WorldWideScience

Sample records for pulsating combustors progress

  1. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  2. Pulse combustors for unpulverized solid fuels; Combustor pulsante para solidos nao pulverizados

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Marco Aurelio; Carvalho Junior, Joao Andrade de [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1988-12-31

    This work presents results of performance evaluation of an experimental pulsating combustor developed to burn unpulverized solid fuels. The fuels tested were sized wood blocks and coal lumps. The results for coal show a clear maximum combustion efficiency as a function of fuel loading within the combustor. For an excess of air of 10%, a maximum combustion efficiency of 94% was obtained. (author) 38 refs., 10 figs., 2 tabs.

  3. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

    Science.gov (United States)

    Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang

    2012-03-01

    A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.

  4. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  5. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  6. Scramjet Combustor Characteristics at Hypervelocity Condition over Mach 10 Flight

    Science.gov (United States)

    Takahashi, M.; Komuro, T.; Sato, K.; Kodera, M.; Tanno, H.; Itoh, K.

    2009-01-01

    To investigate possibility of reduction of a scramjet combustor size without thrust performance loss, a two-dimensional constant-area combustor of a previous engine model was replaced with the one with 23% lower-height. With the application of the lower-height combustor, the pressure in the combustor becomes 50% higher and the combustor length for the optimal performance becomes 43% shorter than the original combustor. The combustion tests of the modified engine model were conducted using a large free-piston driven shock tunnel at flow conditions corresponding to the flight Mach number from 9 to 14. CFD was also applied to the engine internal flows. The results showed that the mixing and combustion heat release progress faster to the distance and the combustor performance similar to that of the previous engine was obtained with the modified engine. The reduction of the combustor size without the thrust performance loss is successfully achieved by applying the lower-height combustor.

  7. Energies of precipitating electrons during pulsating aurora events derived from ionosonde observations

    International Nuclear Information System (INIS)

    MacDougall, J.W.; Hofstee, J.; Koehler, J.A.

    1981-01-01

    The time-history of particle energies and fluxes associated with pulsating auroras in the morning sector is derived from ionosonde measurements. All the pulsating auroras studied showed a similar history with the pulsations occurring during a time interval of the order of an hour during which the average auroral Maxwellian characteristic energy stays relatively constant but the energy flux decreases progressively during the event. A possible explanation for this behaviour in terms of an injection of particles into a magnetospheric 'bottle' near the midnight meridian and the progressive precipitation out of the bottle during the pulsating event is suggested. (auth)

  8. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    Science.gov (United States)

    2011-03-01

    appreciation to my wife Shelly , and my sons Cody, Brandon, and Tyler for their encouragement, support, and understanding during this challenging time...operation frequencies. 56 B. FUTURE WORK A redesign of the cooled combustor chamber is currently in progress and will result in a cast mold. A...water-cooled combustor with casted swept ramps in the combustion chamber that are cooled as well maximizes the amount cooling to the ramps to help

  9. Combustor and combustor screech mitigation methods

    Science.gov (United States)

    Kim, Kwanwoo; Johnson, Thomas Edward; Uhm, Jong Ho; Kraemer, Gilbert Otto

    2014-05-27

    The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member.

  10. Core Noise: Overview of Upcoming LDI Combustor Test

    Science.gov (United States)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  11. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    Science.gov (United States)

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  12. Pulsating variables

    International Nuclear Information System (INIS)

    1989-01-01

    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  13. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  14. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  15. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  16. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  17. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  18. Combustor and method for distributing fuel in the combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  19. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow

    Directory of Open Access Journals (Sweden)

    R. C. Hendricks

    2001-01-01

    Full Text Available The Trapped Vortex Combustor (TVC potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO performance. Computational fluid dynamics (CFD simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.

  20. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  1. Variable volume combustor

    Science.gov (United States)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  2. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    International Nuclear Information System (INIS)

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-01-01

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies

  3. Co-combustor: the solid waste thermal treatment plant in MINT

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Azman Che Mat Isa; Sivapalan Kathiravale; Mohd Fairus Abdul Farid; Mohamad Puad Hj Abu; Rosli Darmawan; Muhd Noor Muhd Yunus

    2005-01-01

    MINT has geared up into the field of solid waste thermal treatment processing back in 1999 when a new unit known as MIREC was established. Since then, a fast progress has taken place including the design and construction of a pilot scale incinerator, named as the Co-Combustor. The Co-combustor was designed and developed based on the gasification principles, which employs combustion in starved air condition. In year 2001, this plant was commissioned. To date, it has been running quite well according to its design values. Several test runs were also performed in order to collect and gather data, which serve as a background or backtrack record for upgrading purposes and optimizing its performance in future. On going research is also conducted on this plant especially on the study of the waste's behaviors under combustion. Besides the typical RND activities, the Co-combustor is also currently being used to burn waste paper especially to dispose restricted and confidential documents. This paper will highlight on the design, performance, application and usage of the co-combustor. The direction for research and development activities for this plant is also discussed in this paper so as to strengthen the knowledge and build up expertise in the field of incineration

  4. Fuel and Combustor Concerns for Future Commercial Combustors

    Science.gov (United States)

    Chang, Clarence T.

    2017-01-01

    Civil aircraft combustor designs will move from rich-burn to lean-burn due to the latter's advantage in low NOx and nvPM emissions. However, the operating range of lean-burn is narrower, requiring premium mixing performance from the fuel injectors. As the OPR increases, the corresponding combustor inlet temperature increase can benefit greatly with fuel composition improvements. Hydro-treatment can improve coking resistance, allowing finer fuel injection orifices to speed up mixing. Selective cetane number control across the fuel carbon-number distribution may allow delayed ignition at high power while maintaining low-power ignition characteristics.

  5. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  6. On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs)

    Science.gov (United States)

    Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.

    2018-06-01

    The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.

  7. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  8. Occurrence and average behavior of pulsating aurora

    Science.gov (United States)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  9. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  10. Coal-fired MHD combustor development project: Phase 3D

    Science.gov (United States)

    1985-05-01

    This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.

  11. Experimental clean combustor program, alternate fuels addendum, phase 2

    Science.gov (United States)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  12. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  13. System and method for controlling a combustor assembly

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  14. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  15. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  16. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    idea of pressure gain combustion (i.e., combustion with gain in total pressure across the combustor as opposed to pressure-loss combustion experienced in constant pressure devices like conventional gas turbine combustors) is gaining popularity for propulsion devices [2]. Thus pulse combustors, which provide a practical ...

  17. Controlled pilot oxidizer for a gas turbine combustor

    Science.gov (United States)

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  18. New pulsating casing collar to improve cementing quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Southwest Petroleum Inst., Nanchong, Sichuan (China); He, K. [JiangHan Petroleum Administration Bureau, Qianjiang, Hubei (China); Wu, J. [Chevron Petroleum Tech. Co., Houston, TX (United States)

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  19. Theoretical pulsation of metallic-line stars

    International Nuclear Information System (INIS)

    Cox, A.N.; King, D.S.; Hodson, S.W.

    1979-01-01

    The linear-theory radial-pulsation stability of low-helium delta Scuti variable models (1.0--2.5 Msun) has been investigated to see if metallicism and pulsation can occur simultaneously. Metallicism, which occurs in slowly rotating stars after the gravitational settling of He and the loss of the He II convection zone and its deep mixing for Y< or approx. =0.1, can then be established rapidly compared with the evolution time scale. Pulsation can still occur with driving due to the residual helium and the enhanced hydrogen. With the reduced helium giving no connection zone, the pulsation instability strip, whose blue and edges are estimated in this paoer, is about half as wide as with a normal helium abundance. Zero helium in the surface driving regions, however, produces blue edges so red that probably no instability strip exists at all. The red edge, predicted theoretically on the basis of the importance of convection in the outer zone, agrees well with the observational one. Cool, low-helium and metallic-line stars are then predicted to pulsate in a 200--500 K wide strip that is widest between the main-sequence luminosity of 5 Lsun and 15 Lsun. This strip reasonably includes the observed pulsating delta Del and mild Am stars, but there may be conflicts. Since blue edges for varying ionization-zone helium content occur across the entire instability strip, bluer first and higher overtone pulsations are also predicted everywhere from less than 7000 K to over 8000 K, the redder ones probably showing metallicism

  20. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  1. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  2. Gas turbine topping combustor

    Science.gov (United States)

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  3. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  4. Solar wind controlled pulsations: A review

    International Nuclear Information System (INIS)

    Odera, T.J.

    1986-01-01

    Studies of the solar wind controlled Pc 3, 4 pulsations by early and recent researchers are highlighted. The review focuses on the recent observations, which cover the time during the International Magnetospheric Study (IMS). Results from early and recent observations agree on one point, that is, that the Pc 3, 4 pulsations are influenced by three main solar wind parameters, namely, the solar wind velocity V/sub 5w/, the IMF orientation theta/sub x/B, and magnitude B. The results can be interpreted, preferably, in terms of an external origin for Pc 3, 4 pulsations. This implies, essentially, the signal model, which means that the pulsations originate in the upstream waves (in the interplanetary medium) and are transported by convection to the magnetopause, where they couple to oscillations of the magnetospheric field lines

  5. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    Science.gov (United States)

    Reed, M. D.; Kawaler, S. D.; Østensen, R. H.; Bloemen, S.; Baran, A.; Telting, J. H.; Silvotti, R.; Charpinet, S.; Quint, A. C.; Handler, G.; Gilliland, R. L.; Borucki, W. J.; Koch, D. G.; Kjeldsen, H.; Christensen-Dalsgaard, J.

    2010-12-01

    We present the discovery of non-radial pulsations in five hot subdwarf B (sdB) stars based on 27 d of nearly continuous time series photometry using the Kepler spacecraft. We find that every sdB star cooler than ≈27 500 K that Kepler has observed (seven so far) is a long-period pulsator of the V1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p-modes with periods of 2-5 min and in addition, these stars exhibit periodicities between both classes from 15 to 45 min. We detect the coolest and longest-period V1093 Her-type pulsator to date, KIC010670103 (Teff≈ 20 900 K, Pmax≈ 4.5 h) as well as a suspected hybrid pulsator, KIC002697388, which is extremely cool (Teff≈ 23 900 K) and for the first time hybrid pulsators which have larger g-mode amplitudes than p-mode ones. All of these pulsators are quite rich with many frequencies and we are able to apply asymptotic relationships to associate periodicities with modes for KIC010670103. Kepler data are particularly well suited for these studies as they are long duration, extremely high duty cycle observations with well-behaved noise properties.

  6. Cepheid pulsation theory and multiperiodic cepheid variables

    International Nuclear Information System (INIS)

    Cox, A.N.; Cox, J.P.

    1975-01-01

    In this review of the multiperiodic Cepheid variables, the subject matter is divided into four parts. The first discusses general causes of pulsation of Cepheids and other variable stars, and their locations on the H-R diagram. In the second section, the linear adiabatic and nonadiabatic theory calculation of radial pulsation periods and their application to the problem of masses and double-mode Cepheids are reviewed. Periodic solutions, and their stability, of the nonlinear radial pulsation equations for Cepheids and RR Lyrae stars are considered in the third section. The last section provides the latest results on nonlinear, nonperiodic, radial pulsations for Cepheids and RR Lyrae stars. (BJG)

  7. Low pollution combustor designs for CTOL engines - Results of the Experimental Clean Combustor Program

    Science.gov (United States)

    Roberts, R.; Peduzzi, A.; Niedzwiecki, R. W.

    1976-01-01

    The NASA/Pratt & Whitney Aircraft Experimental Clean Combustor Program is a multi-year, major contract effort. Primary program objectives are the generation of combustor technology for development of advanced commercial CTOL engines with lower exhaust emissions than current aircraft and demonstration of this technology in a full-scale JT9D engine in 1976. This paper describes the pollution and performance goals, Phase I and II test results, and the Phase III combustor hardware, pollution sampling techniques, and test plans. Best results were obtained with the Vorbix concept which employs multiple burning zones and improved fuel preparation and distribution. Substantial reductions were achieved in all pollutant categories, meeting the 1979 EPA standards for NOx, THC, and smoke when extrapolated to JT9D cycle conditions. The Vorbix concept additionally demonstrated the capability for acceptable altitude relight and did not appear to have unsolvable durability or exit temperature distribution problems.

  8. Thermal performance of a micro-combustor for micro-gas turbine system

    International Nuclear Information System (INIS)

    Cao, H.L.; Xu, J.L.

    2007-01-01

    Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-combustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant heat transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved micro-combustor

  9. Nonlinear pulsations of luminous He stars

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Cox, A.N.

    1986-01-01

    Radial pulsations in models of R Cor Bor stars and BD + 1 0 4381 have been studied with a nonlinear hydrodynamic pulsation code. Comparisons are made with previous calculations and with observed light and velocity curves. 13 refs., 2 tabs

  10. Thermal performance of a meso-scale liquid-fuel combustor

    International Nuclear Information System (INIS)

    Vijayan, V.; Gupta, A.K.

    2011-01-01

    Research highlights: → Demonstrated successful combustion of liquid fuel-air mixtures in a novel meso-scale combustor. → Flame quenching was eliminated using heat recirculation in a swiss roll type combustor that also extended the flammability limits. → Liquid fuel was rapidly vaporized with the use of hot narrow channel walls that eliminated the need of a fuel atomizer. → Maximum power density of the combustor was estimated to be about 8.5 GW/m3 and heat load in the range of 50-280W. → Overall efficiency of the combustor was estimated in the range of 12 to 20%. - Abstract: Combustion in small scale devices poses significant challenges due to the quenching of reactions from wall heat losses as well as the significantly reduced time available for mixing and combustion. In the case of liquid fuels there are additional challenges related to atomization, vaporization and mixing with the oxidant in the very short time-scale liquid-fuel combustor. The liquid fuel employed here is methanol with air as the oxidizer. The combustor was designed based on the heat recirculating concept wherein the incoming reactants are preheated by the combustion products through heat exchange occurring via combustor walls. The combustor was fabricated from Zirconium phosphate, a ceramic with very low thermal conductivity (0.8 W m -1 K -1 ). The combustor had rectangular shaped double spiral geometry with combustion chamber in the center of the spiral formed by inlet and exhaust channels. Methanol and air were introduced immediately upstream at inlet of the combustor. The preheated walls of the inlet channel also act as a pre-vaporizer for liquid fuel which vaporizes the liquid fuel and then mixes with air prior to the fuel-air mixture reaching the combustion chamber. Rapid pre-vaporization of the liquid fuel by the hot narrow channel walls eliminated the necessity for a fuel atomizer. Self-sustained combustion of methanol-air was achieved in a chamber volume as small as 32.6 mm 3

  11. The mechanism of pulsating aurora

    International Nuclear Information System (INIS)

    Johnstone, A.D.

    1983-01-01

    New measurement using ground-based techniques, sounding-rockets and geostationary satellites show that pulsating aurora is almost certainly caused by a modulation of the precipitating electron beam. The modulation is probably imposed near the magnetic equator by an interaction with ELF waves which are observed to be modulated at the same frequency. The measured wave intensity is not strong enough to cause pulsations by variation of the rate of pitch angle diffusion so it is suggested that the pulsation is caused by a coherent interaction involving the generation of ELF chorus. The periodicity arises because the chorus is shut-off after approximately half a bounce period when the increased rate of precipitation removes most of the resonant electrons. The supply is then replenished by pitch angle diffusion

  12. Chaos in an imperfectly premixed model combustor.

    Science.gov (United States)

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  13. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  14. TV morphology of some episodes of pulsating auroras

    International Nuclear Information System (INIS)

    Vallance Jones, A.; Gattinger, R.L.

    1981-01-01

    Sets of all-sky TV images of pulsating auroras obtained during the displays through which the sounding rockets of the Pulsating Aurora Campaign were fired are presented and discussed. It is emphasized that these displays are considerably more complex and variable than might seem to be the case on the basis of zenith photometer records. The pulsation modulation pattern was observed to be travelling westward during the first flight; later in the same display this apparent motion ceased. For the second flight the pulsation modulation pattern was almost stationary. (auth)

  15. Musical scale estimation for some multiperiodic pulsating stars

    Science.gov (United States)

    Ulaş, B.

    2009-03-01

    The agreement between frequency arrangements of some multiperiodic pulsating stars and musical scales is investigated in this study. The ratios of individual pulsation frequencies of 28 samples of various types of pulsating stars are compared to 57 musical scales by using two different methods. The residual sum of squares of stellar observational frequency ratios is chosen as the indicator of the accordance. The result shows that the arrangements of pulsation frequencies of Y Cam and HD 105458 are similar to Diminished Whole Tone Scale and Arabian(b) Scale, respectively.

  16. Diffuse interfacelets in transcritical flows of propellants into high-pressure combustors

    Science.gov (United States)

    Urzay, Javier; Jofre, Lluis

    2017-11-01

    Rocket engines and new generations of high-power jet engines and diesel engines oftentimes involve the injection of one or more reactants at subcritical temperatures into combustor environments at high pressures, and more particularly, at pressures higher than those corresponding to the critical points of the individual components of the mixture, which typically range from 13 to 50 bars for most propellants. This class of trajectories in the thermodynamic space has been traditionally referred to as transcritical. Under particular conditions often found in hydrocarbon-fueled chemical propulsion systems, and despite the prevailing high pressures, the flow in the combustor may contain regions close to the injector where a diffuse interface is formed in between the fuel and oxidizer streams that is sustained by surface-tension forces as a result of the elevation of the critical pressure of the mixture. This talk describes progress towards modeling these effects in the conservation equations. Funded by the US Department of Energy.

  17. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  18. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    Energy Technology Data Exchange (ETDEWEB)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young [Environment and Energy Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2016-12-15

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor.

  19. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    International Nuclear Information System (INIS)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young

    2016-01-01

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor

  20. Combustion of alternative fuels in vortex trapped combustor

    International Nuclear Information System (INIS)

    Ghenai, Chaouki; Zbeeb, Khaled; Janajreh, Isam

    2013-01-01

    Highlights: ► We model the combustion of alternative fuels in trapped vortex combustor (TVC). ► We test syngas and hydrogen/hydrocarbon mixture fuels. ► We examine the change in combustion performance and emissions of TVC combustor. ► Increasing the hydrogen content of the fuel will increase the temperature and NO x emissions. ► A high combustor efficiency is obtained for fuels with different compositions and LHV. - Abstract: Trapped vortex combustor represents an efficient and compact combustor for flame stability. Combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel–air stream. Computational Fluid Dynamics analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthetic gas (syngas). The flame temperature, the flow field, and species concentrations inside the Vortex Trapped Combustor were obtained. The results show that hydrogen enriched hydrocarbon fuels combustion will result in more energy, higher temperature (14% increase when methane is replaced with hydrogen fuels) and NO x emissions, and lower CO 2 emissions (50% decrease when methane is replaced with methane/hydrogen mixture with 75% hydrogen fraction). The NO x emission increases when the fraction of hydrogen increases for methane/hydrogen fuel mixture. The results also show that the flame for methane combustion fuel is located in the primary vortex region but it is shifted to the secondary vortex region for hydrogen combustion.

  1. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad; Masri, Assaad Rachid

    2014-01-01

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable

  2. Pulsations in white dwarf stars

    OpenAIRE

    Van Grootel, Valérie; Fontaine, Gilles; Brassard, Pierre; Dupret, Marc-Antoine

    2017-01-01

    I will present a description of the six distinct families of pulsating white dwarfs that are currently known. Pulsations are present at various stages of the evolution (from hot, pre-white dwarfs to cool white dwarfs), at various stellar masses, and for various atmospheric compositions. In all of them, a mechanism linked to opacity changes along the evolution drives the oscillations. The existence of these oscillations offers the opportunity to apply asteroseismology for constraining physics ...

  3. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  4. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  5. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  6. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  7. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1989-01-01

    A general review of the pulsating δ Scuti variables is given including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Three models of these stars are discussed and used to study the nonlinear hydrodynamic behavior of these stars. The hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions are outlined. Problems of allowing for time-dependent convection and its great sensitivity to temperature and density are presented. Tentative results to date do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. It is found that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. 15 refs., 8 figs., 3 tabs

  8. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  9. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  10. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  11. Pulsations of the R Coronae Borealis stars

    International Nuclear Information System (INIS)

    Cox, J.P.; King, D.S.; Cox, A.N.; Wheeler, J.C.; Hansen, C.J.; Hodson, S.W.

    1980-01-01

    The radial pulsations of very luminous, low-mass models (L/M approx. 10 4 , solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. There are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars

  12. Optimal combustor dimensions for the catalytic combustion of methane-air mixtures in micro-channels

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The effect of combustor dimensions on the combustion stability was elucidated. • Wall thermal properties are important for optimizing combustor dimensions. • The optimal wall thickness increases with flow velocity. • The optimal combustor length depends on the wall thermal conductivity. • Stability diagrams were constructed and design recommendations were made. - Abstract: This paper addresses the question of choosing appropriate combustor dimensions for the self-sustained catalytic combustion in parallel plate micro-channels. The combustion characteristics and stability of methane-air mixtures over platinum in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of gap size, wall thickness, and combustor length on the combustion stability and combustor performance were explored to provide guidelines for optimal design of combustor dimensions. Combustion stability diagrams were constructed, and design recommendations were made. The effect of wall thermal conductivity on the mechanisms of extinction and blowout, and its implications on optimal combustor geometry were studied. It was shown that combustor dimensions are vital in determining the combustion stability of the system. The choice of appropriate combustor dimensions is crucial in achieving stable combustion, due to a rather narrow operating space determined by stability, material, and conversion constraints. The optimal gap size depends on whether the flow velocity or flow rate is kept constant. For most practical wall materials in the range of metals to highly conductive ceramics, larger combustors are more stable at a fixed flow velocity, whereas smaller combustors are recommended for a fixed flow rate at the expense of hot spots. The optimal wall thickness increases with flow velocity. Higher flow velocities can be sustained in combustors with low-conductivity materials using

  13. Development of a catalytically assisted combustor for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Yasushi; Fujii, Tomoharu; Sato, Mikio [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-01 (Japan); Kanazawa, Takaaki; Inoue, Hitoshi [Kansai Electric Power Company, Inc., 3-11-20 Nakoji, Amagasaki, Hyoho 661 (Japan)

    1999-01-01

    A catalytically assisted low NO{sub x} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NO{sub x}, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that NO{sub x} emission was lower than 10ppm converted at 16% O{sub 2}, combustion efficiency was almost 100% at 1300C of combustor outlet temperature and 13.5ata of combustor inlet pressure

  14. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  15. Double throat pressure pulsation dampener for oil-free screw compressors

    Science.gov (United States)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  16. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  17. Compressional Pc5 type pulsations in the morningside plasma sheet

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A.; Baumjohann, W.; Haerendel, G.; Nakamura, R.; Kucharek, H.; Klecker, B. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Lessard, M.R. [Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering; Kistler, L.M. [New Hampshire Univ., Durham (United States). Space Science Center; Mukai, T.; Nishida, A. [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-03-01

    We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 R{sub E}, close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000-1700 UT on 9 March 1998, and 0200-0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode), and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations. (orig.)

  18. Design and fabrication of a 50 MWt prototypical MHD coal-fired combustor

    International Nuclear Information System (INIS)

    Albright, J.; Braswell, R.; Listvinsky, G.; McAllister, M.; Myrick, S.; Ono, D.; Thom, H.

    1992-01-01

    A prototypical 50 MWt coal-fired combustor has been designed and fabricated as part of the Magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) Program. This is a DOE-funded program to develop a prototypical MHD power train to be tested at the Component Development and Integration Facility (CDIF) in Butte, Montana. The prototypical combustor is an outgrowth of the 50 MWt workhorse combustor which has previously been tested at the CDIF. In addition to meeting established performance criteria of the existing 50 MWt workhorse combustor, the prototypical combustor design is required to be scaleable for use at the 250 MWt retrofit level. This paper presents an overview of the mechanical design of the prototypical combustor and a description of its fabrication. Fabrication of the 50 MWt prototypical coal-fired combustor was completed in February 1992 and hot-fire testing is scheduled to begin in May 1992

  19. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  20. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  1. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  2. Simulation of the flow inside an annular can combustor

    OpenAIRE

    Alqaraghuli, W; Alkhafagiy, D; Shires, A

    2014-01-01

    In the gas turbine combustion system, the external flows in annuli play one of the key roles in controlling pressure loss, air flow distribution around the combustor liner, and the attendant effects on performance, durability, and stability.  This paper describes a computational fluid dynamics (CFD) simulation of the flow in the outer annulus of a can combustor. Validating this simulation was done with experimental results obtained from analyzing the flow inside a can combustor annulus that w...

  3. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  4. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  5. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  6. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  7. Linear radial pulsation theory. Lecture 5

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  8. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  9. The ionospheric signature of Pi 2 pulsations observed by STARE

    International Nuclear Information System (INIS)

    Sutcliffe, P.R.; Nielsen, E.

    1992-01-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 degree phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere

  10. Mass loss and cepheid pulsation

    International Nuclear Information System (INIS)

    Davis, C.G. Jr.

    1977-01-01

    Two purposes are served: to discuss the latest improvements in nonlinear pulsation theory indicating the ability to resolve features such as the ''Christy bump'' on the light curves and to show from the results of a bump model and recent observations that mass loss is one of the possible explanations for the mass discrepancy problem between evolutionary and pulsation theories. Recent observations by Sanford and Gow of Los Alamos and Bernat (McDonald Observatory) show that extensive mass loss has occurred in the evolution of the M supergiant α Orionis

  11. DART Core/Combustor-Noise Initial Test Results

    Science.gov (United States)

    Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.

  12. Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors

    Directory of Open Access Journals (Sweden)

    T. M. Muruganandam

    2012-03-01

    Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.

  13. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  14. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2001-03-01

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  15. Photometric Survey to Search for Field sdO Pulsators

    Science.gov (United States)

    Johnson, C.; Green, E.; Wallace, S.; O'Malley, C.; Amaya, H.; Biddle, L.; Fontaine, G.

    2014-04-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011) of four rapidly pulsating sdO stars in the globular cluster ω Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in ω Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the ω Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  16. Design Optimization of a Micro-Combustor for Lean, Premixed Fuel-Air Mixtures

    Science.gov (United States)

    Powell, Leigh Theresa

    Present technology has been shifting towards miniaturization of devices for energy production for portable electronics. Micro-combustors, when incorporated into a micro-power generation system, provide the energy desired in the form of hot gases to power such technology. This creates the need for a design optimization of the micro-combustor in terms of geometry, fuel choice, and material selection. A total of five micro-combustor geometries, three fuels, and three materials were computationally simulated in different configurations in order to determine the optimal micro-combustor design for highest efficiency. Inlet velocity, equivalence ratio, and wall heat transfer coefficient were varied in order to test a comprehensive range of micro-combustor parameters. All simulations completed for the optimization study used ANSYS Fluent v16.1 and post-processing of the data was done in CFD Post v16.1. It was found that for lean, premixed fuel-air mixtures (φ = 0.6 - 0.9) ethane (C 2H6) provided the highest flame temperatures when ignited within the micro-combustor geometries. An aluminum oxide converging micro-combustor burning ethane and air at an equivalence ratio of 0.9, an inlet velocity of 0.5 m/s, and heat transfer coefficient of 5 W/m2-K was found to produce the highest combustor efficiency, making it the optimal choice for a micro-combustor design. It is proposed that this geometry be experimentally and computationally investigated further in order to determine if additional optimization can be achieved.

  17. The history and development of nonlinear stellar pulsation codes

    International Nuclear Information System (INIS)

    Davis, C.G.

    1987-01-01

    This review is limited to the history and development of nonlinear stellar pulsation codes and methods. The narrative includes examples of practical interest in the application of these numerical methods to problems in stellar pulsation such as Cepheid mass discrepancy, the delineation of the RR Lyrae instability strip, and the question of the development of double-mode pulsation as observed in Cepheids, RR Lyrae and other variable stars. 15 refs

  18. A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph

    2015-01-01

    In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.

  19. Experimental study on premixed CH{sub 4}/air mixture combustion in micro Swiss-roll combustors

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bei-Jing; Wang, Jian-Hua [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2010-12-15

    Excess enthalpy combustion is a promising approach to stabilize flame in micro-combustors. Using a Swiss-roll combustor configuration, excess enthalpy combustion can be conveniently achieved. In this work, three types of Swiss-roll combustors with double spiral-shaped channels were designed and fabricated. The combustors were tested using methane/air mixtures of various equivalence ratios. Both temperature distributions and extinction limits were determined for each combustor configuration at different methane mass flow rates. Results indicate that the Swiss-roll combustors developed in the current study greatly enhance combustion stability in center regions of the combustors. At the same time, excess enthalpy combustors of the Swiss-roll configuration significantly extend the extinction limits of methane/air mixtures. In addition, the effects of combustor configurations and thermal insulation arrangements on temperature distributions and extinction limits were evaluated. With heat losses to the environment being significant, the use of thermal insulations further enhances the flame stability in center regions of the Swiss-roll combustors and extends flammable ranges. (author)

  20. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  1. Alternate-Fueled Combustor-Sector Performance—Part A: Combustor Performance and Part B: Combustor Emissions

    OpenAIRE

    Shouse, D. T.; Neuroth, C.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, Capt. T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F or ASTM D 7566 standards, respectively, and are classified as “drop-in’’ fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are acceptable. Adherence to alternate fuels and fuel blends requires “smart fueling systems’’ or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements...

  2. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  3. Flame stabilization and mixing characteristics in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Bobba, Mohan K.

    A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF

  4. First Kepler results on compact pulsators - V. Slowly pulsating subdwarf B stars in short-period binaries

    DEFF Research Database (Denmark)

    Kawaler, Stephen D.; Reed, Michael D.; Østensen, Roy H.

    2010-01-01

    of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear......The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for non-radial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical...... evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings...

  5. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  6. Variable volume combustor with nested fuel manifold system

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  7. Estimating the uncertainty in thermochemical calculations for oxygen-hydrogen combustors

    Science.gov (United States)

    Sims, Joseph David

    The thermochemistry program CEA2 was combined with the statistical thermodynamics program PAC99 in a Monte Carlo simulation to determine the uncertainty in several CEA2 output variables due to uncertainty in thermodynamic reference values for the reactant and combustion species. In all, six typical performance parameters were examined, along with the required intermediate calculations (five gas properties and eight stoichiometric coefficients), for three hydrogen-oxygen combustors: a main combustor, an oxidizer preburner and a fuel preburner. The three combustors were analyzed in two different modes: design mode, where, for the first time, the uncertainty in thermodynamic reference values---taken from the literature---was considered (inputs to CEA2 were specified and so had no uncertainty); and data reduction mode, where inputs to CEA2 did have uncertainty. The inputs to CEA2 were contrived experimental measurements that were intended to represent the typical combustor testing facility. In design mode, uncertainties in the performance parameters were on the order of 0.1% for the main combustor, on the order of 0.05% for the oxidizer preburner and on the order of 0.01% for the fuel preburner. Thermodynamic reference values for H2O were the dominant sources of uncertainty, as was the assigned enthalpy for liquid oxygen. In data reduction mode, uncertainties in performance parameters increased significantly as a result of the uncertainties in experimental measurements compared to uncertainties in thermodynamic reference values. Main combustor and fuel preburner theoretical performance values had uncertainties of about 0.5%, while the oxidizer preburner had nearly 2%. Associated experimentally-determined performance values for all three combustors were 3% to 4%. The dominant sources of uncertainty in this mode were the propellant flowrates. These results only apply to hydrogen-oxygen combustors and should not be generalized to every propellant combination. Species for

  8. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  9. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  10. Pulsating star research and the Gaia revolution

    Science.gov (United States)

    Eyer, Laurent; Clementini, Gisella; Guy, Leanne P.; Rimoldini, Lorenzo; Glass, Florian; Audard, Marc; Holl, Berry; Charnas, Jonathan; Cuypers, Jan; Ridder, Joris De; Evans, Dafydd W.; de Fombelle, Gregory Jevardat; Lanzafame, Alessandro; Lecoeur-Taibi, Isabelle; Mowlavi, Nami; Nienartowicz, Krzysztof; Riello, Marco; Ripepi, Vincenzo; Sarro, Luis; Süveges, Maria

    2017-09-01

    In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  11. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study

    International Nuclear Information System (INIS)

    Bhadelia, R.A.; Bogdan, A.R.; Kaplan, R.F.; Wolpert, S.M.

    1997-01-01

    Our purpose in this investigation was to explain the heterogeneity in the cerebrospinal fluid (CSF) flow pulsation amplitudes. To this end, we determined the contributions of the cerebral arterial and jugular venous flow pulsations to the amplitude of the CSF pulsation. We examined 21 healthy subjects by cine phase-contrast MRI at the C2-3 disc level to demonstrate the CSF and vascular flows as waveforms. Multiple regression analysis was performed to calculate the contributions of (a) the arterial and venous waveform amplitudes and (b) the delay between the maximum systolic slopes of the arterial and venous waveforms (AV delay), in order to predict the amplitude of the CSF waveform. The contribution of the arterial waveform amplitude was positive (r = 0.61; p 0.003) to the CSF waveform amplitude and that of the venous waveform amplitude was negative (r = -0.50; p = 0.006). Both in combination accounted for 56 % of the variance in predicting the CSF waveform amplitude (p < 0.0006). The contribution of AV delay was not significant. The results show that the variance in the CSF flow pulsation amplitudes can be explained by concurrent evaluation of the CSF and vascular flows. Improvement in the techniques, and controlled experiments, may allow use of CSF flow pulsation amplitudes for clinical applications in the non-invasive assessment of intracranial dynamics by MRI. (orig.). With 3 figs., 2 tabs

  12. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  13. Pulsational instabilities in hot pre-horizontal branch stars

    Directory of Open Access Journals (Sweden)

    Battich Tiara

    2017-01-01

    Full Text Available The ϵ mechanism is a self-excitation mechanism of pulsations which acts on the regions where nuclear burning takes place. It has been shown that the ϵ mechanism can excite pulsations in models of hot helium-core flash, and that the pulsations of LS IV-14· 116, a He-enriched hot subdwarf star, could be explained that way. We aim to study the ϵmechanism effects on models of hot pre-horizontal branch stars and determine, if possible, a domain of instability in the log g — log Teff plane. We compute non-adiabatic non-radial pulsations on such stellar models, adopting different values of initial chemical abundances and mass of the hydrogen envelope at the time of the main helium flash. We find an instability domain of long-period (400 s ≲ P ≲ 2500 s g-modes for models with 22000K ≲ Teff ≲ 50000K and 4.67 ≲ log g ≲ 6.15.

  14. Linear nonradial pulsation theory. Lecture 7

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Many of the upper main-sequence stars pulsate in spheroidal nonradial modes. We know this to be true in numerous cases, as we have tabulated for the #betta# Cephei and delta Scuti variables in previous lectures. However, we cannot identify the actual mode for any star except for the low-order pressure p and f modes of our sun. It remains a great challenge to clearly state what really is occurring, in the process we learn more about how stars evolve and pulsate

  15. Recent developments in pulsating aurora studies

    International Nuclear Information System (INIS)

    Sandahl, I.

    1985-11-01

    The field of pulsating aurora studies is reviewed. The paper begins with a short description of the characteristics of pulsating auroras and the theoretical ideas which, in view of existing experimental results, seem most important. A selection of new theoretical results and experimental results from both ground based instruments and instruments on rockets and satellites is then presented. There is now convincing evidence that the luminosity modulation is caused by a modulated flux of electron. The electron flux modulation seems to arise from a modulated resonant interaction between electrons and whistler mode waves in the equatorial plane, but the reason for the modulation is not known. Measurements concerning the drift and location of patches and the creation of Pi1 micropulsations are also deiscussed. Finally some suggestions for future research work are outlined. Optical measurements, especially with low light level TV, have proven to be of great importance in experimental studies of pulsating auroras. (author)

  16. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  17. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    DEFF Research Database (Denmark)

    Reed, M.D.; Kawaler, Stephen D.; Østensen, Roy H.

    2010-01-01

    1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p...

  18. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  19. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  20. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  1. Pulsating star research and the Gaia revolution

    Directory of Open Access Journals (Sweden)

    Eyer Laurent

    2017-01-01

    Full Text Available In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  2. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  3. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  4. Variable volume combustor with an air bypass system

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  5. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    Rana, Uttam; Chakraborty, Suman; Som, S.K.

    2014-01-01

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  6. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  7. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  8. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  9. Variable volume combustor with aerodynamic support struts

    Science.gov (United States)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  10. Treatment for meibomian gland dysfunction and dry eye symptoms with a single-dose vectored thermal pulsation: a review.

    Science.gov (United States)

    Blackie, Caroline A; Carlson, Alan N; Korb, Donald R

    2015-07-01

    Meibomian gland dysfunction (MGD) is understood to be a highly prevalent, chronic progressive disease and the leading cause of dry eye. All available published peer-reviewed results of the novel vectored thermal pulsation therapy for patients with MGD are investigated. The PubMed and meeting abstract search revealed a total of 31 peer-reviewed reports on vectored thermal pulsation therapy at the time of the search (eight manuscripts and 23 meeting abstracts). All manuscripts evidence a significant increase in meibomian gland function (∼3×) and symptom improvement post a single 12-min treatment. Additional reported objective measures such as osmolarity, tear break-up time, or lipid layer thickness also increased as a result of the therapy; however, not all findings were statistically significant. The randomized controlled studies evidence sustained gland function and symptom relief lasting out to 12 months. The uncontrolled case series evidence significantly longer duration of effect. A single 12 minute vectored thermal pulsation treatment allows for reducing dry eye symptoms, improving meibomian gland function and other correlates of the ocular surface health.

  11. Period--luminosity--color relations and pulsation modes of pulsating variable stars

    International Nuclear Information System (INIS)

    Breger, M.; Bregman, J.N.

    1975-01-01

    The periods of delta Scuti, RR Lyrae, dwarf Cepheid, and W Virginis variables have been investigated for their dependence on luminosity, color, mass, and pulsation modes. A maximum-likelihood method, which includes consideration of the observational errors in each coordinate, has been applied to obtain observational period-luminosity-color (P-L-C) relations

  12. Photometric study of the pulsating, eclipsing binary OO DRA

    International Nuclear Information System (INIS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-01-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  13. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  14. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  15. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  16. The Cepheid mass discrepancy and pulsation-driven mass loss

    NARCIS (Netherlands)

    Neilson, H.R.; Cantiello, M.; Langer, N.

    2011-01-01

    Context. A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10−20%. Aims. We study the role of pulsation-driven mass loss

  17. White dwarf evolution - Cradle-to-grave constraints via pulsation

    International Nuclear Information System (INIS)

    Kawaler, S.D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge. 44 refs

  18. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    Science.gov (United States)

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  19. A Pulsation Mechanism for GW Virginis Variables

    Science.gov (United States)

    Cox, Arthur N.

    2003-03-01

    The mechanism that produces pulsations in the hottest pre-white dwarfs has been uncertain since the early work indicated that helium is a poison that smooths opacity bumps in the opacity-temperature plane caused by the ionizations of the large observed amounts of carbon and oxygen. Very little helium seemed to be needed to prevent the kappa effect pulsation driving, but helium amounts of almost half of the mass in the surface composition are observed in the pulsating PG 1159-035 stars called the GW Virginis variables. Rather little change in the C and O surface abundances is observed from the hottest (RX J2117.1+3412 at 170,000 K) to the coolest (PG 0122+200 at 80,000 K) GW Vir variables. Actually the shortest observed periods (300-400 s) of these variables are generally predicted to be unstable in all models, but the longest observed periods (up to 1000 s) are difficult to excite. Three recent investigations differ in their conclusions, with two finding that helium and even a slight amount of hydrogen does not prevent the kappa effect of C and O ionizations. A more detailed study reported here confirms the poisoning effect of helium. However, the ionization K- and L-edge opacity of the original iron, whose global abundance is unaffected by all previous evolution, especially if enhanced by radiation absorption levitation, can give different, previously unexplored, opacity driving that can explain the observed pulsations. But even this iron ionization driving can be somewhat poisoned by bump smoothing if the C and O abundances are large. Nonvariable GW Vir stars in the observed instability strip could be the result of small composition variations in the pulsation driving layers.

  20. Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations

    Science.gov (United States)

    Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.

    2018-05-01

    In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.

  1. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  2. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C D [DRA, Farnborough (United Kingdom)

    1998-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  3. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  4. On the pulsation modes and masses of RGB OSARGs

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available OSARG (OGLE Small Amplitude Red Giants variables are RGB or AGB stars that show multi-periodic light variations with periods of about 10-100 days. Comparing linear nonadiabatic pulsation periods and period ratios with observed ones, we determined pulsation modes and masses of the RGB OSARG variables in the LMC. We found that pulsations of OSARGs involve radial 1st to 3rd overtones, p4 of l = 1, and p2 of l = 2 modes. The range of mass isfound to be 0.9-1.4M⊙ for RGB OSARGs and their mass-luminosity relation is logL/L⊙ = 0.79 M/M⊙ + 2.2.

  5. Laser-based investigations in gas turbine model combustors

    Science.gov (United States)

    Meier, W.; Boxx, I.; Stöhr, M.; Carter, C. D.

    2010-10-01

    Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field-flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.

  6. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    rotor leading edge suggest that the circumference variation is little (7%) as compared to its variation in time as the pulse progresses. The primary aim of this paper is to investigate the relationship of the turbine speed, as well as the pulsating flow frequency to its performance. It was found that there are no direct instantaneous relationship between the pulsating pressure at the turbine inlet and the turbine efficiency, except when one considers an additional parameter, namely the incidence angle. This paper also intends to investigate the potential loss of information if the performance parameters are simply averaged without considering the instantaneous effects

  7. First Kepler results on compact pulsators - II. KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    DEFF Research Database (Denmark)

    Kawaler, Stephen; Reed, M.D.; Quint, A.C.

    2010-01-01

    We present the discovery of non-radial pulsations in a hot subdwarf B star based on 30.5 d of nearly continuous time series photometry using the Kepler spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes...... whose periods range from 130 to 190 s. It also shows one periodicity at a period of 3165 s. If this periodicity is a high-order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light...... are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion....

  8. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  9. Pulsations of stellar models in H and He burning phases

    Energy Technology Data Exchange (ETDEWEB)

    Gurm, H S; Sukhija, H M; Badalia, J K [Punjabi Univ., Patalia (India). Dept. of Astronomy and Space Sciences

    1983-02-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of ..beta.. Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram.

  10. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  11. Effect of inlect swirl on the convergence behavior of a combustor flow computation algorithm

    International Nuclear Information System (INIS)

    Shyy, W.; Braaten, M.E.; Hwang, T.H.

    1987-01-01

    The flow in a single sector of gas-turbine combustor with dilution holes has been studied numerically. It is found that there are some distinctive differences between the numerical behavior of the solution algorithm for combusting and noncombusting flows in a single-cup gas turbine combustor enclosed by four-sided solid walls. With the use of an iterative solution procedure and the standard κ-ε turbulence model, converged steady-state solutions are obtained for noncombusting flows with or without the presence of swirl of dilution jets. However, for the combusting flows, the interaction between the strength of the swirl ratio and the jet-to-main flow velocity ratio affects the ability of the algorithm to achieve a converged steady-state solution. Increasing inlet swirl causes the flow field to oscillate as the iterations progress, and to fail to reach a steady-state solution, while increasing the flow through the dilution jets helps achieve a steady-state solution. The above phenomena are not observed for the flows with periodic boundary conditions along two side planes

  12. Driving and damping mechanisms in hybrid pressure-gravity modes pulsators

    Energy Technology Data Exchange (ETDEWEB)

    Dupret, M A [Observatoire de Paris, LESIA, CNRS UMR 8109, 5 place J. Janssen, 92195 Meudon (France); Miglio, A; Montalban, J; Noels, A [Institut d' Astrophysique et Geophysique, Universite de Liege (Belgium); Grigahcene, A [CRAAG - Algiers Observatory BP 63 Bouzareah 16340, Algiers (Algeria)], E-mail: MA.dupret@obspm.fr

    2008-10-15

    We study the energetic aspects of hybrid pressure-gravity modes pulsations. The case of hybrid {beta} Cephei-SPB pulsators is considered with special attention. In addition to the already known sensitivity of the driving mechanism to the heavy elements mixture (mainly the iron abundance), we show that the characteristics of the propagation and evanescent regions play also a major role, determining the extension of the stable gap in the frequency domain between the unstable low order pressure and high order gravity modes. Finally, we consider the case of hybrid {delta} Sct-{gamma} Dor pulsators.

  13. Modelling of temperature distribution and temperature pulsations in elements of fast breeder reactor

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Bogoslovskaia, G.P.; Ushakov, P.A.; Zhukov, A.V.; Ivanov, Eu.F.; Matjukhin, N.M.

    2004-01-01

    From thermophysical point of view, integrated configuration of liquid metal cooled reactor has some limitations. Large volume of mixing chamber causes a complex behavior of thermal hydraulic characteristics in such facilities. Also, this volume is responsible for large-scale eddies in the coolant, existence of stagnant areas and flow stratification, occurrence of temperature non-uniformity and pulsation of coolant and structure temperatures. Temperature non-uniformities and temperature pulsations depend heavily even on small variations in reactor core design. The paper presents some results on modeling of thermal hydraulic processes occurring in liquid metal cooled reactor. The behavior of following parameters are discussed: temperature non-uniformities at the core output and related temperature pulsations; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation at the core output and related temperature pulsation; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation of temperature during transients and during transition to natural convection cooling. Also, the issue of modeling of temperature behavior in compact arrangement of fast reactor fuel pins using water as modeling liquid is considered in the paper. One more discussion is concerned with experimental method of modeling of liquid metal mixing with the use of air. The method is based on freon tracer technique. The results of simulation of the thermal hydraulic processes mentioned above have been analyzed, that will allow the main lines of the study to be determined and conclusion to be drawn regarding the temperature behavior in fast reactor units. (author)

  14. The effect of inlet conditions on lean premixed gas turbine combustor performance

    Science.gov (United States)

    Vilayanur, Suresh Ravi

    The combustion community is today faced with the goal to reduce NOx at high efficiencies. This requirement has directed attention to the manner by which air and fuel are treated prior to and at the combustor inlet. This dissertation is directed to establishing the role of combustor inlet conditions on combustor performance, and to deriving an understanding of the relationship between inlet conditions and combustion performance. To investigate the complex effect of inlet parameters on combustor performance, (1) a test facility was designed and constructed, (2) hardware was designed and fabricated, (3) a statistically based technique was designed and applied, and (4) detailed in-situ measurements were acquired. Atmospheric tests were performed at conditions representative of industrial combustors: 670 K inlet preheat and an equivalence ratio of 0.47, and make the study immediately relevant to the combustion community. The effects of premixing length, fuel distribution, swirl angle, swirl vane thickness and swirl solidity were investigated. The detailed in-situ measurements were performed to form the database necessary to study the responsible mechanisms. A host of conventional and advanced diagnostics were used for the investigation. In situ measurements included the mapping of the thermal and velocity fields of the combustor, obtaining species concentrations inside the combustor, and quantifying the fuel-air mixing entering the combustor. Acoustic behavior of the combustor was studied, including the application of high speed videography. The results reveal that the principal statistically significant effect on NOx production is the inlet fuel distribution, and the principal statistically significant effect on CO production is the swirl strength. Elevated levels of NOx emission result when the fuel is weighted to the centerline. Eddies shedding off the swirler hub ignite as discrete packets, and due to the elevated concentrations of fuel, reach higher temperatures

  15. A statistical method for draft tube pressure pulsation analysis

    International Nuclear Information System (INIS)

    Doerfler, P K; Ruchonnet, N

    2012-01-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  16. Stellar Pulsations, Impact of New Instrumentation and New Insights

    CERN Document Server

    Garrido, R; Balona, L; Christensen-Dalsgaard, J; 20th Stellar Pulsation Conference Series

    2013-01-01

    Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

  17. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  18. The pollution reduction technology program for can-annular combustor engines - Description and results

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L.

    1976-01-01

    Pollutant reduction and performance characteristics were determined for three successively more advanced combustor concepts. Program Element I consisted of minor modifications to the current production JT8D combustor and fuel system to evaluate means of improved fuel preparation and changes to the basic airflow distribution. Element II addressed versions of the two-staged Vorbix (vortex burning and mixing) combustor and represented a moderate increase in hardware complexity and difficulty of development. The concept selected for Element III employed vaporized fuel as a means of achieving minimum emission levels and represented the greatest difficulty of development and adaptation to the JT8D engine. Test results indicate that the Element I single-stage combustors were capable of dramatic improvement in idle pollutants. The multistage combustors evaluated in Program Elements II and III simultaneously reduced CO, THC and NOx emissions, but were unable to satisfy the current 1979 EPA standards.

  19. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  20. Pulsations of stellar models in H and He burning phases

    International Nuclear Information System (INIS)

    Gurm, H.S.; Sukhija, H.M.; Badalia, J.K.

    1983-01-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of #betta# Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram. (orig.)

  1. Doubling the number of pulsating DB white dwarfs

    International Nuclear Information System (INIS)

    Nitta, Atsuko; Kleinman, S J; Krzenski, J; Kepler, S O; Metcalfe, T S; Mukadam, Anjum S; Mullally, F; Nather, R E; Winget, D E; Sullivan, D; Thompson, Susan E

    2009-01-01

    We are searching for new pulsating DB white dwarf stars (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, DAVs or ZZ Ceti stars. Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. At the time of the meeting, we reported on the nine new DBVs, doubling the number of previously known DBVs. Here we report the new nine pulsators' lightcurves and power spectra.

  2. Thermo-acoustic cross-talk between cans in a can-annular combustor

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.

    2017-01-01

    Thermo-acoustic instabilities in gas turbine engines are studied to avoid engine failure. Compared to the engines with annular combustors, the can-annular combustor design should be less vulnerable to acoustic burner-to-burner interaction, since the burners are acoustically coupled only by the

  3. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.Q.; Zhao, D.Q.; Guo, C.M.; Wang, X.H. [Key Laboratory of Renewable Energy and Gas Hydrate, CAS, Guangzhou Institute of Energy Conversion of CAS, Guangzhou 510640 (China)

    2011-01-15

    A centimeter magnitude thermoelectric (TE) power generation system based on a plat-flame micro combustor burning DME (dimethyl ether) has been developed. The chamber wall of this micro combustor was made of two parallel sintered porous plates which acted as mixture inlet. The main virtue of this combustor is that it can keep combustor wall at lower temperature for reducing heat loss when sustaining a stable flame. Experimental test results showed it was feasible to obtain stable DME/air premixed flame at lean combustion situations in the micro combustor. The combustion load of this 0.48 cm{sup 3} chamber capacity was 20-200 W at equivalence ratio {phi} = 0.6. Though the flame temperature was above 1000 C, the combustor's wall temperature was near 600 C lower than flame temperature. In the demonstrated TE power generation system which integrated the plat-flame micro combustor, a heat spreader had good effect on uniforming the hot side temperature field of TE modules. Cooled by water and with 150 W input power at {phi} = 0.7, the system produced 10 V output at open circuit and 4 V at 10 {omega} load. The maximum power output was above 2 W, and the maximum overall chemical-electric energy conversion efficiency was 1.25%. (author)

  4. CFD analysis of a scramjet combustor with cavity based flame holders

    Science.gov (United States)

    Kummitha, Obula Reddy; Pandey, Krishna Murari; Gupta, Rajat

    2018-03-01

    Numerical analysis of a scramjet combustor with different cavity flame holders has been carried out using ANSYS 16 - FLUENT tool. In this research article the internal fluid flow behaviour of the scramjet combustor with different cavity based flame holders have been discussed in detail. Two dimensional Reynolds-Averaged Navier-Stokes governing(RANS) equations and shear stress turbulence (SST) k - ω model along with finite rate/eddy dissipation chemistry turbulence have been considered for modelling chemical reacting flows. Due to the advantage of less computational time, global one step reaction mechanism has been used for combustion modelling of hydrogen and air. The performance of the scramjet combustor with two different cavities namely spherical and step cavity has been compared with the standard DLR scramjet. From the comparison of numerical results, it is found that the development of recirculation regions and additional shock waves from the edge of cavity flame holder is increased. And also it is observed that with the cavity flame holder the residence time of air in the scramjet combustor is also increased and achieved stabilized combustion. From this research analysis, it has been found that the mixing and combustion efficiency of scramjet combustor with step cavity design is optimum as compared to other models.

  5. Finding binaries from phase modulation of pulsating stars with Kepler

    Science.gov (United States)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  6. Effects of Burning Alternative Fuel in a 5-Cup Combustor Sector

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, C.-M.; He, Z.; Herbon, J.

    2015-01-01

    A goal of NASA's Environmentally Responsible Aviation (ERA) program is to develop a combustor that will reduce the NOx emissions and that can burn both standard and alternative fuels. To meet this goal, NASA partnered with General Electric Aviation to develop a 5-cup combustor sector; this sector was tested in NASA Glenn's Advanced Subsonic Combustion Rig (ASCR). To verify that the combustor sector was fuel-flexible, it was tested with a 50-50 blend of JP-8 and a biofuel made from the camelina sativa plant. Results from this test were compared to results from tests where the fuel was neat JP-8. Testing was done at three combustor inlet conditions: cruise, 30% power, and 7% power. When compared to burning JP-8, burning the 50-50 blend did not significantly affect emissions of NOx, CO, or total hydrocarbons. Furthermore, it did not significantly affect the magnitude and frequency of the dynamic pressure fluctuations.

  7. Pulsation of high luminosity helium stars

    International Nuclear Information System (INIS)

    King, D.S.; Wheeler, J.C.; Cox, J.P.; Cox, A.N.; Hodson, S.W.

    1979-01-01

    Preliminary calculations are made on a systematic restudy of the linear and nonlinear pulsations of helium stars allowing for more recent and higher estimates of the effective temperature and for the high carbon abundance. Linear and nonlinear models are used. Results show qualitative agreement with earlier ones, models with sufficiently large L/M have a very hot blue edge for their instability strip, very large L/M values lead to dynamically unstable models which would appear to eject mass and therefore may not be realistic models for the pulsating RCrB stars, for the sequence studied a reasonable mass could be greater than or equal to 1.5 Msub solar. 12 references

  8. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  9. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    International Nuclear Information System (INIS)

    Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν  ∼< 10 -11  μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound

  10. Structure of Alpha Virginis. III. The pulsation characteristics

    International Nuclear Information System (INIS)

    Odell, A.P.

    1980-01-01

    Stellar structure models which were generated to match the photometric and binary properties of the B1.5 IV star Spica (α Vir) are analyzed for pulsation characteristics. The pulsation computations were linear and adiabatic and included both radial and nonradial (l=2) motions. Three sets of models were tested: normal evolution using Cox-Steward opacities, normal evolution using opacities increased substantially over Cox-Stewart, and evolution models using Cox-Stewart opacities but with a nonshrinking convective core

  11. Nonradial pulsations of hot evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1987-01-01

    There are three classes of faint blue variable stars: the ZZ Ceti variables (DAV degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DOV degenerate dwarfs). None of these classes of variable stars were known at the time of the last blue star meeting. Observational and theoretical studies of the ZZ Ceti variables, the DBV variables, and the GW Vir variables have shown them to be pulsating in nonradial g-modes. The cause of the pulsation has been determined for each class of variable star and, in all cases, also involves predictions of the stars envelope composition. The predictions are that the ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers with less than 30% (by mass) of helium. Given these compositions, it is found that pulsation driving occurs as a result of the kappa and gamma effects operating in the partial ionization zones of either hydrogen or helium. In addition, a new driving mechanism, called convection blocking, also occurs in these variables. For the GW Vir variables, it is the kappa and gamma effects in the partial ionization regions of carbon and oxygen. 45 refs

  12. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  13. γ DORADUS PULSATIONS IN THE ECLIPSING BINARY STAR KIC 6048106

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo, E-mail: jwlee@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34113 (Korea, Republic of)

    2016-12-20

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ( f {sub 2}– f {sub 6} and f {sub 10}) can be identified as high-order (17 ≤  n  ≤ 25) low-degree ( ℓ  = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352–0.506 days and 0.232–0.333 days, respectively. These values and the position on the Hertzsprung–Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  14. Pulsation properties of Mira long period variables

    International Nuclear Information System (INIS)

    Cahn, J.H.

    1980-01-01

    A matter of great interest to variable star students concerns the mode of pulsation of Mira long period variables. In this report we first give observational evidence for the pulsation constant Q. We then compare the observations with calculations. Next, we review two interesting groups of papers dealing with hydrodynamic properties of long period variables. In the first, a fully dynamic nonlinear calculation maps out the Mira instability domain. In the second, special attention is paid to shock propagation beyond the photosphere which in large measure accounts for the complex spectra from this region. (orig./WL)

  15. GD 154: White dwarf with multi- and monoperiodic pulsation

    Directory of Open Access Journals (Sweden)

    Bognár Zs.

    2013-03-01

    Full Text Available We present the white dwarf GD 154 as an example where either monoperiodic or multiperiodic pulsation were found at different epochs. The mono-multi-monoperiodic stage seems to alternate. Many questions have been raised. Is this behaviour connected to the evolution of DAV stars? How often does it happen? Is there any regularity in this change of the pulsational behaviour or is it irregular?

  16. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery Engineer’s Guidebook for Planning, Design and Troubleshooting

    CERN Document Server

    Dörfler, Peter; Coutu, André

    2013-01-01

    Since the 1970’s, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter­disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects.   Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed  and quantitative data is provided on  normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitatio...

  17. High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    OpenAIRE

    Thompson, Susan E.; Clemens, J. C.; van Kerkwijk, M. H.; Koester, D.

    2003-01-01

    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage ...

  18. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  19. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  20. Theory of auroral zone PiB pulsation spectra

    International Nuclear Information System (INIS)

    Lysak, R.L.

    1988-01-01

    Changes in the auroral zone current system are often accompanied by magnetic pulsations with periods of about 1 s. These so-called bursts of irregular pulsations (PiB) have been observed both on ground magnetograms and with in situ satellite observations. These pulsations can be understood as excitations of a resonant cavity in the topside ionosphere, where the Alfven speed has a strong gradient due to the exponential decrease of density above the ionosphere. These waves have a frequency which scales as the ratio of the Alfven speed at the ionosphere divided by the ionospheric scale height. For a pure exponential Alfven speed profile, the mode frequencies are related to zeros of the zeroth-order Bessel function. For other profiles of the density, and therefore Alfven speed, the frequencies are not exactly given by the simple theory, but the frequency and mode structure are similar provided the Alfven speed sharply increases above the ionosphere

  1. Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Boden, J C; Fuller, J; Styles, A C

    1987-02-18

    A combustor suitable for disposing of lean fuel gas mixtures, e.g. solvent-laden exhaust streams, has a combustion chamber, a heat exchanger comprising a matrix of elongate tubes for supplying lean fuel gas to the combustion chamber and a burner located within the combustion chamber. The burner is adapted to mix fuel gas and the lean fuel gas which enters at an inlet and issues from the elongate tube outlets. The heat exchanger is in an heat exchange relationship with flue gas emerging from the outlet and the combustion chamber. The passage of the flue gases from the combustion chamber over the external surfaces of the tubes of the heat exchanger enables the pre-heating of the lean fuel gas mixture prior to its entry into the combustion chamber.

  2. Optical pulsation from the HZ Her/Her X-1 system

    International Nuclear Information System (INIS)

    Chester, T.J.

    1977-01-01

    A theoretical model for the observed optical pulsation from the x-ray binary HZ Her/Her X-1 is presented. Its foundation is a general computer code for an x-ray illuminated stellar atmosphere. Detailed results are given for several atmospheres applicable to HZ Her. A formalism is developed to calculate the amount of pulsed optical radiation emergent from these atmospheres if they are exposed to pulsed x rays. This formalism is used to calculate the pulsed and unpulsed optical light curves for HZ Her. The calculated optical pulsation agrees with the observed amplitude. A nonuniform x-ray beam can cause the amplitude and velocity of the optical pulsation to vary by more than a factor of two for fixed system parameters. The presence of soft x rays (0.1 to 1 keV) can significantly affect the calculated pulsation amplitude. The model places explicit limits on the system parameters; in particular, if corotation is assumed, 0.8 M/sub sun/ less than or equal to M/sub Her X-1/ less than or equal to 1.7 M/sub sun/

  3. Modulation depth analysis in fast pulsations of solar radio emission

    International Nuclear Information System (INIS)

    Chernov, G.P.; Kurts, Yu.; Akademie der Wissenschaften der DDR, Berlin

    1990-01-01

    A model of millisecond pulsations due to a pulsation regime of a whistler spectrum is confirmed by the statistical analysis of the modulation depth in five type IV bursts; a modulation depth distribution ΔI/I versus the period (p) grows linearly (with the different slope) up to the maximum at the value ΔI/I ≅ 0.5-0.6. The same dependence ΔI/I(p) for spikes, observed during the same events, testifies also in favour of this model. The overlap on fast pulsations of fiber bursts and of sudden reductions are displayed in the ΔI/I(p) distribution by diffuse tails which are naturally explained by the known models of this fine structure

  4. The preliminary design of an annular combustor for a mini gas turbine

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2015-10-01

    Full Text Available This study involves the redesign of the combustor liner for a 200N mini gas turbine engine using first principles and the design methods of the NREC series as shown in Figure 1. The combustor design was performed using five different operating...

  5. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  6. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  7. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  8. Massive B-type pulsators in low-metallicity environments

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2009-07-01

    Massive B-type pulsators such as β Cep and slowly pulsating B (SPB) stars pulsate due to layers of increased opacity caused by partial ionization. The increased opacity blocks the energy flux to the surface of the stars which causes the layers to rise and the opacity to drop. This cyclical behavior makes the star act as a heat engine and the star will thus pulsate. For β Cep and SPB stars the increased opacity is believed to be caused by partial ionization of iron and these stars should therefore contain non-insignificant quantities of the metal. A good test of this theory is to search for β Cep and SPB stars in low-metallicity environments. If no stars are found the theory is supported, but, on the other hand, if a substantial number of β Cep and SPB stars are found in these environments then the theory is not supported and a %solutions solution is needed. With a growing number of identified β Cep and SPB stars in the low-metallicity Magellanic Clouds we seem to be left with the second case. We will in this context discuss recent findings of β Cep and SPB stars in the Magellanic Clouds and some possible solutions to the discrepancy between these observations and the theory. We also describe an ambitious project that we have initiated on the Small Magellanic Cloud open cluster NGC 371 which will help to evaluate these solutions.

  9. Flow effects due to pulsation in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2014-01-01

    Highlights: • Using POD analysis to identify large coherent flow structures in a complex geometry. • Flow field alters significant for constant and pulsating boundary conditions. • The discharge coefficient of the exhaust port decreases 2% with flow pulsation. • Pulsation causes a pumping mechanism due to a phase shift of pressure and momentum. - Abstract: In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the passage guiding the exhaust gasses from the combustion chamber to the energy recovering device, e.g. a turbocharger. Thus, energy losses in the course of transmission shall be reduced as much as possible. However, in one-dimensional engine models used for engine design, the exhaust port is reduced to its discharge coefficient, which is commonly measured under constant inflow conditions neglecting engine-like flow pulsation. In this present study, the influence of different boundary conditions on the energy losses and flow development during the exhaust stroke are analyzed numerically regarding two cases, i.e. using simple constant and pulsating boundary conditions. The compressible flow in an exhaust port geometry of a truck engine is investigated using three-dimensional Large Eddy Simulations (LES). The results contrast the importance of applying engine-like boundary conditions in order to estimate accurately the flow induced losses and the discharge coefficient of the exhaust port. The instantaneous flow field alters significantly when pulsating boundary conditions are applied. Thus, the induced losses by the unsteady flow motion and the secondary flow motion are increased with inflow pulsations. The discharge coefficient decreased about 2% with flow pulsation. A modal flow decomposition method, i.e. Proper Orthogonal Decomposition (POD), is used to analyze the coherent structures induced with the particular

  10. Development of an analytical model to assess fuel property effects on combustor performance

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  11. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  12. Design and evaluation of combustors for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  13. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1984-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. The author discusses the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of the Sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. (Auth.)

  14. Simulation Investigation on Combustion Characteristics in a Four-Point Lean Direct Injection Combustor with Hydrogen/Air

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2017-06-01

    Full Text Available To investigate the combustion characteristics in multi-point lean direct injection (LDI combustors with hydrogen/air, two swirl–venturi 2 × 2 array four-point LDI combustors were designed. The four-point LDI combustor consists of injector assembly, swirl–venturi array and combustion chamber. The injector, swirler and venturi together govern the rapid mixing of hydrogen and air to form the mixture for combustion. Using clockwise swirlers and anticlockwise swirlers, the co-swirling and count-swirling swirler arrays LDI combustors were achieved. Using Reynolds-Averaged Navier–Stokes (RANS code for steady-state reacting flow computations, the four-point LDI combustors with hydrogen/air were simulated with an 11 species and 23 lumped reaction steps H2/Air reaction mechanism. The axial velocity, turbulence kinetic energy, total pressure drop coefficient, outlet temperature, mass fraction of OH and emission of pollutant NO of four-point LDI combustors, with different equivalence ratios, are here presented and discussed. As the equivalence ratios increased, the total pressure drop coefficient became higher because of increasing heat loss. Increasing equivalence ratios also corresponded with the rise in outlet temperature of the four-point LDI combustors, as well as an increase in the emission index of NO EINO in the four-point LDI combustors. Along the axial distance, the EINO always increased and was at maximum at the exit of the dump. Along the chamber, the EINO gradually increased, maximizing at the exit of chamber. The total temperature of four-point LDI combustors with different equivalence ratios was identical to the theoretical equilibrium temperature. The EINO was an exponential function of the equivalence ratio.

  15. Optical pulsations from 4U 0900--40: Do they exist

    International Nuclear Information System (INIS)

    Nelson, J.; Middleditch, J.; Cordova, F.

    1979-01-01

    A search for optical pulsations from 4U 0900--40 (HD 77581) was made in 1977--1978 using Hβ interference filters. No pulsations were detected above 10 -3 of the observed flux. This contrasts with Steiner's detection of pulsatons at the 2% level. Ariel 5 data covering both our observations and Steiner's show that X-ray variability does not support this decrepancy

  16. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    Science.gov (United States)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  17. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  18. The Nainital Cape Survey Project : A Search for Pulsation in Chemically Peculiar Stars

    Science.gov (United States)

    Chakradhari, Nand Kumar; Joshi, Santosh

    2018-04-01

    The Nainital-Cape Survey is a dedicated search programme initiated in 1999 in the coordination of astronomers from SAAO South Africa, ARIES Nainital and ISRO Bangalore. Over the last 17 years a total of 345 chemically peculiar stars were monitored for photometric variability, making it one of the longest ground-based survey to search for pulsation in chemically peculiar stars in terms of both time span and sample size. Under this survey, we discovered rapid pulsation in the Ap star HD12098 while δ Scuti-type pulsations were detected in seven Am stars. Those stars in which pulsations were not detected have also been tabulated along with their detailed astrophysical parameters for further investigation.

  19. Three-dimensional particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-09-01

    Full Text Available The three-dimensional flow field inside a generic can-type, forward flow, experimental combustor was measured. A stereoscopic Particle Image Velocimetry (PIV) system was used to obtain the flow field of the combustor in the non-reacting condition...

  20. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  1. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-09-05

    An acoustic transceiver is implemented for measuring acoustic properties of a gas in a turbine engine combustor. The transceiver housing defines a measurement chamber and has an opening adapted for attachment to a turbine engine combustor wall. The opening permits propagation of acoustic signals between the gas in the turbine engine combustor and gas in the measurement chamber. An acoustic sensor mounted to the housing receives acoustic signals propagating in the measurement chamber, and an acoustic transmitter mounted to the housing creates acoustic signals within the measurement chamber. An acoustic measurement system includes at least two such transceivers attached to a turbine engine combustor wall and connected to a controller.

  2. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Science.gov (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  3. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  4. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    International Nuclear Information System (INIS)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.; Batygin, Konstantin; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-01-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  5. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wang; Zhijun Zhou; Weijuan Yang; Junhu Zhou; Jianzhong Liu; Zhihua Wang; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture. (author)

  6. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhou Zhijun [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Yang Weijuan, E-mail: 10508107@zju.edu.c [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  7. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    International Nuclear Information System (INIS)

    Wang Yang; Zhou Zhijun; Yang Weijuan; Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa

    2010-01-01

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H 2 PtCl 6 . The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  8. A test of Pulsation Theory in Hot B Subdwarfs

    Science.gov (United States)

    Fontaine, Gilles

    There are currently of the order of 15 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of millimag), short-period (100-500 s), multiperiodic luminosity variations. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that, in several instances, variable and non-variable objects with similar effective temperatures and gravities may coexist in the HR diagram. This result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will i) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters; ii) provide a consistency check with our wind models; and iii) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  9. Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

    International Nuclear Information System (INIS)

    Ramiar, A.; Mahmoudi, A.H.; Esmaili, Q.; Abdollahzadeh, M.

    2016-01-01

    In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (P_i_n) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement. - Highlights: • Mechanism of water and oxygen transport under flow pulsation are discussed. • Pulsating cathode flow increases the limiting current density and output power. • The performance of cell has no significant dependency on pulsation frequency. • The performance and output power increase with the pulsation amplitude. • Using pulsating flow at lower average pressures leads to higher water removal rate.

  10. Near-zero emissions combustor system for syngas and biofuels

    International Nuclear Information System (INIS)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates (∼ 10 (micro)m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  11. An Experimental Study of Swirling Flows as Applied to Annular Combustors

    Science.gov (United States)

    Seal, Michael Damian, II

    1997-01-01

    This thesis presents an experimental study of swirling flows with direct applications to gas turbine combustors. Two separate flowfields were investigated: a round, swirling jet and a non-combusting annular combustor model. These studies were intended to allow both a further understanding of the behavior of general swirling flow characteristics, such as the recirculation zone, as well as to provide a base for the development of computational models. In order to determine the characteristics of swirling flows the concentration fields of a round, swirling jet were analyzed for varying amount of swirl. The experimental method used was a light scattering concentration measurement technique known as marker nephelometry. Results indicated the formation of a zone of recirculating fluid for swirl ratios (rotational speed x jet radius over mass average axial velocity) above a certain critical value. The size of this recirculation zone, as well as the spread angle of the jet, was found to increase with increase in the amount of applied swirl. The annular combustor model flowfield simulated the cold-flow characteristics of typical current annular combustors: swirl, recirculation, primary air cross jets and high levels of turbulence. The measurements in the combustor model made by the Laser Doppler Velocimetry technique, allowed the evaluation of the mean and rms velocities in the three coordinate directions, one Reynold's shear stress component and the turbulence kinetic energy: The primary cross jets were found to have a very strong effect on both the mean and turbulence flowfields. These cross jets, along with a large step change in area and wall jet inlet flow pattern, reduced the overall swirl in the test section to negligible levels. The formation of the strong recirculation zone is due mainly to the cross jets and the large step change in area. The cross jets were also found to drive a four-celled vortex-type motion (parallel to the combustor longitudinal axis) near the

  12. Coal-based oxy-fuel system evaluation and combustor development

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Biebuyck, C.; Anderson, R.; Pronske, K. [Clean Energy Systems Inc., Rancho Cordova, CA (United States)

    2007-07-01

    The core of the Clean Energy Systems, Inc. (CES) process is an oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include syngas from coal, refinery residues, or biomass; natural gas; landfill gas; glycoal solutions and oil/water emulsions. The combustion is performed at near-stoichiometric conditions in the presence of recycled water to produce a steam/CO{sub 2} mixture at high temperature and pressure. These combustion products power conventional or advanced steam turbines and may use modified gas turbines operating at high-temperatures for expansion at intermediate pressures. The gas exiting the turbines enter a condenser/separator where it is cooled, separating into its components, water and CO{sub 2}. The recovered CO{sub 2} is conditioned and purified as appropriate and sold or sequestered. Most of the water is recycled to the gas generator but excess high-purity water is produced and available for export. The development, evaluation and demonstration of the CES combustor are described. 8 refs., 4 figs., 1 tab.

  13. Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor

    NARCIS (Netherlands)

    Shahi, Mina; Kok, Jacobus B.W.; Pozarlik, Artur Krzysztof; Roman Casado, J.C.; Sponfeldner, T.

    2014-01-01

    The objective of this study is to investigate the sensitivity and accuracy of the reaction flow-field prediction for the LIMOUSINE combustor with regard to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed, bluff body-stabilized natural gas

  14. The effect of tides on self-driven stellar pulsations

    Science.gov (United States)

    Balona, L. A.

    2018-06-01

    In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.

  15. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    Science.gov (United States)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  16. Preliminary investigation of the performance of a single tubular combustor at pressure up to 12 atmospheres

    Science.gov (United States)

    Wear, Jerrold D; Butze, Helmut F

    1954-01-01

    The effects of combustor operation at conditions representative of those encountered in high pressure-ratio turbojet engines or at high flight speeds on carbon deposition, exhaust smoke, and combustion efficiency were studied in a single tubular combustor. Carbon deposition and smoke formation tests were conducted over a range of combustor-inlet pressures from 33 to 173 pounds per square inch absolute and combustor reference velocities from 78 to 143 feet per second. Combustion efficiency tests were conducted over a range of pressures from 58 to 117 pounds per square inch absolute and velocities from 89 to 172 feet per second.

  17. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Science.gov (United States)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  18. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  19. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  20. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1990-01-01

    In this paper the authors give a general review of the pulsating δ Scuti variables, including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Then we discuss three models of these stars, and use them to study the nonlinear hydrodynamic behavior of these stars, after which the authors outline the hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions. The authors also present the problems of allowing for time-dependent convection and its great sensitivity to temperature and density. Tentative results to data do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. Finally, the authors find that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. The δ Scuti variables are the most common type of variable star in our galaxy except for the white dwarfs. This is because stars in the mass range from just over one M circle-dot up to at least several M circle-dot pass through the yellow giant instability strip in the Hertzsprung-Russell diagram as they evolve off the main sequence to the red. Actually, stars up to the maximum main sequence mass also evolve through this region at higher luminosities, but there are so few of them, and they evolve so rapidly to the red, that they are almost unknown. At the higher luminosity, they probably would be called first-instability strip-crossing Cepheids anyway. Such cepheids are difficult to separate from those that are on the second blueward instability strip crossing that is much slower. Really, the δ Scuti variables are just low-luminosity Cepheids

  1. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  2. A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Thomas M.; Barlow, Brad N.; Soto, Alan Vasquez [Department of Physics, High Point University, One University Parkway, High Point, NC 27268 (United States); Fleming, Scott W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Million, Chase [Million Concepts LLC, P.O. Box 119, 141 Mary Street, Lemont, PA 16851 (United States); Reichart, Dan E.; Haislip, Josh B.; Moore, Justin P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Linder, Tyler R. [Department of Physics, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920 (United States)

    2017-08-20

    NASA’s Galaxy Evolution Explorer ( GALEX ) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX , with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV{sub r} class of variable stars.

  3. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  4. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  5. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  6. An emissions audit of a biomass combustor burning treated wood waste

    International Nuclear Information System (INIS)

    Jackson, P.M.; Jones, H.H.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a Biomass Combustor burning treated wood waste at the premises of a furniture manufacturer. The Biomass Combustor was tested in two firing modes; continuous fire and modulating fire. Combustion chamber temperatures and gas residence times were not measured. Boiler efficiencies were very good at greater than 75% in both tests. However, analysis of the flue gases indicated that improved efficiencies are possible. The average concentrations of CO (512mgm -3 ) and THC (34mgm -3 ) for Test 1 were high, indicating that combustion was poor. The combustor clearly does not meet the requirements of the Guidance Note for the Combustion of Wood Waste. CO 2 and O 2 concentrations were quite variable showing that combustion conditions were fairly unstable. Improved control of combustion should lead to acceptable emission concentrations. (Author)

  7. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  8. An experimental study of the stable and unstable operation of an LPP gas turbine combustor

    Science.gov (United States)

    Dhanuka, Sulabh Kumar

    A study was performed to better understand the stable operation of an LPP combustor and formulate a mechanism behind the unstable operation. A unique combustor facility was developed at the University of Michigan that incorporates the latest injector developed by GE Aircraft Engines and enables operation at elevated pressures with preheated air at flow-rates reflective of actual conditions. The large optical access has enabled the use of a multitude of state-of-the-art laser diagnostics such as PIV and PLIF, and has shed invaluable light not only into the GE injector specifically but also into gas turbine combustors in general. Results from Particle Imaging Velocimetry (PIV) have illustrated the role of velocity, instantaneous vortices, and key recirculation zones that are all critical to the combustor's operation. It was found that considerable differences exist between the iso-thermal and reacting flows, and between the instantaneous and mean flow fields. To image the flame, Planar Laser Induced Fluorescence (PLIF) of the formaldehyde radical was successfully utilized for the first time in a Jet-A flame. Parameters regarding the flame's location and structure have been obtained that assist in interpreting the velocity results. These results have also shown that some of the fuel injected from the main fuel injectors actually reacts in the diffusion flame of the pilot. The unstable operation of the combustor was studied in depth to obtain the stability limits of the combustor, behavior of the flame dynamics, and frequencies of the oscillations. Results from simultaneous pressure and high speed chemiluminescence images have shown that the low frequency dynamics can be characterized as flashback oscillations. The results have also shown that the stability of the combustor can be explained by simple and well established premixed flame stability mechanisms. This study has allowed the development of a model that describes the instability mechanism and accurately

  9. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  10. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  11. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  12. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  13. The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.

  14. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  15. Stellar pulsations in beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  16. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  17. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  18. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Energy Technology Data Exchange (ETDEWEB)

    Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  19. Experimental Study of Annulus Flow for Can Combustor with Vibration Influence

    Directory of Open Access Journals (Sweden)

    Rami. Y. Dahham

    2018-01-01

    Full Text Available This paper concentrate on studying the behavior of velocity profile under the influence of different frequency (34, 48, 65 and 80 Hz in each of the upper and lower annulus of Can Combustor.An experimental rig was designed to simulate the annulus flow inside a Can Combustor.The Can Combustor tested in this study is real part collected from Al-Khairat/Iraq gas turbine power station.The velocity profiles are investigated at three positions in the annular for upper and lower region.The axial velocity and turbulence intensity are calculating with different frequency for upper and lower annulus.The results were shown that the increase of frequency lead to increase the velocity profile and large recirculation zone will build in some points.Reynolds number increasing with raise of axial velocity. Also the increasing in vibration level cause non-uniform velocity profile which affect on distribution of cooling effectiveness.

  20. Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor

    Science.gov (United States)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-12-01

    Numerical simulations are performed for full scale scramjet combustor of a hypersonic airbreathing vehicle with ethylene fuel at ground test conditions corresponding to flight Mach number, altitude and stagnation enthalpy of 6.0, 30 km and 1.61 MJ/kg respectively. Three dimensional RANS equations are solved along with species transport equations and SST-kω turbulence model using Commercial CFD software CFX-11. Both nonreacting (with fuel injection) and reacting flow simulations [using a single step global reaction of ethylene-air with combined combustion model (CCM)] are carried out. The computational methodology is first validated against experimental results available in the literature and the performance parameters of full scale combustor in terms of thrust, combustion efficiency and total pressure loss are estimated from the simulation results. Parametric studies are conducted to study the effect of fuel equivalence ratio on the mixing and combustion behavior of the combustor.

  1. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    Science.gov (United States)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  2. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  3. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  4. Coal-fired MHD test progress at the Component Development and Integration Facility

    International Nuclear Information System (INIS)

    Hart, A.T.; Rivers, T.J.; Alsberg, C.M.; Filius, K.D.

    1992-01-01

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. In the fall of 1984, a 50-MW t , pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. MSE test hardware activities included installing the final workhorse channel and modifying the coalfired combustor by installing improved design and proof-of-concept (POC) test pieces. This paper discusses the involvement of this hardware in test progress during the past year. Testing during the last year emphasized the final workhorse hardware testing. This testing will be discussed. Facility modifications and system upgrades for improved operation and duration testing will be discussed. In addition, this paper will address long-term testing plans

  5. Steam Reformer With Fibrous Catalytic Combustor

    Science.gov (United States)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  6. Reasons for the appearance of pulsations in gas-lift wells and methods of eliminating them

    Energy Technology Data Exchange (ETDEWEB)

    Sibirev, A P; Grekhov, V V; Leonov, V A; Shigapov, R R

    1985-01-01

    It is shown that the main reason for pulsation in the gas-lift well output is lack of coordinated operation between the bed and the gas-lift lifter. A plan is suggested for making decisions to conduct work to detect and eliminate pulsations in the gas-lift well output which permit elimination of the pulsation in the shortest time and with the least outlays.

  7. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  8. Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2013-01-01

    Highlights: • A double pipe heat exchanger performance is numerically studied. • Use of porous baffles and pulsating flow to enhance heat exchanger efficiency. • The governing equations are solved by the control volume method. • The efficiency increases with the amplitude and frequency of pulsation. • The highest values of are obtained when only hot fluid is pulsating (Case3). - Abstract: A numerical investigation is carried out to analyze the effect of porous baffles and flow pulsation on a double pipe heat exchanger performance. The hot fluid flows in the inner cylinder, whereas the cold fluid circulates in the annular gap. The Darcy–Brinkman–Forchheimer model is adopted to describe the flow in the porous regions and the finite volume method is used to solve the governing equations with the appropriate boundary conditions. The effects of the amplitude and frequency of pulsation, as well as the porous baffles permeability on the flow structure and the heat exchanger efficiency are analyzed. The results reveal that the addition of an oscillating component to the mean flow affects the flow structure, and enhances the heat transfer in comparison to the steady non pulsating flow. The highest heat exchanger performance is obtained when only the flow of the hot fluid is pulsating

  9. A Test of Pulsation Theory in Hot B Subdwarfs (bis)

    Science.gov (United States)

    Fontaine, G.

    There are currently 33 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of mmag), short-period (100-500 s), multiperiodic luminosity variations caused by acoustic mode instabilities. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron and other iron-peak elements) abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that variable and nonvariable objects with similar effective temperatures and gravities coexist in the log g-Teff diagram. This puzzling result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will 1) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters, 2) provide a consistency check with our wind models, and 3) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  10. Emission control by cyclone combustor technology

    Energy Technology Data Exchange (ETDEWEB)

    Syred, N; Styles, A C; Sahatimehr, A

    1983-09-01

    Recent work carried out on a multi-inlet gas-fired cyclone combustor has shown that NO formation is reduced to negligible proportions when operated at mixture ratios 1.5 < PHI < 2.2 with combustion occurring under fully premixed fuel conditions. Elimination of hot spots, common to partial premixed systems, has been achieved with mean temperatures below 1300 C, thereby reducing NO emissions (1.5 ppm) by preventing the onset of Zeldovich and prompt mechanisms. The low NO levels are therefore dependent on a combination of low flame front temperature (about 1100 C) and premixed combustion conditions. Owing to the operating mode of combustion, heat transfer at the walls plays an important role in flame stability. Insulation of the cyclone chamber by refractory has been found to extend the operating range to higher mixture ratios. Conversely, it is expected that heat removal from the walls would enable the combustor to operate at mixture ratios nearer to stoichiometric, whilst still giving rise to low levels of NO emission. 17 references.

  11. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  12. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  13. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  14. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  15. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    Science.gov (United States)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  16. On the role of resonances in double-mode pulsation

    International Nuclear Information System (INIS)

    Dziembowski, W.; Kovacs, G.

    1984-01-01

    Simultaneous effects of resonant coupling and non-linear saturation of linear driving mechanism on the finite amplitude solution of multi-modal pulsation problem and on its stability are investigated. Both effects are calculated in the lowest order of approximation in terms of amplitudes. It is shown that the 2:1 resonance between one of the two linearly unstable modes and a higher frequency mode causes double-mode (fundamental and first overtone) pulsation. In a certain range of parameters, such as the frequency mismatch, the linear growth and damping rates, it is the only stable solution of the problem. (author)

  17. Pulsations of white dwarf stars with thick hydrogen or helium surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.N.; Starrfield, S.G.; Kidman, R.B.; Pesnell, W.D.

    1986-07-01

    In order to see if there could be agreement between results of stellar evolution theory and those of nonradial pulsation theory, calculations of white dwarf models have been made for hydrogen surface masses of 10/sup -4/ solar masses. Earlier results indicated that surface masses greater than 10/sup -8/ solar masses would not allow nonradial pulsations, even though all the driving and damping is in surface layers only 10/sup -12/ of the mass thick. It is shown that the surface mass of hydrogen in the pulsating white dwarfs (ZZ Ceti variables) can be any value as long as it is thick enough to contain the surface convection zone. 10 refs., 6 figs.

  18. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  19. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  20. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  1. Finding the first cosmic explosions. III. Pulsational pair-instability supernovae

    International Nuclear Information System (INIS)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Woosley, S. E.; Heger, Alexander; Stiavelli, Massimo

    2014-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M ☉ pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ∼ 15-20 and can probe the earliest stellar populations at cosmic dawn.

  2. Metallicism and pulsation: an analysis of the delta Delphini stars

    International Nuclear Information System (INIS)

    Kurtz, D.W.

    1976-01-01

    Fine abundance analyses of seven delta Delphini stars and one delta Scuti star relative to four comparison standards are presented. Five of the delta Del stars are shown to have abundances most similar to the evolved Am stars. It is argued that these abundances are different from the classical Am star and Ap star abundances and that similarities to the Ba II star abundances are coincidental. We suggest that the anomalous abundance delta Del stars are evolved metallic line stars on the basis of their abundances, position in the β, M/sub v/ plane, inferred rotational velocities, and perhaps their binary incidence. Some of the delta Del stars are delta Scuti pulsators. We argue that pulsation and metallicism are mutually exclusive among the classical Am stars but may coexist in other stars related to the classical Am stars. A preference for the diffusion hypothesis model for the metallic line stars is stated and supported and the implications of the coexistence of pulsation and diffusion are discussed

  3. Numerical optimization of laboratory combustor geometry for NO suppression

    International Nuclear Information System (INIS)

    Mazaheri, Karim; Shakeri, Alireza

    2016-01-01

    Highlights: • A five-step kinetics for NO and CO prediction is extracted from GRI-3.0 mechanism. • Accuracy and applicability of this kinetics for numerical optimization were shown. • Optimized geometry for a combustor was determined using the combined process. • NO emission from optimized geometry is found 10.3% lower than the basis geometry. - Abstract: In this article, geometry optimization of a jet stirred reactor (JSR) combustor has been carried out for minimum NO emissions in methane oxidation using a combined numerical algorithm based on computational fluid dynamics (CFD) and differential evolution (DE) optimization. The optimization algorithm is also used to find a fairly accurate reduced mechanism. The combustion kinetics is based on a five-step mechanism with 17 unknowns which is obtained using an optimization DE algorithm for a PSR–PFR reactor based on GRI-3.0 full mechanism. The optimization design variables are the unknowns of the five-step mechanism and the cost function is the concentration difference of pollutants obtained from the 5-step mechanism and the full mechanism. To validate the flow solver and the chemical kinetics, the computed NO at the outlet of the JSR is compared with experiments. To optimize the geometry of a combustor, the JSR combustor geometry is modeled using three parameters (i.e., design variables). An integrated approach using a flow solver and the DE optimization algorithm produces the lowest NO concentrations. Results show that the exhaust NO emission for the optimized geometry is 10.3% lower than the original geometry, while the inlet temperature of the working fluid and the concentration of O_2 are operating constraints. In addition, the concentration of CO pollutant is also much less than the original chamber.

  4. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  5. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  6. Stellar pulsations in beyond Horndeski gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  7. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  8. lamda 557.7 nm pulsations within quiet pre-breakup aurorae at L=8.7

    International Nuclear Information System (INIS)

    Thomas, I.L.

    1974-01-01

    Pulsations in the [OI] Λ557.7 nm emission, with a typical period of 10-20 s, were consistently observed within quiet pre-breakup auroral forms from Mawson, Antarctica (L = 8.7), during 1967. By relating these observations to the model location of the auroral oval, an indication of the parent magnetospheric region is gained. From these results, and other reports, it is concluded that optical pulsations are a basic feature of the auroral display. The occurrence of an 'optical auroral pulsation pearl necklace' is reported. (author)

  9. The propagation of pressure pulsations in the primary circuit of power plant A1

    International Nuclear Information System (INIS)

    Pecinka, L.

    1976-01-01

    A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)

  10. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  11. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    Directory of Open Access Journals (Sweden)

    D. McKay

    2018-01-01

    Full Text Available The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10  keV and high- (>  10 keV energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  12. Emissions from laboratory combustor tests of manufactured wood products

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, R.; Evans, M.; Ragland, K. [Univ. of Wisconsin, Madison, WI (United States); Baker, A. [USDA Forest Products Lab., Madison, WI (United States)

    1993-12-31

    Manufactured wood products contain wood, wood fiber, and materials added during manufacture of the product. Manufacturing residues and the used products are burned in a furnace or boiler instead of landfilling. Emissions from combustion of these products contain additional compounds from the combustion of non-wood material which have not been adequately characterized to specify the best combustion conditions, emissions control equipment, and disposal procedures. Total hydrocarbons, formaldehyde, higher aldehydes and carbon monoxide emissions from aspen flakeboard and aspen cubes were measured in a 76 mm i.d. by 1.5 m long fixed bed combustor as a function of excess oxygen, and temperature. Emissions of hydrocarbons, aldehydes and CO from flakeboard and from clean aspen were very sensitive to average combustor temperature and excess oxygen. Hydrocarbon and aldehyde emissions below 10 ppM were achieved with 5% excess oxygen and 1,200{degrees}C average temperature for aspen flakeboard and 1,100{degrees}C for clean aspen at a 0.9 s residence time. When the average temperature decreased below these levels, the emissions increased rapidly. For example, at 950{degrees}C and 5% excess oxygen the formaldehyde emissions were over 1,000 ppM. These laboratory tests reinforce the need to carefully control the temperature and excess oxygen in full-scale wood combustors.

  13. Techniques for enhancing durability and equivalence ratio control in a rich-lean, three-stage ground power gas turbine combustor

    Science.gov (United States)

    Schultz, D. F.

    1982-01-01

    Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.

  14. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  15. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  16. Impact of pulsations on vortex flowmeters

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Bokhorst, E. van; Limpens, C.H.L.

    1998-01-01

    The impact of imposed pulsations on the output of five 3”-industrial vortex flow meters with a triangular bluff body and various type of sensors was experimentally investigated in a gas flow over a wide range of frequencies from 20 Hz to 400 Hz and amplitudes ranging from 1% to 30% rms of the

  17. Spectral structure of Pc3–4 pulsations: possible signatures of cavity modes

    Directory of Open Access Journals (Sweden)

    P. R. Sutcliffe

    2013-04-01

    Full Text Available In this study we investigate the spectral structure of Pc3–4 pulsations observed at low and midlatitudes. For this purpose, ground-based magnetometer data recorded at the MM100 stations in Europe and at two low latitude stations in South Africa were used. In addition, fluxgate magnetometer data from the CHAMP (CHAllenging Minisatellite Payload low Earth orbit satellite were used. The results of our analysis suggest that at least three mechanisms contribute to the spectral content of Pc3–4 pulsations typically observed at these latitudes. We confirm that a typical Pc3–4 pulsation contains a field line resonance (FLR contribution, with latitude dependent frequency, and an upstream wave (UW contribution, with frequency proportional to the IMF (interplanetary magnetic field magnitude BIMF. Besides the FLR and UW contributions, the Pc3–4 pulsations consistently contain signals at other frequencies that are independent of latitude and BIMF. We suggest that the most likely explanation for these additional frequency contributions is that they are fast mode resonances (FMRs related to cavity, waveguide, or virtual modes. Although the above contributions to the pulsation spectral structure have been reported previously, we believe that this is the first time where evidence is presented showing that they are all present simultaneously in both ground-based and satellite data.

  18. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    Science.gov (United States)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  19. Experimental study on the heavy-duty gas turbine combustor

    International Nuclear Information System (INIS)

    Antonovsky, V.; Ahn, Kook Young

    2000-01-01

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors

  20. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  1. Non-contact method of search and analysis of pulsating vessels

    Science.gov (United States)

    Avtomonov, Yuri N.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Despite the variety of existing methods of recording the human pulse and a solid history of their development, there is still considerable interest in this topic. The development of new non-contact methods, based on advanced image processing, caused a new wave of interest in this issue. We present a simple but quite effective method for analyzing the mechanical pulsations of blood vessels lying close to the surface of the skin. Our technique is a modification of imaging (or remote) photoplethysmography (i-PPG). We supplemented this method with the addition of a laser light source, which made it possible to use other methods of searching for the proposed pulsation zone. During the testing of the method, several series of experiments were carried out with both artificial oscillating objects as well as with the target signal source (human wrist). The obtained results show that our method allows correct interpretation of complex data. To summarize, we proposed and tested an alternative method for the search and analysis of pulsating vessels.

  2. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    Science.gov (United States)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  3. Origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, G; Bailey, J; Axon, D J; Hough, J H

    1986-12-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded.

  4. Pressure pulsation measurements in pipe and cluster flows

    International Nuclear Information System (INIS)

    Benemann, A.; Voj, P.

    1976-01-01

    Measuring and evaluation techniques of pressure pulsations in pipe and cluster flows are described. The measurements were made on a 1 m long SNR rod-cluster and its feed and drain pipes. At Reynolds numbers in the cluster of 8.9 x 10 4 flow velocities of 14 m/sec were achieved. With the aid of a block diagram recording of the measured values by piezoelectric crystal and piezo-resistive strain gange as well as data processing are explained. For the analytical treatment of the pressure pulsation signals characterizing the turbulence field computer codes of a digital computer and a fast-fourier analyzer (Hewlett-Packard 5450 A) were used. The results show good agreement with theoretical curves on the behaviour of turbulent boundary layers of cluster and pipe flows at high Reynolds numbers. (TK) [de

  5. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  6. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  7. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    Hao Ouyang

    2014-01-01

    Full Text Available The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight.

  8. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  9. ENIGMATIC RECURRENT PULSATIONAL VARIABILITY OF THE ACCRETING WHITE DWARF EQ LYN (SDSS J074531.92+453829.6)

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Townsley, D. M.; Brockett, T. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Gaensicke, B. T.; Parsons, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Southworth, J. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Harrold, S. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Tovmassian, G.; Zharikov, S. [Observatorio Astronomico Nacional SPM, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ensenada, BC (Mexico); Drake, A. J. [Department of Astronomy and the Center for Advanced Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States); Henden, A. [American Association of Variable Star Observers, 25 Birch Street, Cambridge, MA 02138 (United States); Rodriguez-Gil, P. [Departamento de Astrofisica, Universidad de La Laguna, La Laguna, E-38204 Santa Cruz de Tenerife (Spain); Sion, E. M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Zola, S.; Szymanski, T. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Pavlenko, E. [Crimean Astrophysical Observatory, Crimea 98409 (Ukraine); and others

    2013-09-15

    Photometric observations of the cataclysmic variable EQ Lyn (SDSS J074531.92+453829.6), acquired from 2005 October to 2006 January, revealed high-amplitude variability in the range 1166-1290 s. This accreting white dwarf underwent an outburst in 2006 October, during which its brightness increased by at least five magnitudes, and it started exhibiting superhumps in its light curve. Upon cooling to quiescence, the superhumps disappeared and it displayed the same periods in 2010 February as prior to the outburst within the uncertainties of a couple of seconds. This behavior suggests that the observed variability is likely due to nonradial pulsations in the white dwarf star, whose core structure has not been significantly affected by the outburst. The enigmatic observations begin with an absence of pulsational variability during a multi-site campaign conducted in 2011 January-February without any evidence of a new outburst; the light curve is instead dominated by superhumps with periods in the range of 83-87 minutes. Ultraviolet Hubble Space Telescope time-series spectroscopy acquired in 2011 March reveals an effective temperature of 15,400 K, placing EQ Lyn within the broad instability strip of 10,500-16,000 K for accreting pulsators. The ultraviolet light curve with 90% flux from the white dwarf shows no evidence of any pulsations. Optical photometry acquired during 2011 and Spring 2012 continues to reflect the presence of superhumps and an absence of pulsations. Subsequent observations acquired in 2012 December and 2013 January finally indicate the disappearance of superhumps and the return of pulsational variability with similar periods as previous data. However, our most recent data from 2013 March to May reveal superhumps yet again with no sign of pulsations. We speculate that this enigmatic post-outburst behavior of the frequent disappearance of pulsational variability in EQ Lyn is caused either by heating the white dwarf beyond the instability strip due to an

  10. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  11. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  12. Numerical Investigation of Merged and Non-merged Flame of a Twin Cavity Annular Trapped Vortex Combustor

    Directory of Open Access Journals (Sweden)

    Pravendra Kumar

    2016-09-01

    Full Text Available : The present work is focused to characterize numerically the merged and non-merged flame emanating from the cavities in downstream of twin cavity Annular Trapped Vortex Combustor (ATVC.The isotherm corresponding to the auto-ignition temperature is used to locate the merging point of the flame in the mainstream region along the combustor length. In present study, the cavity flame is said to be merged only if this isotherm corresponding to self-ignition temperature of methane is located within 20 percentage of the combustor length from aft wall of cavities. It is interesting to note that on increasing the power loading parameter (PLP in mainstream for a constant power loading parameter ratio (outer to inner cavity, the merging point gets shifted towards the cavity aft-wall. This leads to the reduction of combustor length and subsequent reduction in overall weight of the gas turbine engine.

  13. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  14. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  15. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  16. A Refined Search for Pulsations in White Dwarf Companions to Millisecond Pulsars

    Science.gov (United States)

    Kilic, Mukremin; Hermes, J. J.; Córsico, A. H.; Kosakowski, Alekzander; Brown, Warren R.; Antoniadis, John; Calcaferro, Leila M.; Gianninas, A.; Althaus, Leandro G.; Green, M. J.

    2018-06-01

    We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M⊙) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a M⋆ = 0.16 - 0.19M⊙ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.

  17. Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1–2 May 2014

    Directory of Open Access Journals (Sweden)

    G. Korotova

    2016-11-01

    Full Text Available We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS and Geostationary Operational Environmental Satellite system (GOES spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (RE. A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from ZSM  =  0.30 RE to ZSM  =  −0.16 RE. We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength. We demonstrated that higher frequencies occurred at times and locations where Alfvén velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling

  18. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  19. Radioheliograph observations of a pulsating structure associated with a moving type IV burst

    International Nuclear Information System (INIS)

    Pick, M.; Trottet, G.

    1978-01-01

    Observations of a pulsating structure with the Mark II Nancay Radioheliograph are reported. These fluctuations are found to occur early in the development of a moving type IV burst. It is confirmed that the source of these fluctuations is of small extent and that it is embedded in the moving type IV continuum, plausibly at the top of an expanding arch. The observations suggest that the pulsating structure consists of recurrent enhanced pulses (mean recurrency time 1.7 s) followed by trains of periodic pulses (mean periodicity 0.37 s). The intensity of the mean enhanced pulses has a damping time of about 5 s. It is shown that previous interpretation of the pulsating structure by Rosenberg (1970) cannot account for the present observations. (Auth.)

  20. Flame Propagation in a Dump Combustor with Shear Layer Excitation

    Data.gov (United States)

    National Aeronautics and Space Administration — This experimentation looks to investigate the use of fluidic oscillators to attenuate combustion instability in a naturally unstable rocket combustor. Since...

  1. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. In this review we discuss only the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of our sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. Unfortunately, the present state of knowledge about the exact compositions; mass loss and its dependence on the mass, radius, luminosity, and composition; ;and internal mixing processes, as well as sometimes the more basic parameters such as luminosities and surface effective temperatures prevent us from applying strong constraints for every case where currently the possibility exists

  2. Test Characteristics of Neck Fullness and Witnessed Neck Pulsations in the Diagnosis of Typical AV Nodal Reentrant Tachycardia

    Science.gov (United States)

    Sakhuja, Rahul; Smith, Lisa M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Scheinman, Melvin M; Olgin, Jeffrey E; Marcus, Gregory M

    2011-01-01

    Summary Background Claims in the medical literature suggest that neck fullness and witnessed neck pulsations are useful in the diagnosis of typical AV nodal reentrant tachycardia (AVNRT). Hypothesis Neck fullness and witnessed neck pulsations have a high positive predictive value in the diagnosis of typical AVNRT. Methods We performed a cross sectional study of consecutive patients with palpitations presenting to a single electrophysiology (EP) laboratory over a 1 year period. Each patient underwent a standard questionnaire regarding neck fullness and/or witnessed neck pulsations during their palpitations. The reference standard for diagnosis was determined by electrocardiogram and invasive EP studies. Results Comparing typical AVNRT to atrial fibrillation (AF) or atrial flutter (AFL) patients, the proportions with neck fullness and witnessed neck pulsations did not significantly differ: in the best case scenario (using the upper end of the 95% confidence interval [CI]), none of the positive or negative predictive values exceeded 79%. After restricting the population to those with supraventricular tachycardia other than AF or AFL (SVT), neck fullness again exhibited poor test characteristics; however, witnessed neck pulsations exhibited a specificity of 97% (95% CI 90–100%) and a positive predictive value of 83% (95% CI 52–98%). After adjustment for potential confounders, SVT patients with witnessed neck pulsations had a 7 fold greater odds of having typical AVNRT, p=0.029. Conclusions Although neither neck fullness nor witnessed neck pulsations are useful in distinguishing typical AVNRT from AF or AFL, witnessed neck pulsations are specific for the presence of typical AVNRT among those with SVT. PMID:19479968

  3. Predictive models of circulating fluidized bed combustors: SO{sub 2} sorption in the CFB loop. Fourteenth technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0{sub 2} with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm{sup 3} and air at 1143{degrees}K and 3.25 atm. Atzero time, air containing 600 ppm SO{sub 2}, was introduced into the riser bottom at 1143{degrees}K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO{sub 2}, were studied isothermally by running our hydrodynamic code with the S0{sub 2} sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0{sub 2} removal. At 10 m/sec the S0{sub 2} removal is poor. The best SO{sub 2}, removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0{sub 2} is removed in the first two meters of the reactor. However, the S0{sub 2} removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0{sub 2} removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  4. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    Science.gov (United States)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  5. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  6. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  7. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin.

    Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  8. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin. Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  9. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Gautam Choubey

    2016-09-01

    Full Text Available Multi-strut injection is an approach to increase the overall performance of Scramjet while reducing the risk of thermal choking in a supersonic combustor. Hence computational simulation of Scramjet combustor at Mach 2.5 through multiple central lobed struts (three struts have been presented and discussed in the present research article. The geometry and model used here is slight modification of the DLR (German Aerospace Center scramjet model. Present results show that the presence of three struts injector improves the performance of scramjet combustor as compared to single strut injector. The combustion efficiency is also found to be highest in case of three strut fuel injection system. In order to validate the results, the numerical data for single strut injection is compared with experimental result which is taken from the literature.

  10. Numerical study of effect of compressor swirling flow on combustor design in a MTE

    Science.gov (United States)

    Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang

    2017-08-01

    An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.

  11. Experimental investigation on a pulsating heat pipe with hydrogen

    International Nuclear Information System (INIS)

    Deng, H R; Liu, Y M; Ma, R F; Han, D Y; Gan, Z H; Pfotenhauer, J M

    2015-01-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb 3 Sn and NbTi, MgB 2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB 2 , this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios. (paper)

  12. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    Science.gov (United States)

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the

  13. Observation of the pulsating aurora by S-520-12 rocket at Norway

    International Nuclear Information System (INIS)

    Tsuruda, K.; Hayakawa, H.; Machida, S.; Mukai, T.; Morioka, A.; Nagano, I.; Miyaoka, H.

    1991-01-01

    Particle, field an wave observations in a pulsating aurora have been carried out using the sounding rocket S-520-12, at northern polar region, Norway, on February 26, 1990. The initial analysis has disclosed two new findings, (i) precipitating low energy electrons associated with the auroral patch region, which suggests the secondary local acceleration of the auroral particles, (ii) pulsating LF wave component that is generated by periodically precipitating energetic electrons above the auroral ionosphere. (author)

  14. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  15. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  16. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  17. Study on pressure pulsation and piping vibration of complex piping of reciprocating compressor

    International Nuclear Information System (INIS)

    Xu Bin; Feng Quanke; Yu Xiaoling

    2008-01-01

    This paper presents a preliminary research on the piping vibration and pressure pulsation of reciprocating compressor piping system. On the basis of plane wave theory, the calculation of gas column natural frequency and pressure pulsation in complex pipelines is done by using the transfer matrix method and stiffness matrix method, respectively. With the discretization method of FEM, a mathematical model for calculating the piping vibration and stress of reciprocating compressor piping system is established, and proper boundary conditions are proposed. Then the structural modal and stress of the piping system are calculated with CAESAR II. The comparison of measured and calculated values found that the one dimensional wave equation can accurately calculate the natural frequency and pressure pulsation in gas column of piping system for reciprocating compressor. (authors)

  18. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?

    Science.gov (United States)

    Phillips, C I; Tsukahara, S; Hosaka, O; Adams, W

    1992-01-01

    In 26 random out-patients, including 13 treated glaucoma patients and ocular hypertensives, the higher the ocular tension, the greater the pulse amplitude, by Alcon pneumotonometry, at a statistically significant level. In a single untreated hypertensive, when 2-hourly pneumotonometry was done for 24 h, the correlation was similar and significant. The higher the diastolic blood pressure, the higher the ocular pulsation, also significantly. Pulsation is suggested to be a pump, the choroid being the piston, contributing (1) to an increase in the outflow of aqueous humour and (2) to a homeostatic mechanism contributing to normalization of the intra-ocular pressure, wherein pulsation increases or decreases, as the intraocular pressure increases or decreases, respectively.

  19. Pulsating Heat Pipe for Cryogenic Fluid Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A passive Pulsating Heat Pipe (PHP) system is proposed to distribute cooling over broad areas with low additional system mass. The PHP technology takes advantage of...

  20. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  1. Are dayside long-period pulsations related to the cusp?

    Directory of Open Access Journals (Sweden)

    V. Pilipenko

    2015-03-01

    Full Text Available We compare simultaneous observations of long-period ultra-low-frequency (ULF wave activity from a Svalbard/IMAGE fluxgate magnetometer latitudinal profile covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL and narrowband Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the Super Dual Auroral Radar Network (SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, augmented whenever possible by Defense Meteorological Satellite Program (DMSP identification of magnetospheric boundary domains. The meridional spatial structure of broadband dayside Pc5–6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. The earlier claims of the dayside monochromatic Pc5 wave association with the open–closed boundary also seems doubtful. Transient currents producing broadband Pc5–6 probably originate at the low-latitude boundary layer/central plasma sheet (LLBL/CPS interface, though such identification with available DMSP data is not very precise. The occurrence of broadband Pc5–6 pulsations in the dayside boundary layers is a challenge to modelers because so far their mechanism has not been firmly identified.

  2. Study on mechanism of combustion instability in a dump gas turbine combustor

    International Nuclear Information System (INIS)

    Lee, Yeon Joo; Lee, Jong Ho; Jeon, Chong Hwan; Chang, Yonng June

    2002-01-01

    Combustion instabilities are an important concern associated with lean premixed combustion. Laboratory-scale dump combustor was used to understand the underlying mechanisms causing combustion instabilities. Experiments were conducted at atmospheric pressure and sound level meter was used to track the pressure fluctuations inside the combustor. Instability maps and phase-resolved OH chemiluminescence images were obtained at several conditions to investigate the mechanism of combustion instability and relations between pressure wave and heat release rate. It showed that combustion instability was susceptible to occur at higher value of equivalence ratio (>0.6) as the mean velocity was decreased. Instabilities exhibited a longitudinal mode with a dominant frequency of ∼341.8 Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instabilities occurred. Rayleigh index distribution gave a hint about the location where the strong coherence of pressure and heat release existed. These results also give an insight to the control scheme of combustion instabilities. Emission test revealed that NO x emissions were affected by not only equivalence but also combustion instability

  3. Experimental study on combustion modes and thrust performance of a staged-combustor of the scramjet with dual-strut

    Science.gov (United States)

    Yang, Qingchun; Chetehouna, Khaled; Gascoin, Nicolas; Bao, Wen

    2016-05-01

    To enable the scramjet operate in a wider flight Mach number, a staged-combustor with dual-strut is introduced to hold more heat release at low flight Mach conditions. The behavior of mode transition was examined using a direct-connect model scramjet experiment along with pressure measurements. The typical operating modes of the staged-combustor are analyzed. Fuel injection scheme has a significant effect on the combustor operating modes, particularly for the supersonic combustion mode. Thrust performances of the combustor with different combustion modes and fuel distributions are reported in this paper. The first-staged strut injection has a better engine performance in the operation of subsonic combustion mode. On the contrast, the second-staged strut injection has a better engine performance in the operation of supersonic combustion mode.

  4. Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements

    Science.gov (United States)

    Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang

    2015-04-01

    A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of

  5. Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number

    KAUST Repository

    Yoon, Sung Hwan

    2017-10-12

    According to previous theory, pulsating propagation in a premixed flame only appears when the reduced Lewis number, β(Le-1), is larger than a critical value (Sivashinsky criterion: 4(1 +3) ≈ 11), where β represents the Zel\\'dovich number (for general premixed flames, β ≈ 10), which requires Lewis number Le > 2.1. However, few experimental observation have been reported because the critical reduced Lewis number for the onset of pulsating instability is beyond what can be reached in experiments. Furthermore, the coupling with the unavoidable hydrodynamic instability limits the observation of pure pulsating instabilities in flames. Here, we describe a novel method to observe the pulsating instability. We utilize a thermoacoustic field caused by interaction between heat release and acoustic pressure fluctuations of the downward-propagating premixed flames in a tube to enhance conductive heat loss at the tube wall and radiative heat loss at the open end of the tube due to extended flame residence time by diminished flame surface area, i.e., flat flame. The thermoacoustic field allowed pure observation of the pulsating motion since the primary acoustic force suppressed the intrinsic hydrodynamic instability resulting from thermal expansion. By employing this method, we have provided new experimental observations of the pulsating instability for premixed flames. The Lewis number (i.e., Le ≈ 1.86) was less than the critical value suggested previously.

  6. Multiscale Software Tool for Controls Prototyping in Supersonic Combustors

    National Research Council Canada - National Science Library

    Pindera, M

    2004-01-01

    .... In Phase I we have developed a proof-of-concept version of such a tool. We have developed a model-free direct control strategy with on-line training and demonstrated its capabilities in controlling isolator unstart in a hypersonic combustor...

  7. An Analysis of Pulsating Subdwarf B Star EPIC 203948264 Observed During Campaign 2 of K2

    Directory of Open Access Journals (Sweden)

    Ketzer Laura

    2017-01-01

    Full Text Available We present a preliminary analysis of the newly–discovered pulsating subdwarf B (sdB star EPIC 203948264. The target was observed for 83 days in short cadence mode during Campaign 2 of K2, the two–gyro mission of the Kepler space telescope. A time–series analysis of the data revealed 22 independent pulsation frequencies in the g–mode region ranging from 100 to 600 μHz (0:5 to 2:8 hours. The main method we use to identify pulsation modes is asymptotic period spacing, and we were able to assign all but one of the pulsations to either l = 1 or l = 2. The average period spacings of both sequences are 261:34 ± 0.78 s and 151:18 ± 0.34 s, respectively. The pulsation amplitudes range from 0.77 ppt down to the detection limit at 0.212 ppt, and are not stable over the duration of the campaign. We detected one possible low–amplitude, l = 2, rotationally split multiplet, which allowed us to constrain the rotation period to 46 days or longer. This makes EPIC 203948264 another slowly rotating sdB star.

  8. Investigation of Methane Oxy-Fuel Combustion in a Swirl-Stabilised Gas Turbine Model Combustor

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-05-01

    Full Text Available CO2 has a strong impact on both operability and emission behaviours in gas turbine combustors. In the present study, an atmospheric, preheated, swirl-stabilised optical gas turbine model combustor rig was employed. The primary objectives were to analyse the influence of CO2 on the fundamental characteristics of combustion, lean blowout (LBO limits, CO emission and flame structures. CO2 dilution effects were examined with three preheating temperatures (396.15, 431.15, and 466.15 K. The fundamental combustion characteristics were studied utilising chemical kinetic simulations. To study the influence of CO2 on the operational range of the combustor, equivalence ratio (Ф was varied from stoichiometric conditions to the LBO limits. CO emissions were measured at the exit of the combustor using a water-cooled probe over the entire operational range. The flame structures and locations were characterised by performing CH chemiluminescence imaging. The inverse Abel transformation was used to analyse the CH distribution on the axisymmetric plane of the combustor. Chemical kinetic modelling indicated that the CO2 resulted in a lower reaction rate compared with the CH4/air flame. Fundamental combustion properties such as laminar flame speed, ignition delay time and blowout residence time were found to be affected by CO2. The experimental results revealed that CO2 dilution resulted in a narrower operational range for the equivalence ratio. It was also found that CO2 had a strong inhibiting effect on CO burnout, which led to a higher concentration of CO in the combustion exhaust. CH chemiluminescence showed that the CO2 dilution did not have a significant impact on the flame structure.

  9. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  10. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  11. The origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    International Nuclear Information System (INIS)

    Berriman, G.; Axon, D.J.; Hough, J.H.

    1986-01-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded. (author)

  12. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  13. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  14. An Experimental Investigation of Self-Excited Combustion Dynamics in a Single Element Lean Direct Injection (LDI) Combustor

    Science.gov (United States)

    Gejji, Rohan M.

    The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability for combustion instabilities through high-fidelity models. The overarching goal of this project is to assess the capability of high-fidelity simulation to predict combustion dynamics in low-emissions gas turbine combustors. A prototypical lean-direct-inject combustor was designed in a modular configuration so that a suitable geometry could be found by test. The combustor comprised a variable length air plenum and combustion chamber, air swirler, and fuel nozzle located inside a subsonic venturi. The venturi cross section and the fuel nozzle were consistent with previous studies. Test pressure was 1 MPa and variables included geometry and acoustic resonance, inlet temperatures, equivalence ratio, and type of liquid fuel. High-frequency pressure measurements in a well-instrumented metal chamber yielded frequencies and mode shapes as a function of inlet air temperature, equivalence ratio, fuel nozzle placement, and combustor acoustic resonances. The parametric survey was a significant effort, with over 105 tests on eight geometric configurations. A good dataset was obtained that could be used for both operating-point-dependent quantitative comparisons, and testing the ability of the simulation to predict more global trends. Results showed a very strong dependence of instability amplitude on

  15. First Kepler results on compact pulsators – VIII. Mode identifications via period spacings in g-mode pulsating subdwarf B stars

    DEFF Research Database (Denmark)

    Reed, M.D.; Baran, A.; Quint, A.C.

    2011-01-01

    We investigate the possibility of nearly equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal-period spacings of modes with differing degrees ℓ...

  16. Computational model of a whole tree combustor

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, K.M.; Ragland, K.W. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    A preliminary computational model has been developed for the whole tree combustor and compared to test results. In the simulation model presented hardwood logs, 15 cm in diameter are burned in a 4 m deep fuel bed. Solid and gas temperature, solid and gas velocity, CO, CO{sub 2}, H{sub 2}O, HC and O{sub 2} profiles are calculated. This deep, fixed bed combustor obtains high energy release rates per unit area due to the high inlet air velocity and extended reaction zone. The lowest portion of the overall bed is an oxidizing region and the remainder of the bed acts as a gasification and drying region. The overfire air region completes the combustion. Approximately 40% of the energy is released in the lower oxidizing region. The wood consumption rate obtained from the computational model is 4,110 kg/m{sup 2}-hr which matches well the consumption rate of 3,770 kg/m{sup 2}-hr observed during the peak test period of the Aurora, MN test. The predicted heat release rate is 16 MW/m{sup 2} (5.0*10{sup 6} Btu/hr-ft{sup 2}).

  17. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Eon [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of); Park, Seul Hyun [Dept. of Mechanical Systems Engineering, Chosun University, Gwangju (Korea, Republic of); Hwang, Cheol Hong [Dept. of Fire and Disaster Prevention, Daejeon University, Daejeon (Korea, Republic of)

    2016-11-15

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics.

  18. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    International Nuclear Information System (INIS)

    Lee, Chang Eon; Park, Seul Hyun; Hwang, Cheol Hong

    2016-01-01

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics

  19. Synchronous observations of long-periodic geomagnetic pulsations on the ATS-6 satellite and on the Earth surface

    International Nuclear Information System (INIS)

    Barfild, Dzh.N.; Bondarenko, N.M.; Buloshnikov, A.M.; Gokhberg, M.B.; Kalisher, A.L.; Mak-Ferron, R.L.; Troitskaya, V.A.

    1977-01-01

    Geomagnetic pulsations of the Pi2 and Pc4 types recorded by the ATS-6 geostationary satellite and by observatories located near the geomagnetic longitude of the space satellite from the 24th of May, 1974 to the 1st of September, 1976 are compared. The periods of the Pi2 pulsations measured by the space satellite and on the Earth practically coincide, dynamic spectra and spectral densities are similar. The amplitude of the Pi2 pulsations recorded in auroral latitudes is several times wider than the amplitude measured by the ATS-6 while in middle latitudes the amplitude is much smaller than on the satellite. The Pc4 pulsations are not practically observed on the Earth for they are probably excited in narrow local areas of the magnitosphere. In order to arrive to the single-valued solution of the problem of the mechanism of the generation and localization of the pulsation source it is necessary to carry out simultaneous observations on the Earth and in the magnitosphere

  20. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  1. Energy confinement in the tokamak devices pulsator and ASDEX

    International Nuclear Information System (INIS)

    Klueber, O.; Murmann, H.

    1982-04-01

    The energy confinement of ohmically heated hydrogen plasmas obtained in the ASDEX and Pulsator tokamaks is investigated. In both devices, the confinement time does not follow a simple scaling law of the type tausub(E) approx. equal to nsub(e)a 2 . In the case of Pulsator, a regime is identified in which the transport is governed by electron heat conduction. The experimental data are compared with an analytic solution of the energy balance equation from which a heat diffusivity chisub(e) approx. equal to Zsub(eff)sup(1/3)/nsub(e)(r)Tsub(e)sup(1/2)(r)q(r) is inferred. chisub(i) is supposed to be neoclassical (plateau regime). Heat conduction following these laws is shown to lead to a consistent description of the full data set. (orig.)

  2. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Froment, C.; Auchère, F.; Bocchialini, K.; Buchlin, E.; Solomon, J. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay cedex (France); Aulanier, G. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Mikić, Z., E-mail: clara.froment@astro.uio.no [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  3. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  4. System for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Hughes, Michael John; York, William David

    2016-05-31

    A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.

  5. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  6. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    OpenAIRE

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium n...

  7. The pulsation mode and period-luminosity relationship of cool variables in globular clusters

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1986-01-01

    The period-luminosity-temperature relationship for globular cluster red and yellow variables is examined. The results suggest that the higher temperature, more metal-deficient cluster variables pulsate in the fundamental mode, while the lower temperature more metal-rich variables pulsate in the first overtone. On the assumption that this is correct, a relationship between fundamental period and bolometric magnitude is derived for cluster variables with observed periods of between 1 and 300 days. (author)

  8. Systems and methods for preventing flashback in a combustor assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Stevenson, Christian Xavier

    2016-04-05

    Embodiments of the present application include a combustor assembly. The combustor assembly may include a combustion chamber, a first plenum, a second plenum, and one or more elongate air/fuel premixing injection tubes. Each of the elongate air/fuel premixing injection tubes may include a first length at least partially disposed within the first plenum and configured to receive a first fluid from the first plenum. Moreover, each of the elongate air/fuel premixing injection tubes may include a second length disposed downstream of the first length and at least partially disposed within the second plenum. The second length may be formed of a porous wall configured to allow a second fluid from the second plenum to enter the second length and create a boundary layer about the porous wall.

  9. Comparative pulsation calculations with OP and OPAL opacities

    Science.gov (United States)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  10. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow

    Science.gov (United States)

    Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2008-11-01

    Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

  11. Pulsation of IU Per from the Ground-based and ‘Integral’ Photometry

    Directory of Open Access Journals (Sweden)

    Kundra E.

    2013-06-01

    Full Text Available IU Per is an eclipsing semi-detached binary with a pulsating component. Using our own ground-based, as well as INTEGRAL satellite photometric observations in the B and V passbands, we derived geometrical and physical parameters of this system. We detected the short-term variations of IU Per in the residuals of brightness after the subtraction of synthetic light curves. Analysis of these residuals enabled us to characterize and localize the source of short-term variations as the pulsations of the primary component typical to δ Scuti-type stars.

  12. Using nonradial pulsations to determine the envelope composition of very evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.

    1986-01-01

    Recent observational and theoretical studies of the ZZ Ceti variables (DA degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DO degenerate dwarfs) have shown them to be pulsating in nonradial g + -modes. The pulsation mechanism has been identified for each class of variable star and, in all cases, involves predictions of the stars envelope composition. The ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers. 44 refs

  13. Experimental investigations on effect of different materials and varying depths of one turn exhaust channel swiss roll combustor on its thermal performance

    Science.gov (United States)

    Mane Deshmukh, Sagar B.; Krishnamoorthy, A.; Bhojwani, V. K.; Pawane, Ashwini

    2017-05-01

    More energy density of hydrocarbon fuels compared to advanced batteries available in the market demands for development of systems which will use hydrocarbon fuels at small scale to generate power in small quantity (i.e. in few watts) and device efficiency should be reasonably good, but the basic requirement is to generate heat from the fuels like methane, propane, hydrogen, LPG and converting into power. Swiss roll combustor has proved to be best combustor at small scale. Present work is carried out on one turn exhaust channel and half turn of inlet mixture channel Swiss roll combustor. Purpose of keeping exhaust channel length more than the inlet mixture channel to ensure sufficient time for heat exchange between burned and unburned gases, which is not reported in earlier studies. Experimental study mentions effects of different design parameters like materials of combustor, various depths, equivalence ratio, mass flow rates of liquefied petroleum gas (LPG), volume of combustion space and environmental conditions (with insulation and without insulation to combustors) on fuel lean limit and fuel rich limit, temperature profile obtained on all external surfaces, in the main combustion chamber, in the channel carrying unburned gas mixture and burned gas mixture, heat loss to atmosphere from all the walls of combustor, flame location. Different combustor materials tested were stainless steel, Aluminum, copper, brass, bronze, Granite. Depths considered were 22mm, 15mm, 10mm and 5mm. It was observed that flame stability inside the combustion chamber is affected by materials, depths and flow rates. Unburned mixture carrying channel was kept below quenching distance of flame to avoid flash back. Burned gas carrying channel dimension was more than the quenching distance. Considerable temperature rise was observed with insulation to combustors. But combustors with more thermal conductivity showed more heat loss to atmosphere which led to instability of flame.

  14. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    Science.gov (United States)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  15. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  16. Optical pulsations in AM Her systems. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs.

  17. Optical pulsations in AM Her systems. Revision 1

    International Nuclear Information System (INIS)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs

  18. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    International Nuclear Information System (INIS)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-01-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  19. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Gianninas, A.; Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  20. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    Science.gov (United States)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  1. The mechanism of char ignition in fluidized bed combustors

    NARCIS (Netherlands)

    Siemons, R.V.

    1987-01-01

    Knowledge about ignition processes of coal in fluidized beds is of importance for the start-up and dynamic control of these combustors. Initial experiments in a transparent fluidized bed scale model showed the existence of a considerable induction period for the ignition of char, especially at low

  2. Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification

    International Nuclear Information System (INIS)

    Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.

    1981-01-01

    This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs

  3. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  4. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  5. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  6. Impulsively started, steady and pulsated annular inflows

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Raouf, Emad [General Field Engineer, Halliburton Energy Services 719 Hangar Dr, New Iberia, LA 70560, United States of America (United States); Sharif, Muhammad A R; Baker, John, E-mail: abdelraouf.em@gmail.com, E-mail: msharif@eng.ua.edu, E-mail: john.baker@eng.ua.edu [Aerospace Engineering and Mechanics Department, The University of Alabama, Tuscaloosa, Alabama 35487, United States of America (United States)

    2017-04-15

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies. (paper)

  7. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  8. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Sato, Natsuo; Tonegawa, Yutaka; Yoshino, Takeo; Saemundsson, T.

    1989-01-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere

  9. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  10. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  11. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  12. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  13. Metamodeling and optimization of the THF process with pulsating pressure

    Science.gov (United States)

    Bucconi, Marco; Strano, Matteo

    2018-05-01

    Tube hydroforming is a process used in various applications to form the tube in a desired complex shape, by combining the use of internal pressure, which provides the required stress to yield the material, and axial feeding, which helps the material to flow towards the bulging zone. In many studies it has been demonstrated how wrinkling and bursting defects can be severely reduced by means of a pulsating pressure, and how the so-called hammering hydroforming enhances the formability of the material. The definition of the optimum pressure and axial feeding profiles represent a daunting challenge in the designing phase of the hydroforming operation of a new part. The quality of the formed part is highly dependent on the amplitude and the peak value of the pulsating pressure, along with the axial stroke. In this paper, a research is reported, conducted by means of explicit finite element simulations of a hammering THF operation and metamodeling techniques aimed at optimizing the process parameters for the production of a complex part. The improved formability is explored for different factors and an optimization strategy is used to determine the most convenient pressure and axial feed profile curves for the hammering THF process of the examined part. It is shown how the pulsating pressure allows the minimization of the energy input in the process, still respecting final quality requirements.

  14. Simultaneous measurement of aurora-related, irregular magnetic pulsations at northern and southern high latitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Rajashekar, R.; Cahill, L.J. Jr.; Engebretson, M.J.; Rosenberg, T.J.; Mende, S.B.

    1987-01-01

    A dominant feature of high-latitude magnetic pulsations is large-amplitude irregular pulsations (Pi) which are closely correlated with the movement of the observing station under particle precipitation, producing the dayside auroral and the high-latitude expansion of nightside aurora. The dayside Pi-1 pulsation maximum centered about local magnetic noon has no strong seasonal dependence, indicating that the dayside aurora illuminates both hemispheres independent of the latitude of the subsolar point. The summer noon pulsation maximum has, however, a greater longitudinal extent than the winter noon maximum, as measured at 74 degree-75 degree invariant latitude. The nightside magnetic pulsations are bursts of Pi (PiB) having an average duration of 15 min. From Defense Meteorological Satellite Program photos the auroral forms related to the high-latitude PiB can be identified as the poleward discrete arc generally having a large longitudinal extent. If the auroral forms are very similar in both hemispheres, then the large longitudinal extent coupled with movement of the auroral could explain why 85% of the PiB events have onsets within 10 min at opposite hemisphere sites (South Pole, Antarctica, and Sondre Stromfjord, Greenland) separated in local magnetic time by about 1.5 hours. There is no seasonal dependence in the statistical occurrence of PiB, nor in its simultaneity in opposite hemispheres. Apparently, the seasonal distortion of the tail plasma sheet has little effect on the acceleration of high-latitude auroral beams. The actual several minute time difference in opposite hemisphere onsets of PiB is probably due to the westward/poleward motion of the longitudinally extended aurora

  15. Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2017-03-01

    Full Text Available High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.

  16. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  17. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2017-01-01

    Full Text Available Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject’s left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69±0.26 (p<0.05. The phase shift calculated for the maximum correlation is equal to 60±40° (p<0.05. When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p<0.3. Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase.

  18. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  19. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  20. Pulsations in M dwarf stars

    OpenAIRE

    Rodríguez-López, C.; MacDonald, J.; Moya, A.

    2011-01-01

    We present the results of the first theoretical non-radial non-adiabatic pulsational study of M dwarf stellar models with masses in the range 0.1 to 0.5M_solar. We find the fundamental radial mode to be unstable due to an \\epsilon mechanism caused by deuterium (D-) burning for the young 0.1 and 0.2M_solar models, by non-equilibrium He^3 burning for the 0.2 and 0.25M_solar models of 10^4Myr, and by a flux blocking mechanism for the partially convective 0.4 and 0.5M_solar models once they reach...

  1. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  2. Pulsations in white dwarfs: Selected topics

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available This paper presents a very brief overview of the observed properties of g-mode pulsations in variable white dwarfs. We then discuss a few selected topics: Excitation mechanisms (kappa- and convection- mechanisms, and briefly the effect of a strong magnetic field (∼ 1 MG on g-modes as recently found in a hot DQ (carbon-rich atmosphere white dwarf. In the discussion of excitation mechanisms, a simple interpretation for the convection mechanism is given.

  3. Elimination of torque pulsations in a direct drive EV wheel motor

    Energy Technology Data Exchange (ETDEWEB)

    Hredzak, B.; Gair, S. [Napier Univ., Edinburgh (United Kingdom); Eastham, J.F. [Univ. of Bath (United Kingdom)

    1996-09-01

    Double sided axial field machines are attractive for direct wheel drives in electric vehicles. This is due to the fact that stator/rotor misalignments can be accommodated. In this case the stator of the machine is envisaged mounted on the chassis of the car while the rotor directly drives the road wheel. Since the wheel is perturbed by the road surface the rotor will move vertically between the outside stator assemblies and thus give rise to torque pulsations. A vector control scheme has been implemented whereby the torque pulsations are eliminated by (i) calculation of the flux variation due to the rotor perturbation and (ii) using this signal for the modulation of the motor input current.

  4. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  5. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels

    International Nuclear Information System (INIS)

    Permchart, W.; Kouprianov, V.I.

    2004-01-01

    This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O 2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions. (Author)

  6. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  7. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    Directory of Open Access Journals (Sweden)

    Alexandra K. Diem

    2017-08-01

    Full Text Available Alzheimer's Disease (AD is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.

  8. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  9. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  10. Development of pressurized coal partial combustor; Kaatsu sekitan bubun nenshoro gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kawamura, K [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tanaka, T [Chubu Electric Power Co. Inc., Nagoya (Japan); Muramatsu, T [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal partial combustor (CPC) uses a combustion technology with which coal is burned at elevated temperatures and under revolution, the constituents are captured on the furnace wall and removed as molten slag from the furnace. This is a combustion technology to reduce load of ash on subsequent devices. To generate a molten condition, it is necessary to raise the combustion temperature as high as possible (to about 1600 degC in the furnace), but this is effective for a gas turbine composite power generation system. An efficiency of higher than 45% may be expected at the power transmission terminal. As an operation on subsidy from the Agency of Natural Resources and Energy, the normal-pressure CPC technology has already been established, and a research on pressurized CPC is being progressed since fiscal 1991. The research is in progress with a schedule that elemental tests for 7 tons per day production are conducted until fiscal 1995, a 25 tons per day pilot plant will be completed by November 1997, and verification tests for long-term continuous operation will be implemented until 1998. The 7 tons per day elemental tests have identified gasification performance and slag extraction performance using five types of coal having different properties. 7 refs., 10 figs., 4 tabs.

  11. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    Science.gov (United States)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  12. K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies

    Science.gov (United States)

    Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.

    2018-03-01

    We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.

  13. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  14. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

    International Nuclear Information System (INIS)

    Clement, Jason; Wang Xia

    2013-01-01

    A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. - Highlights: ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.

  15. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    Science.gov (United States)

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  16. Thermo-acoustic coupling in can-annular combustors : A numerical investigation

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.; Pent, Jared; Rajaram, Rajesh

    2015-01-01

    Thermo-acoustic instabilities in modern, high power density gas turbines need to be predicted and understood in order to avoid unexpected damage and engine failure. While the annular combustor design is expected to suffer from the occurrence of transverse waves and burner-to-burner acoustic

  17. O-C analysis of the pulsating subdwarf B star PG 1219 + 534

    Science.gov (United States)

    Otani, Tomomi; Stone-Martinez, Alexander; Oswalt, Terry D.; Morello, Claudia; Moss, Adam; Singh, Dana; Sampson, Kenneth; DeAbreu, Caila; Khan, Aliyah; Seepersad, Austin; Shaikh, Mehvesh; Wilson, Linda

    2017-01-01

    PG 1219 + 534 (KY Uma) is a subdwarf B pulsating star with multiple periodicities between 120 - 175 s. So far, the most promising theory for the origin of subdwarf B (sdB) stars is that they result from binary mass transfer near the Helium Flash stage of evolution. The observations of PG 1219 +534 reported here are part of our program to constrain this evolutional theory by searching for companions and determining orbital separations around sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion or planet. If the star emits a periodic signal like pulsations, its orbital motion around the system’s center of mass causes periodic changes in the light pulse arrival times. PG 1219 + 534 was monitored for 90 hours during 2010-1 and 2016 using the 0.9m SARA-KP telescope at Kitt Peak National Observatory (KPNO), Arizona, and the 0.8 m Ortega telescope at Florida Institute of Technology in Melbourne. In this poster we present our time-series photometry and O-C analysis of this data.

  18. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  19. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  20. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  1. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  2. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  3. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    Science.gov (United States)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  4. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    Science.gov (United States)

    Tacina, K. M.; Hicks, Y. R.

    2017-01-01

    The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.

  5. Four new massive pulsating white dwarfs including an ultramassive DAV

    Science.gov (United States)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  6. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.

    Science.gov (United States)

    Kuprianov, Vladimir I; Arromdee, Porametr

    2013-07-01

    Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  8. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  9. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247-25B

    Science.gov (United States)

    Istrate, A. G.; Fontaine, G.; Heuser, C.

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247-25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247-25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247-25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  10. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  11. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    Science.gov (United States)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  12. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... exceed 30 nanograms per dry standard cubic meter (12 grains per billion dry standard cubic feet), corrected to 7 percent oxygen (dry basis). ...

  13. DRhoGEF2 regulates cellular tension and cell pulsations in the Amnioserosa during Drosophila dorsal closure.

    Directory of Open Access Journals (Sweden)

    Dulce Azevedo

    Full Text Available Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.

  14. Characterization of Centrifugally-Loaded Flame Migration for Ultra-Compact Combustors

    Science.gov (United States)

    2011-10-01

    configuration on the flat vane. However, Radtke [38] investigated a curved radial vane geometry and demonstrated increased combustion eciency with the curved...Hancock, R. D., “Ultra-Compact Combustors for Advanced Gas Turbine Engines,” ASME Turbo Expo 2004 , GT-2004-53155, 2004. [38] Radtke , J. T., Eciency

  15. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    Science.gov (United States)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  16. Combustion of cork waste in a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Miranda, M.; Cabrita, I. [Dept. de Tecnologias de Combustao, ITE-INETI, Lisboa (Portugal); Abelha, P. [Coaltec e Ambiente, Lisboa (Portugal)

    1999-07-01

    There is currently an ongoing joint project between Portugal and Spain, which is being funded by the FAIR programme. The principal objective of the FAIR project is to investigate the application of the fluidised bed combustion (FBC) technology to burn cork wastes with the aim of overcoming the difficulties currently experienced in the cork processing industries. The combustion studies at INETI were carried out using the 300 kW{sub th} circulating fluidised bed facility. The combustor is square in cross section with each side being 0.3 m long. The combustor height is 5 m. The temperatures in the bed, the riser and that of the flue gases leaving the reactor were continuously monitored. The combustion gases leaving the reactor passed through the recycling cyclone first to capture most of particulates elutriated out of the combustor. The solid particles were intermittently collected for analysis to determine the amount of carbon present, which helped the combustion efficiency to be calculated. Instantaneous measurements of O{sub 2}, CO, CO{sub 2}, NO{sub x}, N{sub 2}O and SO{sub 2} present levels in the flue gases were also carried out. The combustion tests were done with both the cork waste dust and granular virgin cork. The difference is that cork dust gets contaminated during the process due to the use of various additives. Most of the combustion took place in the riser where the temperature was at times up to 523 K above that of the bed. The unburned carbon level was low ranging from about 1.5 to 2.% suggesting that most of the particles burned to completion in the riser. (orig.)

  17. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.

    Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  18. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  19. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  20. Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751

    Science.gov (United States)

    Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie

    2018-02-01

    We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at

  1. An Engineering Model for Prediction of Waste Incineration in a Dump Combustor

    National Research Council Canada - National Science Library

    Arunajatesan, S

    1997-01-01

    An engineering model that can be used to obtain predictions of axial distributions of temperature and species concentrations in complex flows has been formulated and applied to waste incineration in a dump combustor...

  2. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    Science.gov (United States)

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-09-03

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet

  3. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2017-08-01

    Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.

  4. The 1989 progress report: quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1989-01-01

    The 1989 progress report of the laboratory of Quantum Optics of the Polytechnic School (France) is presented. The main research activity of the Laboratory is the study of processes controlling the behavior of matter under the action of high intensity light fields and under space-time constraints. The reported investigations were performed in the following fields: dynamics and vibrational relaxation modes in dense phases; nonlinear optical properties of composite materials; surface energy transfer and distribution in molecule surface interactions. Techniques relating to femtosecond impulsions, pulsating Raman and nonlinear optics were developed. The published papers, the conferences and the Laboratory staff are listed [fr

  5. Study of sdO models. Pulsation Analysis

    OpenAIRE

    Rodríguez-López, C.; Moya, A.; Garrido, R.; MacDonald, J.; Oreiro, R.; Ulla, A.

    2009-01-01

    We have explored the possibility of driving pulsation modes in models of sdO stars in which the effects of element diffusion, gravitational settling and radiative levitation have been neglected so that the distribution of iron-peak elements remains uniform throughout the evolution. The stability of these models was determined using a non-adiabatic oscillations code. We analysed 27 sdO models from 16 different evolutionary sequences and discovered the first ever sdO models capable of driving h...

  6. Experimental study on transition characteristics of pulsating flow in narrow rectangular channel

    International Nuclear Information System (INIS)

    Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong

    2013-01-01

    Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)

  7. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    Energy Technology Data Exchange (ETDEWEB)

    Foster, H. M.; Reed, M. D. [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Telting, J. H. [Nordic Optical Telescope, Rambla José Ana Fernández Pérez 7, E-38711 Breña Baja (Spain); Østensen, R. H. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Baran, A. S. [Uniwersytet Pedagogiczny, Obserwatorium na Suhorze, ul. Podchorażych 2, 30-084 Kraków (Poland)

    2015-06-01

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets of ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.

  8. Predicting phase shift effects for vibrating fluid-conveying pipes due to Coriolis forces and fluid pulsation

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    2011-01-01

    to improve accuracy, precision, and robustness of CFMs. A simple mathematical model of a fluid-conveying pipe is formulated and the effect of pulsating fluid flow is analyzed using a multiple time scaling perturbation analysis. The results are simple analytical predictions for the transverse pipe...... and uncontrolled during CFM operation by feedback control. The analytical predictions offer an immediate insight into how fluid pulsation affects phase shift, which is a quantity measured by CFMs to estimate the mass flow, and lead to hypotheses for more complex geometries, i.e. industrial CFMs. The validity...... displacement and approximate axial shift in vibration phase. The analytical predictions are tested against pure numerical solution using representative examples, showing good agreement. Fluid pulsations are predicted not to influence CFM accuracy, since proper signal filtering is seen to allow...

  9. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  10. Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots

    International Nuclear Information System (INIS)

    Kuzmenkov, A. G.; Ustinov, V. M.; Sokolovskii, G. S.; Maleev, N. A.; Blokhin, S. A.; Deryagin, A. G.; Chumak, S. V.; Shulenkov, A. S.; Mikhrin, S. S.; Kovsh, A. R.; McRobbie, A. D.; Sibbett, W.; Cataluna, M. A.; Rafailov, E. U.

    2007-01-01

    The authors report the observation of strong self-pulsations in molecular-beam epitaxy-grown oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. At continuous-wave operation, self-pulsations with pulse durations of 100-300 ps and repetition rates of 0.2-0.6 GHz were measured. The average optical power of the pulsations was 0.5-1.0 mW at the laser continuous-wave current values of 1.5-2.5 mA

  11. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  12. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary; Shanbhogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  13. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  14. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    Science.gov (United States)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  15. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  16. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  17. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  18. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  19. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    Directory of Open Access Journals (Sweden)

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  20. Emissions control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans at municipal waste combustors

    International Nuclear Information System (INIS)

    Tseng, S.C.; Jozewicz, W.; Sedman, C.B.

    1991-01-01

    This paper gives the results of an analysis of available emission data of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) from municipal waste combustors (MWCs) to evaluate the effectiveness of various air pollution control devices on PCDD/PCDF removal. The effects of flue gas temperature, recycling fabric filter ash, and process additives such as ammonia and Tesisorb powder were also analyzed. The analysis shows that MWCs equipped with a spray dryer followed by fabric filters can achieve PCDD/PCDF removal efficiencies (REs) of 97% and higher. A RE of 94% has been achieved at a combustor equipped with a Thermal DeNO x system followed by a spray dryer and fabric filters. MWCs equipped with a duct sorbent injection system followed by fabric filters can potentially achieve a RE of 99%. A combustor equipped with a spray dryer followed by electrostatic precipitators (ESPs) has achieved a RE of 64%. Neither a duct sorbent injection system followed by ESPs nor a furnace sorbent injection system followed by ESPs could effectively remove PCDD/PCDF. PCDD/PCDF were not effectively removed from MWCs equipped with ESPs as the only devices to control air pollution

  1. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    1999-03-01

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way,  m = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed.Key words. Magnetospheric physics (energetic particles , trapped

  2. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  3. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    Science.gov (United States)

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  4. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    International Nuclear Information System (INIS)

    Pintore, F.; Mereghetti, S.; Zampieri, L.; Stella, L.; Israel, G. L.; Wolter, A.

    2017-01-01

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M ⊙ black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  5. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pintore, F.; Mereghetti, S. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Zampieri, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Stella, L.; Israel, G. L. [INAF—Osservatorio astronomico di Roma, Via Frascati 44, I-00078, Monteporzio Catone (Italy); Wolter, A. [INAF, Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy)

    2017-02-10

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M {sub ⊙} black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  6. Flame dynamics in a micro-channeled combustor

    International Nuclear Information System (INIS)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  7. Flame dynamics in a micro-channeled combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk [Department of Mechanical Engineering, University College London, London (United Kingdom); Markides, Christos N. [Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  8. A Project to Develop an Index of PC 3,4,5 Geomagnetic Pulsations and to Study Their control by Solar Wind Parameters.

    Science.gov (United States)

    1983-04-01

    source of Pc 3,4 pulsations in foreshock signals, shock pulsations, and magnetosheath turbulence, and several groups are actively exanining this...link between wavetrains in the sheath and Pc 3,4 has ever been proved, however, althugh the possibility that foreshock waves, which resemble pulsations...shock and foreshock reglons con- variations in wave correlation observable in the stitute the essential tool for distingi.shing running 12-second

  9. Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation

    Science.gov (United States)

    Milcarek, Ryan J.; Ahn, Jeongmin

    2018-03-01

    Micro-tubular flame-assisted fuel cells (mT-FFC) were recently proposed as a modified version of the direct flame fuel cell (DFFC) operating in a dual chamber configuration. In this work, a rich-burn, quick-mix, lean-burn (RQL) combustor is combined with a micro-tubular solid oxide fuel cell (mT-SOFC) stack to create a rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation system. The system is tested for rapid startup and achieves peak power densities after only 35 min of testing. The mT-FFC power density and voltage are affected by changes in the fuel-lean and fuel-rich combustion equivalence ratio. Optimal mT-FFC performance favors high fuel-rich equivalence ratios and a fuel-lean combustion equivalence ratio around 0.80. The electrical efficiency increases by 150% by using an intermediate temperature cathode material and improving the insulation. The RFQL combustor and power generation system achieves rapid startup, a simplified balance of plant and may have applications for reduced NOx formation and combined heat and power.

  10. FUNCTIONS AND REQUIREMENTS FOR RUSSIAN PULSATING MONITOR DEPLOYMENT IN THE GUNITE AND ASSOCIATED TANKS AT OAK RIDGE NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Thomas Albert

    1999-01-01

    This document provides functions and requirements to support deployment of pulsating mixer pump technology in the Oak Ridge National Laboratory (ORNL) Gunite and Associated Tanks to mobilize and mix the settled sludge and solids in these tanks. In FY 1998 pulsating mixer pump technology, a jet mixer powered by a reciprocating air supply, was selected for FY 1999 deployment in one of the GAAT tanks to mobilize settled solids. Pulsating mixer pump technology was identified in FY 1996 during technical exchanges between the US Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the US. The pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to mobilize settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for bulk mobilization of Gunite tank sludge prior to deployment of other retrieval systems. The deployment of this device is expected to significantly reduce the costs of operation and maintenance of more expensive retrieval systems. The functions and requirements presented here were developed by evaluating the results and recommendations that resulted from the pulsating mixer pump demonstration at PNNL, and by coupling this with the remediation needs identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks

  11. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  12. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  13. Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material

    International Nuclear Information System (INIS)

    Arromdee, Porametr; Kuprianov, Vladimir I.

    2012-01-01

    Highlights: ► We propose burning of peanut shells in a conical fluidized bed using alumina sand. ► We examine hydrodynamic, combustion and emission characteristics of the reactor. ► High, over 99%, combustion efficiency is achievable. ► Emissions of CO and NO from the combustor meet the national emission limits. ► Composition of the bed material undergoes significant changes during the combustion. -- Abstract: This paper reports experimental studies on burning peanut shells in the conical fluidized-bed combustor using alumina sand as the fluidizing agent. Prior to combustion tests, hydrodynamic regimes and characteristics of a conical alumina–biomass bed were investigated under cold-state conditions for variable percentage of peanut shells in the mixture and static bed height. With selected particle sizes (300–500 μm) and static bed height (30 cm), alumina ensured bubbling fluidization regime of the bed at operating conditions specified for firing biomass. Combustion tests were performed at 60 kg/h and 45 kg/h fuel feed rates, while ranging excess air from 20% to 80% at a fixed combustor load. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were measured along radial and axial directions inside the reactor as well as at stack in order to characterize combustion and emission performance of the combustor for the ranges of operating conditions. For firing 60 kg/h peanut shells, excess air of 40% can be selected as an appropriate value ensuring high, about 99%, combustion efficiency and rather low emissions of CO and NO: 520 ppm and 125 ppm, respectively (both on a dry basis and at 6% O 2 ). With reducing combustor load, the combustion efficiency and emission characteristics were improved to a little extent. No evidence of bed agglomeration was found during 30-h combustion tests on this conical fluidized-bed combustor using alumina sand as the bed material. However, the timescale effect on the composition of the bed material was

  14. Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines

    OpenAIRE

    Thomasson, Andreas; Eriksson, Lars

    2015-01-01

    The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...

  15. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    Science.gov (United States)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36

  16. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247–25B

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, A. G. [Center for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Fontaine, G. [Département de Physique, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Heuser, C., E-mail: istrate@uwm.edu [Dr. Karl Remeis-Observatory and ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247−25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247−25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247−25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  17. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States)

    2012-05-10

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T{sub eff} = 9100 {+-} 170 K and log g = 6.22 {+-} 0.06, which corresponds to a mass of {approx}0.17 M{sub Sun }. This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  18. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    International Nuclear Information System (INIS)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin

    2012-01-01

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T eff = 9100 ± 170 K and log g = 6.22 ± 0.06, which corresponds to a mass of ∼0.17 M ☉ . This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  19. Numerical assessment of pulsating water jet in the conical diffusers

    Science.gov (United States)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  20. VERY LONG-PERIOD PULSATIONS BEFORE THE ONSET OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin; Huang, Jing; Tan, Chengming; Zhang, Yin [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China); Yu, Zhiqiang, E-mail: bltan@nao.cas.cn [School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-20

    Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. It remains a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite , this work reports a new discovery of very long-periodic pulsations occurring in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations typically have periods of 8–30 min and last for about 1–2 hr. They are possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. Preflare-VLPs provide essential information for understanding the triggering mechanism and origin of solar flares, and may be a convenient precursory indicator to help us respond to solar explosions and the corresponding disastrous space weather events.

  1. Large Municipal Waste Combustors (LMWC): New Source Performance Standards (NSPS) and Emissions Guidelines

    Science.gov (United States)

    Learn about the NSPS, emission guidelines and compliance times for large municipal waste combustors (MWC) by reading the rule summary, rule history and the federal register citations and supporting documents

  2. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  3. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  4. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.

    2011-01-01

    We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 μHz, which we model as the large separation. The star is an α2 CVn...... spotted magnetic variable that shows a complex rotational light variation with a period of Prot= 5.684 59 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period, that is, a subharmonic frequency...

  5. Design of thermal protection system for 8 foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The combustor in the 8-foot high temperature structures tunnel at the NASA-Langley Research Center has encountered cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A program was conducted which analyzed the failed combustor liner hardware and determined that the mechanism of failure was vibratory fatigue. A vibration damper system using wave springs located axially between the liner T-bar and the liner support was designed as an intermediate solution to extend the life of the current two-pass regenerative air-cooled liner. The effects of liner wall thickness, cooling air passage height, stiffener ring geometry, reflective coatings, and liner material selection were investigated for these designs. Preliminary layout design arrangements including the external water-cooling system requirements, weight estimates, installation requirements and preliminary estimates of manufacturing costs were prepared for the most promissing configurations. A state-of-the-art review of thermal barrier coatings and an evaluation of reflective coatings for the gasside surface of air-cooled liners are included.

  6. Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave–particle interactions in the pre-midnight inner magnetosphere

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2015-08-01

    Full Text Available We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

  7. Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin

    2008-01-01

    A pressure-gain combustor comprised of a mechanically valved, liquid fueled pulsejet, an ejector, and an enclosing shroud, was coupled to a small automotive turbocharger to form a self-aspirating, thrust producing gas turbine engine. The system was constructed in order to investigate issues associated with the interaction of pulsed combustion devices and turbomachinery. Installed instrumentation allowed for sensing of distributed low frequency pressure and temperature, high frequency pressure in the shroud, fuel flow rate, rotational speed, thrust, and laboratory noise. The engine ran successfully and reliably, achieving a sustained thrust of 5 to 6 lbf, and maintaining a rotor speed of approximately 90,000 rpm, with a combustor pressure gain of approximately 4 percent. Numerical simulations of the system without pressure-gain combustion indicated that the turbocharger would not operate. Thus, the new combustor represented a substantial improvement in system performance. Acoustic measurements in the shroud and laboratory indicated turbine stage sound pressure level attenuation of 20 dB. This is consistent with published results from detonative combustion experiments. As expected, the mechanical reed valves suffered considerable damage under the higher pressure and thermal loading characteristics of this system. This result underscores the need for development of more robust valve systems for this application. The efficiency of the turbomachinery components did not appear to be significantly affected by unsteadiness associated with pulsed combustion, though the steady component efficiencies were already low, and thus not expected to be particularly sensitive.

  8. FOLLOW-UP OBSERVATIONS OF THE SECOND AND THIRD KNOWN PULSATING HOT DQ WHITE DWARFS

    International Nuclear Information System (INIS)

    Dufour, P.; Green, E. M.; Fontaine, G.; Brassard, P.; Francoeur, M.; Latour, M.

    2009-01-01

    We present follow-up time-series photometric observations that confirm and extend the results of the significant discovery made by Barlow et al. that the Hot DQ white dwarfs SDSS J220029.08 - 074121.5 and SDSS J234843.30 - 094245.3 are luminosity variable. These are the second and third known members of a new class of pulsating white dwarfs, after the prototype SDSS J142625.71+575218.3. We find that the light curve of SDSS J220029.08 - 074121.5 is dominated by an oscillation at 654.397 ± 0.056 s, and that the light pulse folded on that period is highly nonlinear due to the presence of the first and second harmonic of the main pulsation. We also present evidence for the possible detection of two additional pulsation modes with low amplitudes and periods of 577.576 ± 0.226 s and 254.732 ± 0.048 s in that star. Likewise, we find that the light curve of SDSS J234843.30 - 094245.3 is dominated by a pulsation with a period of 1044.168 ± 0.012 s, but with no sign of harmonic components. A new oscillation, with a low amplitude and a period of 416.919 ± 0.004 s, is also probably detected in that second star. We argue, on the basis of the very different folded pulse shapes, that SDSS J220029.08 - 074121.5 is likely magnetic, while SDSS J234843.30 - 094245.3 is probably not.

  9. Thermal Performance of a Scramjet Combustor Operating at Mach 5.6 Flight Conditions

    National Research Council Canada - National Science Library

    Stouffer, Scott

    1997-01-01

    .... The objective of the thermal loads testing was to map the thermal and mechanical loads, including heat transfer, dynamic and static pressures, and skin friction in a scramjet combustor during direct...

  10. HYBRID γ DORADUS-δ SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS

    International Nuclear Information System (INIS)

    Grigahcene, A.; Monteiro, M. J. P. F. G.; Antoci, V.; Handler, G.; Houdek, G.; Balona, L.; Catanzaro, G.; Daszynska-Daszkiewicz, J.; Guzik, J. A.; Kurtz, D. W.; Marconi, M.; Ripepi, V.; Moya, A.; Suarez, J.-C.; Uytterhoeven, K.; Borucki, W. J.; Brown, T. M.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Jenkins, J. M.

    2010-01-01

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M sun are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The δ Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the κ mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where 'hybrid' stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known γ Dor and δ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure δ Sct or γ Dor pulsators, i.e., essentially all of the stars show frequencies in both the δ Sct and the γ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids.

  11. Consideraciones sobre una cámara de combustión experimental de 400 kW // Considerations on a 400 kW experimental combustor.

    Directory of Open Access Journals (Sweden)

    J. A. Cabrera Rodríguez

    2000-03-01

    Full Text Available El trabajo aborda el diseño térmico y constructivo de la cámara de combustión de un combustor experimental para lasimulación de procesos reales de combustión. Se analizan distintas variantes constructivas y se valora su influencia en elcomportamiento del horno, su estabilidad térmica y los gastos energéticos incurridos durante su funcionamiento.Palabras claves: Cámara de combustión, diseño, combustor.________________________________________________________________________________AbstractThe work approaches the thermal and mechanical design of a combustion chamber of an experimental combustor for thesimulation of real combustion process. Different designs are analyzed and their influence is valued in the behavior of thefurnace, thermal stability and cost incurred during their operation.Key words: Combustor, furnace design, thermical design .

  12. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  13. Comparison of computer codes for evaluation of double-supply-frequency pulsations in linear induction pumps

    International Nuclear Information System (INIS)

    Kirillov, Igor R.; Obukhov, Denis M.; Ogorodnikov, Anatoly P.; Araseki, Hideo

    2004-01-01

    The paper describes and compares three computer codes that are able to estimate the double-supply-frequency (DSF) pulsations in annular linear induction pumps (ALIPs). The DSF pulsations are the result of interaction of the magnetic field and induced in liquid metal currents both changing with supply-frequency. They may be of some concern for electromagnetic pumps (EMP) exploitation and need to be evaluated at their design. The results of computer simulation are compared with experimental ones for annular linear induction pump ALIP-1

  14. Method for control of NOx emission from combustors using fuel dilution

    Science.gov (United States)

    Schefer, Robert W [Alamo, CA; Keller, Jay O [Oakland, CA

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  15. Constraining convection parameters from the light curve shapes of pulsating white dwarf stars: the cases of EC 14012-1446 and WD 1524-0030

    Energy Technology Data Exchange (ETDEWEB)

    Handler, G; Lendl, M; Beck, P [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Provencal, J L; Montgomery, M H [Mt. Cuba Observatory and Department of Physics and Astronomy, University of Delaware, 223 Sharp Laboratory, Newark, DE 19716 (Cuba); Romero-Colmenero, E [South AfricAN Astronomical Observatory, PO Box 9, Observatory 7935 (South Africa); Sanchawala, K; Chen, W-P [Graduate Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Wood, M A; Silver, I [Department of Physics and Space Sciences and SARA Observatory, Florida Institute of Technology, Melbourne, FL 32901 (United States)], E-mail: handler@astro.univie.ac.at

    2008-10-15

    Montgomery [1] developed a method to probe convection in pulsating white dwarf stars which allows the recovery of the thermal response time of the convection zone by fitting observed nonsinusoidal light curves. He applied this method to two objects; the Whole Earth Telescope (WET) observed the pulsating DB white dwarf GD 358 for just this purpose. Given this WET run's success, it is time to extend Montgomery's method to pulsating DA white dwarf (ZZ Ceti) stars. We present observations of two ZZ Ceti stars, WD 1524-0030 and EC 14012-1446, both observed from multiple sites. EC 14012-1446 seems better suited thAN WD1524-0030 for a future WET run because it has more pulsation modes excited and because it pulsation spectrum appears to be more stable in time. We call for participation in this effort to take place in April 2008.

  16. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.; Shanbhogue, Santosh J.; Speth, Raymond L.; Ghoniem, Ahmed F.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides

  17. Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor

    International Nuclear Information System (INIS)

    Yan, Yunfei; Wang, Haibo; Pan, Wenli; Zhang, Li; Li, Lixian; Yang, Zhongqing; Lin, Changhai

    2016-01-01

    Highlights: • Combustion in heat recuperation micro-combustors with different materials was studied. • Heat concentration is more obvious with thermal conductivity decreasing. • Combustor with copper baffles has uniform temperature distribution and best preheating effectiveness. • Influence of wall thermal conductivity is negligible on OH(s) coverage. • Methane conversion rate firstly increases and then decreases with h increasing. - Abstract: Premixed combustion of methane/air mixture in heat recuperation micro-combustors made of different materials (corundum, quartz glass, copper and ferrochrome) was investigated. The effects of wall parameters on the combustion characters of a CH 4 /air mixture under Rhodium catalyst as well as the influence of wall materials and convection heat transfer coefficients on the stable combustion limit, temperature field, and free radicals was explored using numerical analysis methodology. The results show that with a decrease of thermal conductivity of wall materials, the temperature of the reaction region increases and hot spots becomes more obvious. The combustor with copper baffles has uniform temperature distribution and best preheating effectiveness, but when inlet velocity is too small, the maximum temperature in the combustor with copper or ferrochrome baffles is well beyond the melting point of the materials. With an increase in thermal conductivity, the preheat zone for premixed gas increases, but the influence of thermal conductivity on OH(s) coverage is negligible. With an increase of the wall convection heat transfer coefficient, the methane conversion rate firstly increases, then decreases reaching a maximum value at h = 8.5 W/m 2 K, however, the average temperature of both the axis and exterior surface of the combustor decrease.

  18. A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    HD 49798 is a hydrogen depleted subdwarf O6 star and has an X-ray pulsating companion (RX J0648.0-4418). The X-ray pulsating companion is a massive white dwarf. Employing Eggleton's stellar evolution code with the optically thick wind assumption, we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova (SN Ia) in future evolution. This implies that the binary system is a likely candidate of an SN Ia progenitor. We also discuss the possibilities of some other WD + He star systems (e.g. V445 Pup and KPD 1930+2752) for producing SNe Ia. (research papers)

  19. Pitch angle scattering and particle precipitation in a pulsating aurora - an experimental study

    International Nuclear Information System (INIS)

    Sandahl, I.

    1984-10-01

    A pulsating aurora occurring during the recovery phase of a substorm on January 27, 1979 was monitored by a large set of instruments. The Swedish sounding rocket S23-L2 was launched at magnetic midnight over pulsating patches, some of which exhibited 3+-1 Hz modulation. The ground based instrumentation included auroral TV cameras, all sky cameras, photometers and magnetometers. The geostationary satellite GEOS-2 was located in the equatorial plane, approximately conjugate to the rocket. The central experiment of this study is the particle experiment on the rocket. Several aspects of pulsating auroras have been investigated. The auroral luminosity variations were very well correlated to variations in the flux of precipitating hot electrons. The 1-20 second pulsations were caused by increased fluxes of 4-40 keV electrons. The 3+-1 Hz modulation was detected in 7-200 keV electrons, but the biggest energy flux modulation occurred for electrons of about 60 keV. Model calculations involving the electron distributions measured by the sounding rocket and GEOS-2, consistently show that the electrons may have been scattered into the loss cone through the Doppler shifted gyroresonance with whistler mode waves. The scattering was not a pure pitch angle scattering as in the classical Coroniti and Kennel theory, but involved also a systematic energy loss from the particles. The waves were probably hiss with some chorus elements. The equatorial plane plasma density was estimated in two independent ways to be about 2x10 6 m- 3 . The 3+-1 Hz modulation was measured both by the particle experiment on the rocket and by the wave experiment on GEOS-2. Properties of the modulated fluxes are described and a qualitative model for the cause of the modulation is proposed. (author)

  20. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal.

    Science.gov (United States)

    Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB

    2014-11-01

    Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.

  1. Pulsational instability of high-luminosity H-rich pre-white dwarf star

    Directory of Open Access Journals (Sweden)

    Calcaferro Leila M.

    2017-01-01

    Full Text Available We present a pulsational stability analysis on high-luminosity H-rich (DA white dwarf models evolved from low-metallicity progenitors. We found that the ε mechanism due to H-shell burning is able to excite low-order g modes.

  2. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    International Nuclear Information System (INIS)

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  3. Experiments and computations on coaxial swirling jets with centerbody in an axisymmetric combustor

    International Nuclear Information System (INIS)

    Chao, Y.C.; Ho, W.C.; Lin, S.K.

    1987-01-01

    Experiments and computations of turbulent, confined, coannular swirling flows have been performed in a model combustor. Numerical results are obtained by means of a revised two-equation model of turbulence. The combustor consists of two confined, concentric, swirling jets and a centerbody at the center of the inlet. Results are reported for cold flow conditions under co- and counter-swirl. The numerical results agree with the experimental data under both conditions. The size of the central recirculation zone is dominated by the strength of the outer swirl. A two-cell recirculation zone may be formed due to the presence of the swirler hub. The mechanism of interaction between the separation bubble at the hub of the swirler and the central recirculation zone due to vortex breakdown is also investigated. 18 references

  4. Overview of experimental measurements in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-11-01

    Full Text Available Due to CFD Shortfalls, experimental data on gas turbine combustors is required to obtain insight into the combustion and flow mechanisms as well as for simulation and model validation and evaluation. The temperature and velocity fields of a generic...

  5. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Steinfadt, Justin D. R.; Bildsten, Lars; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M ∼ sun undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  6. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  7. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo; Lee, Chung-Uk; Koo, Jae-Rim, E-mail: jwlee@kasi.re.kr, E-mail: slkim@kasi.re.kr, E-mail: kshong@kasi.re.kr, E-mail: leecu@kasi.re.kr, E-mail: koojr@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2014-08-01

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpreted as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be excited

  8. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way, 
    m
    = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed

  9. MULTI-SITE OBSERVATIONS OF PULSATION IN THE ACCRETING WHITE DWARF SDSS J161033.64-010223.3 (V386 Ser)

    International Nuclear Information System (INIS)

    Mukadam, Anjum S.; Szkody, P.; Townsley, D. M.; Gaensicke, B. T.; Marsh, T. R.; Aungwerojwit, A.; Southworth, J.; Robinson, E. L.; For, B.-Q.; Bildsten, L.; Schreiber, M. R.; Schwope, A.; Tovmassian, G.; Zharikov, S. V.; Hidas, M. G.; Baliber, N.; Brown, T.; Woudt, P. A.; Warner, B.; O'Donoghue, D.

    2010-01-01

    Non-radial pulsations in the primary white dwarfs of cataclysmic variables can now potentially allow us to explore the stellar interior of these accretors using stellar seismology. In this context, we conducted a multi-site campaign on the accreting pulsator SDSS J161033.64-010223.3 (V386 Ser) using seven observatories located around the world in 2007 May over a duration of 11 days. We report the best-fit periodicities here, which were also previously observed in 2004, suggesting their underlying stability. Although we did not uncover a sufficient number of independent pulsation modes for a unique seismological fit, our campaign revealed that the dominant pulsation mode at 609 s is an evenly spaced triplet. The even nature of the triplet is suggestive of rotational splitting, implying an enigmatic rotation period of about 4.8 days. There are two viable alternatives assuming the triplet is real: either the period of 4.8 days is representative of the rotation period of the entire star with implications for the angular momentum evolution of these systems, or it is perhaps an indication of differential rotation with a fast rotating exterior and slow rotation deeper in the star. Investigating the possibility that a changing period could mimic a triplet suggests that this scenario is improbable, but not impossible. Using time-series spectra acquired in 2009 May, we determine the orbital period of SDSS J161033.64-010223.3 to be 83.8 ± 2.9 minutes. Three of the observed photometric frequencies from our 2007 May campaign appear to be linear combinations of the 609 s pulsation mode with the first harmonic of the orbital period at 41.5 minutes. This is the first discovery of a linear combination between non-radial pulsation and orbital motion for a variable white dwarf.

  10. Hybrid γ Doradus–δ Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations

    DEFF Research Database (Denmark)

    Grigahcène, A.; Antoci, V.; Balona, L.

    2010-01-01

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2–2.5 M are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods...

  11. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  12. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  13. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... per dry standard cubic meter (0.015 grains per dry standard cubic foot), corrected to 7 percent oxygen (dry basis). (b) On and after the date on which the initial compliance test is completed or is required...

  14. Minimisation of pressure pulsations in the screw compressor discharge piping

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, D. [Grasso GmbH Refrigeration Technology, Berlin (Germany). R and D Screw Compressors

    2006-07-01

    A problem of noise and vibration in the piping between the screw compressor and oil separator arises if the natural gas pulsations in the piping get in the resonance with the pulsations sent by the compressor. Several typical piping geometries such as a short and a long pipe with the open end and a short pipe with agglomerator have been studied to evaluate the natural frequency of the gas column. It was found that because of the wave reflection from the open pipe end the gas in such a pipe has several natural frequencies dependent on the sound speed and on the pipe length. Since the sound speed of various refrigerants differs significantly, the resonance pipe length will also vary strongly from one refrigerant to another. Hence, to avoid the resonance a separate examination for each refrigerant would be required at the compressor package design stage. Unlike open ended pipes, in the pipe with agglomerator the wave reflection at the agglomerator side is reduced. This allows using of one standard discharge pipe geometry resonance-free independent on the refrigerant. (orig.)

  15. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  16. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  17. Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Ali Cemal Benim

    2016-01-01

    Full Text Available Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.

  18. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  19. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  20. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Science.gov (United States)

    2010-07-01

    ... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or... weight or volume) or 30 parts per million by volume, corrected to 7 percent oxygen (dry basis), whichever... by volume, corrected to 7 percent oxygen (dry basis), whichever is less stringent. ...