignition (PCCI combustion was investigated in a four-valve, direct-injection diesel engine by a computational fluid dynamics (CFD simulation using KIVA-3V code coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, spray angles, and injection velocity were examined. The mixing process and formation of soot and nitrogen oxide (NOx emissions were investigated as the focus of the research. The results show that the fuel splitting proportion and the injection timing impacted the combustion and emissions significantly due to the considerable changes of the mixing process and fuel distribution in the cylinder. While the spray, inclusion angle and injection velocity at the injector exit, can be adjusted to improve mixing, combustion and emissions, appropriate injection timing and fuel splitting proportion must be jointly considered for optimum combustion performance.

  12. Improving combustion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bulsari, A.; Wemberg, A.; Multas, A. [Nonlinear Solutions Oy (Finland)

    2009-06-15

    The paper describes how nonlinear models are used to improve the efficiency of coal combustion while keeping NOx and other emissions under desired limits in the Naantali 2 boiler of Fortum Power and Heat Oy. 16 refs., 6 figs.

  13. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  14. Modelling diesel combustion

    CERN Document Server

    Lakshminarayanan, P A; Shi, Yu; Reitz, Rolf D

    2010-01-01

    The underlying principles of combustion phenomena are presented here, providing the basis for quantitative evaluation. These phenomena - ignition delay, fuel air mixing, rate of release, etc. - are then modelled for greater understanding and applicability.

  15. TENORM: Coal Combustion Residuals

    Science.gov (United States)

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  16. Scramjet Combustion Processes

    Science.gov (United States)

    2010-09-01

    plan for these flights is as follows: Scramjet Combustion Processes RTO-EN-AVT-185 11 - 21 HyShot 5 – A Free-Flying Hypersonic Glider HyShot...5 will be a hypersonic glider designed to fly at Mach 8. It will separate from its rocket booster in space and perform controlled manoeuvres as it...RTO-EN-AVT-185 11 - 1 Scramjet Combustion Processes Michael Smart and Ray Stalker Centre for Hypersonics The University of Queensland

  17. Studies on Pulse Jet Engine by Wind Tunnel Testing

    OpenAIRE

    Toshihiro Nakano; Michael Zeutzius; Hideo Miyanishi; Toshiaki Setoguchi; Kenji Kaneko

    2001-01-01

    Simple design and efficiency make pulse jet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. The results on wind tunnel experiments have been reported together with the impact of combustion mode (pulse or steady) on system performance.

  18. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  19. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  20. Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion

    Institute of Scientific and Technical Information of China (English)

    王锐; 罗雄麟; 许锋

    2014-01-01

    With CO combustion promoters, the role of combustion air flow rate for concerns of economics and control is important. The combustion air is conceptually divided to three parts:the air consumed by coke burning, the air consumed by CO combustion and the air unreacted. A mathematical model of a fluid catalytic cracking (FCC) unit, which includes a quantitative correlation of CO heterogeneous combustion and the amount of CO combustion promoters, is introduced to investigate the effects of promoters on the three parts of combustion air. The results show that the air consumed by coke burning is almost linear to combustion air flow rate, while the air consumed by CO combustion promoters tends to saturate as combustion air flow rate increases, indicating that higher air flow rate can only be used as a manipulated variable to control the oxygen content for an economic concern.

  1. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.

    1986-06-03

    A variable power internal combustion engine is described which consists of: a separate air compressor for receiving and compressing a flow of air to a given pressure, the compressor having an inlet valve introducing a flow of air into the compressor and an outlet valve for exhausting compressed air out of the compressor into a compressed air storage means, at least one expander having a cylinder, a cylinder head closing an end of the cylinder, a piston reciprocally mounted in the cylinder for movement away from the cylinder head in a power stroke from an initial position defining a combustion chamber within the cylinder between the cylinder head and the piston, the compressed air storage means receiving the pressurized flow of air from the compressor and being of a volume adequate to provide compressed air in the combustion chamber essentially at the given pressure essentially over the power output of the engine, means for introducing an amount of combustible fuel in the compressed charge to be present with compressed air in the combustion chamber and providing combustion of the amount of fuel in the cylinder with the inlet and exhaust valves closed, cam shaft means in contact with the piston for absorbing and storing the energy of the power stroke of the piston and controlling movement of the piston within the cylinder during the exhaust stroke; the means for varying the volume of the combustion chamber being controlled in accordance with power requirements to provide variable power output and improved efficiency of the engine at power outputs reduced relative to a given design power output of the engine by providing a variable expansion ratio of a minimum of at least about 30 to 1 at the given design power output and higher with reduced power output.

  2. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  3. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  4. Review on Recent Advances in Pulse Detonation Engines

    Directory of Open Access Journals (Sweden)

    K. M. Pandey

    2016-01-01

    Full Text Available Pulse detonation engines (PDEs are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapid burning of fuel-air mixture, which is a thousand times faster than deflagration mode of combustion process. PDE utilizes repetitive detonation wave to produce propulsion thrust. In the present paper, detailed review of various experimental studies and computational analysis addressing the detonation mode of combustion in pulse detonation engines are discussed. The effect of different parameters on the improvement of propulsion performance of pulse detonation engine has been presented in detail in this research paper. It is observed that the design of detonation wave flow path in detonation tube, ejectors at exit section of detonation tube, and operating parameters such as Mach numbers are mainly responsible for improving the propulsion performance of PDE. In the present review work, further scope of research in this area has also been suggested.

  5. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  6. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  7. Radiative Augmented Combustion.

    Science.gov (United States)

    1985-08-12

    86-0085 In 00I to RADIATIVE AUGMENTED COMBUSTION MOSHE LAVID M.L. ENERGIA , INC. P.O. BOX 1468 1 PRINCETON, NEW JERSEY 08542 AUGUST 1985 *.. plo...Combustion conducted at M.L. ENERGIA . It is funded by the Air Force Office of Scientific Research under Contract No. F49620-83-C-0133, with Dr. J.M...reported. It covers the second year of the contract, from July 15, 1984 through July 14, 1985. The work was performed at ENERGIA , Princeton, New Jersey

  8. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  9. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  10. Organic emissions in coal combustion in relation to coal structure and combustion temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, O.S.L.; Verhagen, E.J.H.; Moulijn, J.A.

    1985-10-01

    The pulsed combustion of coal has been studied in a small fluidized-bed reactor. The effect of combustion temperature and coal rank on the organic composition of the off-gas was investigated. Results are presented for the combustion of an anthracite, a medium-volatile bituminous coal and a high-volatile bituminous coal at 700, 800 and 900 C. The analytical techniques used include on-line FT-IR, O2 monitoring, FID and off-line GC-MS using Tenax as adsorbent. About 120 hydrocarbons were found, of which over 80% have been identified. Overall combustion characteristics such as oxygen consumption, total amount of unburned hydrocarbons and swelling properties of the coal have been related to the composition of the organic substances in the off-gas. The distribution of the polycyclic aromatics, from benzene to chrysene, and of alkylated derivatives is discussed in detail. Oxygen-containing compounds have also been analysed, although detailed discussion would be premature. 20 references.

  11. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bolshov, M.A., E-mail: bolshov@isan.troitsk.ru; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes.

  12. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  13. Experimental combustion an introduction

    CERN Document Server

    Mishra, D P

    2014-01-01

    ""… other books available in this area do not cover the detailed topics covered here. Energy and combustion is a hot issue. It is expected to be even hotter with more demand in this area as we search for cleaner methods of energy conversion from chemical to thermal energy.""-Ashwani K. Gupta, Department of Mechanical Engineering, University of Maryland, College Park, USA

  14. Coal combustion research

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  15. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  16. Combustion Models in Finance

    CERN Document Server

    Tannous, C

    2001-01-01

    Combustion reaction kinetics models are used for the description of a special class of bursty Financial Time Series. The small number of parameters they depend upon enable financial analysts to predict the time as well as the magnitude of the jump of the value of the portfolio. Several Financial Time Series are analysed within this framework and applications are given.

  17. Flameless Combustion Workshop

    Science.gov (United States)

    2005-09-20

    operating hours, to produce low emission levels of NOx, CO and UHC . Gas turbine combustion stability has increasingly become a crucial design issue as...achieved proved: "* Safe and reliable operation ofgas turbine combustors "* Low emissions of NO., CO and UHC These results have clear economically

  18. Combustion calorimetry experimental chemical thermodynamics

    CERN Document Server

    Sunner, Stig

    1979-01-01

    Combustion Calorimetry deals with expertise knowledge concerning the calorimetry of combustion reactions of an element or compound. After defining the use of units and physical constants, the book discusses the basic principles of combustion calorimetry and the various instruments and calorimeters used in the experiments to measure operations concerning temperatures and its time variations. One paper discusses the theory and design criteria of combustion calorimeter calibration. Another paper discusses the results obtained from a combustion calorimeter after it has measured the energy or entha

  19. Modelling of CWS combustion process

    Science.gov (United States)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  20. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    Science.gov (United States)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  1. Time Resolved FTIR Analysis of Combustion of Ethanol and Gasoline Combustion in AN Internal Combustion Engine

    Science.gov (United States)

    White, Allen R.; Sakai, Stephen; Devasher, Rebecca B.

    2011-06-01

    In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent spark ignition engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Step-scan equipped Fourier transform spectrometer, temporally resolved infrared spectral data were acquired and compared for combustion in the modified Mark III engine. Measurements performed with the FTIR system provide insight into the energy transfer vectors that precede combustion and also provides an in situ measurement of the progress of combustion. Measurements were performed using ethanol and gasoline.

  2. Experimental chemical thermodynamics. Volume I. Combustion calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sunner, S.; Mansson, M. (eds.)

    1979-01-01

    This book contains 18 chapters. The information included is: units and physical constants; basic principles of combustion calorimetry; calibration of combustion calorimeters; test and auxiliary substances in combustion calorimetry; strategies in the calculation of standard-state energies of combustion from the experimentally determined quantities; assignments of uncertainties; presentation of combustion calorimetric data in the primary literature; general techniques for combustion of liquid/solid organic compounds by oxygen bomb calorimetry; combustion of liquid/solid organic compounds with non-metallic hetero-atoms; combustion calorimetry of metals and simple metallic compounds; combustion calorimetry of organometallic compounds; combustion in fluorine and other halogens; bomb combustion of gaseous compounds in oxygen; oxygen flame calorimetry; fluorine flame calorimetry; combustion calorimetry as a technological service; trends in combustion calorimetry; and from the history of combustion calorimetry. (DP)

  3. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  4. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  5. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  6. Combustion Characteristics of Sprays

    Science.gov (United States)

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  7. Combustible Cartridge Case Characterization

    Science.gov (United States)

    1984-02-01

    University (NYU) has resulted in the selection of two cross-linked melamine / formaldehyde acrylic styrene resin systems that can be used in the beater additive... melamine resin Akaradit II stabilizer 20. ABSTRACT (con) Test coupons of combustible cartridge case material were fabricated using these recommended...and agitated for 30 min before the pH was slowly lowered to 3 with p-toluene sulfonic acid. In order to maintain this pH in the felting tank, it was

  8. High Gravity (g) Combustion

    Science.gov (United States)

    2006-02-01

    required thrust-to-weight ratio goals. Shorter residence times in the combustion chamber may reduce the NOx emissions, but the CO and UHC emissions then...Emissions analyzing equipment is available to detect CO, CO2, NOx, O2, and total unburned hydrocarbons ( UHC ) at the combustor exit plane. Emissions... UHC ) emissions along with the CO data, as seen in Fig. 24, shows that Configuration 1 had much higher UHC levels. The reactions from hydrocarbons to

  9. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    Science.gov (United States)

    2016-10-05

    Argon (left) and Oxygen (right) atoms from their respec- tive ground states. The proximity of the fluorescence wavelengths ensures a more precise...Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion Journal of Combustion 2012 137653 [16] Rethmel...International Journal of Flow Control 3 213-32 [17] Takashima K, Adamovich I V, Xiong Zh, Kushner M J, Starikovskaia S M, Czar- netzki U and Luggenhoelscher

  10. Liquid rocket combustion instability analysis by CFD methods

    Science.gov (United States)

    Grenda, J. M.; Venkateswaran, S.; Merkle, C. L.

    1991-01-01

    Combustion instability in liquid rocket engines is simulated computationally by using a simple two-parameter model for the combustion response function. The objectives of the study are to assess the capabilities of CFD algorithms for instability studies and to investigate the response to parametric effects such as bombs and distributed combustion. Results indicate that numerical solutions of high accuracy can be obtained if a sufficient number of grid points are used per wavelength of the disturbance. The short-term response to bombs or pulses triggers a large number of modes in the combustor whose faithful resolution requires highly dense grids, although there is evidence that correct long-term solutions can be obtained even if all the short-term frequencies are not resolved. Long-term responses to pulses are shown to decay to the most unstable mode in small amplitude cases, and to exhibit limit cycles in large amplitude cases. Comparison of distributed with concentrated heat release indicates the former is more stable for given values of the combustion response parameters, and that the distributed heat release gives rise to higher frequency disturbances. Wave steepening is observed in the solutions, but its effect is less pronounced in multidimensional waves than in one-dimensional waves.

  11. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  12. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  13. Internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-07-01

    Current worldwide production of internal combustion piston engines includes many diversified types of designs and a very broad range of sizes. Engine sizes range from a few horsepower in small mobile units to over 40,000 brake horsepower in large stationary and marine units. The key characteristics of internal combustion piston engines considered appropriate for use as prime movers in Integrated Community Energy Systems (ICES) are evaluated. The categories of engines considered include spark-ignition gas engines, compression-ignition oil (diesel) engines, and dual-fuel engines. The engines are evaluated with respect to full-load and part-load performance characteristics, reliability, environmental concerns, estimated 1976 cost data, and current and future status of development. The largest internal combustion piston engines manufactured in the United States range up to 13,540 rated brake horsepower. Future development efforts are anticipated to result in a 20 to 25% increase in brake horsepower without increase in or loss of weight, economy, reliability, or life expectancy, predicated on a simple extension of current development trends.

  14. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  15. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  16. Post combustion in converter steelmaking

    Energy Technology Data Exchange (ETDEWEB)

    Oghbasilasie, H.; Holappa, L.

    1997-12-31

    The purpose of this work is to study the fundamentals of post combustion and the effect of different process parameters on the post combustion ratio (PCR) and heat transfer efficiency (HTE) in converter steelmaking process. The PCR and HTE have been determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE. Based on enthalpy considerations, post combustion of CO gas is regarded as one of the most effective means of increasing the heat supply to the BOP. The thermodynamic study of gas-metal-slag reactions gives the limiting conditions for post combustion inside the converter reactor. Different process parameters influencing both thermodynamic equilibria and kinetic conditions can greatly affect the post combustion ratio. Different features of converter processes as well smelting reduction processes utilizing post combustion have been reviewed. (orig.) SULA 2 Research Programme; 26 refs.

  17. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  18. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3. Technical progress report, October 1990--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  19. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M

    2016-01-01

    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  20. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  1. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  2. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  3. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  4. Basic Aerodynamics of Combustion Chambers,

    Science.gov (United States)

    1981-05-20

    8217, tie imnrulse foree eyuilibr-um c’ the bomd’~ leye - is 173 pv-:irJ p~76vJbK 2sO) IL !-. = Zn pT -- a , bV T. z -,,r y.re C era 3oia * ~~I" onc art-=e...heat by combustion all have very large influences on the capabilities of a combustion chamber. A yellow- colored flame represents diffusion combustion in...the wakes of fuel droplets. Blue- colored flames represent gaseous combustion of evaporated vapors which have already left the fuel droplets. The

  5. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    Science.gov (United States)

    2012-10-01

    an endothermic process, the parameter θa in this formulation is an averaged activation energy of the key radical-producing reactions. This is a...conserved variables, W = LQ, and by definition LR = RL = I. Now that the governing equations have been linearized with the pro- cess shown in Equation...Radulescu et al. attributed the stabilizing effect of the diluent to the lower temperature in the reaction zone which leads to slower exothermic reaction

  6. Combustion Branch Website Development

    Science.gov (United States)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  7. Pulsed thermoelectricity

    Science.gov (United States)

    Apostol, M.; Nedelcu, M.

    2010-07-01

    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  8. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  9. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  10. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  11. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  12. Studies on Pulse Jet Engine by Wind Tunnel Testing

    Directory of Open Access Journals (Sweden)

    Toshihiro Nakano

    2001-01-01

    Full Text Available Simple design and efficiency make pulse jet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. The results on wind tunnel experiments have been reported together with the impact of combustion mode (pulse or steady on system performance.

  13. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  14. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  15. Fuel combustion exhibiting low NO{sub x} and CO levels

    Science.gov (United States)

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  16. Mission Success for Combustion Science

    Science.gov (United States)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  17. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  18. Initiation of ignition by the action of a high-current pulsed discharge on a gas

    NARCIS (Netherlands)

    Starikovskii, AY

    2003-01-01

    The possibility of nonthermal initiation of chemical reactions by a uniform pulsed nanosecond discharge is demonstrated. Dependences of variation of the ignition delay on initial conditions are obtained. It is shown that the main role in combustion initiation under conditions of a pulsed gas dischar

  19. The first turbulent combustion

    CERN Document Server

    Gibson, C H

    2005-01-01

    The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydr...

  20. Studies on pressure-gain combustion engines

    Science.gov (United States)

    Matsutomi, Yu

    Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient

  1. Filtration combustion: Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  2. Combustion Properties of Straw Briquettes

    Directory of Open Access Journals (Sweden)

    Zhao Qing-ling

    2013-05-01

    Full Text Available The low bulk density of straw is one of the major barriers, which blocks the collection, handling, transportation and storage. Densification of biomass into briquettes/pellets is a suitable method of increasing the bulk density of biomass. Yet in the process, a tremendous amount of air is ejected from biomass grind, which brings substantial specific variation including combustion property. Among them, combustion property is critical for proper design and operation of burning facilities. Therefore, a series of tests about combustion properties of 75mm diameter corn briquettes were done. First, the combustion process (ignition, full flaming and glowing phases., precipitation of tar were investigated by a heating stove, then, Some ash sample from the muffle burner was subjected to an ash melting characteristic test. The results show the combustion of briquettes takes more time than that of raw straw from ignition to complete combustion; in order to meet complete combustion in a short time, the raw straw needs more supply air volume than briquettes under the same α value; the temperature of furnace chamber should been controlled under 900°C, which help to reduce the dark smoke, tar and slag.

  3. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  4. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  5. Regulation possibilities of biomass combustion

    Science.gov (United States)

    Suzdalenko, Vera; Gedrovics, Martins; Zake, Maija; Barmina, Inesa

    2012-11-01

    The focus of the recent experimental research is to analyze the regulation possibilities of biomass combustion. Three possibilities were chosen as part of this research: a) biomass cofiring with propane, b) swirling flow with re-circulation zone, and c) use of a permanent magnet. The aim of the research is to provide stable, controllable and effective biomass combustion with minimum emissions. The special pilot device was created where biomass can be combusted separately and co-fired with propane. Wood pellets were used during the experiments.

  6. Combustion-gas recirculation system

    Science.gov (United States)

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  7. THE COMBUSTION ACTION VERIFICATION AND ESTIMATE OF COMBUSTION EFFICIENCY IN AVIATION GAS#TURBINE ENGINE COMBUSTION CHAMBERS

    OpenAIRE

    2011-01-01

    Verification results of combustion action simulating and estimate of calculation combustion efficiency that was given by simulating were shown. Mathematical model and its assumption are described. Execution calculations method was shown. Results of simulating are shown; their comparative analyses with results of experiment were executed. Accuracy of combustion action mathematical modeling by combustion efficiency in model with oneand two-stage reactions of combustion was estimated. The infere...

  8. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  9. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  10. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight, a

  11. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  12. Induction time effects in pulse combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  13. Combustion Process Modelling and Control

    Directory of Open Access Journals (Sweden)

    Vladimír Maduda

    2007-10-01

    Full Text Available This paper deals with realization of combustion control system on programmable logic controllers. Control system design is based on analysis of the current state of combustion control systems in technological device of raw material processing area. Control system design is composed of two subsystems. First subsystem is represented by software system for measured data processing and for data processing from simulation of the combustion mathematical model. Outputs are parameters for setting of controller algorithms. Second subsystem consists from programme modules. The programme module is presented by specific control algorithm, for example proportional regulation, programmed proportional regulation, proportional regulation with correction on the oxygen in waste gas, and so on. According to the specific combustion control requirements it is possible built-up concrete control system by programme modules. The programme modules were programmed by Automation studio that is used for development, debugging and testing software for B&R controllers.

  14. Putting combustion optimization to work

    Energy Technology Data Exchange (ETDEWEB)

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  15. Flameless Combustion for Gas Turbines

    Science.gov (United States)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  16. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  17. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  18. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  19. Rotary internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, J.

    1989-12-05

    This patent describes an internal combustion engine assembly. It includes: a central rotor means formed with at least one peripheral fuel cavity. The cavity having a first surface defining a thrust surface and a second surface defining a contoured surface; a housing means enclosing the rotor and having an internal wall encircling the rotor. The internal wall being intercepted by at least two recesses defining cylinder means. The housing means and the rotor means being relatively rotatable; piston means individual to each the cylinder means and reciprocable therein; each piton means having a working face complementary to aid contoured surface; and power means for urging the working face into intimate areal contact with the contoured surface to create a first seal means. The housing means having at lest one fuel inlet port, at least one fuel ignition means and at least one exhaust port whereby during the course of a revolution of the rotor means relative to the housing means, the first seal means, the power means, the respective ports, the ignition means and the fuel cavity cooperate to develop fuel compression, fuel ignition and exhaust functions.

  20. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Laskaris, M.A.; Broitman, K.; Natale, S.E.

    1991-08-27

    This patent describes improvement in a two-stroke internal combustion engine adapted to run on a diesel or a kerosene type of fuel, and including a piston connected to the crankshaft of the engine to move within a cylinder through a first stroke from a top dead center position to a bottom dead center position and through a second stroke from the bottom dead center position back to the top dead center position. The improvement comprises: means providing a cylinder head at the top end of the engine cylinder in the shape of an open bowl having a generally cup-shaped configuration including a sidewall portion, a spark plug positioned centrally within the bowl at the top end of the cylinder, and means for injecting fuel into the top end of the engine cylinder at a location between the spark plug and the sidewall portion, the fuel injecting means including an injection nozzle having a plurality of nozzle openings therein, the nozzle openings being constructed and arranged to discharge a plurality of plume-like sprays into the top end of the cylinder at a location within the bowl, two of the sprays being directed from the nozzle to diverge and pass along opposite sides of the spark plug, and additional sprays being directed from the nozzle against the sidewall portion or the cylinder head to be deflected therefrom back toward the piston and the spark plug to thereby form a cloud of fuel over the spark plug for good ignition.

  1. Pulsed Optics

    Science.gov (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  2. Twenty-second symposium (international) on combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The following research areas were discussed at the symposium: coal combustion: carbon burnout, pyrolysis, furnaces, laboratory-scale combustion, and fluidized bed combustion; combustion-generated particulates: soot inception, growth, and soot formation in diffusion flames; engine combustion; turbulent combustion: flames in vortices, fractals and cellular automations, nonpremixed flames, premixed flames, premixed flame structure, and lifted flames; reaction kinetics: hydrocarbon oxidation, free radical chemistry, unsaturated species, aromatics, and nitrogen compounds/pollutant formation; combustion generated NO/sub x/ and SO/sub x/; fires: flame spread, radiation, characterization, and unsteady flames; Laminar flames: structure, opposed-flow combustion, shape, propagation/extinction, and inhibition, oscillations, microgravity; ignition; detonations; dusts; propellants; diagnostics; combustion of drops, sprays, and dispersions, and slurries. Individual projects are processed separately for the data bases. (CBS)

  3. Combustion iron distribution and deposition

    Science.gov (United States)

    Luo, Chao; Mahowald, N.; Bond, T.; Chuang, P. Y.; Artaxo, P.; Siefert, R.; Chen, Y.; Schauer, J.

    2008-03-01

    Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble (Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble (Fe(II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.

  4. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  5. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    Science.gov (United States)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  6. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    Science.gov (United States)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  7. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  8. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  9. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    Science.gov (United States)

    2012-11-01

    Tasks 8 and 9: Kinetic model validation) Today’s Presentation 2. Multispecies diagnostics in a flow reactor with Mid-IR and molecular beam mass...S-Curve Competition between low T RO2 kinetics high T chain branching reactions 0.00 0.02 0.04 0.06 0.08 0.10 0.12 1x10 5 2x10 5 3x10 5 4x10...in Plasma assisted combustion • LTC in turbulent combustion at engine time scales 0-D modeling of DME /O2/He (0.03/0.1/0.896) ignition, P = 72

  10. A comprehensive fractal char combustion model☆

    Institute of Scientific and Technical Information of China (English)

    Yuting Liu; Rong He

    2016-01-01

    The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are general y slower than in the air-mode and the effect of the char-CO2 gasification reac-tion becomes obvious only when the temperature is relatively high and the O2 concentration is relatively low.

  11. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  12. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  13. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    Science.gov (United States)

    2014-08-18

    constant volume, through a detonation , or some combination. While a deflagration (flame) through constant volume combustion can provide rapid heat release...significantly disrupted, and the detonation was able to ignite and burn most of the fuel within the cavity. This led to decreased heat release in regime IV...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D

  14. Combustion synthesis method and products

    Science.gov (United States)

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  15. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  16. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  17. Autodesk Combustion 4 fundamentals courseware

    CERN Document Server

    Autodesk,

    2005-01-01

    Whether this is your first experience with Combustion software or you're upgrading to take advantage of the many new features and tools, this guide will serve as your ultimate resource to this all-in-one professional compositing application. Much more than a point-and-click manual, this guide explains the principles behind the software, serving as an overview of the package and associated techniques. Written by certified Autodesk training specialists for motion graphic designers, animators, and visual effects artists, Combustion 4 Fundamentals Courseware provides expert advice for all skill le

  18. Premixed Combustion Simulations with a Self-Consistent Plasma Model for Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran; Grout, Ray

    2016-01-08

    Combustion simulations of H2-O2 ignition are presented here, with a self-consistent plasma fluid model for ignition initiation. The plasma fluid equations for a nanosecond pulsed discharge are solved and coupled with the governing equations of combustion. The discharge operates with the propagation of cathode directed streamer, with radical species produced at streamer heads. These radical species play an important role in the ignition process. The streamer propagation speeds and radical production rates were found to be sensitive to gas temperature and fuel-oxidizer equivalence ratio. The oxygen radical production rates strongly depend on equivalence ratio and subsequently results in faster ignition of leaner mixtures.

  19. Free Energy and Internal Combustion Engine Cycles

    CERN Document Server

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  20. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  1. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  2. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  3. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  4. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  5. Combustion Chemistry Diagnostics for Cleaner Processes.

    Science.gov (United States)

    Kohse-Höinghaus, Katharina

    2016-09-12

    Climate change, environmental problems, urban pollution, and the dependence on fossil fuels demand cleaner, renewable energy strategies. However, they also ask for urgent advances in combustion science to reduce emissions. For alternative fuels and new combustion regimes, crucial information about the chemical reactions from fuel to exhaust remains lacking. Understanding such relations between combustion process, fuel, and emissions needs reliable experimental data from a wide range of conditions to provide a firm basis for predictive modeling of practical combustion processes.

  6. Simulation study on combustion of biomass

    Science.gov (United States)

    Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.

    2017-01-01

    Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.

  7. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  8. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  9. Physics and chemistry of plasma-assisted combustion.

    Science.gov (United States)

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications.

  10. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  11. 30 CFR 56.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 56.4104 Section 56.4104... Control Prohibitions/precautions/housekeeping § 56.4104 Combustible waste. (a) Waste materials, including... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall...

  12. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  13. Explosive Materials Combustion by Heated Wires

    Directory of Open Access Journals (Sweden)

    I. V. Kondakov

    1999-07-01

    Full Text Available The knowledge of ignition parameters of explosive materials (EM presents both the definite scientific interest for developing the ignition kinetics models and the practical interest from the point of view of their danger assessment. The present investigations, as opposed to the known technique for EMs ignition temperature determination, have been performed by using the model explosive material samples of high density which have been produced on the basis of HMX and TATB. Applying the technique of firing ballistic powders by a heated wire, the EM ignition temperature depending on the time (rate of heating has been investigated. The technique makes it possible to calculate heat pulses and heat flows leading to ignition. By decreasing the heat flow, the time for the EM heating up to ignition increases and temperature falls thereby approaching the critical value, characterising the danger limit under accidents associated with heating. The ignition of EM based on HMX and TATB takes place in a different manner. With the EM on the basis of HMX and with great heat flows. The ignition beginning from the surface in the form of flash is typical but when achieving the critical parameters, the heated layer flash takes place that increases the probability of the explosion realisation. EM based on TATH always ignite in the form of combustion from the surface, independent of the heat flow that points to the higher extent of its safety. These data correlate well with the higher parameters of its ignition.

  14. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology for ...

  15. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  16. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  17. Fluidized-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Kudjoi, A.; Heinolainen, A.; Hippinen, I.; Lu, Y. [Helsinki University of Technology, Espoo (Finland). Lab. of Energy Economics and Power Plant Engineering

    1998-12-31

    Hybrid combined cycle processes have been presented as possibilities for power generation in the future. In the processes based on partial gasification of coal, the solid materials removed from a gasifier (i.e. fly ash and bed char) contain unburned fuel, which is burned either in an atmospheric or a pressurised fluidised-bed. Pressurised fluidised-bed (PFB) combustion of gasification residues were studied experimentally by Helsinki University of Technology. The gasification residues, i.e. cyclone fines and bed chars, came from pilot scale PFB gasification tests of bituminous coals. The combustion efficiency was high in cyclone fines combustion. The calcium sulphide oxidised effectively to calcium sulphate in the combustion of cyclone fines. In bed char combustion the residual sulphide contents in solids after combustion were still relatively high. In general, sulphur dioxide emissions in residue combustion were low. The recarbonation of calcium oxide was observed in bed char combustion. Fuel-N conversion to NO{sub x} during bed char combustion and in most of the test runs with cyclone fines was higher than in bituminous coal combustion. In bed char combustion the conversion was significantly higher than in cyclone fines combustion. NO{sub x} emissions increased with increasing excess air for both residues, as was expected. In bed char combustion the highest NO{sub x} emissions were measured at higher pressure. Calculated mass reactivity values of equal particle size of all bed chars studied had similar trends with burnout. The biggest particles had the lowest reactivity values throughout the combustion, while reactivity for finer particles was at considerably higher level and sharply increases with burnout. In the constant combustion conditions used in the tests, no significant differences were observed in rate-controlling mechanisms for bed char fractions studied. 25 refs., 13 figs., 15 tab.

  18. Combustive management of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  19. Fuel combustion exhibiting low NO.sub.x and CO levels

    Science.gov (United States)

    Keller, Jay O.; Bramlette, T. Tazwell; Barr, Pamela K.

    1996-01-01

    Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).

  20. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  1. Secondary combustion device for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    Craver, R.D.

    1989-08-08

    This patent describes in a wood burning stove including an exhaust flue opening, a combustion chamber for primary combustion having an access door, a support for wood to be burned and a primary air inlet means for supplying air to support primary combustion of the wood to produce flue gases containing combustible particulate material, plenum means for directing the flue gases in a direction from the combustion chamber to the flue opening in a preselected path, and secondary combustion means for burning the particulate material in the flue gases before flue gases through the exhaust flue opening. The improvement comprising: the combustion chamber having a flue gas exit opening extending laterally across the top of the combustion chamber and communicating the combustion chamber with the plenum means, an elongated manifold extending laterally across and above the combustion chamber substantially coextensively with the flue gas exit opening, a number of air opening spaced longitudinally along the manifold and facing opposite the direction of the flue gases closely adjacent the flue gas exit opening, and an air inlet means for supplying ambient, secondary combustion air to the manifold for counterflow thereof from the openings into the path of the flue gases in a plurality of distinct jets.

  2. Measurement and simulation of swirling coal combustion

    Institute of Scientific and Technical Information of China (English)

    Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

    2013-01-01

    Particle image velocimetry (PIV),thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios.Eulerian-Lagrangian large-eddy simulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model,presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models,particle devolatilization and particle combustion models,are simultaneously used to simulate swirling coal combustion.Statistical LES results are validated by measurement results.Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion.Particles are shown to concentrate along the periphery of the coherent structures.Combustion flame is located in the high vorticity and high particle concentration zones.Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

  3. Combustion diagnostic for active engine feedback control

    Science.gov (United States)

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  4. Radial pulse (image)

    Science.gov (United States)

    ... heart. The arteries are the vessels with the "pulse", a rhythmic pushing of the blood in the ... a refilling of the heart chamber. To determine heart rate, one feels the beats at a pulse point ...

  5. Wrist pulse (image)

    Science.gov (United States)

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  6. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  7. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    Excellent optical access for laser- based diagnostic measurements ; (ii) Accurate experimental control of boundary conditions; (iii) Aerodynamic flame...potential to extend methods based on bimodal approximations, such as the BML [21] framework , by permitting inter- mediate fluid states, which is of...identify the impact of the major chemical pathways on combustion mode transitions. The conceptual multifluid approach of Spalding can be used to avoid

  8. Simultaneous equivalence ratio and velocity measurements for non-stationary combustion study in a stratified flow; Mesures couplees de richesse et de vitesse pour la combustion instationnaire en ecoulement stratifie

    Energy Technology Data Exchange (ETDEWEB)

    Pasquier-Guilbert, N.

    2004-12-15

    Simultaneous knowledge of local velocity and equivalence ratio is very important in numerous combustion applications and especially for direct injection engines where the flame propagates through a heterogeneous concentration distribution of fuel-air mixture. This study reproduce heterogeneities of equivalence ratio with propane and air in a constant volume combustion vessel. The local influence of velocity and equivalence ratio on the propagation of a spark-ignited flame is studied. To create a stratification, a rich axisymmetric pulsed jet is injected in a leaner chamber and the mixing is ignited. Two optical diagnostics are used simultaneously, PIV for velocity and FARLIF for equivalence ratio, with or without combustion. All properties and range of applications of PIV and FARLIF have been verified. These methods were then used to study the characteristics of stratified combustion. (author)

  9. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-21

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines.'' The EPA... Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines...

  10. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  11. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    Science.gov (United States)

    Park, Sammy Ace

    . Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.

  12. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  13. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  14. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  15. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  16. SPECIFIC EMISSIONS FROM BIOMASS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2014-02-01

    Full Text Available This paper deals with determining the specific emissions from the combustion of two kinds of biomass fuels in a small-scale boiler. The tested fuels were pellets made of wood and pellets made of rape plant straw. In order to evaluate the specific emissions, several combustion experiments were carried out using a commercial 25 kW pellet-fired boiler. The specific emissions of CO, SO2 and NOx were evaluated in relation to a unit of burned fuel, a unit of calorific value and a unit of produced heat. The specific emissions were compared with some data acquired from the reference literature, with relatively different results. The differences depend mainly on the procedure used for determining the values, and references provide no information about this. Although some of our experimental results may fit with one of the reference sources, they do not fit with the other. The reliability of the references is therefore disputable.

  17. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  18. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    Science.gov (United States)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  19. CSIR helps prevent spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vuuren, M. van (CSIR Energy Technology (South Africa))

    1992-03-01

    Heaps of stockpiled coal could present a fire hazard due to the risk of spontaneous combustion. Regular monitoring of stockpiles and bunker testing of coals help to prevent stockpile fires. This brief article describes the recent upgrading of the CSIR's bunker test facility that enables coal producers, users and exporters to test their products under simulated conditions that duplicate the actual conditions under which coal is stored. 2 photos.

  20. Radiation/Catalytic Augmented Combustion.

    Science.gov (United States)

    1980-09-01

    NATIO& NAk H(fJI At tl TANUAHTOb 19 A ~omm.81-0287 LVL RADIATION/CATALYTIC AUGMENTED COMBUST ION MOSHE LAVID CORPORATE RESEARCH-TECHNOLOGY FEASIBILITY...refinements as necessary. i. Perform cannular combustor experiments to Investigate ignition and flame attachment in flowing, liquid -fuel, unpremixed...stabilizer, with a sintered metal disk on the downstream side through which hot gases or products of partial fuel oxidation can be passed. Experimental

  1. Laser Optics/Combustion Diagnostics.

    Science.gov (United States)

    1986-07-01

    been demonstrated. CARS measurements of axial and 0.12 radial temperature profiles in a highly sooting flame compared favorably with profiles...of Number-Density Equation ’Eckbreth. A.C. and Hatt. R.., "CARS Thermomrry in a The third-order susceptibility can be rewritten to show its Sooting ... Flame ." Combustion and Homie, Vol. 36. 1979, pp. 87-98. explcitdepndece ponthenumer ensty Roh. %W.B.. "Coherent Anti-Stokcs Raman Scattering ofexpici

  2. ABB Combustion Engineering nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  3. Vortex Simulation of Turbulent Combustion

    Science.gov (United States)

    1992-11-19

    TURBULENT COMBUSTION (AFOSR Grant No. 89-0491) Principal Investigator: Ahmed F. Ghoniem Department of Mechanical Engineering Massachusetts Institute of...Heavy Industries, Nagoya, Japan.(talk and discussion). 17. 1990, Mazda Motor Co., Yokohama, Japan, (talk and discussion). 18. 1990, American Math Society...VORTICITY LAYERS UNDER NON-SYMMETRIC CONDITIONS Omar M. Kniot and Ahmed F. Ghoniem Department of Mechanical Engineering Massachusetts Institute of

  4. Nitrogen release during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  5. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Ingermann Petersen, H.; Sund Soerensen, H.; Thomsen, E.; Guvad, C.

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  6. Demonstration of Active Combustion Control

    Science.gov (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  7. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  8. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  9. A seismic field test with a Low-level Acoustic Combustion Source and Pseudo-Noise codes

    Science.gov (United States)

    Askeland, Bjørn; Ruud, Bent Ole; Hobæk, Halvor; Mjelde, Rolf

    2009-01-01

    The Low-level Acoustic Combustion Source (LACS) which can fire its pulses at a high rate, has been tested successfully as a seismic marine source on shallow ice-age sediments in Byfjorden at Bergen, Norway. Pseudo-Noise pulsed signals with spiky autocorrelation functions were used to detect the sediments. Each transmitted sequence lasted 10 s and contained 43 pulses. While correlation gave a blurry result, deconvolution between the near-field recordings and the streamer recordings gave a clear seismic section. Compared to the section acquired with single air-gun shots along the same profile, the LACS gave a more clear presentation of the sediments and basement.

  10. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    OpenAIRE

    2010-01-01

    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  11. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  12. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  13. Pulse Combustor Design, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  14. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  15. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  16. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  17. Experimental research on combustion fluorine retention using calcium-based sorbets during coal combustion (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    QI Qing-jie; LIN Zhi-yan; LIU Jian-zhong; WU Xian; ZHOU Jun-hu; CEN Ke-fa

    2008-01-01

    In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermo-dynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention.

  18. Fuel combustion test in constant volume combustion chamber with built-in adaptor

    Institute of Scientific and Technical Information of China (English)

    JEONG; DongSoo; CHO; GyuBack; CHOI; SuJin; LEE; JinSoo

    2010-01-01

    Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process.

  19. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering

  20. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  1. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  2. Basic theory research of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-ren; SUN Yan-qiu; ZHAO Qing-fu; DENG Cun-bao; DENG Han-zhong

    2008-01-01

    Discussed latest research results of basic theory research of coal spontaneous combustion in detail, with quantum chemical theory and method and experiment systematically studied chemical structure of coal molecule, adsorption mechanism of coal surface to oxygen molecule and chemical reaction mechanism and process of spontaneous combustion of organic macromolecule and low molecular weight compound in coal from microcosmic view, and established complete theoretical system of the mechanism of coal spontaneous combustion.

  3. Combustion en lit fluidisé Fluidized-Bed Combustion

    Directory of Open Access Journals (Sweden)

    Chrysostome G.

    2006-11-01

    Full Text Available Après quelques rappels généraux sur la fluidisation où seront présentés en par-ticulier les avantages qu'elle offre en combustion, on exposera l'état actuel du développement des générateurs à lit fluidisé opérant avec les combustibles suivants : charbon, combustibles pétroliers, résidus divers ; il sera fait mention de la contribution de l'Institut Français du Pétrole (IFP dans les deux derniers domaines.On présentera ensuite les installations les plus récentes en traitement de minerais (grillage des sulfures, calcination de calcaires. En raison de son importance on examinera encore les possibilités de désulfuration au sein de lits fluidisés, de même que seront commentés les travaux de régénération des absorbants.On terminera enfin en mentionnant les développements des lits circulants ou rapides, considérés comme les réacteurs de la seconde génération. After a general review of fluidization including in particular the advantages it offers for combustion, this article describes the present state of the development of fluidized-bed gcnerators operating with the following fuels : cool, petroleum fuels, different residues. Mention is made of Institut Français du Pétrole (IFP contribution in the last two fields. Then the most recent ore-treating installations are described (roasting of sulfides, calcination of limestones. Because of its importance, the possibilities of desulfurizoticn inside fluidized beds is examined, and research on the regeneration of absorbants is commented on. The article ends by mentioning the development of circulating or fast beds which are considered as second generation reactors.

  4. Combustion of Solid Propellants (La Combustion des Propergols Solides)

    Science.gov (United States)

    1991-07-01

    on peut s’interroger sur l’adquation des moyens engages ausceptiblea do se manifester naturellement au cours du A Ia complexit6 du probl~me... capteur d’Helmoltz; de pression lorsque Ia fr~quence vanet. Calcul num~rique et mithode expdrimentale donnent des irdsultats en bon accord, c’cst-i... naturellement , avec des niveaux stabilis~s moddr~s. mod~le de combustion (r~f. 30) et des limites de L’opinion est r~pandue que la segmentation peut l’approche

  5. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    OpenAIRE

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion chamber. It destroys the thermal boundary layer wall increasing heat transfer and could lead to compromised performance, and ultimately to destruction of the engine and mission loss. The main object...

  6. Fuel gas combustion research at METC

    Energy Technology Data Exchange (ETDEWEB)

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  7. Secondary combustion device for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    Craver, R.D.

    1987-06-16

    This patent describes a wood burning stove including an exhaust flue opening, a combustion chamber for primary combustion having an access door, a support for wood to be burnt and a primary air inlet means for supplying air to support primary combustion of the wood to produce flue gases containing combustible particulate material. A conduit means for directing the flue gases is included from the combustion chamber to the flue opening in a preselected path. Also included is a secondary combustion means for burning particulate material in flue gases before flue gases pass through the exhaust flue opening. The improvement comprises: secondary combustion means including an elongated manifold extending laterally across and above the combustion chamber at a preselected position on the preselected path; a number of air openings spaced longitudinally along the manifold and facing the path of the flue gases and an air inlet means for supplying ambient; secondary combustion air to the manifold for flow from openings into the path of the flue gases in distinct jets; and a laterally elongated passageway above the manifold with upper and lower portions and defined at its upper portion by a sheet metal wall, and a layer of extremely low heat conducting insulation in the passageway. On the sheet metal wall the layer of insulation prevents appreciable conduction of heat from the passageway into the sheet metal wall and flue gases flow through the passageway and from passageway in a generally wide thin flow pattern.

  8. Determining Heats of Combustion of Gaseous Hydrocarbons

    Science.gov (United States)

    Singh, Jag J.; Sprinkle, Danny R.; Puster, Richard L.

    1987-01-01

    Enrichment-oxygen flow rate-ratio related to heat of combustion. Technique developed for determining heats of combustion of natural-gas samples. Based on measuring ratio m/n, where m is (volmetric) flow rate of oxygen required to enrich carrier air in which test gas flowing at rate n is burned, such that mole fraction of oxygen in combustion-product gases equals that in carrier air. The m/n ratio directly related to heats of combustion of saturated hydrocarbons present in natural gas.

  9. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  10. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  11. Combustion char morphology related to combustion temperature and coal petrography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Petersen, H.I.; Thomsen, E. [Geological Survey of Denmark, Copenhagen (Denmark)

    1996-07-01

    Chars produced from different reactors were found to lack consistency of morphological charactersitics. Therefore, the morphology of chars sampled from various laboratory-scale reactors operating at temperatures from 800 to {gt} 1400{degree}C, together with chars collected directly in the flame zone in a full-scale pulverised fuel combustion experiment, was examined. A coal and coal blend dominated by vitrinite-rich microlithotypes together with four coals dominated by inertinite-rich microlithotypes were used to produce the combustion chars. Char samples produced at temperatures above {approximately} 1300{degree}C have a morphotype composition very similar to the composition of the full-scale char samples, whereas the morphotype compositions of those produced at {approximately} 1550{degree}C or lower are significantly different. Correlation between coal petrography and char morphology and determination of char reactivity should thus be attempted only using chars produced at temperatures comparable with those for the intended use of the coal. A clear distinction between the high-temperature char samples (burnout 50-60wt% daf) emerges which is related mainly to the parent coal petrography and probably secondarily to the rank. Vitrite, clarite and vitrinertie V may be correlated with the porous tenuisphere and crassisphere morphotypes, whereas inertite, durite, vitrinertite I, duroclarite and charodurite may be correlated with the crassinetwork-mixed-network-mixed morphotype group. 29 refs., 7 figs., 7 tabs.

  12. PulseSoar

    Energy Technology Data Exchange (ETDEWEB)

    Carter, P.; Peglow, S.

    1992-07-21

    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  13. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  14. COMBUSTION PROPERTIES OF EUCALYPTUS WOOD

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  15. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of

  16. Particle emissions from biomass combustion

    Science.gov (United States)

    Chabadová, Jana; Papučík, Štefan; Nosek, Radovan

    2014-08-01

    The paper presents an analysis of the impact of fuel feed to power and emissions parameters of the automatic domestic boiler for combustion of wood pellets. For the analysis has been proposed an experimental methodology of boiler measuring. The investigated boiler is designed for operation in domestic heating system. It has heat power equal to 18 kW. Concentrations of flue gas species were registered at the exit the boiler and based on the measured parameters was carried out evaluation of the impact of the fuel feed to heat power and production of emissions.

  17. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  18. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  19. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  20. Three-dimensional Numerical Simulation of Combustion Field in the Combustion Chamber

    Institute of Scientific and Technical Information of China (English)

    YAN Ping; QIAN Zhi-bo; YANG Jie; ZHANG Jin-jun

    2006-01-01

    In order to study the effect of rotation on the combustion in the underwater vehicle, a two-phase turbulent combustion process is described with Reynolds stress turbulence model, eddy-dissipation turbulent combustion model, P-1 radiation model and particle tracking model of liquid. The flow in the rotating combustion chamber is simulated at two different working speeds, 0 r/min and 1 000 r/min by Fluent software. The temperature, gas velocity, static pressure of wall and fuel concentration are computed and compared. The results show that the combustion in rotating combustor is faster and more effective.

  1. Measuring ultrashort pulses using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Trebino, R. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The purpose of this program is the development of techniques for the measurement of ultrafast events important in gas-phase combustion chemistry. Specifically, goals of this program include the development of fundamental concepts and spectroscopic techniques that will augment the information currently available with ultrafast laser techniques. Of equal importance is the development of technology for ultrafast spectroscopy. For example, methods for the production and measurement of ultrashort pulses at wavelengths important for these studies is an important goal. Because the specific vibrational motion excited in a molecule depends sensitively on the intensity, I(t), and the phase, {psi}(t), of the ultrashort pulse used to excite the motion, it is critical to measure both of these quantities for an individual pulse. Unfortunately, this has remained an unsolved problem for many years. Fortunately, this year, the authors present a technique that achieves this goal.

  2. Bounds for the propagation speed of combustion flames

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Joaquim [Departament de FIsica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain); Campos, Daniel [Grup de FIsica EstadIstica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Gonzalez, Josep R [Grup de Mecanica de Fluids, Departament d' Enginyeria Mecanica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain); Velayos, Joaquim [Grup de Mecanica de Fluids, Departament d' Enginyeria Mecanica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-23

    We focus on a combustion model for premixed flames based on two coupled equations determining the spatial dynamics of temperature and fuel density. We rewrite these equations as a classical reaction-diffusion model, so that we can apply some known methods for the prediction of lower and upper bounds to the front speed. The predictions are compared to simulations, which show that our new bounds substantially improve those following from the linearization method, used in the previous work of Fort et al (2000 J. Phys. A: Math. Gen. 33 6953). Radiative losses lead to pulses rather than fronts. We find a bound for their speed which (in contrast to the linearization one) correctly predicts the order of magnitude of the flame speed.

  3. Hydrogen Internal Combustion Stirling Engine

    Science.gov (United States)

    Takahashi, Sanyo; Morita, Hiroyuki; Kurata, Osamu; Yamashita, Iwao

    The hydrogen combustion Stirling engine utilizes internal combustion of a stoichiometric H2 and O2 mixture injected into the working gas as thermal input, and the cyclic operation is completed with the removal of water from the engine after condensation at the cooler. In the prototype engine, a catalytic combustor is substituted for the conventional heater, and the H2-O2 mixture is injected at a constant flow rate from the boundary between the regenerator and the cooler. The engine internal heating characteristics were compared to those on external heating to clarify the internal heating effect on the engine performance. The internal heating performance showed almost the same characteristics as those of external heating, except for the increase of expansion work due to the direct thermal input. The increase of expansion work improved the engine performance, particularly in the region of high engine speed. Furthermore, it was found that the steady injection method was able to suppress the mixture strength to a relatively low level.

  4. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    Science.gov (United States)

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  5. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    OpenAIRE

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  6. 30 CFR 57.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 57.4104 Section 57.4104... Control Prohibitions/precautions/housekeeping § 57.4104 Combustible waste. (a) Waste materials, including liquids, shall not accumulate in quantities that could create a fire hazard. (b) Waste or rags containing...

  7. Combustion Limits and Efficiency of Turbojet Engines

    Science.gov (United States)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  8. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  9. A method of determining combustion gas flow

    Science.gov (United States)

    Bon Tempi, P. J.

    1968-01-01

    Zirconium oxide coating enables the determination of hot gas flow patterns on liquid rocket injector face and baffle surfaces to indicate modifications that will increase performance and improve combustion stability. The coating withstands combustion temperatures and due to the coarse surface and coloring of the coating, shows the hot gas patterns.

  10. Oxy Coal Combustion at the US EPA

    Science.gov (United States)

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  11. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  12. Acousto-elastic interaction in combustion chambers

    OpenAIRE

    Huls, Rob Alexander

    2006-01-01

    This thesis deals with the interaction between combustion, acoustics and vibrations with emphasis on frequencies below 500 Hz. Extensive literature is available on the interaction between combustion and acoustics and much work is also available on the interaction between acoustics and vibration. The work presented in this thesis attempts to combine these fields in order to calculate the vibrations of the liner.

  13. Experimental Study of Twin Pulse Jet Engines for Power Plant Application

    Institute of Scientific and Technical Information of China (English)

    Toshihiro Nakano; Shigeru Matsuo; Toshiaki Setoguchi; Shen Yu

    2003-01-01

    The total efficiency of power plants depends on the energy conversion in a combustor and a turbine. Considerably higher energy transfer rates can be obtained from a pulsed combustion, but unsteady flow of a single jet combustor reduces the turbine efficiency.Therefore, two pulse combustors were set in parallel and connected to a settling chamber that supplies a flow with constant pressure to the turbine.The aim of investigations presented here is a demonstration of technical feasibility for industrial applications and to show the benefits obtained from the pulse combustors.

  14. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  15. Combustion characteristics of bamboo-biochars.

    Science.gov (United States)

    Liu, Zhijia; Fei, Benhua; Jiang, Zehui; Liu, Xing'e

    2014-09-01

    Combustion characteristics of biomass are very important to directly utilize as an energy resource. Bamboo was carbonized using a XD-1200N muffle furnace in the nitrogen environment and its combustion characteristics were investigated. Results showed that bamboo-biochars had better combustion characteristics compared to bamboo materials, such as a lower content of moisture and volatiles, a higher energy density, HHV and EHC, a lower H/C and O/C ratios and a shorter TTI. Characteristic peak of bamboo-biochars shifted to higher temperature in thermal decomposition process, indicating a more steady-state burning and a higher combustion efficiency. Bamboo-biochars had a low content of S and N, which was helpful to decrease pollutant emissions. A higher content of K and Na was observed in the ash of bamboo-biochars, resulting in slagging, fouling, corrosion and agglomeration. The data from this research will be very helpful to efficiently design and operate its combustion systems.

  16. Combustion synthesis of advanced composite materials

    Science.gov (United States)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  17. Some characteristics of fine beryllium particle combustion

    Science.gov (United States)

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.

    2007-08-01

    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  18. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  19. PULSE AMPLITUDE DISTRIBUTION RECORDER

    Science.gov (United States)

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  20. Combustion Engines Development Mixture Formation, Combustion, Emissions and Simulation

    CERN Document Server

    Schwarz, Christian; Teichmann, Rüdiger

    2012-01-01

    In the development of engines and vehicles it is nowadays standard practice to use commercially available computing programmes for simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the combustion chamber of an engine. Normally the source code is not available for these computing programmes and it takes too much time to study the respective specifications, so the users often do not have sufficient knowledge about the physical and chemical contents of the approaches that the programmes are based on. We have often been faced with this fact in talks to employees or in discussions during the presentation of results of simulation. Therefore it is our aim to point out different physical and chemical approaches and to show the possibilities and limits of the models used.

  1. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  2. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  3. Indirect combustion noise of auxiliary power units

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  4. Filtration Combustion in Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    2001-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  5. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  6. Assembly for directing combustion gas

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Richard C.; Little, David A.; Snyder, Gary D.

    2016-04-12

    An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row of blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.

  7. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  8. Computational Fluid Dynamics in Combustion

    Directory of Open Access Journals (Sweden)

    P. J. Paul

    2010-10-01

    Full Text Available Computational fluid dynamics has reached a stage where flow field in practical situation can be predicted to aid the design and to probe into the fundamental flow physics to understand and resolve the issues in fundamental fluid mechanics. The study examines the computation of reacting flows. After exploring the conservation equations for species and energy, the methods of closing the reaction rate terms in turbulent flow have been examined briefly. Two cases of computation, where combustion-flow interaction plays important role, have been discussed to illustrate the computational aspects and the physical insight that can be gained by the reacting flow computation.Defence Science Journal, 2010, 60(6, pp.577-582, DOI:http://dx.doi.org/10.14429/dsj.60.600

  9. Combustion chemistry of solid propellants

    Science.gov (United States)

    Baer, A. D.; Ryan, N. W.

    1974-01-01

    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process.

  10. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  11. Extended lattice Boltzmann scheme for droplet combustion

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n -butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  12. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  13. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  14. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    Science.gov (United States)

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  15. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  16. Efficient Pulsed Quadrupole

    CERN Document Server

    Petzenhauser, I.; Spiller, P.; Tenholt, C.

    2016-01-01

    In order to raise the focusing gradient in case of bunched beam lines, a pulsed quadrupole was designed. The transfer channels between synchrotrons as well as the final focusing for the target line are possible applications. The quadrupole is running in a pulsed mode, which means an immense saving of energy by avoiding standby operation. Still the high gradients demand high currents. Hence a circuit had to be developed which is able to recover a significant amount of the pulsing energy for following shots. The basic design of the electrical circuit of the quadrupole is introduced. Furthermore more energy efficient circuits are presented and the limits of adaptability are considered.

  17. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  18. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo;

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  19. Cleaner combustion developing detailed chemical kinetic models

    CERN Document Server

    Battin-Leclerc, Frédérique; Blurock, Edward

    2013-01-01

    This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the  formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of min

  20. Annual Report: Advanced Combustion (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey [NETL; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  1. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  2. Kinetic investigation for slow combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering

    2006-07-01

    The renewed interest in biomass as a renewable, clean, and inexpensive fuel was discussed. Many different mechanisms take place simultaneously during biomass combustion and also during other thermal processes such as gasification, pyrolysis or carbonization. These mechanisms have a pronounced influence on the design and operation of thermal conversion processes. In addition, product yields and product distributions from the thermal processes are sensitive to the kinetic properties of biomass. In order to evaluate the combustion mechanisms and the combustion kinetics of biomass, the behavior of these constituents under combustion conditions were properly evaluated. In this study, combustion of biomass samples was carried out in a thermogravimetric analyzer by heating them from ambient to 1173 K with heating rates of 5 K/min and 10 K/min under dynamic dry air atmosphere of 40 mL/min. The biomass samples included olive refuse, sunflower seed shell, rapeseed, grape seed, and hybrid poplar. The purpose of the study was to examine the kinetic properties of biomass during slow combustion for the overall combustion process as well as for some definite temperature intervals at which different combustion mechanisms are present according to the type and complexity of biomass used. Derivative thermogravimetric analysis (DTG) curves were derived, and data obtained from these curves were used to compute the kinetic parameters such as activation energy, pre-exponential factor, and governing mechanisms for the combustion processes. The governing mechanisms for individual temperature intervals were examined along with the overall combustion process. The study showed that at lower temperature intervals, the combustion process was controlled primarily by the chemical reaction. At least 3 sequential mechanisms may occur at different temperature intervals during combustion of biomass. Activation energy and pre-exponential factors were determined for each temperature interval

  3. Relationship Between Coal Powder and Its Combustibility

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Coal's volatile component,ash and fixed carbon content have different functions in different stages of a combustion process, but the traditional coal classification can precisely show its combustion property.In this experiment coal's evaluation indexes (ignition index Di),(burn off index Df) were used to qualitatively show the ignition property and combustion ending property of coal samples.Meanwhile,considering actual heating circumstances in calciner (in cement plants),this thesis established the relationship among the ignition index,burn off index and coal's industrial analysis value, which makes it possible for the user to predict the quality of coal before using it and is very valuable in practice.

  4. The John Zink Hamworthy combustion handbook

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Issues regarding the environment, cost, and fuel consumption add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 3 - Applications offers comprehensive, up-to-date coverage of equipment used in the process and power generation industries. Under the leadership of Charles E. Baukal

  5. Modeling of time-resolved laser-induced incandescence transients for particle sizing in high-pressure spray combustion environments : a comparative study

    NARCIS (Netherlands)

    Dreier, T.; Bougie, B.; Dam, N.J.; Gerber, T.

    2006-01-01

    In this study experimental single-pulse, time-resolved laser-induced incandescence (TIRE-LII) signal intensity profiles acquired during transient Diesel combustion events at high pressure were processed. Experiments were performed between 0.6 and 7 MPa using a high-temperature high-pressure constant

  6. Key factors of combustion from kinetics to gas dynamics

    CERN Document Server

    Rubtsov, Nikolai M

    2017-01-01

    This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.

  7. Coal Combustion Science quarterly progress report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  8. Theoretical Analysis and Derivation of Combustion Wave Parameters

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun

    2006-01-01

    Theoretical relations of pressure, density, velocity, temperature and Mach number of combustion waves are built. The parameters' curves with different combustion energy are illustrated in which four zones are pointed out to represent different combustion states. The expressions and curves of parameters are important to analyze the trends of combustion waves, and to determine conditions on which detonation waves or deflagration waves occur.

  9. A numerical study of turbulent combustion characteristics in a combustion chamber of a scramjet engine

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    3D numerical simulation of flow fields in a combustion chamber of a scramjet engine using an SST turbulence model with an explicit compressibility correction was performed and the results were compared to the experimental results.The characteristics of the turbulent combustion flow fields were analyzed via the numerical results and presented.In order to identify the mechanisms of turbulent combustion in supersonic flows,the evolutions of governing dimensionless parameters in the flow fields were investigated based on the theory of combustion and the available numerical results.It was found that the supersonic combustion takes place in the region of fully developed turbulence and that the strongest effects of turbulence and combustion processes appear in the vicinity of the injector.The unsteady effects and the local flame extinction phenomenon induced by turbulent flows were found to be negligibly small,and the steady flamelet approximation will hold for practical applications.

  10. Laser diagnosis and plasma technology: Fundamentals for reduction of emissions and fuel consumption in DI internal combustion engines. Sub-project: Purification of diesel exhaust in pulsed plasma. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Teilvorhaben: Reinigung von Dieselabgasen in gepulsten Plasmen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, T.; Kishimoto, T.; Birckigt, R.

    2000-12-01

    Selective catalytic reduction using ammonia based reducing agents is known to reduce the NOx-emissions from Diesel cars. However, it does not work efficiently under cold starting and urban driving conditions, because efficient reduction requires catalyst temperatures above 170 C. Without additional measures, pulsed plasma treatment does not cause reduction but mainly oxidation of nitric oxides preferably emitted as NO. By the combination of pulsed DBD-plasma treatment with selective catalytic reduction efficient NOx-reduction was obtained at catalyst temperatures below 170 C. It could be shown, that this low temperature reduction is a synergistic effect caused by plasma induced oxidation of some fraction of the NO. Based on this knowledge of the reaction mechanism plasma- and SCR-reactors were built, which were tested on a test bench equipped with a modern cars Diesel engine. Under cold starting and urban driving conditions by application of average plasma powers below 300 W the NOx-emissions were reduced for about 60%, the maximum degree of NOx-reduction was 85%. The plasma induced removal of hydrocarbons and particles, as well as the formation of by-products and the influence of hydrocarbons on the plasma induced selective catalytic reduction processes were investigated. No disadvantageous by-products could be found. (orig.) [German] Die selektive katalytische Reduktion mit Ammoniak als Reduktionsmittel ist ein bekanntes Verfahren zur Reduktion der Stickoxidemissionen von Diesel-Pkw, arbeitet aber erst ab Katalysatortemperaturen oberhalb 170 C und ist damit unter Kaltstart- und Stadtverkehrsbedingungen wenig wirksam. Gepulste Plasmen bewirken ohne zusaetzliche Massnahmen keine ausreichende chemische Reduktion sondern ueberwiegend Oxidation der als NO emittierten Stickoxide. Durch Kombination von DBE-Plasmen mit der selektiven katalytischen Reduktion hingegen konnte auch bei Katalysatortemperaturen unter 170 C wirkungsvolle NOx-Reduktion erzielt werden. Es konnte

  11. Pulse measurement apparatus and method

    Science.gov (United States)

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  12. Combustion instability detection using the wavelet detail of pressure fluctuations

    Institute of Scientific and Technical Information of China (English)

    Junjie JI; Yonghao LUO

    2008-01-01

    A combustion instability detection method that uses the wavelet detail of combustion pressure fluctuations is put forward. To confirm this method, combustion pressure fluctuations in a stoker boiler are recorded at stable and unstable combustion with a pressure transducer. Daubechies one-order wavelet is chosen to obtain the wavelet details for comparison. It shows that the wavelet approximation indicates the general pressure change in the furnace, and the wavelet detail magnitude is consistent with the intensity of turbulence and combustion noise. The magnitude of the wavelet detail is nearly constant when the combustion is stable, however, it will fluctuate much when the combustion is unstable.

  13. Survey of Greener Ignition and Combustion Systems for Internal Combustion Engines

    OpenAIRE

    Luo, Wuqiao; Li, Yun; Tian, Zhong; Gao, Bo; Tong, Ling; Wang, Houjun; Zeng, Baoqing

    2015-01-01

    The spark and compression ignition principles of, petrol and diesel internal combustion engines (ICEs) have, not advanced for a century. These do not lead to complete, combustion and hence result in high exhaust emission and, low energy efficiency. This paper presents a comprehensive survey on the attempts and developments of greener ignition, and combustion systems for ICEs and points out that, homogeneous charge microwave ignition (HCMI) holds the, key to a perfect solution. Increasing the ...

  14. Pulse subtraction Doppler

    Science.gov (United States)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  15. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  16. Four pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2016-11-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called four pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ°(π/2) 180 ° + ϕ°(3π/2) 180 ° where ϕ = π/n (ϕ° = 180°/n) , and n is number of blocks in a two rotor period. The heteronuclear recoupling pulse sequence consists of a building block (π/2) 0 °(3π/2) ϕ1 °(π/2) 180 ° +ϕ1 °(3π/2) 180 ° and (π/2) 0 °(3π/2) ϕ2 °(π/2) 180 ° +ϕ2 °(3π/2) 180 ° on channel I and S, where ϕ1 = 3π/2n, ϕ2 = π2/n and n is number of blocks in a two rotor period. The recoupling pulse sequences mix the y magnetization. We show that four pulse recoupling is more broadband compared to three pulse recoupling [1]. Experimental quantification of this method is shown for 13Cα-13CO, homonuclear recoupling in a sample of Glycine and 15N-13Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF).

  17. Progress on the Combustion Integrated Rack Component of the Fluids and Combustion Facility

    Science.gov (United States)

    Weiland, Karen J.; Urban, Dave (Technical Monitor)

    1999-01-01

    The Fluids and Combustion Facility (FCF) is a facility-class payload planned for the International Space Station. It is designed to accommodate a wide variety of investigations encompassing most of the range of microgravity fluid physics and combustion science. The Combustion Integrated Rack component of the FCF is currently scheduled to be launched in 2003 and will operate independently until additional racks of the FCF are launched. The FCF is intended to complete between five and fifteen combustion experiments per year over its planned ten-year lifetime. Combustion arm that may be studied include laminar flames, reaction kinetics, droplet and spray combustion, flame spread, fire and fire suppressants, condensed phase organic fuel combustion, turbulent combustion, soot and polycyclic aromatic hydrocarbons, and flame-synthesized materials. Three different chamber inserts, one each for investigations of droplet, solid fuel, and gaseous fuel combustion, that can accommodate multiple experiments will be used initially so as to maximize the reuse of hardware. The current flight and flight-definition investigations are briefly described.

  18. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc... concerning the securities of Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

  19. Engine combustion control via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  20. Plume Diagnostics for Combustion Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Engineering Inc. and Purdue University propose to develop a non-intrusive plume instrument capable of detecting and diagnosing combustion instability. This...

  1. Claus recycle with double combustion process

    Energy Technology Data Exchange (ETDEWEB)

    El-Bishtawi, Ribhi; Haimour, No' man [University of Jordan, Amman 11942 (Jordan)

    2004-12-15

    A new modification is developed on conventional Claus process to increase the overall sulfur recovery as well as to decrease the costs. The modification combines both oxygen enrichment and recycling. The process is simulated and studied for various N{sub 2}/O{sub 2} ratios with and without using SURE double combustion technique. The predictions show that using pure oxygen in combustion, condensing water vapor in a condenser following the first sulfur condenser and recycling the effluent gas to combine it with fresh acid gas feed leads to large savings in the production cost and to a clean environment. However, it leads to a high adiabatic flame temperature which exceeds the maximum allowable temperature of the furnace material of construction as well as its refractory. To avoid these effects, it is necessary to use SURE double combustion technique. The oxygen flow rate to the first combustion stage should not exceed 78% O{sub 2}.

  2. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy-fuel...

  3. Plume Diagnostics for Combustion Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Engineering and Purdue University propose to leverage combustion stability testing, already funded and planned for the second and third quarters of next year...

  4. Trends in modeling of porous media combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mujeebu, M. Abdul; Abdullah, M. Zulkifly [Porous Media Combustion Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Mohamad, A.A. [College of Engineering, Alfaisal University, Riyadh 11533, P.O. Box 50927 (Saudi Arabia); Bakar, M.Z. Abu [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2010-12-15

    Porous media combustion (PMC) has interesting advantages compared with free flame combustion due to higher burning rates, increased power dynamic range, extension of the lean flammability limits, and low emissions of pollutants. Extensive experimental and numerical works were carried out and are still underway, to explore the feasibility of this interesting technology for practical applications. For this purpose, numerical modeling plays a crucial role in the design and development of promising PMC systems. This article provides an exhaustive review of the fundamental aspects and emerging trends in numerical modeling of gas combustion in porous media. The modeling works published to date are reviewed, classified according to their objectives and presented with general conclusions. Numerical modeling of liquid fuel combustion in porous media is excluded. (author)

  5. Combustion of Coal/Oil/Water Slurries

    Science.gov (United States)

    Kushida, R. O.

    1982-01-01

    Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.

  6. Engine combustion control via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  7. Energy-Efficient Glass Melting: Submerged Combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-01-01

    Oxy-gas-fired submerged combustion melter offers simpler, improved performance. For the last 100 years, the domestic glass industry has used the same basic equipment for melting glass on an industrial scale.

  8. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  9. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  10. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  11. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  12. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  13. A highly combustible composite solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonetaka, K.; Iketani, Y.; Nisino, A.; Takeuti, Y.

    1983-07-12

    To increase the combustibility, the briqueted solid fuel is coated with an auxiliary fuel which is characterized by high flamability. The composition ofthe basic fuel includes a solid fuel with a high combustion temperature and seeming density (mineral coal, activated charcoal, coke, graphite and a carbonized product), a desulfurizing agent (CaCO3 or MgO), a combustion promotor (Ca(CO3)2, KNO3, sodium acetate, iron oxalate) and forming additives (bentonite, clay or talc) or a binder (pitch, tar, methylcellulose or cement). The auxiliary fuel has the very same composition, but is characterized by a low ignition temperature and density (for instance, due to the addition of sawdust). The obtained two layer composite fuel is characterized by improved ignitibility and combustibility.

  14. Fine particle emissions from residential wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tissari, J.

    2008-07-01

    Residential wood combustion (RWC) appliances have the high probability of incomplete combustion, producing e.g. fine particles and hazardous organic compounds. In this thesis, the fine particle number and mass emissions, particle composition and morphology, and gas emissions were investigated from the modern (MMH) and conventional masonry heaters (CMH), sauna stoves (SS) and pellet burner. The investigation was based on laboratory and field experiments applying extensive and unique particle sampling methods. The appliance type, fuel and operational practices were found to affect clearly the fine particle emissions. In good combustion conditions (e.g. in pellet combustion), the fine particle mass (PM{sub 1}) emission factors were low, typically below 0.3 g kg-1, and over 90% of the PM{sub 1} consisted of inorganic compounds (i.e fine ash). From the CMH the typical PM{sub 1} values were 1.6-1.8 g kg-1, and from the SS 2.7-5.0 g kg-1, but were strongly dependent on operational practices. The smouldering combustion in CMH increased PM{sub 1} emission up to 10 g kg-1. The good secondary combustion in the MMH reduced the particle organic matter (POM) and gaseous emissions, but not substantially the elemental carbon (EC, i.e. soot) emission, and the typical PM{sub 1} values were 0.7-0.8 g kg-1. The particle number emissions were high, and did not correspond with the completition of combustion. The particle number distributions were mainly dominated by ultrafine (<100 nm) particles, but varied dependent on combustion conditions. The electronmicroscopy analyses showed that ultrafine particles were composed mainly of K, S and Zn. From the smouldering combustion, particles were composed mainly of carbon compounds and they had a closed sinteredlike structure, due to organic matter on the particles. Controlling the gasification rate via the primary air supply, log and batch size, as well as fuel moisture content, is important for the reduction of emissions in batch combustion

  15. Applicability of heat transfer equations to hydrogen combustion

    OpenAIRE

    Shudo, Toshio; Suzuki, Hiroyuki

    2002-01-01

    Previous research by the authors showed that hydrogen combustion exhibits a higher cooling loss to the combustion chamber wall of an internal combustion engine compared to hydrocarbon combustion because of its higher burning velocity and shorter quenching distance. The high cooling loss means that reduction of the cooling loss is essential to establish a high thermal efficiency in hydrogen combustion engines. This research analyzed the applicability of equations to describe the h...

  16. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  17. Large Eddy Simulation of Turbulent Combustion

    Science.gov (United States)

    2006-03-15

    Application to an HCCI Engine . Proceedings of the 4th Joint Meeting of the U.S. Sections of the Combustion Institute, 2005. [34] K. Fieweger...LARGE EDDY SIMULATION OF TURBULENT COMBUSTION Principle Investigator: Heinz Pitsch Flow Physics and Computation Department of Mechanical Engineering ...burners and engines found in modern, industrially relevant equipment. In the course of this transition of LES from a scientifically interesting method

  18. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  19. Composite Propellant combustion and Transition to Detonation.

    Science.gov (United States)

    1981-02-01

    I combustion BYU Brigham Young University I CMDB Composite-modified double-base propellant CPIA Chemical Propulsion Information Agency (at Johns...incorporate a model of active binder combustion and apply the model to composite-modified double-base ( CMDB ) propellants. The porous burner apparatus...Hercules composite-modified double-base ( CMDB ) pro- pellants, containing AP or HMX, but not containing aluminum. Qualita- tive effects of composition and

  20. Building America Expert Meeting. Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2013-03-01

    This is an overview of "The Best Approach to Combustion Safety in a Direct Vent World," held June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  1. Building America Expert Meeting: Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2013-03-01

    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  2. Study of mechanically activated coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Anatolij P. Burdukov; Vitalij A. Popov; Valentin A. Faleev [Institute of Thermophysics, Novosibirsk (Russian Federation)

    2009-07-01

    Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods of coal grinding on their chemical activity at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activity that enables development of new highly boosted processing methods for coals with various levels of metamorphism. 10 refs., 14 figs., 1 tab.

  3. The application of nonintrusive optical methods for physical measurements in combustion

    Science.gov (United States)

    Wuerer, J. E.; Oeding, R. G.; Poon, C. C.; Hess, C. F.

    1982-01-01

    Laser optical diagnostic techniques have proven to be effective for making physical measurements in hostile combustion environments. Two major and complementary approaches have been applied; namely, single event imaging and multi-signal detection methods. Single event imaging methods (e.g., pulsed laser holography) can provide the essentially instantaneous observation of physical events, e.g., fuel atomization, droplet breakup, particle and surface combustion, condensed phase formation, and flow field visualization. Multi-signal detection methods, which involve the processing of signals produced by the light scattered from the interaction of particles and/or droplets with an incident coherent ray, can provide information on flow velocity, turbulence, fluid shear stresses, and particle/droplet size and velocity. Recent results using both approaches are presented.

  4. Emission and combustion characteristics of multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no nensho to haishutsubutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Tsujimura, K. [New A.C.E. Institute Co. Ltd., Tokyo (Japan); Kobayashi, S.; Shimizu, K. [Japan Automobile Research Institute, Tsukuba (Japan)

    1997-10-01

    A new concept of multiple stage diesel combustion was studied by means of engine test, combustion observation and numerical simulation, in order to reduce NOx emissions at high load conditions. With this concept, the premixed combustion occurs under the fuel lean conditions and the diffusion combustion occurs under the high temperature conditions. As seen in the result of combustion observation, a first stage combustion occurs with no luminous flame. A second stage combustion occurs with a luminous flame after very short ignition delay period. However the luminous flame is disappeared immediately. Because cylinder temperature is high, and hence soot oxidizes immediately. 5 refs., 11 figs., 1 tab.

  5. Combustion of Interacting Droplet Arrays Being Studied

    Science.gov (United States)

    Dietrich, Daniel L.

    2002-01-01

    The combustion of liquid fuels is a major source of energy in the world today, and the majority of these fuels are burned in the form of a spray. This droplet combustion project at the NASA Glenn Research Center has the overall goal of providing a better understanding of spray combustion by extending existing studies of single droplets to a regime where droplet interactions are important (as occurs in a practical spray). The Combustion of Interacting Droplet Arrays is a collaborative effort between Glenn and the National Center for Microgravity Research. The group at Glenn also collaborates with scientists at the National Institute of Advanced Industrial Science and Technology in Hokkaido, Japan. The project is studying the combustion of a small number of droplets suspended on small quartz fibers in a 0.1-atm combustion chamber. Data consist primarily of video images of the flames and droplets. The tests are being conducted in Glenn's reduced-gravity facilities (2.2-sec and 5.2-sec drop towers) and in the Japan Microgravity Center's 10-sec drop tower (JAMIC).

  6. Fuel and Combustion Characteristics of Organic Wastes

    Science.gov (United States)

    Namba, Kunihiko; Ida, Tamio

    From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.

  7. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  8. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  9. Recycling of coal combustion wastes.

    Science.gov (United States)

    Oz, Derya; Koca, Sabina; Koca, Huseyin

    2009-05-01

    The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.

  10. Structure and Combustion of Magnegases

    CERN Document Server

    Santilli, R M

    2001-01-01

    In this paper, we study the structure and combustion of magnegases$^{TM}$ (Patented and International Patents Pending), new clean fuels developed by one of us (R.M.S.) [1], which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called PlasmaArcFlow\\tm, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000$^o$ F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. The new fuels possess a ew chemical structure first identified by one of us (R.M.S.), which is characterized by clusters of ordinary molecules and atoms under a new bond of electromagnetic nature. These clusters constitut...

  11. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  12. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    Science.gov (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  13. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-31

    molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization

  14. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical stud

  15. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas

    2010-01-01

    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  16. Combustion of explosives: a new approach; Combustion des explosifs: une nouvelle approche

    Energy Technology Data Exchange (ETDEWEB)

    Chelius, T.; Belmas, R. [CEA Le Ripault, 37 - Tours (France)

    1996-12-31

    In this paper, a simple and performing simulation method of the laminar combustion of explosive compounds is presented. This method allows to describe the transient and established phenomena, the influence of various parameters (initial temperature) on combustion, and the extinguishing phenomena. (J.S.) 5 refs.

  17. Use of filtered combustion light and backlit high-speed images in combustion stability studies

    Science.gov (United States)

    Pomeroy, B.; Wierman, M.; Anderson, W. E.

    2013-03-01

    The measurement of the heat release is a key part of characterizing the combustion instability, but it is extremely difficult to directly measure in a rocket combustion chamber due to high temperatures and pressures, as well as the complexity of the turbulent reacting flowfield, which can often have more than one phase. Measuring the light emission from excited species during a combustion is a nonintrusive method to approximate a global heat release in combustion chambers. CH∗ and OH∗ are the most often measured species. This paper outlines methods of using a filtered combustion light to obtain a better understanding of the physical mechanisms active in the combustion instability, and to provide partial validation data for predictive models of the combustion instability. Methods that are discussed include Rayleigh index, phase-angle plots, a proper orthogonal decomposition (POD), and a simultaneous imaging of combustion light and backlit flow structures. The methods are applied to an experiment that studies the effects of imposed transverse oscillations on a gas-centered, swirl-coaxial injector element.

  18. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  19. New technologies reducing emissions from combustion of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H.

    1997-12-31

    In reducing CO{sub 2} emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO{sub 2} released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs.

  20. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-07-04

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017. Published by Elsevier Ltd.

  1. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  2. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  3. Pulsed ELDOR detected NMR

    Science.gov (United States)

    Schosseler, P.; Wacker, Th.; Schweiger, A.

    1994-07-01

    A pulsed EPR method for the determination of small hyperfine interactions in disordered systems is described. A selective preparation pulse of frequency ω mw(1) excites allowed and forbidden transitions, thereby burning spectral holes into the EPR line. The positions of the holes caused by the excitation of forbidden transitions correspond to the nuclear transition frequencies of the spin system. A selective detection pulse of frequency ω mw(2) creates an FID with integrated intensity proportional to the magnetization at frequency ω mw(2). The entire hole pattern is obtained by recording the integrated intensity of the FID while varying the frequency difference Δω mw=ω mw(1)-ω mw(2) step by step.

  4. Herophilus on pulse

    Directory of Open Access Journals (Sweden)

    Afonasin, Eugene

    2015-01-01

    Full Text Available The first detailed study of the pulse (sphygmology is associated in antiquity with Herophilus (the end of the 4th century BCE, an Alexandrian physician, renowned for his anatomical discoveries. The scholars also attribute to him a discovery of a portable and adjustable water-clock, used for measuring ‘natural’ and ‘unnatural’ pulse and, accordingly, temperature of the patient. In the article we translate the principal ancient evidences and comment upon them. We study both the practical aspects of ancient sphygmology and the theoretical speculations associated with it. Ancient theory of proportion and musical harmony allowed to build a classification of the pulses, but the medical experience did not fit well in the Procrustean bed of this rather simple theory.

  5. Pulsed Artificial Electrojet Generation

    Science.gov (United States)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  6. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  7. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  8. Progressive combustion in SI-Engines—Experimental investigation on influence of combustion related parameters

    Indian Academy of Sciences (India)

    R Harish Kumar; A J Antony

    2008-12-01

    The fuel heat release rate which virtually controls the combustion process is dependent on the ‘Mass-Fraction-Burnt (MFB)’. In the present research work, a ‘logistic model with conditional variability in MFB’, has been developed for precise simulation of combustion in SI engines as the model has built in routines to take into account such factors as location of spark plug, single/dual spark plugs, intake generated swirl, combustion chamber geometry (associated with Bore/Stroke ratio), etc. A major contribution of this paper is that new and improved models for the ‘overall combustion duration’, and ‘ignition delay/flame development angle’, taking into account primarily the influence of compression ratio on the overall combustion process in SI engine have been developed. Taylor’s original equation for estimating the overall combustion duration has been modified by including a logistic equation for the error term and incorporating it in the original equation. Ignition delay as proposed by Keck et al has been modified by incorporating a polynomial of 3rd order into the original equation. The empirical correlations that have been proposed in this paper may serve to be the starting point for simulation of ‘photodetonation concept’ to simulate HCCI combustion which is presently the hot research work in the area of pre-mixed combustion. A program in Turbo-C++ has been developed for the complete simulation of SI engine combustion, taking into account the conditional variability effect, variable specific heats of burnt gases, dissociation of gases at high temperatures, progressive combustion phenomena, heat transfer (based on Woschni‘s equation), gas exchange process based on 1D-steady gas flow equation employing Taylor’s mach index of 0·6 for valve design.

  9. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  10. Pulsed Electron Holography

    CERN Document Server

    Germann, Matthias; Escher, Conrad; Fink, Hans-Werner

    2013-01-01

    A technique of pulsed low-energy electron holography is introduced that allows for recording highly resolved holograms within reduced exposure times. Therefore, stacks of holograms are accumulated in a pulsed mode with individual acquisition times as short as 50 {\\mu}s. Subsequently, these holograms are aligned and finally superimposed. The resulting holographic record reveals previously latent high-order interference fringes and thereby pushing interference resolution into the sub-nanometer regime. In view of the non-damaging character of low-energy electrons, the method is of particular interest for structural analysis of fragile biomolecules.

  11. Chemical Kinetic Modeling of Biofuel Combustion

    Science.gov (United States)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  12. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  13. A comparative study of combustible cartridge case materials

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2017-06-01

    Full Text Available Foamed combustible material based on polymer bonded RDX was fabricated using CO2 as foaming agent. The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented different formulations and inner porous structures. The combustion behaviors of felted and foamed materials were investigated by closed vessel test. Simultaneously, the co-combustion behavior of combustible cartridge case with 7-perf consolidated propellants was also investigated. The results of closed vessel test is applicable to gun system which is made of the foamed combustible material as component.

  14. Combustion Characteristics of Polyethylene and Coal Powder at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LONG Shi-gang; CAO Feng; WANG Si-wei; SUN Liu-heng; PANG Jian-ming; SUN Yu-ping

    2008-01-01

    To study the combustion characteristics of the polyethylene (PE) particle and coal powder at blast temperature of the blast furnace, the contents of CO and CO2 of off-gas during the combustion of PE particle and coal powder at the 1 200 ℃ and 1 250 ℃ were measured using carbon monoxide and carbon dioxide infrared analyzer, and then the corresponding combustion ratio was calculated. The results showed that when the temperature is high, the combustion speed of PE and coal powder is high and the corresponding combustion ratio is high. Whereas, the combustion speed and ratio of PE are much higher than those of coal powder.

  15. Numerical simulation of laminar premixed combustion in a porous burner

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pinghui; CHEN Yiliang; LIU Minghou; DING Min; ZHANG Genxuan

    2007-01-01

    Premixed combustion in porous media differs substantially from combustion in free space. The interphase heat transfer between a gas mixture and a porous medium becomes dominant in the premixed combustion process. In this paper, the premixed combustion of CH4/air mixture in a porous medium is numerically simulated with a laminar combustion model. Radiative heat transfer in solids and convective heat transfer between the gas and the solid is especially studied. A smaller detailed reaction mechanism is also used and the results can show good prediction for many combustion phenomena.

  16. Combustion study with synchrotron radiation single photon ionization technique

    Institute of Scientific and Technical Information of China (English)

    YANG Rui; WANG Jing; HUANG Chaoqun; YANG Bin; WEI Lixia; SHAN Xiaobin; SHENG Liusi; ZHANG Yunwu; QI Fei

    2005-01-01

    Here we report a combustion endstation at National Synchrotron Radiation Laboratory (NSRL) and some primary experimental results. Synchrotron radiation can provide the tunable vacuum ultraviolet (VUV) photon with the high intensity and the good collimation. VUV photoionization is a single-photon ionization process. Combined with molecular-beam mass spectrometry (MBMS), the VUV single-photon ionization can be applied to detect the combustion products, especially the intermediates and free radicals produced from combustion process. This method is proved to be a powerful tool for combustion study, which could be helpful for developing combustion kinetic models and understanding the mechanism of combustion reactions.

  17. CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine Using Non-Premixed Combustion Model

    Directory of Open Access Journals (Sweden)

    S Gavudhama Karunanidhi

    2014-07-01

    Full Text Available In this study the simulation process of non-premixed combustion in a direct injection single cylinder diesel engine has been described. Direct injection diesel engines are used both in heavy duty vehicles and light duty vehicles. The fuel is injected directly into the combustion chamber. The fuel mixes with the high pressure air in the combustion chamber and combustion occurs. Due to the non-premixed nature of the combustion occurring in such engines, non-premixed combustion model of ANSYS FLUENT 14.5 can be used to simulate the combustion process. A 4-stroke diesel engine corresponds to one fuel injector hole without considering valves was modeled and combustion simulation process was studied. Here two types of combustion chambers were compared. Combustion studies of both chambers:- shallow depth and hemispherical combustion chambers were carried out. Emission characteristics of both combustion chambers had also been carried out. The obtained results are compared. It has been found that hemispherical combustion chamber is more efficient as it produces higher pressure and temperature compared to that of shallow depth combustion chamber. As the temperature increases the formation of NOx emissions and soot formation also get increased.

  18. Reaction and diffusion in turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  19. Combustion modeling in a model combustor

    Institute of Scientific and Technical Information of China (English)

    L.Y.Jiang; I.Campbell; K.Su

    2007-01-01

    The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group (RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation (EDS),probability density function (PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.

  20. Combustion Safety Simplified Test Protocol Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L [Gas Technology Inst., Des Plaines, IL (United States); Cautley, D. [Gas Technology Inst., Des Plaines, IL (United States); Bohac, D. [Gas Technology Inst., Des Plaines, IL (United States); Francisco, P. [Gas Technology Inst., Des Plaines, IL (United States); Shen, L. [Gas Technology Inst., Des Plaines, IL (United States); Gloss, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  1. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  2. Time evolution of the high temperature region formed by laser induced breakdown and of the development of the flame kernel in the constant volume combustion vessel

    Science.gov (United States)

    Hayashi, J.; Nakatsuka, N.; Morimoto, I.; Akamatsu, F.

    2017-02-01

    The lean combustion is one of the key techniques for the advanced internal combustion systems due to the requirement of the higher thermal efficiency. Since the successful ignition must be guaranteed even in the lean combustion, advanced ignition systems have been developed in this decade. Laser ignition is one of the advanced ignition systems which have the profits of the flexibility in the position and the timing of ignition. To develop this ignition system for the actual combustion system, it is required to reveal the underlying physics of the laser ignition. Particularly, the time evolution of high temperature region formed by laser induced breakdown should be discussed. In this study, therefore, the time evolution of the high temperature region formed by the laser induced breakdown and the development of flame kernel were observed by using high-speed imaging. The ignition trials of methane/air lean premixed mixture were carried out in the constant volume combustion vessel to obtain minimum laser pulse energy for ignition (MPE). Results showed that the light emission from plasma formed by laser induced breakdown remained at least in several tens nano-seconds. In addition, there were large differences between the breakdown threshold and the MPE, which meant that the breakdown threshold did not determine the minimum pulse energy for ignition.

  3. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    Science.gov (United States)

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  4. Solid-state pulse forming module with adjustable pulse duration

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng

    2017-03-01

    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  5. Ultrafast optomechanical pulse picking

    Science.gov (United States)

    Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim

    2017-01-01

    State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.

  6. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  7. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  8. Downhole pulse tube refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  9. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  10. Computation of combustion and gasifying processes

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczaka, J. [Univ. of Mining and Metallurgy, Krakow, Faculty of Mechanical Engineering and Robotics (Poland); Horbaj, P. [Kosice Univ., Dept. of Power Engineering (Poland)

    2003-08-01

    Engineer computation methods of combustion and gasifying processes, their application and taking into account NO{sub x} and SO{sub x} contents in resulting gases using chemical equilibrium considerations. The paper deals with stoichiometric calculation of combustion processes with equilibrium on the side of products; with calculations of gasifying processes and with calculations of quasi - equilibrium processes. The main part of the article is oriented on problem - directional equilibrium combustion calculation. The engineer calculation methods of fuel conversion processes presented in this paper can be applied for thermodynamic analyses of complex power systems wherever the heat supply has been assumed in hitherto considerations. It will make these analyses more reliable and closer to the real conditions. (orig.)

  11. Selected Diagnostics for Microgravity Combustion Science

    Science.gov (United States)

    Greenberg, Paul S.; Weiland, Karen J.; Griffin, DeVon W.; Yanis, William

    1997-01-01

    The evolution of our understanding of combustion phenomena occurring under reduced gravity conditions poses a continuing demand for diagnostic tools of increased sophistication. Existing methods have become insufficient to keep pace with emerging refinements in the underlying theories and predictive models. The coupling of physical mechanisms inherent in combustion systems mandates the simultaneous determination of numerous thermophysical quantities, principally temperature, velocity, and species concentrations. Observed differences attributable to variations in experimental configuration, fuels and diluents, and initial conditions enhance the difficulty of developing diagnostic methods suitable for the acquisition of the required data over the desired range of experimental parameters. Efforts to provide for ongoing diagnostic development supporting microgravity combustion science experiments are conducted within the Microgravity Science Division at the NASA-Lewis Research Center. The following describes recent results from several diagnostic development efforts conducted under this project.

  12. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  13. Selected Diagnostics for Microgravity Combustion Science

    Science.gov (United States)

    Greenberg, Paul S.; Weiland, Karen J.; Griffin, DeVon W.; Yanis, William

    1997-01-01

    The evolution of our understanding of combustion phenomena occurring under reduced gravity conditions poses a continuing demand for diagnostic tools of increased sophistication. Existing methods have become insufficient to keep pace with emerging refinements in the underlying theories and predictive models. The coupling of physical mechanisms inherent in combustion systems mandates the simultaneous determination of numerous thermophysical quantities, principally temperature, velocity, and species concentrations. Observed differences attributable to variations in experimental configuration, fuels and diluents, and initial conditions enhance the difficulty of developing diagnostic methods suitable for the acquisition of the required data over the desired range of experimental parameters. Efforts to provide for ongoing diagnostic development supporting microgravity combustion science experiments are conducted within the Microgravity Science Division at the NASA-Lewis Research Center. The following describes recent results from several diagnostic development efforts conducted under this project.

  14. Technical Report: Rayleigh Scattering Combustion Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Wyatt [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-29

    A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO2 consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.

  15. Combustion Behaviour of Advanced Solid Propellants.

    Directory of Open Access Journals (Sweden)

    S. N. Asthana

    1993-07-01

    Full Text Available The study reports the effect of incorporation of Al and ammonium perchlorate (AP individually and in combination with each other on combustion pattern and specific impulse (Isp of minimum signature propellants. Incorporation of Al obviates the combustion instability problems; however, it has marginal effect on burning rates. The composition containing AP and zirconium silicate combination gives superior performance; however, its Isp is considerably lower than the composition incorporating 9 per cent AP. A combination of 6 per cent Al gave 20 per cent enhancement in burning rate and 12 s increase in Isp as compared to purely nitramine-based composition, cal-val results also reveal increase in energy output on incorporating AP and Al. Hot stage microscopic and propellant combustion studies indicate occurrence of intense decomposition reaction in case of AP-based compositions.

  16. Internal Combustion Engines as Fluidized Bed Reactors

    Science.gov (United States)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher

    2016-11-01

    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  17. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... was 16 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH4 has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However, the emission has decreased in recent years due...

  18. Experimental Replication of an Aeroengine Combustion Instability

    Science.gov (United States)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  19. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.

  20. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  1. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  2. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  3. Chemical Looping Combustion with Different Types of Liquid Fuels Combustion en boucle chimique avec différentes charges liquides

    Directory of Open Access Journals (Sweden)

    Hoteit A.

    2011-02-01

    Full Text Available CLC is a new promising combustion process for CO2 capture with less or even no energy penalty compared to other processes. Up to now, most of the work performed on CLC was conducted with gaseous or solid fuels, using methane and coal and/or pet coke. Liquid fuels such as heavy fuels resulting from oil distillation or conversion may also be interesting feedstocks to consider. However, liquid fuels are challenging feedstock to deal with in fluidized beds. The objective of the present work is therefore to investigate the feasibility of liquid feed injection and contact with oxygen carrier in CLC conditions in order to conduct partial or complete combustion of hydrocarbons. A batch experimental fluidized bed set-up was developed to contact alternatively oxygen carrier with liquid fuels or air. The 20 mm i.d. fluidized bed reactor was filled up with 45 g of NiAl0.44O1.67 and pulses of 1-2 g of liquid were injected in the bed at high temperatures up to 950˚C. Different feedstocks have been injected, from dodecane to heavy fuel oils No.2. Results show that, during the reduction period, it is possible to convert all the fuel injected and there is no coke remaining on particles at the end of the reduction step. Depending upon oxygen available in the bed, either full combustion or partial combustion can be achieved. Similar results were found with different liquid feeds, despite their different composition and properties. Le CLC est un nouveau concept prometteur appliqué à la combustion qui permet le captage de CO en minimisant la pénalité énergétique liée au captage. Jusqu’à présent, l’essentiel des travaux de recherche dans le domaine du CLC concerne les charges gazeuses (méthane et solides (charbon et coke. Les charges liquides, et particulièrement les résidus pétroliers, sont des charges également intéressantes à considérer a priori. La mise en oeuvre de ces charges en lit fluidisé est cependant délicate. L’objet de ce

  4. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  5. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  6. Method and apparatus for achieving hypergolic combustion by partial catalytic combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hoppie, L.O.

    1987-03-24

    This patent describes an apparatus for pretreatment of a hydrocarbon fuel for hypergolic combustion in an oxidizing atmosphere in the combustion chamber of a combustion device comprising: a source of fuel; a source of oxidizing fluid; a mixing chamber for receiving oxidizer fluid from the source; means for directing fuel received from the fuel source into the oxidizer fluid in the mixing chamber so as to create a rich fuel-oxidizer fluid mixture therein substantially above the stoichiometric ratio; catalytic reactor means receiving the rich fuel-oxidizer fluid mixture from the mixture from the mixture chamber and partially catalytically combusting the mixture to form a high temperature, hydrogen-rich product gas at temperatures on the order of 1,000 degrees farenheit. It is thereby activated by the formation of a sufficient proportion of fuel molecules to enable hypergolic combustion thereof; means controllably directing the high temperature product gas in the activated state into the combustion chamber, whereby enabling hypergolic combustion therein as a result of the high temperature activated condition of the product gas.

  7. Reduction in Difficulties of Phytomass Combustion by Co-Combustion of Wood Biomass

    Directory of Open Access Journals (Sweden)

    Michal Holubcik

    2016-01-01

    Full Text Available Nowadays, the most used biofuel in Slovak republic is log wood. Alternatively, there are also biofuels based on vegetal biomass (phytomass like wheat straw or grass. The advantage of these biofuels is lower cost price because they are usually considered as waste product. The major disadvantage of these vegetal biofuels is their problematic combustion. It is mainly due to the low ash melting temperature because of chemical composition of ash from phytomass. The low ash melting temperature causes slagging and sintering, which reduce the efficiency of the combustion process. This disadvantage causes very difficult and problematic combustion of phytomass. The article deals the way of trouble reduction during combustion of pellets made from phytomass (specific hay through the wood pellet co-combustion in a standard automatic boiler for combustion of wood pellets. During the experiments, the mixing ratio of hay pellets and wood pellets is varied and subsequently, there is determined its impact on the combustion process, namely on heat output of the boiler, and there is also evaluated the effect of the mixing ratio on the production of carbon monoxide (CO, nitrogen oxides (NOx, sulphur dioxide (SO2, organic hydrocarbons (OGC and particulate matters (PM10, PM2.5.

  8. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2013-09-05

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... emission standards for hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA...

  9. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-10-03

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines to..., ``National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New...

  10. Denitrification mechanism in combustion of biocoal briquettes.

    Science.gov (United States)

    Kim, Heejoon; Li, Tianji

    2005-02-15

    Pulp black liquor (PBL), an industrial waste from paper production, has been previously shown to be an effective binder and denitrification agent for coal briquettes. This study investigated the denitrification mechanism of PBL in both the volatile combustion and char combustion stages of coal briquettes. X-ray diffraction and ion chromatography were used to analyze the residual ashes of combustion. The exhaust gas was analyzed by a flue gas analysis system and a Q-mass spectrometry system. The denitrification mechanism of PBL in the volatile combustion stage was found to result from the emission of NH3. The denitrification of PBL in the char combustion stage was associated with the NaOH contained in PBL. The direct reaction of NaOH with NO gas was examined, and some interesting phenomena were observed. Pure carbon or pure NaOH showed only limited reaction with NO. However, the mixture of NaOH and carbon (NaOH + C) significantly enhanced the reaction. This mixture increased the NO removal up to 100%. Subsequently, denitrification lasted for a long time period, with about 25% of NO removal. The pyrolysis characteristic of NaNO3, a compound resulting from denitrification, was also affected by the presence of carbon. In the presence of carbon, the NOx emission resulting from the pyrolysis of NaNO3 was reduced by a factor of 6. Since the denitrification phenomena appeared only in the absence of oxygen, a model of oxygen distribution in a burning coal briquette was employed to explain the reactions occurring in real combustion of coal briquettes.

  11. Dust Combustion Safety Issues for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  12. Development of a linear piston-type pulse power electric generator for powering electric guns

    Science.gov (United States)

    Summerfield, Martin

    1993-01-01

    The development of a linear piston-type electric pulse-power generator capable of powering electric guns and EM (rail and coil) guns and ET guns, presently under development, is discussed. The pulse-power generator consists of a cylindrical armature pushed by gases from the combustion of fuel or propellant through an externally produced magnetic field. An arrangement of electrodes and connecting straps serves to extract current from the moving armature and to send it to an external load (the electric gun).

  13. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  14. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  15. Analysis of rocket engine injection combustion processes

    Science.gov (United States)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  16. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  17. Kinetic data base for combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, W.; Herron, J.T. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-01

    The aim of this work is to develop a set of evaluated rate constants for use in the simulation of hydrocarbon combustion. The approach has been to begin with the small molecules and then introduce larger species with the various structural elements that can be found in all hydrocarbon fuels and decomposition products. Currently, the data base contains most of the species present in combustion systems with up to four carbon atoms. Thus, practically all the structural grouping found in aliphatic compounds have now been captured. The direction of future work is the addition of aromatic compounds to the data base.

  18. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  19. Ignition and combustion features of biofuels

    Science.gov (United States)

    Ryzhkov, A. F.; Silin, V. E.; Bogatova, T. F.; Nadir, S. M.

    2011-07-01

    This paper presents the results of experimental investigations of the ignition and combustion of plant biofuels (wood particles, date stones) and products of their mechanical and thermal treatment (pellets, charcoal) at temperatures typical of the burning process in nonforced furnaces and fixed-bed and fluidized-bed gas producers. The influence of the furnace heat treatment of a fuel on its inflammation and combustion has been revealed. The results have been compared with the known data on the burning of pellets, brown coals, and anthracites and with the calculation by the classical diffusion-kinetic model.

  20. Combustion Analysis of Different Olive Residues

    Directory of Open Access Journals (Sweden)

    Antonio Ruiz

    2008-04-01

    Full Text Available The Thermogravimetric Analysis (TGA techniques and concretely the study of the burning profile provide information that can be used to estimate the behaviour of the combustion of carbonous materials. Commonly, these techniques have been used for the study of carbons, but are also interesting for the analysis of biomass wastes, due to the different species present on the wastes affect directly to its thermal properties. In this work, techniques of thermal analysis have been applied to compare the behaviour of different wastes coming from olive oil mills. From these results, it is remarkable that the Concentrated Olive Mill Waste Water (COMWW presents more unfavourable conditions for its combustion.

  1. SPONTANEOUS COAL COMBUSTION; MECHANISMS AND PREDICTION.

    Science.gov (United States)

    Herring, James R.; Rich, Fredrick J.

    1983-01-01

    Spontaneous ignition and combustion of coal is a major problem to the coal mining, shipping, and use industries; unintentional combustion causes loss of the resource as well as jeopardy to life and property. The hazard to life is especially acute in the case of underground coal mine fires that start by spontaneous ignition. It is the intention of this research to examine previously suggested causes of spontaneous ignition, to consider new evidence, and to suggest an experimental approach to determine which of these suggested causes is relevant to western U. S. coal. This discussion focuses only on causes and mechanism of spontaneous ignition.

  2. Air Pollution Assessment Combusting Fermented Waste

    Directory of Open Access Journals (Sweden)

    Violeta Čepanko

    2011-04-01

    Full Text Available This work examines the problem of air pollution burning organic waste from agricultural and drinks production sectors. Chicken and pig manure and biogas dregs after extraction, i.e. after the process of fermentation in laboratory bioreactors were selected as an object of research. The article presents the method of fermented waste incineration and the experimental results of waste incineration. Periodic surveys of kiln load disclosed that under combustion, pollutant concentrations change over time depending on the stage of combustion.Article in Lithuanian

  3. Thermogravimetric investigation of hydrochar-lignite co-combustion.

    Science.gov (United States)

    Liu, Zhengang; Quek, Augustine; Kent Hoekman, S; Srinivasan, M P; Balasubramanian, R

    2012-11-01

    Co-combustion of hydrochar with lignite was investigated by means of thermogravimetric analysis. Hydrochars were produced from coconut fibers and eucalyptus leaves under hydrothermal conditions at 250°C. The hydrochar was added in varying amounts to lignite for combustion. The results indicated that hydrothermal treatment decreased the volatile matter content and increased the fixed carbon content of the biomaterials. The elevated energy density and decreased ash content of the hydrochar improved its combustion behavior when co-fired with lignite for energy production. The hydrochars derived from coconut fiber and eucalyptus leaves had similar chemical compositions and showed similar influences on lignite combustion. Hydrochar addition increased the burnout and shortened the combustion range of the hydrochar-lignite blends. High combustion efficiency was observed due to the synergistic interactions between hydrochar and lignite during the co-combustion process. A kinetic study showed that the combustion process of hydrochar-lignite blends followed first-order reaction rates.

  4. Improved Combustion Products Monitor for the ISS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer – Combustion Products, used on the International Space Station as a warning monitor of smoldering or combustion events, is being...

  5. Improved Combustion Products Monitor for the ISS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer - Combustion Products is used on the International Space Station as a warning monitor of smoldering or combustion events and, after...

  6. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-06-13

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    Decomposition of water into highly combustible hydroxyl gas used in internal ... of alternative sources of energy that produce less amounts of carbon dioxide. ... The by-product obtained from combustion of this gas is water vapour and oxygen ...

  8. Fundamentals of the physical-chemistry of pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, J.; Prado, G. (eds.)

    1987-01-01

    A total of 20 papers were presented at the conference in seven sessions the major headings of which are: devolatilization, heterogeneous combustion, pollutants in coal combustion, optical diagnostics and transfer to the modelling.

  9. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  10. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  11. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  12. Bacterial inactivation using pulsed light

    OpenAIRE

    Elmnasser, Noura; Ritz, Magali; Leroi, Francoise; Orange, Nicole; Bakhrouf, Amina; Federighi, Michel

    2007-01-01

    Pulsed light is a new method intended for the decontamination of food surfaces using short, high frequency pulses of an intense broad spectrum. The effects of broad spectrum pulsed light on the survival of Listeria monocytogenes Scott A, Listeria monocytogenes CNL, Pseudomonas fluorescens MF37 and Photobacterium phosphoreum SF680 populations on agar and in a liquid medium were investigated during this study. The sterilisation system generated 1.5 J cm(-2) per pulse with eight lamps for 300 mu...

  13. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  14. A Computational Study of Transverse Combustion Instability Mechanisms

    Science.gov (United States)

    2014-07-01

    Marshall Space Flight Center. References 1. Smith, D. A., Zukoski, E. E., “Combustion Instability Sustained by Unsteady Vortex Combustion,” 21st JPC ...Prediction in a Model Rocket Combustor,” 47th JPC , AIAA 2011-6030. 10. Harvazinski, M. E., Modeling Self-Excited Combustion Instabilities Using A...Instabilities,” 49th JPC , AIAA 2013-3992. 13. Smith, R., Xia, G., Anderson, W., Merkle, C. L., “Extraction of Combustion Instability Mechanisms form Detailed

  15. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  16. Staged combustion with piston engine and turbine engine supercharger

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O' Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  17. A THERMAL PULSE SHAPER MECHANISM.

    Science.gov (United States)

    A shaped pulse of intense thermal radiation, corresponding to the pulses from nuclear weapons, is obtained by the output of a QM carbon arc. A flywheel driven by a DC motor actuated a venetian blind shutter placed between a mirror and the target to control the flux. The combination produced reasonably good simulation and reproduction of the generalized field pulse.

  18. Fluid-Plasma-Combustion Coupling Effects on the Ignition of a Fuel Jet

    Science.gov (United States)

    Massa, Luca; Freund, Jonathan

    2016-11-01

    We analyze the effect of plasma-combustion coupling on the ignition and flame supported by a DBD interacting with a jet of H2 in a air cross-flow. We propose that plasma-combustion coupling is due to the strong temperature-dependence of specific collisional energy loss as predicted by the Boltzmann equation, and that e- transport can be modeled by assuming a form for the E-field pulse in microstreamers. We introduce a two-way coupling based on the Boltzmann equation and the charged species conservation. The addition of this mechanism to a hydrogen combustion scheme leads to an improvement of the ignition prediction and of the understanding of the effect of the plasma on the flow. The key points of the analysis are 1) explanation of the mechanism for the two-stage ignition and quenching observed experimentally, 2) explanation of the existence of a power threshold above which the plasma is beneficial to the ignition probability, 3) understanding of the increase in power absorbed by the plasma in burning conditions and the reduction in power absorbed with an increase in the cross velocity, 4) explanation of the non-symmetric emissions and the increase in luminescence at the rotovibrational H2O band. The model is validated in part against air-H2 flow experiments. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  19. Flash Atomization: A New Concept to Control Combustion Instability in Water-Injected Gas Turbines

    Directory of Open Access Journals (Sweden)

    Vishwas Iyengar

    2012-01-01

    Full Text Available The objective of this work is to explore methods to reduce combustor rumble in a water-injected gas turbine. Attempts to use water injection as a means to reduce NOX emissions in gas turbines have been largely unsuccessful because of increased combustion instability levels. This pulsation causes chronic fretting, wear, and fatigue that damages combustor components. Of greater concern is that liberated fragments could cause extensive damage to the turbine section. Combustion instability can be tied to the insufficient atomization of injected water; large water droplets evaporate non-uniformly that lead to energy absorption in chaotic pulses. Added pulsation is amplified by the combustion process and acoustic resonance. Effervescent atomization, where gas bubbles are injected, is beneficial by producing finely atomized droplets; the gas bubbles burst as they exit the nozzles creating additional energy to disperse the liquid. A new concept for effervescent atomization dubbed “flash atomization” is presented where water is heated to just below its boiling point in the supply line so that some of it will flash to steam as it leaves the nozzle. An advantage of flash atomization is that available heat energy can be used rather than mechanical energy to compress injection gas for conventional effervescent atomization.

  20. Numerical investigation of spray combustion towards HITAC conditions

    NARCIS (Netherlands)

    Zhu, Shanglong

    2017-01-01

    The features of High Temperature Air Combustion (HiTAC), i.e. high-efficiency combustion processes creating a uniform temperature distribution with low NOX and CO emissions, lend itself ideally for the combustion of all sorts of "difficult” fuels, ranging from low-calorific gases such as waste-gases

  1. Investigation of JP-8 Autoignition Under Vitiated Combustion Conditions

    Science.gov (United States)

    2011-01-01

    combustion engines and HCCI systems rather than low pressure combustion devices that are of interest in the current study. This data provides insight...2011 Directed by: Professor Gregory Jackson, Chair Department of Mechanical Engineering Limited data on jet fuel ignition and oxidation at...Fuller 2011 ii Acknowledgements This research has been supported and funded by Combustion Science and Engineering , Inc. through the following

  2. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature...

  3. 14 CFR 23.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... passage that surrounds the combustion chamber. (b) Ventilating air ducts. Each ventilating air duct... fireproof valves or by equally effective means, the ventilating air duct downstream of each heater must be...) Combustion air ducts. Each combustion air duct must be fireproof for a distance great enough to...

  4. 14 CFR 25.833 - Combustion heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. Pressurization...

  5. Report on the combustion research contractors' meeting

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Muckerman, J.T. (eds.)

    1979-10-01

    A total of 46 short papers or abstracts are included, arranged into sessions dealing with general and NSLS status, theory of reactivity and chemical dynamics in combustion, kinetics of combustion reactions, (two sessions), and laser diagnostics for high temperature and combustion systems. (DLC)

  6. Furnaces with multiple flameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a com

  7. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  8. 40 CFR 74.44 - Reduced utilization for combustion sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Reduced utilization for combustion....44 Reduced utilization for combustion sources. (a) Calculation of utilization—(1) Annual utilization... reported in accordance with subpart F of this part for combustion sources. “Allowances transferred to all...

  9. 30 CFR 57.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  10. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  11. 30 CFR 56.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  12. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  13. Noisy homoclinic pulse dynamics

    Science.gov (United States)

    Eaves, T. S.; Balmforth, Neil J.

    2016-04-01

    The effect of stochastic perturbations on nearly homoclinic pulse trains is considered for three model systems: a Duffing oscillator, the Lorenz-like Shimizu-Morioka model, and a co-dimension-three normal form. Using the Duffing model as an example, it is demonstrated that the main effect of noise does not originate from the neighbourhood of the fixed point, as is commonly assumed, but due to the perturbation of the trajectory outside that region. Singular perturbation theory is used to quantify this noise effect and is applied to construct maps of pulse spacing for the Shimizu-Morioka and normal form models. The dynamics of these stochastic maps is then explored to examine how noise influences the sequence of bifurcations that take place adjacent to homoclinic connections in Lorenz-like and Shilnikov-type flows.

  14. Computationally intelligent pulsed photoacoustics

    Science.gov (United States)

    Lukić, Mladena; Ćojbašić, Žarko; Rabasović, Mihailo D.; Markushev, Dragan D.

    2014-12-01

    In this paper, the application of computational intelligence in pulsed photoacoustics is discussed. Feedforward multilayer perception networks are applied for real-time simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases. Networks are trained and tested with theoretical data adjusted for a given experimental set-up. Genetic optimization has been used for calculation of the same parameters, fitting the photoacoustic signals with a different number of generations. Observed benefits from the application of computational intelligence in pulsed photoacoustics and advantages over previously developed methods are discussed, such as real-time operation, high precision and the possibility of finding solutions in a wide range of parameters, similar to in experimental conditions. In addition, the applicability for practical uses, such as the real-time in situ measurements of atmospheric pollutants, along with possible further developments of obtained results, is argued.

  15. Micro pulse laser radar

    Science.gov (United States)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  16. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  17. Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-03-15

    Taking advantage of a new technique, we have monitored the relative variations of time duration and mode size as a function of the pulse energy for 30-ps-long Nd:YAG laser pulses. In particular, by carrying out a statistical analysis, we have observed that the pulse time duration is an increasing function of the pulse energy, according to the theoretical modeling of passively mode-locked lasers. The measurements can be easily extended to the femtosecond regime.

  18. Twitter's visual pulse

    OpenAIRE

    Hare, Jonathon; Samangooei, Sina; Dupplaw, David; Lewis, Paul H.

    2013-01-01

    Millions of images are tweeted every day, yet very little research has looked at the non-textual aspect of social media communication. In this work we have developed a system to analyse streams of image data. In particular we explore trends in similar, related, evolving or even duplicated visual artefacts in the mass of tweeted image data — in short, we explore the visual pulse of Twitter.

  19. Pulse Portraiture: Pulsar timing

    Science.gov (United States)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  20. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  1. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  2. Ptychographic ultrafast pulse reconstruction

    CERN Document Server

    Spangenberg, D; Brügmann, M H; Feurer, T

    2014-01-01

    We demonstrate a new ultrafast pulse reconstruction modality which is somewhat reminiscent of frequency resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second order correlation scheme it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

  3. PULSE Pilot Certification Results

    Directory of Open Access Journals (Sweden)

    Pamela Pape-Lindstrom

    2015-08-01

    Full Text Available The pilot certification process is an ambitious, nationwide endeavor designed to motivate important changes in life sciences education that are in line with the recommendations of the 2011 Vision and Change Report: A Call to Action (American Association for the Advancement of Science [AAAS], 2011.  It is the goal of the certification process to acknowledge departments that have progressed towards full implementation of the tenets of Vision and Change and to motivate departments that have not begun to adopt the recommendations to consider doing so.  More than 70 life science departments applied to be part of the pilot certification process, funded by a National Science Foundation grant, and eight were selected based on initial evidence of transformed and innovative educational practices.  The programs chosen represent a wide variety of schools, including two-year colleges, liberal-arts institutions, regional comprehensive colleges, research universities and minority serving institutions.  Outcomes from this pilot were released June 1, 2015 (www.pulsecommunity.org, with all eight programs being recognized as having progressed along a continuum of change.  Five levels of achievement were defined as PULSE Pilot Progression Levels.  Of the eight departments in the pilot, one achieved “PULSE Progression Level III: Accomplished”.  Six departments achieved “PULSE Progression Level II: Developing” and one pilot department achieved “PULSE Progression Level I: Beginning”.  All of the schools have made significant movement towards the recommendations of Vision and Change relative to a traditional life sciences curriculum.  Overall, the response from the eight pilot schools has been positive. 

  4. Quantified infrared imaging of ignition and combustion in a supersonic flow

    Science.gov (United States)

    Ombrello, Timothy; Blunck, David L.; Resor, Michael

    2016-09-01

    The utility of quantified infrared radiation imaging was evaluated through interrogating ignition and burning processes within a cavity-based flameholder in supersonic flows. Two ignition techniques, spark discharge and pulse detonation, along with quasi-steady cavity burning were used to assess the sensitivities of measurements of radiation intensities in the infrared. The shedding of ignition kernels from the spark discharge was imaged, showing that sufficient signal-to-noise ratios can be achieved even with weak radiation emission levels. The ignition events using a pulse detonator were captured with time-resolved measurements of the plume evolution, including the barrel shock, Mach disk, and shock diamonds. Radiation emissions from subsequent firings of the pulse detonator increased, indicating that heat loss to the tube walls occurred in the early pulses. Imaging of the quasi-steady burning within the cavity demonstrated that the highest burning flux (visible broadband chemiluminescence) and radiation from hydrocarbons (3.4 µm) do not coincide with each other for the fueling strategy used. Numerical simulations provided insight into the species distributions that caused the infrared emissions. Overall, infrared radiation measurements have been shown to be feasible through combustor windows in the harsh combustion environments that were interrogated, and offer a new avenue for rapid and quantitative measurements of reactive flow.

  5. The railplug: A new ignitor for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Faidley, R.W.; Darden, M.H.; Weldon, W.F.

    1995-01-01

    A miniaturized railgun, termed the {open_quotes}railplug,{close_quotes} has been developed for use as an ignitor of combustible mixtures in engines. The device drives a plasma armature in a multishot mode with the aim of creating a line-source for ignition rather than the point source provided by traditional spark plugs. Railplugs have been fabricated in both parallel rail and co-axial rail geometries. The railplug differs from most plasma armature railguns in two striking ways: (1) no fuse or pellet is used to initially establish the plasma (the armature is simply the arc created by a high-voltage pulse), and (2) it operates over a range of elevated pressures (up to 500 psi). Consequently, the railplug power supply must provide a high voltage spike to breakdown the gap between the rails followed by a sustaining voltage that supplies current to drive the arc down the rails. Conceptually, this is the equivalent of combining the electrostatic problem of a sparkplug with the electrodynamic one of a railgun. Two power supply options that do this are outlined, as well as details of railplug geometries. Successes to date have demonstrated the firing of plugs for over 10{sup 4} shots at delivered arc energies of 1 J per shot. Rep rates have been demonstrated up to 50 Hz.

  6. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop

    2013-12-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  7. Combustion: an oil spill mitigation tool

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The technical feasibility of using combustion as an oil spill mitigation tool was studied. Part I of the two-part report is a practical guide oriented toward the needs of potential users, while Part II is the research or resource document from which the practical guidance was drawn. The study included theoretical evaluations of combustion of petroleum pool fires under the effects of weathering and an oil classification system related to combustion potential. The theoretical analysis of combustion is balanced by practical experience of oil burning and case history information. Decision elements are provided which can be used as a guide for technical evaluations of a particular oil spill situation. The rationale for assessing technical feasibility is given in the context of other alternatives available for response to an oil spill. A series of research and technology development concepts are included for future research. The ethics of using oil burning are discussed as issues, concerns, and tradeoffs. A detailed annotated bibliography is appended along with a capsule review of a decade of oil burning studies and other support information.

  8. The PDF method for turbulent combustion

    Science.gov (United States)

    Pope, S. B.

    1991-01-01

    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  9. Quality Determination of Biomass for Combustion

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2013-01-01

    A high content of minerals in biomass feedstock may cause fouling, slagging, and corrosion in the furnace during combustion. Here, a new pressurized microwave digestion method for biomass digestion prior to elemental analysis is presented. This high-throughput method is capable of processing...

  10. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2014-06-01

    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  11. Cavity Coupled Aeroramp Injector Combustion Study

    Science.gov (United States)

    2009-06-01

    Fluorescence RC-18 Propulsion Research Cell 18 at Wright-Patterson Air Force Base Scramjet Supersonic Combustion Ramjet TDLAS Tunable Diode Laser... TDLAS ). The TDLAS focused on water concentrations and temperature. The resulting analysis could provide insight into whether there was indeed any

  12. Combustion Power Unit--400: CPU-400.

    Science.gov (United States)

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  13. Factors Influencing Temperature Fields during Combustion Reactions

    Science.gov (United States)

    2014-05-20

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORTDATE(DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) New Reprint - 4. TITLE AND...Aluminum Rich Al-Ti Mechanical Alloys in Air, Combust. Flame 2006, 144, 688. [27] Z. Zhang, B. Tsai, G. Machin, Radiometric Temperature Measure- ments

  14. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2007-01-01

    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  15. Combustion of nuclear matter into strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))

    1994-11-15

    We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.

  16. Heat-barrier coatings for combustion chambers

    Science.gov (United States)

    Carpenter, H. W.

    1970-01-01

    Arc-plasma-sprayed layered coating of graded Inconel and zirconia protects film-coolant ring below injector plate of rocket engine combustion chamber. Interfacial temperature is designed for minimum buildup of stress and to avoid melting of the metal phase in the graded layers.

  17. Advanced Fuels and Combustion Processes for Propulsion

    Science.gov (United States)

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  18. Experimental toxicology of pyrolysis and combustion hazards.

    Science.gov (United States)

    Cornish, H H; Hahn, K J; Barth, M L

    1975-06-01

    Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology.

  19. Co-combustion - a summary of technology

    Energy Technology Data Exchange (ETDEWEB)

    Bo Leckner [Chalmers University of Technology, Goeteborg (Sweden). Dept. of Energy and Environment

    2007-07-01

    Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilise waste. Co-combustion in a high-efficiency power station means utilisation of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW{sub fuel}) of the energy in a plant. There are several options: co-combustion with coal in pulverised or fluidised bed boilers, combustion on added grates inserted in pulverised coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverised fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N{sub 2}O emissions in fluidised bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilised and the negative ones can be avoided. 71 refs., 19 figs., 5 tabs.

  20. Particulate emissions from residential wood combustion

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption and offi......Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption.......5 emissions within a specific “wood burning living area”, but one Danish study exists [4]. In previous inventories distinct combustion air operation modes and the growing penetration of automate wood-burning stoves have not been considered. The present work aims to discuss opportunities for improving...... Portuguese combustion practices in laboratory tests. This study highlights that the previous PM2.5 emission inventories in Denmark and Portugal did not consider the possible variations on fuel moisture, dimensions of wood-logs and air-inlet operation patterns, although they are very important, especially...

  1. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice...

  2. Spontaneously Combustible Solids -- A Literature Search

    Science.gov (United States)

    1975-05-01

    the increasing acidity of the clay surface. Treatment of the clays with volatile organic’ bases or basic substances such as urea or...Stearic kcid heats spontaneously Straw of Flax, Maize , Oats, Rice, subject to spontaneous heating and Rye, Wheat, etc. combustion 22 NSWC/WOL/TR 75-159

  3. Temperature Estimation in the Combustion Chamber of an Internal Combustion Engine

    OpenAIRE

    2012-01-01

    The mathematical model of heat transfer phenomena is considered at the combustion chamber wall in an internal combustion (IC) engine. The mathematical model of proposed phenomena is established with respect to the crank angle. An inverse heat conduction problem is derived at the cylinder wall, and this problem is investigated numerically using Alifanov's regularization method. This problem studied as an optimization problem in which a squared residual functional is minimized with the conjugat...

  4. [Combustion temperature measurement of solid propellant and the effect of organic compound on combustion temperature].

    Science.gov (United States)

    Zhou, Xue-tie; Li, Yan; Chen, Zuo-ru; Wang, Jun-de

    2003-06-01

    The FTIR emission spectra in the spectral range of 4,500-300 cm-1 for the solid propellants were measured by a remote sensing FTIR system. The P-branch of fine structure of HCl fundamental band lying at 3.46 microns was used for precise combustion temperature measurement of the solid propellant. The effect of the organic compound in the solid propellant on the combustion temperature was discussed.

  5. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  6. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  7. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  8. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  9. Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.

  10. Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-06-01

    In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.

  11. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  12. Petawatt pulsed-power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  13. Harmonic components of cylinder pressure variation and their characteristics for combustion noise in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.R.; Miyamoto, Noboru; Murayama, Tadashi

    1987-10-31

    Combustion noise is a serious problem in internal combustion engines, especially diesel engines. Although the cylinder pressure variation is easily visible tool to evaluate the combustion noise and thermal efficiency, the exciting force in engine combustion noise has not been completely determined. Cylinder pressure variation for different combustion behaviors and their harmonic components were calculated and an attempt was made to correlate the various components. It was found that the logarithmic harmonic components of cylinder pressure variations, the cylinder pressure level (CPL) can be described by a function with four variables, the values of cylinder pressure variation. The results of this paper is summarized as follows: 1) A relationship was established between CPL and four characteristic values describing the cylinder pressure and variation diagram. 2) Harmonic components of cylinder pressure variations are described by a linear function with four variables and four characteristic values. 3) In this case, the coefficients of the four variables depend solely on the order of engine revolutions and are independent of combustion behavior and engine operating conditions. (13 figs, 7 refs)

  14. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  15. Combustive management of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  16. Pulse Distributing Manifold; Pulse Distributing Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Schutting, Eberhard [Technische Univ. Graz (Austria); Sams, Theodor [AVL List GmbH, Graz (Austria); Glensvig, Michael [Forschungsgesellschaft mbH, Graz (AT). Kompetenzzentrum ' ' Das virtuelle Fahrzeug' ' (VIF)

    2011-07-01

    The Pulse Distributing Manifold is a new charge exchange method for turbocharged diesel engines with exhaust gas recirculation (EGR). The method is characterized in that the EGR mass flow is not diverted from the exhaust gas mass flow continuously, but over time broken into sub-streams. The temporal interruption is achieved by two phase-shifted outlet valves which are connected via separate manifolds only with the turbocharger or only with the EGR path. The time points of valve opening are chosen such that the turbocharger and the aftertreatment process of exhaust gas is perfused by high-energy exhaust gas of the blowdown phase while cooler and less energy-rich exhaust gas of the exhaust period is used for the exhaust gas recirculation. This increases the enthalpy for the turbocharger and the temperature for the exhaust gas treatment, while the cooling efficiency at the EGR cooler is reduced. The elimination of the continuous EGR valve has a positive effect on pumping losses. The principle functioning and the potential of this system could be demonstrated by means of a concept study using one-dimensional simulations. Without disadvantages in fuel consumption for the considered commercial vehicle engine, a reduction the EGR cooler performance by 15 % and an increase in exhaust temperature of 35 K could be achieved. The presented charge exchange method was developed, evaluated and patented within the scope of the research program 'K2-mobility' of the project partners AVL (Mainz, Federal Republic of Germany) and University of Technology Graz (Austria). The research project 'K2-Mobility' is supported by the competence center 'The virtual vehicle' Forschungsgesellschaft mbH (Graz, Austria).

  17. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  18. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  19. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  20. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.