WorldWideScience

Sample records for pulsar electrosphere 2d

  1. Pulsars

    CERN Document Server

    Smith, Francis Graham

    1977-01-01

    The discovery of the pulsars ; techniques for search and for observation ; the identification with rotating neutron stars ; the X-ray pulsars ; the internal structure of neutron stars ; the magnetosphere of neutron stars ; pulse timing ; properties of the integrated radio pulses ; individual radio pulses ; the Crab nebula ; the Crab pulsar ; the interstellar medium as an indicator of pulsar distances ; the interstellar magnetic field ; interstellar scintillation ; radiation processes ; the emission mechanism I : analysis of observed particles ; the emission mechanism II : geometrical considerations ; the emission mechanism : discussion ; supernovae : the origin of the pulsars ; the distribution and the ages of pulsars ; high energies and condensed stars.

  2. A preliminary investigation into the measurement of global thunderstorm incidence and electrosphere potential at Sanae, Antarctica

    International Nuclear Information System (INIS)

    Smart, C.A.

    1980-01-01

    One of the atmospheric parameters that may be affected by variations in the electrosphere potential is thunderstorm activity. The author made preliminary investigations into the simultaneous monitoring of global thunderstorm incidence and electrosphere potential. The author looked at the structure of the sun and the earth solar activity and solar emissions as well as the sun-weather relationships. Measurement were made by the author during 1978 at Sanae, Antarctica. The objective was to investigate the fluctuations of global thunderstorm activity and electrosphere potential and to establish some link between these and with solar activity. Potential gradient of the lower atmosphere was measured by means of a field mill and fluctuations taken to be representative of those of the electrosphere potential. Thunderstorm incidence was monitored by measurement of extra low frequency (ELF) electromagnetic noise radiated by lightning. A dipole or loop antenna was used for the recording of extra low frequency electromagnetic noise. A computer program was developed to facilitate the data analysis

  3. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Michael Mcneil [Los Alamos National Laboratory; Lawson, Kyle [CANADA; Zhitnitsky, Ariel R [CANADA

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from the galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.

  4. Orbital evolution of colliding star and pulsar winds in 2D and 3D: effects of dimensionality, EoS, resolution, and grid size

    Science.gov (United States)

    Bosch-Ramon, V.; Barkov, M. V.; Perucho, M.

    2015-05-01

    Context. The structure formed by the shocked winds of a massive star and a non-accreting pulsar in a binary system suffers periodic and random variations of orbital and non-linear dynamical origins. The characterization of the evolution of the wind interaction region is necessary for understanding the rich phenomenology of these sources. Aims: For the first time, we simulate in 3 dimensions the interaction of isotropic stellar and relativistic pulsar winds along one full orbit, on scales well beyond the binary size. We also investigate the impact of grid resolution and size, and of different state equations: a γ̂-constant ideal gas, and an ideal gas with γ̂ dependent on temperature. Methods: We used the code PLUTO to carry out relativistic hydrodynamical simulations in 2 and 3 dimensions of the interaction between a slow dense wind and a mildly relativistic wind with Lorentz factor 2, along one full orbit in a region up to ~100 times the binary size. The different 2-dimensional simulations were carried out with equal and larger grid resolution and size, and one was done with a more realistic equation of state than in 3 dimensions. Results: The simulations in 3 dimensions confirm previous results in 2 dimensions, showing: a strong shock induced by Coriolis forces that terminates the pulsar wind also in the opposite direction to the star; strong bending of the shocked-wind structure against the pulsar motion; and the generation of turbulence. The shocked flows are also subject to a faster development of instabilities in 3 dimensions, which enhances shocks, two-wind mixing, and large-scale disruption of the shocked structure. In 2 dimensions, higher resolution simulations confirm lower resolution results, simulations with larger grid sizes strengthen the case for the loss of the general coherence of the shocked structure, and simulations with two different equations of state yield very similar results. In addition to the Kelvin-Helmholtz instability, discussed in

  5. Pulsar Magnetospheres and Pulsar Winds

    OpenAIRE

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  6. Pulsar astronomy

    International Nuclear Information System (INIS)

    Lyne, A.G.; Graham-Smith, F.

    1990-01-01

    This account of the properties of pulsars tells an exciting story of discovery in modern astronomy. Pulsars, discovered in 1967, now take their place in a very wide range of astrophysics. They are one of the endpoints of stellar evolution, in which the core of a star collapses to a rapidly spinning neutron star a few kilometres in size. This book is an introductory account for those entering the field. It introduces the circumstances of the discovery and gives an overview of pulsar astrophysics. There are chapters on search techniques, distances, pulse timing, the galactic population of pulsars, binary and millisecond pulsars, geometry and physics of the emission regions, and applications to the interstellar medium. An important feature of this book is the inclusion of an up-to-date catalogue of all known pulsars. (author)

  7. Pulsars today

    International Nuclear Information System (INIS)

    Graham-Smith, F.

    1990-01-01

    The theory concerning pulsars is reviewed, with particular attention to possible evolution, life cycle, and rejuvenation of these bodies. Quantum liquids, such as neutron superfluids, and evidence for the existence of superfluid vortices and other internal phenomena are considered with particular attention to the Crab pulsar. Rate of change of the rotation rate is measured and analyzed for the Crab pulsar and the implications of deviations in the pulse times from those of a perfect rotator are examined. Glitches, the sudden increase in rotation rate of a pulsar that has previously exhibited a steady slowdown, are discussed and it is suggested that the movement of the superfluid core relative to the crust is responsible for this phenomenon. It is noted that radio waves from pulsars can be used to determine the intensity and structure of interplanetary and interstellar gas turbulence and to provide a direct measure of the strength of the interstellar magnetic field

  8. Pulsar magnetospheres

    International Nuclear Information System (INIS)

    Kennel, C.F.; Fujimura, F.S.; Pellat, R.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetospehere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivates, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of interia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magneto-hydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed. (orig.)

  9. Pulsars Magnetospheres

    Science.gov (United States)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  10. Pulsars for the Beginner

    Science.gov (United States)

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  11. Pulsar era

    Energy Technology Data Exchange (ETDEWEB)

    Hewish, A

    1986-12-01

    The discovery of pulsars in 1967 initiated one of the most effervescent phases of astronomy since World War II and opened up a number of important new fields of research. In looking back at the history of this event it is useful to focus on three aspects. These are the prehistory because it reveals a fascinating relationship between theory and observation concerning an entirely new phenomenon - the neutron star; the discovery itself, which was totally unexpected, to see if anything can be learned which might have a bearing on serendipitous discoveries in the future. For example, would pulsars have been found if the sky survey had been recorded digitally and analysed by a computer; the astronomical impact of the discovery as seen eighteen years after the initial excitement.

  12. Pulsars at Parkes

    OpenAIRE

    Manchester, R. N.

    2012-01-01

    The first pulsar observations were made at Parkes on March 8, 1968, just 13 days after the publication of the discovery paper by Hewish and Bell. Since then, Parkes has become the world's most successful pulsar search machine, discovering nearly two thirds of the known pulsars, among them many highly significant objects. It has also led the world in pulsar polarisation and timing studies. In this talk I will review the highlights of pulsar work at Parkes from those 1968 observations to about ...

  13. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  14. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  15. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  16. Pulsar timing and its applications

    OpenAIRE

    Manchester, R N

    2018-01-01

    Pulsars are remarkably precise "celestial clocks" that can be used to explore many different aspects of physics and astrophysics. In this article I give a brief summary of pulsar properties and describe some of the applications of pulsar timing, including tests of theories of gravitation, efforts to detect low-frequency gravitational waves using pulsar timing arrays and establishment a "pulsar timescale".

  17. Pulsar Wind Nebulae Created by Fast-Moving Pulsars

    OpenAIRE

    Kargaltsev, Oleg; Pavlov, George G.; Klingler, Noel; Rangelov, Blagoy

    2017-01-01

    We review multiwavelength properties of pulsar wind nebulae (PWNe) created by supersonically moving pulsars and the effects of pulsar motion on the PWN morphologies and the ambient medium. Supersonic pulsar wind nebulae (SPWNe) are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in SPWN studies have been made in deep observations with the Chandra and XMM-Newton X-ray Observatories as...

  18. Galactic population of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.; Manchester, R.N.

    1985-01-01

    In order to draw statistical conclusions about the overall population of pulsars in the Galaxy, a sample of 316 pulsars detected in surveys carried out at Jodrell Bank, Arecibo, Molonglo, and Green Bank has been analysed. The important selection effects of each survey are quantified and a statistically reliable pulsar distance scale based on a model for the large-scale distribution of free electrons in the Galaxy is described. These results allow the spatial and luminosity distribution functions of galactic pulsars to be computed. It is concluded that the Galaxy contains approximately 70 000 potentially observable pulsars with luminosities above 0.3 mJy kpc 2 . The period and luminosity evolution of pulsars, is also considered. (author)

  19. Observational properties of pulsars.

    Science.gov (United States)

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  20. Aspects of pulsar evolution

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1980-01-01

    We consider pulsar statistics from the point of view of generalized evolutionary equations that assume that pulsar torques diminish exponentially with a decay-time constant T, to be determined empirically. Decay or alignment of the neutron-star magnetic moment, or a combination, may cause the torque to diminish with time. The Sturrock-Ruderman-Sutherland pair-production model provides a quantitative way to calculate pulsar lifetimes. Different test, which use th data in partially independent ways and involve differnt assumptions, consistently suggest that T is less than a million years and may be as short as several hundred thousand years

  1. The Pulsar Luminosity Function

    OpenAIRE

    O. H. Guseinov; E. Yazgan; S. O. Tagieva

    2003-01-01

    Hemos construido y examinado la función de luminosidad para pulsares, usando una nueva lista la cual incluye datos de 1328 radio pulsares. En este trabajo, se construye por primera vez la función de luminosidad en 1400 MHz. También presentamos una función de luminosidad mejorada en 400 MHz. Se comparan las funciones de luminosidad en 400 y 1400 MHz. De igual manera se construyen las funciones de luminosidad excluyendo los pulsares binarios y los de campos magnéticos pequeños. S...

  2. Geriatric Pulsar Still Kicking

    Science.gov (United States)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  3. Pulsar Emission Spectrum

    OpenAIRE

    Gruzinov, Andrei

    2013-01-01

    Emission spectrum is calculated for a weak axisymmetric pulsar. Also calculated are the observed spectrum, efficiency, and the observed efficiency. The underlying flow of electrons and positrons turns out to be curiously intricate.

  4. Cosmic Ray Positrons from Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  5. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  6. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  7. Handbook of pulsar astronomy

    CERN Document Server

    Lorimer, Duncan

    2005-01-01

    Radio pulsars are rapidly rotating highly magnetized neutron stars. Studies of these fascinating objects have provided applications in solid-state physics, general relativity, galactic astronomy, astrometry, planetary physics and even cosmology. Most of these applications and much of what we know about neutron stars are derived from single-dish radio observations using state-of-the-art receivers and data acquisition systems. This comprehensive 2004 book is a unique resource that brings together the key observational techniques, background information and a review of results, including the discovery of a double pulsar system. Useful software tools are provided which can be used to analyse example data, made available on a related website. This work will be of great value not only to graduate students but also to researchers wishing to carry out and interpret a wide variety of radio pulsar observations.

  8. Pulsar slow-down epochs

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1981-01-01

    The relative importance of magnetospheric currents and low frequency waves for pulsar braking is assessed and a model is developed which tries to account for the available pulsar timing data under the unifying aspect that all pulsars have equal masses and magnetic moments and are born as rapid rotators. Four epochs of slow-down are distinguished which are dominated by different braking mechanisms. According to the model no direct relationship exists between 'slow-down age' and true age of a pulsar and leads to a pulsar birth-rate of one event per hundred years. (Author) [pt

  9. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    Arons, Jonathan.

    1980-06-01

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  10. Pulsar glitch dynamics

    Science.gov (United States)

    Morley, P. D.

    2018-01-01

    We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.

  11. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  12. The Pulsar Search Collaboratory

    Science.gov (United States)

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  13. Pulsars and Acceleration Sites

    Science.gov (United States)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  14. PERICLES 2D experiment

    International Nuclear Information System (INIS)

    Morel, Christophe

    2001-01-01

    Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)

  15. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  16. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  17. WHY ARE PULSAR PLANETS RARE?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rebecca G.; Livio, Mario; Palaniswamy, Divya [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States)

    2016-12-01

    Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Only pulsars with a suitable companion (with an extreme mass ratio) are able to form planets. Second, while a dead zone (a region of low turbulence) in the disk is generally thought to be essential for planet formation, it is most probably rare in disks around pulsars, because of the irradiation from the pulsar. The irradiation strongly heats the inner parts of the disk, thus pushing the inner boundary of the dead zone out. We suggest that the rarity of pulsar planets can be explained by the low probability for these two requirements to be satisfied: a very low-mass companion and a dead zone.

  18. Oldest pulsars in the Universe

    International Nuclear Information System (INIS)

    Shaham, J.

    1987-01-01

    Since the discovery of the Vulpecula pulsar two more superfast pulsars have been reported. In 1983 a 6.13-millisecond pulsar (called 1953 + 29) was announced, and in 1986 a 5.362-millisecond pulsar (called 1855 + 09) was publicized. A candidate for a fourth has been mentioned. As more evidence becomes available, it seems increasingly likely that the superfast pulsars can be explained only as a part of a new class of pulsars. Although many of the details of the class remain obscured, some general facts are emerging. Perhaps most interesting of all is the great age these new celestial objects are thought to have. Ordinary pulsars are relatively young, typically less than a million years old; the Crab pulsar, which is the youngest one known, is a mere infant of 932 years. The superfast pulsars, in comparison, are thought to be ancient. They are probably the result of evolutionary processes that could go back as much as a billion years, or one-twentieth of the age of the universe, and they are likely to live for several billion years more. 8 figures

  19. Automated processing of pulsar observations

    Energy Technology Data Exchange (ETDEWEB)

    Byzhlov, B.V.; Ivanova, V.V.; Izvekova, V.A.; Kuz' min, A.D.; Kuz' min, Yu.P.; Malofeev, V.M.; Popov, Yu.M.; Solomin, N.S.; Shabanova, T.V.; Shitov, Yu.P.

    1977-01-01

    Digital computer technology which processes observation results in a real time scale is used on meter-range radiotelescopes DKR-100 of the USSR Academy of Sciences Physics Institute and the BSA of the Physics Institute to study pulsars. A method which calls for the accumulation of impulses with preliminary compensation of pulsar dispersion in a broad band is used to increase sensitivity and resolution capability. Known pulsars are studied with the aid of a ''neuron'' type analyzer. A system for processing observations in an on-line set-up was created on the M-6000 computer for seeking unknown pulsars. 8 figures, 1 table, references.

  20. SIGPROC: Pulsar Signal Processing Programs

    Science.gov (United States)

    Lorimer, D. R.

    2011-07-01

    SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

  1. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  2. The pulsar era

    International Nuclear Information System (INIS)

    Hewish, A.

    1986-01-01

    The discovery of pulsars in 1967 initiated one of the most effervescent phases of astronomy since World War II and opened up a number of important new fields of research. In looking back at the history of this event it is useful to focus on three aspects. These are the prehistory because it reveals a fascinating relationship between theory and observation concerning an entirely new phenomenon - the neutron star; the discovery itself, which was totally unexpected, to see if anything can be learned which might have a bearing on serendipitous discoveries in the future. For example, would pulsars have been found if the sky survey had been recorded digitally and analysed by a computer; the astronomical impact of the discovery as seen eighteen years after the initial excitement. (author)

  3. The Extended Pulsar Magnetosphere

    Science.gov (United States)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  4. Pilot pulsar surveys with LOFAR

    NARCIS (Netherlands)

    Coenen, T.

    2013-01-01

    We are performing two complementary pilot pulsar surveys as part of LOFAR commissioning. The LOFAR Pilot Pulsar Survey (LPPS) is a shallow all-sky survey using an incoherent combination of LOFAR stations. The LOFAR Tied-Array Survey (LOTAS) is a deeper pilot survey using 19 simultaneous tied-array

  5. The LOFAR Known Pulsar Data Pipeline

    NARCIS (Netherlands)

    Alexov, A.; Hessels, J.W.T.; Mol, J.D.; Stappers, B.; van Leeuwen, J.

    2010-01-01

    Abstract: Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being

  6. Sensitivity of Pulsar Timing Arrays

    Science.gov (United States)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  7. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  8. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  9. Millisecond pulsars: Timekeepers of the cosmos

    Science.gov (United States)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  10. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  11. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  12. Coherent radiation from pulsars

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1979-01-01

    Interaction between a relativistic electrom stream and a plasma under conditions believed to exist in pulsar magnetospheres is shown to result in the simultaneous emission of coherent curvature radiation at radio wavelengths and incoherent curvature radiation at X-ray wavelengths from the same spatial volume. It is found that such a stream can propagate through a plasma parallel to a very strong magnetic field only if its length is less than a critical length L/sub asterisk/ic. Charge induced in the plasma by the stream co-moves with the stream and has the same limitation in longitudinal extent. The resultant charge bunching is sufficient to cause the relatively low energy plasma particles to radiate at radio wavelengths coherently while the relatively high energy stream particles radiate at X-ray wavelengths incoherently as the stream-plasma system moves along curved magnetic field lines. The effective number of coherently radiating particles per bunch is estimated to be approx.10 14 --10 15 for a tupical pulsar

  13. Pulsar populations and their evolution

    International Nuclear Information System (INIS)

    Narayan, R.; Ostriker, J.P.

    1990-01-01

    Luminosity models are developed, and an attempt is made to answer fundamental questions regarding the statistical properties of pulsars, on the basis of a large data base encompassing the periods, period derivatives, radio luminosities, vertical Galactic heights, and transverse velocities, for a homogeneous sample of 301 pulsars. A probability is established for two pulsar subpopulations, designated F and S, which are distinguished primarily on the basis of kinematic properties. The two populations are of comparable size, with the F population having an overall birth-rate close to 1 in 200 years in the Galaxy, with the less certain S pulsar birth-rate not higher than that of the F population. 51 refs

  14. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  15. Exploring Pulsars with Polestar

    Science.gov (United States)

    Cappallo, Rigel; Laycock, Silas; Christodoulou, Dimitris

    2018-06-01

    An X-ray pulsar (XRP) is a highly-magnetized neutron star (NS) that rotates while emitting beams of X-ray radiation produced primarily in the vicinity of its magnetic poles. If these beams happen to cross our line of sight and the NS’s spin and magnetic axes are not aligned, then our telescopes detect it as a periodically pulsating source. With the introduction of a new class of orbit-based observatories over the last quarter of a century the field of X-ray pulsar astronomy has seen an influx of high-resolution data. This windfall demands new models of pulsar behavior and emission geometry be created and subsequently fit to this high-quality data.We have written a model (Polestar) in Python 2.7.6 that mathematically represents a simplified XRP. The code has ten different, tunable geometric parameters that can be individually incorporated or suppressed. Any given XRP has a unique pulse profile which is often energy-dependent, and changes with different luminosity states. A change in luminosity coincides with a change in the system (e.g. a periodic Type-1 outburst is triggered following periastron passage, or the orientation of the decretion disk around the donor star has changed), and as such an increase in luminosity tends to produce an increase in complexity of the accompanying pulse profile. If a particular source in a low-luminosity state can be fit well with Polestar incorporating only a few parameters then an underlying geometry may be inferred. Further, if profiles from the same source in higher-luminosity states can be fit with the addition of only one or two additional parameters it will serve to further solidify current XRP theory (e.g. the emergence of fan-like emission patterns, or the vertical growth of the accretion column).Our initial fitting campaign was directed at the ~ 100 XRPs in the Small Magellanic Cloud. Polestar also includes an interactive slider GUI that allows the user to see in real time how changing the various profiles alter the

  16. Millisecond radio pulsars in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  17. Visualization of Pulsar Search Data

    Science.gov (United States)

    Foster, R. S.; Wolszczan, A.

    1993-05-01

    The search for periodic signals from rotating neutron stars or pulsars has been a computationally taxing problem to astronomers for more than twenty-five years. Over this time interval, increases in computational capability have allowed ever more sensitive searches, covering a larger parameter space. The volume of input data and the general presence of radio frequency interference typically produce numerous spurious signals. Visualization of the search output and enhanced real-time processing of significant candidate events allow the pulsar searcher to optimally processes and search for new radio pulsars. The pulsar search algorithm and visualization system presented in this paper currently runs on serial RISC based workstations, a traditional vector based super computer, and a massively parallel computer. A description of the serial software algorithm and its modifications for massively parallel computing are describe. The results of four successive searches for millisecond period radio pulsars using the Arecibo telescope at 430 MHz have resulted in the successful detection of new long-period and millisecond period radio pulsars.

  18. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  19. Pulsars In The Headlines

    Science.gov (United States)

    Del Puerto, C.

    1967 was the year of the so-called “war of the six days” or “third Arab Israeli war”, the year of the Che Guevara's death in Bolivia, the year of the military coup in Greece and, in medicine, the year of the first human heart transplant. Moreover, the signing of the international agreement on the use of space with peaceful means and the crash of the Russian shuttle Soyuz-1, with Cosmonaut Vladimir Kamarov on board also happened that year. Likewise, Spanish writer and professor of journalists, José Azorín, passed away. However, here we are interested in 1967 because it was the year of the detection of pulsars, which astronomers initially confused with signals from extraterrestrials or Little Green Men. Nowadays, they are still present in the headlines.

  20. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  1. Galactic distribution and genesis of pulsars

    International Nuclear Information System (INIS)

    Guseinov, O.H.; Kasumov, F.K.

    1981-01-01

    The radial distribution of pulsars in the Galaxy have been calculated by the authors using the available electron density figure for each pulsar. Also the luminosity function, the evolution of luminosity with age and the birth rate were determined. (Auth.)

  2. Increasing Pulsar Timing Array Sensitivity Through Addition of Millisecond Pulsars

    Science.gov (United States)

    DeCesar, Megan E.; Crawford, Fronefield; Ferrara, Elizabeth; Lynch, Ryan; Mingarelli, Chiara; Levin Preston, Lina; Ransom, Scott; Romano, Joseph; Simon, Joseph; Spiewak, Renee; Stovall, Kevin; Swiggum, Joe; Taylor, Stephen; Green Bank North Celestial Cap Pulsar Survey, Fermi LAT Collaboration, Fermi Pulsar Search Consortium

    2018-01-01

    Siemens et al. (2013) and Taylor et al. (2016) demonstrated the importance of increasing the number of millisecond pulsars (MSPs) in pulsar timing arrays (PTAs) in order to increase the sensitivity of the array and decrease the time-to-detection of a gravitational wave background (GWB). In particular, they predict that adding four MSPs per year to the NANOGrav and International PTAs will likely yield a GWB detection in less than a decade. A more even distribution of MSPs across the sky is also important for discriminating a GWB signal from a non-quadrupolar background (Sampson et al., in prep). Pulsar surveys and targeted searches have consistently led to additions of 4 or more MSPs per year to PTAs. I will describe these ongoing efforts, particularly in the context of the Green Bank North Celestial Cap pulsar survey and Fermi-guided searches at Green Bank and Arecibo that seek to find MSPs in low-pulsar-density regions of the sky.

  3. A New Standard Pulsar Magnetosphere

    Science.gov (United States)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  4. Pulsar Timing with the Fermi LAT

    Science.gov (United States)

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  5. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  6. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  7. Using HAWC to discover invisible pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim; Auchettl, Katie; Bramante, Joseph; Cholis, Ilias; Fang, Ke; Hooper, Dan; Karwal, Tanvi; Li, Shirley Weishi

    2017-11-01

    Observations by HAWC and Milagro have detected bright and spatially extended TeV gamma-ray sources surrounding the Geminga and Monogem pulsars. We argue that these observations, along with a substantial population of other extended TeV sources coincident with pulsar wind nebulae, constitute a new morphological class of spatially extended TeV halos. We show that HAWCs wide field-of-view unlocks an expansive parameter space of TeV halos not observable by atmospheric Cherenkov telescopes. Under the assumption that Geminga and Monogem are typical middle-aged pulsars, we show that ten-year HAWC observations should eventually observe 37$^{+17}_{-13}$ middle-aged TeV halos that correspond to pulsars whose radio emission is not beamed towards Earth. Depending on the extrapolation of the TeV halo efficiency to young pulsars, HAWC could detect more than 100 TeV halos from mis-aligned pulsars. These pulsars have historically been difficult to detect with existing multiwavelength observations. TeV halos will constitute a significant fraction of all HAWC sources, allowing follow-up observations to efficiently find pulsar wind nebulae and thermal pulsar emission. The observation and subsequent multi-wavelength follow-up of TeV halos will have significant implications for our understanding of pulsar beam geometries, the evolution of PWN, the diffusion of cosmic-rays near energetic pulsars, and the contribution of pulsars to the cosmic-ray positron excess.

  8. Pulsars as tools for fundamental physics & astrophysics

    NARCIS (Netherlands)

    Cordes, J.M.; Kramer, M.; Lazio, T.J.W.; Stappers, B.W.; Backer, D.C.; Johnston, S.

    2004-01-01

    The sheer number of pulsars discovered by the SKA, in combination with the exceptional timing precision it can provide, will revolutionize the field of pulsar astrophysics. The SKA will provide a complete census of pulsars in both the Galaxy and in Galactic globular clusters that can be used to

  9. Pulsar Magnetohydrodynamic Winds

    Science.gov (United States)

    Okamoto, Isao; Sigalo, Friday B.

    2006-12-01

    The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a

  10. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  11. Lectures on 2D gravity and 2D string theory

    International Nuclear Information System (INIS)

    Ginsparg, P.; Moore, G.

    1992-01-01

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  12. The Crab pulsar at VHE

    Directory of Open Access Journals (Sweden)

    Zanin Roberta

    2017-01-01

    Full Text Available The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending up to ~400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above ~400 GeV the pulsed emission comes mainly from the interpulse, which becomes more prominent with energy due to a harder spectral index. These findings require γ -ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 × 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.

  13. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia); Lentati, L. T. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Coles, W. A. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dempsey, J. [CSIRO Information Management and Technology, Box 225, Dickson, ACT 2602 (Australia); Keith, M. J. [Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL (United Kingdom); Lasky, P. D.; Levin, Y. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Ravi, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Spiewak, R., E-mail: ryan.shannon@csiro.au [Department of Physics, University of Wisconsin-Milwaukee, Box 413, Milwaukee, WI 53201 (United States); and others

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  14. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L.; Lentati, L. T.; Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W.; Bhat, N. D. R.; Coles, W. A.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Ravi, V.; Spiewak, R.

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  15. Magnetohydrodynamic calculations on pulsar magnetospheres

    International Nuclear Information System (INIS)

    Brinkmann, W.

    1976-01-01

    In this paper, the relativistic magnetohydrodynamic is presented in covariant form and applied to some problems in the field of pulsar magnetospheres. In addition, numerical methods to solve the resulting equations of motion are investigated. The theory of relativistic magnetohydrodynamic presented here is valid in the framework of the theory of general relativity, describing the interaction of electromagnetic fields with an ideal fluid. In the two-dimensional case, a Lax-Wendroff method is studied which should be optimally stable with the operator splitting of Strang. In the framework of relativistic magnetohydrodynamic also the model of a stationary aequatorial stellar pulsar wind as well as the parallel rotator is investigated. (orig.) [de

  16. Coherent amplification and pulsar phenomena

    International Nuclear Information System (INIS)

    Casperson, L.W.

    1977-01-01

    A modification of the rotating-star model has been developed to interpret the periodic energy bursts from pulsars. This new configuration involves theta-directed oscillation modes in the stellar atmosphere or magnetosphere, and most aspects of the typical pulse characteristics are well accounted for. Gain is provided by resonant interactions with particles trapped in the stellar magnetic field. The most significant feature is the fact that highly directional beaming of the output energy results as a natural consequence of coherence between the radiation fields emerging from various locations about the pulsar; and a localized radiation origin is not required. (Auth.)

  17. On the nature of pulsars

    International Nuclear Information System (INIS)

    Radhakrishnan, V.

    1982-01-01

    Although neutron stars were predicted nearly half a century ago, their radiations have been received and studied for just over a decade. Called pulsars because of the pulsating nature of their signals, they exhibit a wide variety of periodic phenomena in their radio emission. This article begins with a historical introduction followed by a short review of their main characteristics. The major models proposed to explain these properties are then outlined. Finally, some very recent developments which promise to throw new light on the mechanism of pulsars and their relationship to supernova remnants are briefly described and discussed. (author)

  18. Crustal entrainment and pulsar glitches.

    Science.gov (United States)

    Chamel, N

    2013-01-04

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  19. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  20. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  1. 2D-hahmoanimaation toteuttamistekniikat

    OpenAIRE

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  2. Binary Pulsars and Relativistic Gravity*

    Indian Academy of Sciences (India)

    tribpo

    1994-03-14

    Mar 14, 1994 ... new rapidly pulsating radio source, I immediately drafted a proposal, together ... I devised a computer algorithm for recognizing such periodic, dispersed .... A block diagram of equipment used for recent pulsar timing ... antenna are amplified, converted to intermediate frequency, and passed through ...

  3. Space 'beachballs' generate pulsar bursts

    CERN Multimedia

    Wasowicz, L

    2003-01-01

    Researchers have analyzed radio emissions from a pulsar at the center of the Crab Nebula and have found 'subpulses' that last around 2 nanoseconds. They speculate this means the regions in which these ultra-short pulses are generated can be no larger than about 2 feet across - the distance light travels in 2 nanoseconds (2 pages).

  4. Pulsar kicks from majoron emission

    International Nuclear Information System (INIS)

    Farzan, Yasaman; Gelmini, Graciela; Kusenko, Alexander

    2005-01-01

    We show that majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars

  5. Planetesimals around nearby millisecond pulsars

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1992-05-01

    We predict that it is possible to observe line emissions of OH, CN and C 2 from the planetesimals around some of the nearby millisecond pulsars, such as PSR1257+12. Observation of these lines will provide an independent test of either an existing planetary system or one which is in the process of formation. (author). 11 refs, 1 tab

  6. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  7. Selection of radio pulsar candidates using artificial neural networks

    OpenAIRE

    Eatough, R. P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M. J.; Stappers, B. W.; Lyne, A. G.

    2010-01-01

    Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.

  8. The Discovery of the Most Accelerated Binary Pulsar

    OpenAIRE

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.

    2018-01-01

    Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737$-$3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey's fla...

  9. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  10. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  11. Relativistic spin precession in the double pulsar.

    Science.gov (United States)

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  12. Theoretical Study of Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Kwong Sang Cheng

    2016-06-01

    Full Text Available We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  13. Evidence for free precession in a pulsar

    Science.gov (United States)

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  14. Timing Noise Analysis of NANOGrav Pulsars

    OpenAIRE

    Perrodin, Delphine; Jenet, Fredrick; Lommen, Andrea; Finn, Lee; Demorest, Paul; Ferdman, Robert; Gonzalez, Marjorie; Nice, David; Ransom, Scott; Stairs, Ingrid

    2013-01-01

    We analyze timing noise from five years of Arecibo and Green Bank observations of the seventeen millisecond pulsars of the North-American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array. The weighted autocovariance of the timing residuals was computed for each pulsar and compared against two possible models for the underlying noise process. The first model includes red noise and predicts the autocovariance to be a decaying exponential as a function of time lag. Th...

  15. Nonlinear temporal modulation of pulsar radioemission

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1984-01-01

    A nonlinear theory is discussed for self-modulation of pulsar radio pulses. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron-positron plasma. The nonlinearities arising from wave intensity induced relativistic particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary wave forms may account for the formation of pulsar microstructures. (Author) [pt

  16. Southern hemisphere searches for short period pulsars

    International Nuclear Information System (INIS)

    Manchester, R.N.

    1984-01-01

    Two searches of the southern sky for short period pulsars are briefly described. The first, made using the 64-m telescope at Parkes, is sensitive to pulsars with periods greater than about 10 ms and the second, made using the Molonglo radio telescope, has sensitivity down to periods of about 1.5 ms. Four pulsars were found in the Parkes survey and none in the Molonglo survey, although analysis of the latter is as yet incomplete. 10 references, 1 figure, 2 tables

  17. Galactic distribution and evolution of pulsars

    International Nuclear Information System (INIS)

    Taylor, J.H.; Manchester, R.N.

    1977-01-01

    The distribution of pulsars with respect to period, z-distance, luminosity, and galactocentric radius has been investigated using data from three extensive pulsar surveys. It is shown that selection effects only slightly modify the observed period and z-distributions but strongly affect the observed luminosity function and galactic distribution. These latter two distributions are computed from the Jodrell Bank and Arecibo data, using an iterative procedure. The largest uncertainties in our results are the result of uncertainty in the adopted distance scale. Therefore, where relevant, separate calculations have been made for two values of the average interstellar electron density, , 0.02 cm -3 and 0.03 cm -3 .The derived luminosity function is closely represented by a power law with index (for logarithmic luminosity intervals) close to -1. For =0.03 cm -3 , the density of potentially observable pulsars is about 90 kpc -2 in the local region and increases with decreasing galactocentric radius. These distributions imply that the total number of pulsars in the Galaxy is about 10 5 . If only a fraction of all pulsars are observable because of beaming effects, then the total number in the Galaxy is correspondingly greater.Recent observations of pulsar proper motions show that pulsars are generally high-velocity objects. The observed z-distribution of pulsars implies that the mean age of observable pulsars does not exceed 2 x 10 6 years. With this mean age the pulsar birthrate required to maintain the observed galactic distribution is 10 -4 yr -1 kpc -2 in the local region and one pulsar birth every 6 years in the Galaxy as a whole. For =0.02 cm -3 , the corresponding rate is one birth every 40 years. These rates exceed most estimates of supernova occurrence rates and may require that all stars with mass greater than approx.2.5 Msun form pulsars at the end of their evolutionary life

  18. SES2D user's manual

    International Nuclear Information System (INIS)

    Johnson, J.D.; Lyon, S.P.

    1982-04-01

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  19. Pulsar discovery by global volunteer computing.

    Science.gov (United States)

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  20. Polarimetry of the millisecond pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Stinebring, D R

    1983-04-21

    Polarization observations of the millisecond pulsar PSR1937+21 at 1415 and 2380 MHz were made with the 305-m telescope at the Arecibo Observatory in January 1983. The main pulse is found to depolarize substantially, while the interpulse polarization almost doubles. Evidence for orthogonally polarized radiation was detected on the edges facing across the 173 deg of longitude separating the main pulse from the interpulse, accounting for the approximately 90-deg difference in position angle. From the spectral-index difference (close to 1.0 over the frequency range observed) it is inferred that the interpulse may dominate the main pulse below 700 MHz; such behavior is noted to be similar to that of the physically different Crab pulsar.

  1. Particle acceleration in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Baker, K.B.

    1978-10-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied, using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star

  2. Searching for pulsars using image pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brazier, A. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lynch, R.; Scholz, P. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M., E-mail: zhuww@phas.ubc.ca, E-mail: berndsen@phas.ubc.ca [Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  3. Searching for pulsars using image pattern recognition

    International Nuclear Information System (INIS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M.

    2014-01-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  4. Searching for Pulsars Using Image Pattern Recognition

    Science.gov (United States)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  5. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  6. The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects

    Science.gov (United States)

    Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration

    2018-01-01

    The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.

  7. The Bursting Pulsar GRO J1744-28: the Slowest Transitional Pulsar?

    Science.gov (United States)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-04-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of oppurtunity to test our understanding of these systems in an entirely unexplored physical regime.

  8. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  9. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  10. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  11. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  12. Radio-quiet Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Lupin Chun-Che Lin

    2016-09-01

    Full Text Available A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400 of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on are also to specified discuss their common and specific features.

  13. The Binary Pulsar: Gravity Waves Exist.

    Science.gov (United States)

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  14. VERTICAL ACTIVITY ESTIMATION USING 2D RADAR

    African Journals Online (AJOL)

    hennie

    estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.

  15. A lower limit for the birth rate of pulsars

    International Nuclear Information System (INIS)

    Narayan, R.; Vivekanand, M.

    1981-01-01

    Using experimental data on observed pulsars, a lower limit for the birth rate of pulsars in our galaxy was estimated, taking into account the beam factor which allows for the possibility that only a fraction of all pulsars is beamed towards the earth. The calculation reduces the discrepancy between pulsar and supernova birth rates. (U.K.)

  16. Two-stream instability in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Usov, V.V.

    1987-01-01

    If the electron-positron plasma flow from the pulsar environment is stationary, the two-stream instability does not have enough time to develop in the pulsar magnetosphere. In that case the outflowing electron-positron plasma gathers into separate clouds. The clouds move along magnetic field lines and disperse as they go farther from the pulsar. At a distance of about 10 to the 8th cm from the pulsar surface, the high-energy particles of a given cloud catch up with the low-energy particles that belong to the cloud going ahead of it. In this region of a pulsar magnetosphere, the energy distribution of plasma particles is two-humped, and a two-stream instability may develop. The growth rate of the instability is quite sufficient for its development. 17 references

  17. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  18. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  19. EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Kim, H.; Allen, B.; Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H.; Machenschalk, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Eatough, R. P.; Keane, E. F.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Anderson, D. [University of California at Berkeley, Berkeley, CA 94720 (United States); Crawford, F.; Rastawicki, D. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hammer, D.; Papa, M. A.; Siemens, X. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Miller, R. B. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Sarkissian, J., E-mail: benjamin.knispel@aei.mpg.de [CSIRO Parkes Observatory, Parkes, NSW 2870 (Australia); and others

    2013-09-10

    We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.

  20. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  1. X-ray pulsar magnetosphere

    International Nuclear Information System (INIS)

    Lipunov, V.

    1981-01-01

    A pulsar consists of a close binary star system whose one component is a neutron star and the other a normal star. This supplies the neutron star with fuel in form of star wind or a gas stream. A hot plasma-like matter falls onto the neutron star, penetrates in its magnetic field and interacts with it. The matter coming from the normal star has a great rotational moment and forms a hot diamagnetic disk around the neutron star. The plasma penetrates in the internal parts of the magnetosphere where hard x radiation is formed as a result of the plasma impingement on the neutron star surface. (M.D.)

  2. Unparticle Example in 2D

    International Nuclear Information System (INIS)

    Georgi, Howard; Kats, Yevgeny

    2008-01-01

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles

  3. Statistics of 2D solitons

    International Nuclear Information System (INIS)

    Brekke, L.; Imbo, T.D.

    1992-01-01

    The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions

  4. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  5. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  6. 40 Years of Pulsars: The Birth and Evolution of Isolated Radio Pulsars

    OpenAIRE

    Faucher-Giguere, C. -A.; Kaspi, V. M.

    2007-01-01

    We investigate the birth and evolution of isolated radio pulsars using a population synthesis method, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam (MB) surveys. Together, the Parkes and Swinburne MB surveys have detected nearly 2/3 of the known pulsars and provide a remarkably homogeneous sample to compare with simulations. New proper motion measurements and an improved model of the distribution of free electrons...

  7. Gamma ray emission from pulsars

    International Nuclear Information System (INIS)

    Salvati, M.; Massaro, E.

    1978-01-01

    A model for the production of gamma rays in a pulsar environment is presented, together with numerical computations fitted to the observations of PSR 0833-45. It is assumed that the primary particles are accelerated close to the star surface and then injected along the open field lines, which cause them to emit curvature radiation. The equation describing the particles' braking is integrated exactly up to the first order in the pulsar rotational frequency, and the transfer problem for the curvature photons is solved with the aberration, the Doppler shif, and the pair production absorption being taken into account. The latter effect is due not only to the transverse component of the magnetic field, but also to the electric field induced by the rotation. The synchrotron radiation emitted by the secondary particles is also included, subject to the 'on-the-spot' approximation. It is found that the observed gamma rays originate in the innermost regions of the magnetosphere, where the open lines' bundle is narrow and the geometrical beaming is effective. As shown by the computed pulse profiles, the duty cycle turns out to be equal to a few percent, comparable to the one of PSR 0833-45. The averaged spectra indicate that a substantial fraction of the primary photons do outlive the interaction with the magnetisphere; furthermore, the agreement in shape with the observational curves suggests that the acceleration output is fiarly close to a monoenergetic beam of particles. (orig.) [de

  8. Electrodynamic coupling between pulsars and surrounding nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio; L' Aquila Univ. (Italy). Istituto di Fisica); Ferrari, A [Cambridge Univ. (UK). Inst. of Astronomy; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Istituto di Fisica)

    1976-02-01

    In this work a study is presented of collective plasma processes by which pulsars can energetically support young supernova remnants. We show that many of the observed features of the Crab Nebula can be adequately interpreted in terms of a parametric interaction between the low-frequency electromagnetic wave emitted by the pulsar in the oblique rotator model and a relativistic wind of charged particle leaking from the pulsar's inner magnetosphere. In particular we show that there is a relativistic parametric resonant coupling of the strong wave with electrostatic and electromagnetic modes.

  9. Pulsar wind model for the spin-down behavior of intermittent pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X., E-mail: tonghao@xao.ac.cn [School of Physics, Peking University, Beijing (China)

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  10. The Parkes multibeam pulsar survey and the discovery of new energetic radio pulsars

    International Nuclear Information System (INIS)

    D'Amico, N.; Possenti, A.; Kaspi, V.M.; Manchester, R.N.; Bell, J.F.; Camilo, F.; Lyne, A.G.; Kramer, M.; Hobbs, G.; Stairs, I.H.

    2001-01-01

    The Parkes multibeam pulsar survey is a deep search of the Galactic plane for pulsars. It uses a 13-beam receiver system operating at 1.4 GHz on the 64-m Parkes radio telescope. It has much higher sensitivity than any previous similar survey and is finding large numbers of previously unknown pulsars, many of which are relatively young and energetic. On the basis of an empirical comparison of their properties with other young radio pulsars, some of the new discoveries are expected to be observable as pulsed γ-ray sources. We describe the survey motivation, the experiment characteristics and the results achieved so far

  11. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  12. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  13. On the interpretation of pulsar braking indices

    International Nuclear Information System (INIS)

    Blandford, R.D.; Romani, R.W.

    1988-01-01

    Timing observations of the Crab pulsar rotation frequency of sufficient accuracy and duration to allow a 10 per cent estimate of the third frequency derivative have been reported (Lyne et al. 1988. Mon. Not. R. astr. Soc., 233, 667). This measurement is consistent with both non-dipolar electromagnetic models and a secular change in the dipole moment. A more accurate determination may discriminate between these two possibilities. Measurements of braking indices in other young pulsars may reveal similar variations. (author)

  14. On the velocity of the Vela pulsar

    OpenAIRE

    Gvaramadze, Vasilii

    2000-01-01

    It is shown that if the shell of the Vela supernova remnant is responsible for nearly all the scattering of the Vela pulsar, then the scintillation and proper motion velocities of the pulsar can only be reconciled with each other in the case of nonzero transverse velocity of the scattering material. A possible origin of large-scale transverse motions in the shell of the Vela supernova remnant is discussed.

  15. On the velocity of the Vela pulsar

    Science.gov (United States)

    Gvaramadze, V.

    2001-04-01

    It is shown that if the shell of the Vela supernova remnant is responsible for nearly all the scattering of the Vela pulsar, then the scintillation and proper motion velocities of the pulsar can only be reconciled with each other in the case of nonzero transverse velocity of the scattering material. A possible origin of large-scale transverse motions in the shell of the Vela supernova remnant is discussed.

  16. Testing General Relativity with Pulsar Timing

    Directory of Open Access Journals (Sweden)

    Stairs Ingrid H.

    2003-01-01

    Full Text Available Pulsars of very different types, including isolated objects and binaries (with short- and long-period orbits, and white-dwarf and neutron-star companions provide the means to test both the predictions of general relativity and the viability of alternate theories of gravity. This article presents an overview of pulsars, then discusses the current status of and future prospects for tests of equivalence-principle violations and strong-field gravitational experiments.

  17. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  18. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  19. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  20. Gamma rays from pulsar outer gaps

    International Nuclear Information System (INIS)

    Chiang, J.; Romani, R.W.; Cheng Ho

    1993-01-01

    We describe a gamma ray pulsar code which computes the high energy photon emissivities from vacuum gaps in the outer magnetosphere, after the model outlined by Cheng, Ho and Ruderman (1986) and Ho (1989). Pair-production due to photon-photon interactions and radiation processes including curvature, synchrotron and inverse Compton processes are computed with an iterative scheme which converges to self-consistent photon and particle distributions for a sampling of locations in the outer magnetosphere. We follow the photons from these distributions as they propagate through the pulsar magnetosphere toward a distant observer. We include the effects of relativistic aberration, time-of-flight delays and reabsorption by photon-photon pair-production to determine an intensity map of the high energy pulsar emission on the sky. Using data from radio and optical observations to constrain the geometry of the magnetosphere as well as the possible observer viewing angles, we derive light curves and phase dependent spectra which can be directly compared to data from the Compton Observatory. Observations for Crab, Vela and the recently identified gamma ray pulsars Geminga, PSR1706-44 aNd PSR 1509-58 will provide important tests of our model calculations, help us to improve our picture of the relevant physics at work in pulsar magnetospheres and allow us to comment on the implications for future pulsar discoveries

  1. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  2. Magnetic field decay in black widow pulsars

    Science.gov (United States)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  3. Localizing New Pulsars with Intensity Mapping

    Science.gov (United States)

    Swiggum, Joe; Gentile, Peter

    2018-01-01

    Although low-frequency, single dish pulsar surveys provide an efficient means of searching large regions of sky quickly, the localization of new discoveries is poor. For example, discoveries from 350 MHz surveys using the Green Bank Telescope (GBT) have position uncertainties up to the FWHM of the telescope's "beam" on the sky, over half a degree! Before finding a coherent timing solution (requires 8-12 months of dedicated timing observations) a "gridding" method is usually employed to improve localization of new pulsars, whereby a grid of higher frequency beam positions is used to tile the initial error region. This method often requires over an hour of observing time to achieve arcminute-precision localization (provided the pulsar is detectable at higher frequencies).Here, we describe another method that uses the same observing frequency as the discovery observation and scans over Right Ascension and Declination directions around the nominal position. A Gaussian beam model is fit to folded pulse profile intensities as a function of time/position to provide improved localization. Using five test cases, we show that intensity mapping localization at 350 MHz with the GBT yields pulsar positions to 1 arcminute precision, facilitating high-frequency follow-up and higher significance detections for future pulsar timing. This method is also well suited to be directly implemented in future low-frequency drift scan pulsar surveys (e.g. with the Five hundred meter Aperture Spherical Telescope; FAST).

  4. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    International Nuclear Information System (INIS)

    Cordes, J. M.; Jenet, F. A.

    2012-01-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  5. Detecting Gravitational Wave Memory with Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Jenet, F. A.

    2012-06-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  6. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  7. Spectra of short-period pulsars according to the hypothesis of the two types of pulsars

    International Nuclear Information System (INIS)

    Malov, I.F.

    1985-01-01

    The lack of low-frequency turnovers in the spectra of PSR 0531+21 and 1937+21 may be expl ned if the generation of radio emission in these pulsars occurs near the light cylinder. Differences of high frequency cut-offs and spectral inoices for long-period pulsars and short-period ones are discussed

  8. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to

  9. The Velocity Distribution of Isolated Radio Pulsars

    Science.gov (United States)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  10. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  11. Summary of the PULSAR and ARIES studies

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1994-01-01

    The PULSAR research program is a multi-institutional effort to investigate the feasibility and potential features of fusion power plants based on pulsed, inductively driven tokamak operation. In order to provide a sensible assessment of pulsed tokamak operation, a comparison with the ARIES steady-state power plant designs has been made. Two PULSAR designs have been considered: PULSAR-I uses He coolant, a solid tritium-breeding material, and SiC composite structure; PULSAR-II uses liquid Li as the coolant and tritium breeder, and a V-alloy structure material. This paper focuses on the PULSAR design and the comparison with steady-state ARIES designs. The 1000-MWe PULSAR design has an aspect ratio of 4, a plasma major radius of 8.6m, a plasma minor radius of 2.2m, and a neutron wall loading of l.3MW/m 2 . The toroidal field on axis is 7T, plasma β is 2.8%, plasma current is 14MA, and the bootstrap fraction is 37%. Because of cyclic fatigue, the allowable stress in the TF coils is lower, and, therefore, for the same magnet technology, the maximum toroidal field on the coil is 12T in the PULSAR design (corresponding to 16T in a steady-state device). This decrease in the toroidal-field strength more than offsets the gains in plasma β values for a pulsed device, resulting in a lower fusion-power density and a larger tokamak relative to a steady-state design

  12. RXTE observations of the Vela Pulsar: The pulsar rosetta stone

    International Nuclear Information System (INIS)

    Strickman, M.S.; Harding, A.K.; Gwinn, C.; McCulloch, P.; Moffett, D.

    2001-01-01

    We report on our analysis of a 274 ks observation of the Vela Pulsar with the Rossi X-Ray Timing Explorer (RXTE). The double-peaked, pulsed emission at 2-30 keV, which we had previously detected during a 93 ks observation, is confirmed with much improved statistics. There is now clear evidence, both in the spectrum and the light curve, that the emission in the RXTE band is a blend of two separate components. The spectrum of the harder component connects smoothly with the OSSE, COMPTEL and EGRET spectra and the peaks in the light curve are in phase coincidence with those of the high-energy light curve. The spectrum of the softer component is consistent with an extrapolation to the pulsed optical flux and the soft component of the second RXTE peak is in phase coincidence with the second optical peak. In addition, we see a peak in the 2-8 keV RXTE light curve at the radio peak phase

  13. Clocks in the sky the story of pulsars

    CERN Document Server

    McNamara, Geoff

    2008-01-01

    Pulsars are rapidly spinning neutron stars, the collapsed cores of once massive stars that ended their lives as supernova explosions. Pulsar rotation rates can reach incredible speeds, up to hundreds of times per second. This title explores the history, subsequent discovery and contemporary research into pulsar astronomy.

  14. The LOFAR pilot surveys for pulsars and fast radio transient

    NARCIS (Netherlands)

    Coenen, T.; van Leeuwen, J.; Hessels, J.W.T.; et al., [Unknown; Alexov, A.; van der Horst, A.; Law, C.; Rowlinson, A.; Swinbank, J.

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a

  15. The LOFAR pilot surveys for pulsars and fast radio transients

    NARCIS (Netherlands)

    Coenen, T.J.; van Leeuwen, J.; Hessels, J.W.T.; Stappers, B.W.; Kondratiev, V.I.; Alexov, A.; Breton, R.P.; Bilous, A.; Cooper, S.; Falcke, H.; Fallows, R.A.; Gajjar, V.; Griessmeier, J.M.; Hassall, T.E.; Bentum, Marinus Jan

    2014-01-01

    We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a

  16. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J. [West Virginia University, White Hall, Morgantown, WV 26506 (United States); Heatherly, S. A.; Scoles, S. [NRAO, P.O. Box 2, Green Bank, WV 24944 (United States); Lynch, R. [McGill University, Rutherford Physics Building, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Kondratiev, V. I. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ransom, S. M. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Moniot, M. L.; Thompson, C. [James River High School, 9906 Springwood Road, Buchanan, VA 24066 (United States); Cottrill, A.; Raycraft, M. [Lincoln High School, 100 Jerry Toth Drive, Shinnston, WV 26431 (United States); Weaver, M. [Broadway High School, 269 Gobbler Drive, Broadway, VA 22815 (United States); Snider, A. [Sherando High School, 185 South Warrior Drive, Stephens City, VA 22655 (United States); Dudenhoefer, J.; Allphin, L. [Hedgesville High School, 109 Ridge Road North, Hedgesville, WV 25427 (United States); Thorley, J., E-mail: Rachel.Rosen@mail.wvu.edu [Strasburg High School, 250 Ram Drive, Strasburg, VA 22657 (United States); and others

    2013-05-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg{sup 2} of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  17. THE PULSAR SEARCH COLLABORATORY: DISCOVERY AND TIMING OF FIVE NEW PULSARS

    International Nuclear Information System (INIS)

    Rosen, R.; Swiggum, J.; McLaughlin, M. A.; Lorimer, D. R.; Yun, M.; Boyles, J.; Heatherly, S. A.; Scoles, S.; Lynch, R.; Kondratiev, V. I.; Ransom, S. M.; Moniot, M. L.; Thompson, C.; Cottrill, A.; Raycraft, M.; Weaver, M.; Snider, A.; Dudenhoefer, J.; Allphin, L.; Thorley, J.

    2013-01-01

    We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory, a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hr of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 deg 2 of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are PSR J1926–1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33 ms pulsar; and PSR J1400–1438, a millisecond pulsar in a 9.5 day orbit whose companion is likely a white dwarf star.

  18. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  19. Pulsar glitches in a strangeon star model

    Science.gov (United States)

    Lai, X. Y.; Yun, C. A.; Lu, J. G.; Lü, G. L.; Wang, Z. J.; Xu, R. X.

    2018-05-01

    Pulsar-like compact stars provide us a unique laboratory to explore properties of dense matter at supra-nuclear densities. One of the models for pulsar-like stars is that they are totally composed of "strangeons", and in this paper, we studied the pulsar glitches in a strangeon star model. Strangeon stars would be solidified during cooling, and the solid stars would be natural to have glitches as the result of starquakes. Based on the starquake model established before, we proposed that when the starquake occurs, the inner motion of the star which changes the moment of inertia and has impact on the glitch sizes, is divided into plastic flow and elastic motion. The plastic flow which is induced in the fractured part of the outer layer, would move tangentially to redistribute the matter of the star and would be hard to recover. The elastic motion, on the other hand, changes its shape and would recover significantly. Under this scenario, we could understand the behaviors of glitches without significant energy releasing, including the Crab and the Vela pulsars, in an uniform model. We derive the recovery coefficient as a function of glitch size, as well as the time interval between two successive glitches as the function of the released stress. Our results show consistency with observational data under reasonable ranges of parameters. The implications on the oblateness of the Crab and the Vela pulsars are discussed.

  20. FEM-2D - Input description and performance

    International Nuclear Information System (INIS)

    Schmidt, F.A.R.

    1975-03-01

    FEM-2D solves the 2d diffusion equation by the Finite Element Method. This version of the code was written for x-y geometry, triangular elements with first and second order flux approximations, and has a solution routine which is based on a modified Cholesky procedure. FEM-2D is fully integrated into the modular system RSYST. However, we have developed a simulation program RSIMK which simulates some of the functions of RSYST and allows to run FEM-2D independently. (orig.) [de

  1. The past, present and future of pulsars

    Science.gov (United States)

    Bell Burnell, Jocelyn

    2017-12-01

    On the 50th anniversary of the accidental discovery of pulsars (pulsating radio stars, also known as neutron stars) I reflect on the process of their detection and how our understanding of these stars gradually grew. Fifty years on, we have a much better (but still incomplete) understanding of these extreme objects, which I summarize here. The study of pulsars is advancing several areas of fundamental physics, including general relativity, particle physics, condensed-matter physics, and radiation processes in extreme electric and magnetic fields. New observational facilities coming online in the radio regime (such as the Five hundred meter Aperture Spherical Telescope and the Square Kilometre Array precursors) will revolutionize the search for pulsars by accessing thousands more, thus ushering in a new era of discovery for the field.

  2. Planets around pulsars - Implications for planetary formation

    Science.gov (United States)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  3. Star-formation functions and the genetics of pulsar origin

    International Nuclear Information System (INIS)

    Guseinov, O.K.; Kasumov, F.K.; Yusifov, I.M.

    1982-01-01

    The star-formation function and the genetics of pulsar origin are discussed. It is shown that the progenitors of pulsars are main-sequence stars with masses of >5M/sub sun/ for almost all the kinds of initial mass functions discussed in the literature. Pulsars are genetically connected with supernova outbursts (mainly of type II). The probability of pulsar formation as a result of ''quiet collapse'' is extremely low. Thus, the hypothesis that pulsars are formed from objects of the extreme planar component of the Galaxy is confirmed on more complete and statistically uniform material

  4. A Search for Pulsar Companions to OB Runaway Stars

    Science.gov (United States)

    Kaspi, V. M.

    1995-01-01

    We have searched for radio pulsar companions to 40 nearby OB runaway stars. Observations were made at 474 and 770 MHz with the NRAO 140 ft telescope. The survey was sensitive to long- period pulsars with flux densities of 1 mJy or more. One previously unknown pulsar was discovered, PSRJ2044+4614, while observing towards target O star BD+45,3260. Follow-up timing observations of the pulsar measured its position to high precision, revealing a 9' separation between the pulsar and the target star, unequivocally indicating they are not associated.

  5. COBRA: a Bayesian approach to pulsar searching

    Science.gov (United States)

    Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.

    2018-02-01

    We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.

  6. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  7. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  8. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  9. Tamoxifen and CYP2D6

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P.; Damkier, Per

    2018-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...

  10. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  11. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    Science.gov (United States)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  12. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, G; Burke-Spolaor, S; Champion, D [Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710 (Australia); Archibald, A [Department of Physics, McGill University, Montreal, PQ, H3A 2T8 (Canada); Arzoumanian, Z [CRESST/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Backer, D [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bailes, M; Bhat, N D R [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122 (Australia); Burgay, M [Universita di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato (Canada) (Italy); Cognard, I; Desvignes, G; Ferdman, R D [Station de Radioastronomie de Nanay, Observatoire de Paris, 18330 Nancay (France); Coles, W [Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA (United States); Cordes, J [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Demorest, P [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Finn, L [Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Freire, P [Max-Planck-Institut fuer Radioastronomie, Auf Dem Huegel 69, 53121, Bonn (Germany); Gonzalez, M [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, J [Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Hotan, A, E-mail: george.hobbs@csiro.a [Department of Imaging and Applied Physics, Curtin University, Bentley, WA (Australia)

    2010-04-21

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (approx 10{sup -9}-10{sup -8} Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.

  13. The Green Bank Northern Celestial Cap Pulsar Survey. II. The Discovery and Timing of 10 Pulsars

    Science.gov (United States)

    Kawash, A. M.; McLaughlin, M. A.; Kaplan, D. L.; DeCesar, M. E.; Levin, L.; Lorimer, D. R.; Lynch, R. S.; Stovall, K.; Swiggum, J. K.; Fonseca, E.; Archibald, A. M.; Banaszak, S.; Biwer, C. M.; Boyles, J.; Cui, B.; Dartez, L. P.; Day, D.; Ernst, S.; Ford, A. J.; Flanigan, J.; Heatherly, S. A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Kondratiev, V. I.; Leake, S.; Lunsford, G.; Martinez, J. G.; Mata, A.; Matheny, T. D.; Mcewen, A. E.; Mingyar, M. G.; Orsini, A. L.; Ransom, S. M.; Roberts, M. S. E.; Rohr, M. D.; Siemens, X.; Spiewak, R.; Stairs, I. H.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.

    2018-04-01

    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930‑2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557‑2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called “disrupted binary pulsars” (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.

  14. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    International Nuclear Information System (INIS)

    Becker, W.; Huang, H.H.

    2007-01-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  15. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W; Huang, H H [eds.

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  16. Light field morphing using 2D features.

    Science.gov (United States)

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field.

  17. Propagation of microwaves in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  18. Millisecond Pulsars, their Evolution and Applications

    Indian Academy of Sciences (India)

    R. N. Manchester

    2017-09-07

    Sep 7, 2017 ... 1For the purposes of this article, we define an MSP to be a pulsar with period less ...... review, the author has just skimmed the surface of a few of these ..... 665 of Journal of Physics Conference Series, page 012061. Halpern ...

  19. Meter-wavelength VLBI. III. Pulsars

    International Nuclear Information System (INIS)

    Vandenberg, N.R.; Clark, T.A.; Clark, W.C.; Erickson, W.C.; Resch, G.M.; Broderick, J.J.

    1976-01-01

    The results and analysis of observations of pulsars, especially the Crab Nebula pulsar, taken during a series of meter-wavelength very long baseline interferometry (VLBI) experiments are discussed. Based on a crude 144 MHz visibility curve which is consistent with a Gaussian brightness distribution, the measured visibilities at 196, 111, and 74 MHz were interpreted to yield apparent angular diameters (at half-power) of 0 .03 +- 0 .01, 0 .07 +- 0 .01, and 0 .18 +- 0 .01, respectively. These sizes scale approximately as wavelength-squared, and the 74 MHz size agrees with recent observations using interplanetary scintillation techniques.The VLBI-measured total flux densities lie on the extrapolation from higher frequencies of the pulsing flux densities. Variations in the total flux density up to 25 percent were observed. A lack of fine structure other than the pulsar in the nebula is indicated by our simple visibility curves. The pulse shapes observed with the interferometer are similar to single-dish measurements at 196 MHz but reveal a steady, nonpulsing component at 111 MHz. The ratio of pulsing to total power was approximately equal to one-half but varied with time. No pulsing power was detected at 74 MHz. It was found that four strong, low-dispersion pulsars were only slightly resolved

  20. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  1. Pulsar discovery by global volunteer computing

    NARCIS (Netherlands)

    Knispel, B.; Allen, B.; Cordes, J.M.; Deneva, J.S.; Anderson, D.; Aulbert, C.; Bhat, N.D.R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D.J.; Chatterjee, S.; Crawford, F.; Demorest, P.B.; Fehrmann, H.; Freire, P.C.C.; Gonzalez, M.E.; Hammer, D.; Hessels, J.W.T.; Jenet, F.A.; Kasian, L.; Kaspi, V.M.; Kramer, M.; Lazarus, P.; van Leeuwen, J.; Lorimer, D.R.; Lyne, A.G.; Machenschalk, B.; McLaughlin, M.A.; Messenger, C.; Nice, D.J.; Papa, M.A.; Pletsch, H.J.; Prix, R.; Ransom, S.M.; Siemens, X.; Stairs, I.H.; Stappers, B.W.; Stovall, K.; Venkataraman, A.

    2010-01-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this

  2. 2D Barcode for DNA Encoding

    OpenAIRE

    Elena Purcaru; Cristian Toma

    2011-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  3. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  4. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-01-01

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of ±1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time (∼20× for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position (±1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  5. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati [National Centre for Radio Astrophysics, Pune 411007 (India)

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  6. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  7. Experimental Constraints on γ-Ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    Science.gov (United States)

    Abeysekara, A. U.; Linnemann, J. T.

    2015-05-01

    The pulsar emission mechanism in the gamma ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma ray pulsars discovered by the Fermi Large Area Telescope. In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor ≤ft( {{f}{Ω }} \\right) dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux, and TeV or X-ray flux from the associated pulsar wind nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between {{f}{Ω }} and \\dot{E}. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap, and One Pole Caustic models for pulsar emission in the energy range of 0.1-100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.

  8. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  9. A companion matrix for 2-D polynomials

    International Nuclear Information System (INIS)

    Boudellioua, M.S.

    1995-08-01

    In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs

  10. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  11. 2d index and surface operators

    International Nuclear Information System (INIS)

    Gadde, Abhijit; Gukov, Sergei

    2014-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role

  12. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    Science.gov (United States)

    Lee, K. J.; Stovall, K.; Jenet, F. A.; Martinez, J.; Dartez, L. P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C. M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E. D.; Bhat, N. D. R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D. J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R. D.; Freire, P.; Hessels, J. W. T.; Karuppusamy, R.; Kaspi, V. M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W. W.

    2013-07-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars. This process can be labour intensive. In this paper, we introduce an algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) which improves the efficiency of identifying pulsar signals. The algorithm ranks the candidates based on a score function. Unlike popular machine-learning-based algorithms, no prior training data sets are required. This algorithm has been applied to data from several large-scale radio pulsar surveys. Using the human-based ranking results generated by students in the Arecibo Remote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top 0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per cent within the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases the pulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directly responsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that may be useful for pulsar timing based gravitational-wave detection projects.

  13. High-Energy Pulsar Models: Developments and New Questions

    Science.gov (United States)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  14. Development of Pulsar Detection Methods for a Galactic Center Search

    Science.gov (United States)

    Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami

    2018-01-01

    Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.

  15. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  16. Pulsars and cosmic rays in the dense supernova shells

    International Nuclear Information System (INIS)

    Berezinsky, V.S.; Prilutsky, O.F.

    1977-01-01

    Cosmic rays (c.r.) injected by a young pulsar in the dense supernova shell are considered. The maintenance of the Galactic c.r. pool by pulsar production is shown to have a difficulty: adiabatic energy losses of c.r. in the expanding shell demand a high initial c.r. luminosity of pulsar, which results in too high flux of γ-radiation produced through π 0 -decays (in excess over diffuse γ-ray background). (author)

  17. Possible relation between pulsar rotation and evolution of magnetic inclination

    Science.gov (United States)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  18. Orthotropic Piezoelectricity in 2D Nanocellulose.

    Science.gov (United States)

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V -1 , ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  19. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  20. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  1. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  2. Interaction of a pulsar with interstellar matter

    Science.gov (United States)

    Istomin, Ya. N.

    1994-03-01

    An increase of the rate of spin-down dot-P and emergence of a Magnus force acting on the star is connected with the appearance of a dense hydrogen plasma in the region of light surface. These effects are proportional to the permittivity epsilon = 1 + c2/(VA)2, where vA is the Alfven velocity in the vicinity of the light cylinder. During its lifetime, a pulsar can change the direction of its proper velocity and leave the Galactic plane. For the pulsar PSR 1757-24 located in the nebula G5.4-1.2, it is shown that due to the changing value of dot-P its characteristic age increases up to 7.5 x 104 years and the proper velocity decreases in magnitude to the order of 400km/s.

  3. Pulsar magnetic alignment. The drifting subpulses

    International Nuclear Information System (INIS)

    Jones, P.B.

    1977-01-01

    According to Ruderman and Sutherland (Ap.J.;196:51 (1975)) the subpulse drift observed in certain pulsars is a consequence of the circulation around the magnetic axis of electron-positron discharges occurring within an acceleration region near the polar cap. The predicted period of circulation P 3 is of the correct order of magnitude, but the sense of circulation and therefore the direction of subpulse drift is not consistent with indirect evidence, from observed integrated pulse widths, on the variation with pulsar age of the angle between the spin and magnetic axes. It is shown that this problem is resolved by a model of the acceleration electric field based on space charge limited ion flow. (author)

  4. Pulsar Emission: Is It All Relative?

    Science.gov (United States)

    Harding, Alice K.

    2004-01-01

    Thirty-five years after the discovery of pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. The fact that even detailed pulse profiles cannot identlfy the origin of the emission in a magnetosphere that extends fiom the neutron star surface to plasma moving at relativistic speeds near the light cylinder compounds the problem. I will discuss the role of special and general relativistic effects on pulsar emission, fiom inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics.

  5. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  6. Explorative analysis of 2D color maps

    OpenAIRE

    Steiger, Martin; Bernard, Jürgen; Thum, Simon; Mittelstädt, Sebastian; Hutter, Marco; Keim, Daniel A.; Kohlhammer, Jörn

    2015-01-01

    Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-inter...

  7. Pulsar Kicks via Spin-1 Color Superconductivity

    International Nuclear Information System (INIS)

    Schmitt, Andreas; Shovkovy, Igor A.; Wang Qun

    2005-01-01

    We propose a new neutrino propulsion mechanism for neutron stars which can lead to strong velocity kicks, needed to explain the observed bimodal velocity distribution of pulsars. The spatial asymmetry in the neutrino emission is naturally provided by a stellar core containing spin-1 color-superconducting quark matter in the A phase. The neutrino propulsion mechanism switches on when the stellar core temperature drops below the transition temperature of this phase

  8. Movement of the pulsars and neutrino oscillations

    International Nuclear Information System (INIS)

    Barkovich, M.A.

    2005-01-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  9. Gamma-ray pulsars and Geminga

    International Nuclear Information System (INIS)

    Ruderman, M.; Halpern, J.P.; Chen, K.; Cheng, K.S.

    1992-01-01

    Observed properties of γ-ray pulsars are related to those of the accelerators which power their radiation. It is argued that the relatively slowly spinning Geminga is a strong γ-ray source only because its magnetic dipole is more inclined than that of the more rapidly spinning Vela. This would also account for special Geminga properties including 180 degrees subpulse separation, soft X-ray spectra and intensities, and suppression of radio emission

  10. γ-ray emission from slow pulsars

    International Nuclear Information System (INIS)

    Morini, M.; Treves, A.

    1981-01-01

    The scope of this communication is to calculate the expected γ-ray flux from slow pulsars, neglecting the problem of the reliability of the observations. The key hypothesis is that since the γ-ray luminosity is a substantial fraction of Lsub(T) (the intrinsic energy loss), it should be produced in the vicinity of the speed of light radius. This comes from the well known argument of simultaneous conservation of energy and angular momentum. (Auth.)

  11. Are the Dyson rings around pulsars detectable?

    Science.gov (United States)

    Osmanov, Z.

    2018-04-01

    In the previous paper ring (Osmanov 2016) (henceforth Paper-I) we have extended the idea of Freeman Dyson and have shown that a supercivilization has to use ring-like megastructures around pulsars instead of a spherical shell. In this work we reexamine the same problem in the observational context and we show that facilities of modern infrared (IR) telescopes (Very Large Telescope Interferometer and Wide-field Infrared Survey Explorer (WISE)) might efficiently monitor the nearby zone of the solar system and search for the IR Dyson-rings up to distances of the order of 0.2 kpc, corresponding to the current highest achievable angular resolution, 0.001 mas. In this case the total number of pulsars in the observationally reachable area is about 64 +/- 21. We show that pulsars from the distance of the order of ~ 1 kpc are still visible for WISE as point-like sources but in order to confirm that the object is the neutron star, one has to use the ultraviolet telescopes, which at this moment cannot provide enough sensitivity.

  12. Axion mass limits from pulsar x rays

    International Nuclear Information System (INIS)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ -3 eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10 8 K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ -4 eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10 8 K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10 -4 eV > M/sub a/ > 10 -5 eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs

  13. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  14. A Search for Debris Disks Around Variable Pulsars

    Science.gov (United States)

    Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.

    2009-01-01

    After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  15. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  16. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  17. 2-D model for electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J.M.; Garcia Delgado, R.A.; Gomez Lahoz, C.; Garcia Herruzo, F. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain); Vereda Alonso, C. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain)]|[Inst. for Geologi and Geoteknik, Danmarks Tekniske Univ., Lyngby (Denmark)

    2001-07-01

    A simple two-dimensional numerical model is presented in this work. In this case, the model is used to examine the enhanced method of the electrokinetic remediation technique in a 2-D arrangement. Nevertheless the model with minor changes can also be used to study the effect of the electrode configuration in the performance of this technique. (orig.)

  18. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-11-02

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  19. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  20. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  1. Gravitational wave detection and data analysis for pulsar timing arrays

    NARCIS (Netherlands)

    Haasteren, Rutger van

    2011-01-01

    Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational

  2. Radio search for pulsed emission from X-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    delli Santi, F S; Delpino, F [Bologna Univ. (Italy). Ist. di Astronomia; Inzani, P; Sironi, G [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Mandolesi, N; Morigi, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE

    1981-05-01

    An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329 + 54, used a testing object, has been detected successfully.

  3. Rapidly rotating pulsar radiation in vacuum nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Pimenov, A.B.; Sokolov, V.A. [Moscow State University, Physics Department, Moscow (Russian Federation); Denisova, I.P. [Moscow Aviation Institute (National Research University), Moscow (Russian Federation)

    2016-11-15

    In this paper we investigate the corrections of vacuum nonlinear electrodynamics on rapidly rotating pulsar radiation and spin-down in the perturbative QED approach (post-Maxwellian approximation). An analytical expression for the pulsar's radiation intensity has been obtained and analyzed. (orig.)

  4. Second Generation Dutch Pulsar Machine - PuMa-II

    NARCIS (Netherlands)

    Karuppusamy, Ramesh; Stappers, Ben; Slump, Cornelis H.; van der Klis, Michiel

    2004-01-01

    The Second Generation Pulsar Machine (PuMa- II) is under development for the Westerbork Synthesis Radio Telescope. This is a summary of th e system design and architecture. We show that state of the art pulsar research is possible with commercially available hardware components. This approach

  5. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  6. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; O' Leary, Ryan M., E-mail: jdexter@berkeley.edu, E-mail: oleary@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  7. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  8. An algorithm for determining the rotation count of pulsars

    Science.gov (United States)

    Freire, Paulo C. C.; Ridolfi, Alessandro

    2018-06-01

    We present here a simple, systematic method for determining the correct global rotation count of a radio pulsar; an essential step for the derivation of an accurate phase-coherent ephemeris. We then build on this method by developing a new algorithm for determining the global rotational count for pulsars with sparse timing data sets. This makes it possible to obtain phase-coherent ephemerides for pulsars for which this has been impossible until now. As an example, we do this for PSR J0024-7205aa, an extremely faint Millisecond pulsar (MSP) recently discovered in the globular cluster 47 Tucanae. This algorithm has the potential to significantly reduce the number of observations and the amount of telescope time needed to follow up on new pulsar discoveries.

  9. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  10. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    Science.gov (United States)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  11. Listening in on Baby - Monitoring the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type SNR Kes 75. Based on its spin-down rate and X-ray spectrum, PSR J1846-0258 is likely the youngest known rotation-powered pulsar. Compared to the Crab pulsar, however, its period, spin-down rate, and X-ray conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR~J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of timing glitches. Furthermore, an X- ray ephemeris contemporal with GLAST is critical to detecting the pulsar at higher energies.

  12. Monitoring Baby - Listening in on the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes 75. Based on its spin-down rate and X- ray spectrum, PSR J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  13. A Bayesian Classifier for X-Ray Pulsars Recognition

    Directory of Open Access Journals (Sweden)

    Hao Liang

    2016-01-01

    Full Text Available Recognition for X-ray pulsars is important for the problem of spacecraft’s attitude determination by X-ray Pulsar Navigation (XPNAV. By using the nonhomogeneous Poisson model of the received photons and the minimum recognition error criterion, a classifier based on the Bayesian theorem is proposed. For X-ray pulsars recognition with unknown Doppler frequency and initial phase, the features of every X-ray pulsar are extracted and the unknown parameters are estimated using the Maximum Likelihood (ML method. Besides that, a method to recognize unknown X-ray pulsars or X-ray disturbances is proposed. Simulation results certificate the validity of the proposed Bayesian classifier.

  14. Binary millisecond pulsar discovery via gamma-ray pulsations.

    Science.gov (United States)

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  15. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  16. Arecibo pulsar survey using ALFA: probing radio pulsar intermittency and transients

    NARCIS (Netherlands)

    Deneva, J.S.; Cordes, J.M.; McLaughlin, M.A.; Nice, D.J.; Lorimer, D.R.; Crawford, F.; Bhat, N.D.R.; Camilo, F.; Champion, D.J.; Freire, P.C.C.; Edel, S.; Kondratiev, V.I.; Hessels, J.W.T.; Jenet, F.A.; Kasian, L.; Kaspi, V.M.; Kramer, M.; Lazarus, P.; Ransom, S.M.; Stairs, I.H.; Stappers, B.W.; van Leeuwen, J.; Brazier, A.; Venkataraman, A.; Zollweg, J.A.; Bogdanov, S.

    2009-01-01

    We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4

  17. 2D-deformaatio-animaatio peligrafiikassa

    OpenAIRE

    Falck, Tia

    2017-01-01

    Opinnäytetyössä tavoitteena oli esitellä deformaatio-animaation hyötyjä peligrafiikassa. Esimerkillisenä pelinä käytettiin pääasiassa Vanillawaren Dragon’s Crownian, koska siinä yhdistyvät perinteinen sprite sheet -animaatiota käyttävä peligrafiikka ja animaatiotyyli, jonka pystyisi tekemään helpommin kokonaan 2D-mesh-deformaatiota ja luurankoanimaatiota käyttäen. Projektityön osuudessa käytiin läpi animoidun 2D-hahmon työvaiheet kahdessa eri ohjelmassa, joissa molemmissa pystyi teke...

  18. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  19. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  20. Design of 2-D rational digital filters

    International Nuclear Information System (INIS)

    Harris, D.B

    1981-01-01

    A novel 2-D rational filter design technique is presented which makes use of a reflection coefficient function (RCF) representation for the filter transfer function. The design problem is formulated in the frequency domain. A least-square error criterion is used though the usual error measure is augmented with barrier functions. These act to restrict the domain of approximation to the set of stable filters. Construction of suitable barrier functions is facilitated by the RCF characterization

  1. Quasiparticle interference in unconventional 2D systems.

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-15

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  2. Thermodynamics of 2D string theory

    International Nuclear Information System (INIS)

    Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University

    2003-01-01

    We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)

  3. 2D materials: Graphene and others

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal [Deptt. of Mech Engg, UIET, Panjab University, Chandigarh (India); Kumar, Suresh [Deptt. of Applied Sciences, UIET, Panjab University, Chandigarh (India)

    2016-05-06

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  4. Simulation of 2D Granular Hopper Flow

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  5. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  6. PEACE: pulsar evaluation algorithm for candidate extraction - a software package for post-analysis processing of pulsar survey candidates

    NARCIS (Netherlands)

    Lee, K.J.; Stovall, K.; Jenet, F.A.; Martinez, J.; Dartez, L.P.; Mata, A.; Lunsford, G.; Cohen, S.; Biwer, C.M.; Rohr, M.; Flanigan, J.; Walker, A.; Banaszak, S.; Allen, B.; Barr, E.D.; Bhat, N.D.R.; Bogdanov, S.; Brazier, A.; Camilo, F.; Champion, D.J.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R.D.; Freire, P.; Hessels, J.W.T.; Karuppusamy, R.; Kaspi, V.M.; Knispel, B.; Kramer, M.; Lazarus, P.; Lynch, R.; Lyne, A.; McLaughlin, M.; Ransom, S.; Scholz, P.; Siemens, X.; Spitler, L.; Stairs, I.; Tan, M.; van Leeuwen, J.; Zhu, W.W.

    2013-01-01

    Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determine if they are real pulsars.

  7. Radio emission region exposed: courtesy of the double pulsar

    Science.gov (United States)

    Lomiashvili, David; Lyutikov, Maxim

    2014-06-01

    The double pulsar system PSR J0737-3039A/B offers exceptional possibilities for detailed probes of the structure of the pulsar magnetosphere, pulsar winds and relativistic reconnection. We numerically model the distortions of the magnetosphere of pulsar B by the magnetized wind from pulsar A, including effects of magnetic reconnection and of the geodetic precession. Geodetic precession leads to secular evolution of the geometric parameters and effectively allows a 3D view of the magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Tsyganenko (ideal pressure confinement) and Dungey (highly resistive limit), we determine the precise location and shape of the coherent radio emission generation region within pulsar B's magnetosphere. We successfully reproduce orbital variations and secular evolution of the profile of B, as well as subpulse drift (due to reconnection between the magnetospheric and wind magnetic fields), and determine the location and the shape of the emission region. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape, which is centred on the polar magnetic field lines. The best-fitting angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. We resolved all but one degeneracy in pulsar B's geometry. When considered together, the results of the two models converge and can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. Our results imply that the wind of pulsar A has a striped structure only 1000 light-cylinder radii away. We discuss the implications of these results for pulsar magnetospheric models, mechanisms of coherent radio emission generation and reconnection rates in relativistic plasma.

  8. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  9. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien; Kang, Jeongseuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsinping; Roy, Tania; Eggleston, Michael S.; Wu, Ming C.; Dubey, Madan; Lee, Sichen; He, Jr-Hau; Javey, Ali

    2015-01-01

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  10. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Venter, C.; Kopp, A.; Büsching, I. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520 (South Africa); Harding, A. K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gonthier, P. L. [Hope College, Department of Physics, Holland, MI (United States)

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  11. Elementary wideband timing of radio pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); Demorest, Paul B.; Ransom, Scott M., E-mail: pennucci@virginia.edu, E-mail: pdemores@nrao.edu, E-mail: sransom@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  12. Particle Acceleration in Dissipative Pulsar Magnetospheres

    Science.gov (United States)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  13. Magnetospheric structure of rotation powered pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  14. Millisecond Pulsar Timing Precision with NICER

    Science.gov (United States)

    Deneva, Julia; Ray, Paul S.; Ransom, Scott; Wood, Kent S.; Kerr, Matthew T.; Lommen, Andrea; Arzoumanian, Zaven; Black, Kevin; Gendreau, Keith C.; Lewandowska, Natalia; Markwardt, Craig B.; Price, Samuel; Winternitz, Luke

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an array of 56 X-ray detectors mounted on the outside of the International Space Station. It allows high-precision timing of millisecond pulsars (MSPs) without the pulse broadening effects due to dispersion and scattering by the interstellar medium that plague radio timing. We present initial timing results from four months of NICER data on the MSPs B1937+21, B1821-24, and J0218+4232, and compare them to simulations and theoretical models for X-ray times-of-arrival, and radio observations.

  15. Pulsar signals from relativistic electron beams

    International Nuclear Information System (INIS)

    Elsaesser, K.; Kirk, J.

    1976-01-01

    The possibility of the radio emission from pulsars originating in a beam-plasma system is discussed. We calculate the curvature radiation which arises if this system is placed in a very strong curved magnetic field. Numerical experiments show that the beam instability evolves into a rather stationary wave pattern whose Fourier components are concentrated near the most unstable mode. This result leads us to estimates of the radiation intensity of its autocorrelation function in time, and its bandwidth. The results are compared with measurements of the micro-structure of pulses, and the constraints imposed on radiation mechanisms by longer time-scale properties are shown to be satisfied. (orig.) [de

  16. From 2D to 3D turbulence through 2D3C configurations

    Science.gov (United States)

    Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.

  17. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    Science.gov (United States)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  18. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  19. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...... diameter to water depth ratio and the wave hight to water depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles....

  20. Gluon amplitudes as 2 d conformal correlators

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  1. 2D gravity and random matrices

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1990-01-01

    Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods

  2. 2-d spectroscopic imaging of brain tumours

    International Nuclear Information System (INIS)

    Ferris, N.J.; Brotchie, P.R.

    2002-01-01

    Full text: This poster illustrates the use of two-dimensional spectroscopic imaging (2-D SI) in the characterisation of brain tumours, and the monitoring of subsequent treatment. After conventional contrast-enhanced MR imaging of patients with known or suspected brain tumours, 2-D SI is performed at a single axial level. The level is chosen to include the maximum volume of abnormal enhancement, or, in non-enhancing lesions. The most extensive T2 signal abnormality. Two different MR systems have been used (Marconi Edge and GE Signa LX); at each site, a PRESS localisation sequence is employed with TE 128-144 ms. Automated software is used to generate spectral arrays, metabolite maps, and metabolite ratio maps from the spectroscopic data. Colour overlays of the maps onto anatomical images are produced using manufacturer software or the Medex imaging data analysis package. High grade gliomas showed choline levels higher than those in apparently normal brain, with decreases in NAA and creatine. Some lesions showed spectral abnormality extending into otherwise normal appearing brain. This was also seen in a case of CNS lymphoma. Lowgrade lesions showed choline levels similar to normal brain, but with decreased NAA. Only a small number of metastases have been studied, but to date no metastasis has shown spectral abnormality beyond the margins suggested by conventional imaging. Follow-up studies generally show spectral heterogeneity. Regions with choline levels higher than those in normal-appearing brain are considered to represent recurrent high-grade tumour. Some regions show choline to be the dominant metabolite, but its level is not greater than that seen in normal brain. These regions are considered suspicious for residual / recurrent tumour when the choline / creatine ratio exceeds 2 (lower ratios may represent treatment effect). 2-D SI improves the initial assessment of brain tumours, and has potential for influencing the radiotherapy treatment strategy. 2-D SI also

  3. TIMING OF 29 PULSARS DISCOVERED IN THE PALFA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophys., School of Phys. and Astr., Univ. of Manchester, Manch., M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia Univ., New York, NY 10027 (United States); Ferdman, R. D.; Kaspi, V. M.; Lynch, R. [Dept. of Physics and McGill Space Institute, McGill Univ., Montreal, QC H3A 2T8 (Canada); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Knispel, B.; Allen, B. [Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Dept. of Astronomy, Cornell Univ., Ithaca, NY 14853 (United States); Camilo, F. [SKA South Africa, Pinelands, 7405 (South Africa); Cardoso, F. [Physics Dept., Univ. of Wisconsin—Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211 (United States); Crawford, F. [Dept. of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, J. W. T.; Leeuwen, J. van [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Jenet, F. A. [Center for Gravitational Wave Astronomy, Univ. Texas—Brownsville, TX 78520 (United States); and others

    2017-01-10

    We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5−0.5, while J1925+1720 is coincident with a high-energy Fermi γ -ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M {sub ⊙}. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches.

  4. High precision pulsar timing and spin frequency second derivatives

    Science.gov (United States)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  5. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays

    Science.gov (United States)

    Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás

    2018-05-01

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.

  6. Is 'bosonic matter' unstable in 2D?

    CERN Document Server

    Manoukian, E B

    2003-01-01

    An upper bound is derived for the exact ground-state energy in 2D, E sub N <= -(me sup 4 /2 h-bar sup 2)(N sup 3 sup / sup 2 /50 pi sup 2), of 'bosonic matter' consisting of N positive and N negative charges with Coulombic interactions. This is to be compared with the classic N sup 7 sup / sup 5 3D-law of Dyson and gives rise to a more 'violent' collapse of such matter in 2D for large N. The derivation is based on a rigorous analysis which, in the process, controls the negative part of the Hamiltonian over its positive kinetic energy part and detailed estimates needed for counting trial wavefunctions of arbitrary states. A formal dimensional analysis in the style of Dyson alone shows, in arbitrary dimensions of space d = 1, 2, ..., that E sub N approx = -(me sup 4 /2 h-bar sup 2)C sub d N suprho, rho = (d + 4)/(d + 2), where C sub d is a positive constant depending on d, consistent with our rigorous bound, and we are led to conjecture that 'bosonic matter' is unstable in all dimensions.

  7. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  8. Radio Observations of Elongated Pulsar Wind Nebulae

    Science.gov (United States)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  9. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  10. X-ray pulsars: accretion flow deceleration

    International Nuclear Information System (INIS)

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  11. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  12. PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS

    International Nuclear Information System (INIS)

    Coles, W. A.; Kerr, M.; Shannon, R. M.; Hobbs, G. B.; Manchester, R. N.; Dai, S.; Ravi, V.; Reardon, D.; Toomey, L.; Zhu, X. J.; You, X.-P.; Bailes, M.; Straten, W. van; Bhat, N. D. R.; Burke-Spolaor, S.; Keith, M. J.; Levin, Y.; Osłowski, S.; Wang, J. B.; Wen, L.

    2015-01-01

    Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a “diverging plasma lens” across the line of sight (LOS). Modeling the refraction of such a lens indicates that the structure size must be of the order of AU and the electron density of the order of 10s of cm −3 . Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs, showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array. These allow us to make more complete models of the ESE, including an estimate of the “outer-scale” of the turbulence in the plasma lens. These observations clearly show that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the LOS, such as would be the case for a scattering shell. The dispersion measurements also show a variety of AU scale structures that would not be called ESEs, yet involve electron density variations typical of ESEs and likely have the same origin

  13. Pulsar Observations of Extreme Scattering Events

    Science.gov (United States)

    Coles, W. A.; Kerr, M.; Shannon, R. M.; Hobbs, G. B.; Manchester, R. N.; You, X.-P.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Keith, M. J.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Toomey, L.; van Straten, W.; Wang, J. B.; Wen, L.; Zhu, X. J.

    2015-08-01

    Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a “diverging plasma lens” across the line of sight (LOS). Modeling the refraction of such a lens indicates that the structure size must be of the order of AU and the electron density of the order of 10s of cm-3. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs, showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array. These allow us to make more complete models of the ESE, including an estimate of the “outer-scale” of the turbulence in the plasma lens. These observations clearly show that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the LOS, such as would be the case for a scattering shell. The dispersion measurements also show a variety of AU scale structures that would not be called ESEs, yet involve electron density variations typical of ESEs and likely have the same origin.

  14. Pulsar Emission Geometry and Accelerating Field Strength

    Science.gov (United States)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  15. PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Coles, W. A. [ECE Department, University of California at San Diego, La Jolla, CA, 92093-0407 (United States); Kerr, M.; Shannon, R. M.; Hobbs, G. B.; Manchester, R. N.; Dai, S.; Ravi, V.; Reardon, D.; Toomey, L.; Zhu, X. J. [ATNF, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); You, X.-P. [Southwest University, Chongqing (China); Bailes, M.; Straten, W. van [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Burke-Spolaor, S. [California Institute of Technology, Pasadena, 1200 E California Boulevard, CA 91125 (United States); Keith, M. J. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Levin, Y. [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Vic 3800 (Australia); Osłowski, S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wang, J. B. [Xinjiang Astronomical Observatory, Chinese Academy of Science, 150 Science 1-Street, Urumqi, Xinjiang, 830011 (China); Wen, L., E-mail: bcoles@ucsd.edu [University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-08-01

    Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a “diverging plasma lens” across the line of sight (LOS). Modeling the refraction of such a lens indicates that the structure size must be of the order of AU and the electron density of the order of 10s of cm{sup −3}. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs, showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array. These allow us to make more complete models of the ESE, including an estimate of the “outer-scale” of the turbulence in the plasma lens. These observations clearly show that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the LOS, such as would be the case for a scattering shell. The dispersion measurements also show a variety of AU scale structures that would not be called ESEs, yet involve electron density variations typical of ESEs and likely have the same origin.

  16. Two possible approaches to form sub-millisecond pulsars

    OpenAIRE

    Du, Yuanjie; Xu, R. X.; Qiao, G. J.; Han, J. L.

    2008-01-01

    Pulsars have been recognized as normal neutron stars or quark stars. Sub-millisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. A key question is how sub-millisecond pulsars could form. Both sub-Keplerian (for neutron and quark stars) and super-Keplerian cases (only for quark stars, which are bound additionally by strong interaction) have been discussed in this paper in order to investigate possible ways of forming sub-mi...

  17. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  18. Delayed pulsar kicks from the emission of sterile neutrinos

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Mandal, Bhabani Prasad; Mukherjee, Alok

    2008-01-01

    The observed velocities of pulsars suggest the possibility that sterile neutrinos with mass of several keV are emitted from a cooling neutron star. The same sterile neutrinos could constitute all or part of cosmological dark matter. The neutrino-driven kicks can exhibit delays depending on the mass and the mixing angle, which can be compared with the pulsar data. We discuss the allowed ranges of sterile neutrino parameters, consistent with the latest cosmological and x-ray bounds, which can explain the pulsar kicks for different delay times

  19. Gravitational waves from pulsars with measured braking index

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2016-09-15

    We study the putative emission of gravitational waves (GWs) in particular for pulsars with measured braking index. We show that the appropriate combination of both GW emission and magnetic dipole brakes can naturally explain the measured braking index, when the surface magnetic field and the angle between the magnetic dipole and rotation axes are time dependent. Then we discuss the detectability of these very pulsars by aLIGO and the Einstein Telescope. We call attention to the realistic possibility that aLIGO can detect the GWs generated by at least some of these pulsars, such as Vela, for example. (orig.)

  20. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Directory of Open Access Journals (Sweden)

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  1. Binary and Millisecond Pulsars at the New Millennium

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2001-01-01

    Full Text Available We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  2. COHERENT NETWORK ANALYSIS FOR CONTINUOUS GRAVITATIONAL WAVE SIGNALS IN A PULSAR TIMING ARRAY: PULSAR PHASES AS EXTRINSIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei Province 430074 (China); Mohanty, Soumya D.; Jenet, Fredrick A., E-mail: ywang12@hust.edu.cn [Department of Physics, University of Texas Rio Grande Valley, 1 West University Boulevard, Brownsville, TX 78520 (United States)

    2015-12-20

    Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the method used for continuous signals in ground-based GW searches, where the so-called pulsar phase parameters are maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is scalable since the number of parameters left over for numerical optimization does not depend on the size of the PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.

  3. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    Science.gov (United States)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  4. Movement of the pulsars and neutrino oscillations; Movimiento de los pulsares y oscilaciones de neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barkovich, M.A

    2005-07-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  5. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  6. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  7. 2D quantum gravity from quantum entanglement.

    Science.gov (United States)

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  8. Locality constraints and 2D quasicrystals

    International Nuclear Information System (INIS)

    Socolar, J.E.S.

    1990-01-01

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  9. Nonlinear Optics with 2D Layered Materials.

    Science.gov (United States)

    Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei

    2018-03-25

    2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  11. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    ). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...

  12. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  13. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    Science.gov (United States)

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  14. Spin-down of radio millisecond pulsars at genesis.

    Science.gov (United States)

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  15. Three Dozen Pulsars Over a Dozen+ Years in Terzan 5

    Science.gov (United States)

    Ransom, Scott M.; Stairs, Ingrid; Hessels, Jason W. T.; Freire, Paulo; Bilous, Anna; Prager, Brian; Ho, Anna; Cadelano, Mario; Wang, David; Scott Ransom

    2018-01-01

    The massive and rich globular cluster Terzan 5 contains at least 37 millisecond pulsars -- the most of any globular cluster. We have been timing these pulsars in the radio since 2004 using the Green Bank Telescope, and the individual and combined properties have provided a wealth of science. We have measured long-term accelerations and "jerks" of almost all of the pulsars, allowing a unique probe of the physical parameters of the cluster, completely independent from optical/IR measurements. We have directly measured the absolute proper motion of cluster and see evidence for internal velocity dispersion. Numerous post-Keplerian (i.e. relativistic) orbital parameters are significant, allowing measurements or constraints on the neutron star masses for nine systems. Ensemble flux density, dispersion measure, and polarization measurements constrain the pulsar luminosity function and the interstellar medium. Finally, we observe many interesting properties of and long-term variabilty from several eclipsing systems.

  16. Ginga observations of the 50 millisecond pulsar PSR 0540 - 69

    International Nuclear Information System (INIS)

    Nagase, F.; Deeter, J.; Lewis, W.; Dotani, T.; Makino, F.

    1990-01-01

    Extensive Ginga observations of PSR 0540 - 69, the Crab-like 50-msec pulsar in the LMC, have been obtained as a side benefit of a pulsar search project for SN 1987A. Through a coherent pulse-timing analysis of data from 46 separate days between July 1987 and October 1988, precise values have been obtained for the pulse frequency and its first and second derivatives. From these values, a braking index of n = 2.02 + or = 0.01 is obtained for PSR 0540 - 69. This is the first accurate measurement of a pulsar braking index from X-ray observations and the third overall. The braking index is much smaller than those previously determined for the Crab pulsar (n = 2.51) and PSR 1509 - 58 (n = 2.83). 24 refs

  17. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  18. Search for Protoplanetary and Debris Disks Around Millisecond Pulsars

    National Research Council Canada - National Science Library

    Foster, R. S; Fischer, J

    1995-01-01

    .... If planetary formation is common around millisecond pulsars and if it occurs by coalescence of small dust particles within a protoplanetary disk, as is thought to have occurred during the formation...

  19. Public List of LAT-Detected Gamma-Ray Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team,...

  20. Pulsar kicks with modified Urca and electrons in Landau levels

    International Nuclear Information System (INIS)

    Henley, Ernest M.; Johnson, Mikkel B.; Kisslinger, Leonard S.

    2007-01-01

    We derive the energy asymmetry given the protoneutron star during the time when the neutrino sphere is near the surface of the protoneutron star, using the modified Urca process. The electrons produced with the antineutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of the electrons to be in the lowest Landau level; however, there is no direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated with the direction of the magnetic field. We predict a pulsar velocity of 1.03x10 -4 (T/10 10 K) 7 km/s, which reaches 1000 km/s if T≅10 11 K

  1. Pulsar kicks from a dark-matter sterile neutrino

    International Nuclear Information System (INIS)

    Fuller, George M.; Kusenko, Alexander; Mocioiu, Irina; Pascoli, Silvia

    2003-01-01

    We show that a sterile neutrino with a mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the Universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints

  2. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  3. Effects of phase transition induced density fluctuations on pulsar dynamics

    Directory of Open Access Journals (Sweden)

    Partha Bagchi

    2015-07-01

    Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.

  4. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  5. Pulsars in the Classroom: Suggested Exercises for Lab or Homework

    Science.gov (United States)

    Gordon, Kurtiss J.

    1978-01-01

    Exercises for introductory to intermediate level college students are proposed. Observations of pulsars can be used to illustrate the phenomena of dispersion and Faraday rotation of radio waves, and to illustrate the differential rotation of the galaxy. (BB)

  6. Pulsar acceleration by asymmetric emission of sterile neutrinos

    CERN Document Server

    Nardi, E; Nardi, Enrico; Zuluaga, Jorge I.

    2001-01-01

    A convincing explanation for the observed pulsar large peculiar velocities is still missing. We argue that any viable particle physics solution would most likely involve the resonant production of a non-interacting neutrino $\

  7. An x-ray nebula associated with the millisecond pulsar B1957+20.

    Science.gov (United States)

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  8. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  9. Monte Carlo simulations of radio pulsars and their progenitors

    International Nuclear Information System (INIS)

    Dewey, R.J.; Cordes, J.M.

    1987-01-01

    Standard models of binary evolution were applied to a model of the main-sequence population to trace the paths by which a massive star may evolve into a neutron star. Using three different models of binary evolution, the relative number of neutron stars formed by each path was calculated. It was found that none of the models were able to reproduce both the observed velocity distribution of radio pulsars and the observed incidence of binary pulsars. 59 references

  10. Polarization observations of four southern pulsars at 1560 MHz

    Science.gov (United States)

    Wu, Xin-Ji; Manchester, R. N.; Lyne, A. G.

    1991-12-01

    Some interesting results from the mean pulse polarization observations of four southern pulsars made at the Australian National Radio Astronomy Observatory, Parkes, using the 64-m telescope in June and July, 1988, are presented. The 2 x 16 x 5 MHz filter system from Jodrell Bank has proved excellent in dedispersing the pulse signals and measuring their polarization properties. Data for the four pulsars are given in some detail, and their spectral behavior is discussed.

  11. A search for thermal extreme ultraviolet radiation from nearby pulsars

    International Nuclear Information System (INIS)

    Greenstein, G.; Margon, B.

    1977-01-01

    We present the first extreme ultraviolet (100-1000 A) observations of radio pulsars. Using an EUV telescope carried aboard the Apollo-Soyuz mission, data were acquired on the nearby pulsars PSR 1133 + 16, 1451 - 68 and 1929 + 10. The data are interpreted to set limits on the effective temperatures of the neutron stars, yielding T 5 K in the best cases, and the limits compared with theoretical predictions. (orig./BJ) [de

  12. Infrared observations of the eclipsing millisecond pulsar 1957 + 20

    International Nuclear Information System (INIS)

    Eales, S.A.; Becklin, E.E.; Zuckerman, B.

    1990-01-01

    We have taken 2.2-μm images, over the entire range of orbital phase, of the eclipsing millisecond pulsar 1957 + 20. We show that the 2.2-μm flux from the pulsar system is variable, and that the infrared light curve is similar to the optical light curve. Four additional images at 1.2 μm show that there is a possible infrared excess from the system. (author)

  13. Searching for millisecond pulsars: surveys, techniques and prospects

    International Nuclear Information System (INIS)

    Stovall, K; Lorimer, D R; Lynch, R S

    2013-01-01

    Searches for millisecond pulsars (which we here loosely define as those with periods < 20 ms) in the galactic field have undergone a renaissance in the past five years. New or recently refurbished radio telescopes utilizing cooled receivers and state-of-the art digital data acquisition systems are carrying out surveys of the entire sky at a variety of radio frequencies. Targeted searches for millisecond pulsars in point sources identified by the Fermi Gamma-ray Space Telescope have proved phenomenally successful, with over 50 discoveries in the past five years. The current sample of millisecond pulsars now numbers almost 200 and, for the first time in 25 years, now outnumbers their counterparts in galactic globular clusters. While many of these searches are motivated to find pulsars which form part of pulsar timing arrays, a wide variety of interesting systems are now being found. Following a brief overview of the millisecond pulsar phenomenon, we describe these searches and present some of the highlights of the new discoveries in the past decade. We conclude with predictions and prospects for ongoing and future surveys. (paper)

  14. PINT, A Modern Software Package for Pulsar Timing

    Science.gov (United States)

    Luo, Jing; Ransom, Scott M.; Demorest, Paul; Ray, Paul S.; Stovall, Kevin; Jenet, Fredrick; Ellis, Justin; van Haasteren, Rutger; Bachetti, Matteo; NANOGrav PINT developer team

    2018-01-01

    Pulsar timing, first developed decades ago, has provided an extremely wide range of knowledge about our universe. It has been responsible for many important discoveries, such as the discovery of the first exoplanet and the orbital period decay of double neutron star systems. Currently pulsar timing is the leading technique for detecting low frequency (about 10^-9 Hertz) gravitational waves (GW) using an array of pulsars as the detectors. To achieve this goal, high precision pulsar timing data, at about nanoseconds level, is required. Most high precision pulsar timing data are analyzed using the widely adopted software TEMPO/TEMPO2. But for a robust and believable GW detection, it is important to have independent software that can cross-check the result. In this poster we present the new generation pulsar timing software PINT. This package will provide a robust system to cross check high-precision timing results, completely independent of TEMPO and TEMPO2. In addition, PINT is designed to be a package that is easy to extend and modify, through use of flexible code architecture and a modern programming language, Python, with modern technology and libraries.

  15. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  16. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  17. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  18. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Petrova, S. A.

    2013-01-01

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  19. Gravitational waves from pulsars in the context of magnetic ellipticity

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2017-05-15

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on the pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular as regards gravitational wave generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best h ∝ 10{sup -28}. This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, if the ellipticity has a magnetic origin. (orig.)

  20. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    International Nuclear Information System (INIS)

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-01-01

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(φ in ) and T(φ in ) of the angle of beam emission φ in ; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  1. How young the accretion-powered pulsars could be?

    Science.gov (United States)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  2. Gravitational waves from pulsars in the context of magnetic ellipticity

    International Nuclear Information System (INIS)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A.

    2017-01-01

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on the pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular as regards gravitational wave generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best h ∝ 10 -28 . This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, if the ellipticity has a magnetic origin. (orig.)

  3. Pulsar current sheet C̆erenkov radiation

    Science.gov (United States)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  4. Interstellar scattering of pulsar radiation. Pt. 1

    International Nuclear Information System (INIS)

    Backer, D.C.

    1975-01-01

    An investigation of the intensity fluctuations of 28 pulsars near 0.4 GHz indicates that spectra of interstellar scintillation are consistent with a gaussian shape, that scintillation indices are near unity, and that scintillation bandwidth depends linearly on dispersion measure. Observations at cm wavelengths show that the observer is in the near field of the scattering medium for objects with the lowest dispersion measures, and confirm the step dependence of correlation bandwidth on dispersion measure found by Sutton (1971). The variation of scattering parameters with dispersion measure may indicate that the rms deviation of thermal electron density on the scale of 10 11 cm grows with path length through the galaxy. (orig.) [de

  5. PULSAR: an inductive pulse power source

    International Nuclear Information System (INIS)

    Cnare, E.C.; Brooks, W.P.; Cowan, M.

    1979-01-01

    The PULSAR concept of inductive pulsed power source uses a flux-compressing metallic or plasma armature rather than a fast opening switch to transfer magnetic flux to a load. The inductive store may be a relatively unsophisticated dc superconducting magnet since no magnetic energy is taken from it, and no large current transients are induced in it. Initial experimental efforts employed either expendable or reusable metallic armatures with a 200 kJ, 450 mm diameter superconducting magnet. Attention is now being focused on the development of much faster plasma armatures for use in larger systems of one and two meters diameter. Techniques used to generate the required high magnetic Reynolds number flow will be described and initial experimental results will be presented

  6. Photovoltaic Effect of 2D Homologous Perovskites

    International Nuclear Information System (INIS)

    Jung, Mi-Hee

    2017-01-01

    Highlights: • The mixed perovskite was prepared by exposure of MAI gas on the BAPbI_4 film. • The increased dimensional perovskite shows a smaller band gap than 2D perovskite. • The mixed perovskite system shows the vertical crystal orientation. • The mixed perovskite cell exhibits the higher Jsc and FF than 2D perovskite cell. - Abstract: The controlled growth of mixed dimensional perovskite structures, (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1, through the introduction of CH_3NH_3I molecule vapor into the two-dimensional perovskite C_6H_5CH_2NH_3PbI_4 structure and its application in photovoltaic devices is reported. The dimensionality of (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 is controlled using the exposure time to the CH_3NH_3I vapor on the C_6H_5CH_2NH_3PbI_4 perovskite film. As the stacking of the lead iodide lattice increases, the crystallographic planes of the inorganic perovskite compound exhibit vertical growth in order to facilitate efficient charge transport. Furthermore, the devices have a smaller band gap, which offers broader absorption and the potential to increase the photocurrent density in the solar cell. As a result, the photovoltaic device based on the (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 perovskite exhibits a power conversion efficiency of 5.43% with a short circuit current density of 14.49 mA cm"−"2, an open circuit voltage of 0.85 V, and a fill factor of 44.30 for the best power conversion efficiency under AM 1.5G solar irradiation (100 mW cm"−"2), which is significantly higher than the 0.34% of the pure two-dimensional BAPbI_4 perovskite-based solar cell.

  7. Extreme scattering events towards two young pulsars

    Science.gov (United States)

    Kerr, M.; Coles, W. A.; Ward, C. A.; Johnston, S.; Tuntsov, A. V.; Shannon, R. M.

    2018-03-01

    We have measured the scintillation properties of 151 young, energetic pulsars with the Parkes radio telescope and have identified two extreme scattering events (ESEs). Towards PSR J1057-5226, we discovered a 3 yr span of strengthened scattering during which the variability in flux density and the scintillation bandwidth decreased markedly. The transverse size of the scattering region is ˜23 au, and strong flux density enhancement before and after the ESE may arise from refractive focusing. Long observations reveal scintillation arcs characteristic of interference between rays scattered at large angles, and the clearest arcs appear during the ESE. The arcs suggest scattering by a screen 100-200 pc from the Earth, perhaps ionized filamentary structure associated with the boundary of the local bubble(s). Towards PSR J1740-3015, we observed a `double dip' in the measured flux density similar to ESEs observed towards compact extragalactic radio sources. The observed shape is consistent with that produced by a many-au scale diverging plasma lens with electron density ˜500 cm-3. The continuing ESE is at least 1500 d long, making it the longest detected event to date. These detections, with materially different observational signatures, indicate that well-calibrated pulsar monitoring is a keen tool for ESE detection and interstellar medium (ISM) diagnostics. They illustrate the strong role au-scale non-Kolmogorov density fluctuations and the local ISM structure play in such events and are key to understanding both their intrinsic physics and their impact on other phenomena, particularly fast radio bursts.

  8. Parallelization of 2-D lattice Boltzmann codes

    International Nuclear Information System (INIS)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)

  9. Multimodal 2D Brain Computer Interface.

    Science.gov (United States)

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  10. FILM ANIMASI 2D (DIMENSI PENYULUHAN KB

    Directory of Open Access Journals (Sweden)

    Tri Hidayatul Ahmad Ismail

    2013-02-01

    Full Text Available Multimedia Animation is an attempt to make a live presentation of static or moving, the animation may consist of images and music to blend together and become alive. In this case Multimedia Animation designed by using multimedia-based information technology. From year to year Multimedia Animation Film Animation shaped more advanced, both in coloring, and in concep movement. With the community Animation Film spoiled by progress dazzling animation creation. Later in the era of globalization in Indonesia's population penetration rate can be calculated very rapidly. So the authors designed an Animated Film to Family Planning Counseling to promote family planning in the community.Data collection methods used to make this application is the method of interview and literature study. For the development of the system in this paper by using development techniques Luther systems development models - Sutopo which consists of six stages: concept, design, collecting materials, assembly, testing and distribution. The results of this study are 2D Animation Film as a medium of socialization to Family Planning Department with extension. Avi and will be distributed via CD media and aired on Social Media such as Facebook, Twitter and YouTube. This animation movie aims to be one choice as the media reduces the increase in the number of residents is too drastic. Keywords: movies, animation, family planning, Luther-Sutopo

  11. 2D conformal field theories and holography

    International Nuclear Information System (INIS)

    Freidel, Laurent; Krasnov, Kirill

    2004-01-01

    It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions

  12. 2D electromagnetic modelling of superconductors

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2012-01-01

    Some issues concerning the numerical analysis of superconductors are discussed and a novel approach to 2D modelling is proposed. Both axial and translational symmetric as well as current driven and voltage driven systems are examined in detail. The E–J power law is chosen instead of the critical state model as a constitutive relation of the material and the need to modify this relation in order to account for the normal state transition at high currents is discussed. A linear space reconstruction of the current density by means of nodal shape functions is used in order to build the finite dimensional model. A method to relax the tangential continuity of the current density, which is inherent to the discretization method used, is discussed. The performance of the proposed approach, both in terms of current distribution and AC loss, is evaluated with reference to some cases of practical interest involving composite materials. The role of the electric field as a natural state variable for superconducting problems is also pointed out. The use of the method as an alternative to the circuit approach or edge elements for modelling the superconductors is finally discussed. (paper)

  13. Parallelization of 2-D lattice Boltzmann codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).

  14. A simplified 2D HTTR benchmark problem

    International Nuclear Information System (INIS)

    Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.

    2009-01-01

    To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)

  15. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    International Nuclear Information System (INIS)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van; Ransom, Scott; Stairs, Ingrid; Straten, Willem van; Weisberg, Joel M.

    2017-01-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  16. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M.; Mitra, Dipanjan [Physics Department, University of Vermont, Burlington, VT 05405 (United States); Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ransom, Scott [National Radio Astronomy Observatory, Charlottesville, VA 29201 (United States); Stairs, Ingrid [Physics Department, University of British Columbia, V6T 1Z4, BC (Canada); Straten, Willem van [Institute for Radio Astronomy and Space Research, Auckland University of Technology, Auckland 1142 (New Zealand); Weisberg, Joel M., E-mail: Joanna.Rankin@uvm.edu [Physics and Astronomy Department, Carleton College, Northfield, MN 55057 (United States)

    2017-08-10

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  17. X-ray pulsars in nearby irregular galaxies

    Science.gov (United States)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  18. The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    Science.gov (United States)

    Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman

    2018-01-01

    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.

  19. NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1988-01-01

    1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method

  20. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  1. Pulsar perimetry in the diagnosis of early glaucoma.

    Science.gov (United States)

    Zeppieri, Marco; Brusini, Paolo; Parisi, Lucia; Johnson, Chris A; Sampaolesi, Roberto; Salvetat, Maria Letizia

    2010-01-01

    To assess the ability of Pulsar perimetry (Pulsar) in detecting early glaucomatous visual field (VF) damage in comparison with Frequency Doubling Technology (FDT), Scanning Laser Polarimetry (SLP, GDx VCC), and Heidelberg Retina Tomography (HRT). Prospective observational cross-sectional case study. This multicenter study included: 87 ocular hypertensives (OHT); 67 glaucomatous optic neuropathy (GON) patients; 75 primary open-angle glaucoma (POAG) patients; and 90 normals. All patients underwent standard automated perimetry (SAP) HFA 30-2, Pulsar T30W, FDT N-30, HRT II, and GDx VCC. Area under Receiver Operating Characteristic Curves (AROCs) for discriminating between healthy and glaucomatous eyes and agreement among instruments were determined. The best parameters for Pulsar, FDT, HRT, and GDx were, respectively: loss variance square root; no. of areas with PPulsar (AROC, 0.90) appeared comparable with FDT (0.89) and significantly better than HRT (0.82) and GDx (0.79). For GON, Pulsar ability (0.74) was higher than GDx (0.69) and lower than FDT (0.80) and HRT (0.83). The agreement among instruments ranged from 0.12 to 0.56. Pulsar test duration was significantly shorter than SAP and FDT (PPulsar T30W test is a rapid and easy perimetric method, showing higher sensitivity than SAP in detecting early glaucomatous VF loss. Its diagnostic ability is good for detecting early perimetric POAG eyes and fair for GON eyes. Pulsar performance was comparable with FDT, HRT, and GDx, even if the agreement between instruments was poor to fair. Copyright 2010 Elsevier Inc. All rights reserved.

  2. On physical states in 2d (topological) gravity

    International Nuclear Information System (INIS)

    Bouwknegt, P.; McCarthy, J.; Pilch, K.

    1993-01-01

    We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs

  3. Pulsar searching and timing with the Parkes telescope

    Science.gov (United States)

    Ng, C. W. Y.

    2014-11-01

    Pulsars are highly magnetised, rapidly rotating neutron stars that radiate a beam of coherent radio emission from their magnetic poles. An introduction to the pulsar phenomenology is presented in Chapter 1 of this thesis. The extreme conditions found in and around such compact objects make pulsars fantastic natural laboratories, as their strong gravitational fields provide exclusive insights to a rich variety of fundamental physics and astronomy. The discovery of pulsars is therefore a gateway to new science. An overview of the standard pulsar searching technique is described in Chapter 2, as well as a discussion on notable pulsar searching efforts undertaken thus far with various telescopes. The High Time Resolution Universe (HTRU) Pulsar Survey conducted with the 64-m Parkes radio telescope in Australia forms the bulk of this PhD. In particular, the author has led the search effort of the HTRU low-latitude Galactic plane project part which is introduced in Chapter 3. We discuss the computational challenges arising from the processing of the petabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including the potential pulsar-black hole binaries. We show that under a linear acceleration approximation, a ratio of ~0.1 of data length over orbital period results in the highest effectiveness for this search algorithm. Chapter 4 presents the initial results from the HTRU low-latitude Galactic plane survey. From the 37 per cent of data processed thus far, we have re-detected 348 previously known pulsars and discovered a further 47 pulsars. Two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar (MSP) with a heavy white dwarf companion while its short spin period of 5 ms indicates

  4. Ghost supernova remnants : evidence for pulsar reactivation in dusty molecular clouds

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1983-01-01

    An evidence in favour of a new model for pulsar evolution is discussed, according to which pulsars may only function as regularly pulsed emitters if an accretion disc provides a sufficiently continuous return-current to the radio pulsar (neutron star). (L.C.) [pt

  5. A glitch in the Crab pulsar (PSR B0531+21)

    Science.gov (United States)

    Shaw, Benjamin; Lyne, Andrew; Bassa, Cees; Breton, Rene; Jordan, Christine; Keith, Michael; Mickaliger, Mitchell B.; Stappers, Benjamin; Weltevrede, Patrick

    2018-05-01

    We have detected a glitch in the Crab pulsar, B0531+21, on 2018-04-29. The Crab pulsar is regularly monitored with the 42-ft and Lovell telescopes at the Jodrell Bank Observatory as part of the pulsar timing programme.

  6. Ensemble candidate classification for the LOTAAS pulsar survey

    Science.gov (United States)

    Tan, C. M.; Lyon, R. J.; Stappers, B. W.; Cooper, S.; Hessels, J. W. T.; Kondratiev, V. I.; Michilli, D.; Sanidas, S.

    2018-03-01

    One of the biggest challenges arising from modern large-scale pulsar surveys is the number of candidates generated. Here, we implemented several improvements to the machine learning (ML) classifier previously used by the LOFAR Tied-Array All-Sky Survey (LOTAAS) to look for new pulsars via filtering the candidates obtained during periodicity searches. To assist the ML algorithm, we have introduced new features which capture the frequency and time evolution of the signal and improved the signal-to-noise calculation accounting for broad profiles. We enhanced the ML classifier by including a third class characterizing RFI instances, allowing candidates arising from RFI to be isolated, reducing the false positive return rate. We also introduced a new training data set used by the ML algorithm that includes a large sample of pulsars misclassified by the previous classifier. Lastly, we developed an ensemble classifier comprised of five different Decision Trees. Taken together these updates improve the pulsar recall rate by 2.5 per cent, while also improving the ability to identify pulsars with wide pulse profiles, often misclassified by the previous classifier. The new ensemble classifier is also able to reduce the percentage of false positive candidates identified from each LOTAAS pointing from 2.5 per cent (˜500 candidates) to 1.1 per cent (˜220 candidates).

  7. Optimal Frequency Ranges for Sub-Microsecond Precision Pulsar Timing

    Science.gov (United States)

    Lam, Michael Timothy; McLaughlin, Maura; Cordes, James; Chatterjee, Shami; Lazio, Joseph

    2018-01-01

    Precision pulsar timing requires optimization against measurement errors and astrophysical variance from the neutron stars themselves and the interstellar medium. We investigate optimization of arrival time precision as a function of radio frequency and bandwidth. We find that increases in bandwidth that reduce the contribution from receiver noise are countered by the strong chromatic dependence of interstellar effects and intrinsic pulse-profile evolution. The resulting optimal frequency range is therefore telescope and pulsar dependent. We demonstrate the results for five pulsars included in current pulsar timing arrays and determine that they are not optimally observed at current center frequencies. We also find that arrival-time precision can be improved by increases in total bandwidth. Wideband receivers centered at high frequencies can reduce required overall integration times and provide significant improvements in arrival time uncertainty by a factor of $\\sim$$\\sqrt{2}$ in most cases, assuming a fixed integration time. We also discuss how timing programs can be extended to pulsars with larger dispersion measures through the use of higher-frequency observations.

  8. Characterizing the nature of subpulse drifting in pulsars

    Science.gov (United States)

    Basu, Rahul; Mitra, Dipanjan

    2018-04-01

    We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.

  9. Tests of general relativity from timing the double pulsar.

    Science.gov (United States)

    Kramer, M; Stairs, I H; Manchester, R N; McLaughlin, M A; Lyne, A G; Ferdman, R D; Burgay, M; Lorimer, D R; Possenti, A; D'Amico, N; Sarkissian, J M; Hobbs, G B; Reynolds, J E; Freire, P C C; Camilo, F

    2006-10-06

    The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einstein's theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the "post-Keplerian" parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.

  10. A novel look at the pulsar force-free magnetosphere

    Science.gov (United States)

    Petrova, S. A.; Flanchik, A. B.

    2018-03-01

    The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, B_{new}0=3.3×10^{-4}B/P, where P is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \\cotχ-law, where χ is a random quantity uniformly distributed in the interval [0,π/2]. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.

  11. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  12. DISCOVERY OF FIVE NEW PULSARS IN ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Mickaliger, M. B.; Collins, A.; Hough, L.; Tehrani, N.; Tenney, C.; Liska, A.; Swiggum, J.; Lorimer, D. R.; McLaughlin, M. A.; Boyles, J.

    2012-01-01

    Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922–52 has a period of 9.68 ms and a dispersion measure (DM) of 122.4 pc cm –3 . PSR J1147–66 has a period of 3.72 ms and a DM of 133.8 pc cm –3 . PSR J1227–6208 has a period of 34.53 ms, a DM of 362.6 pc cm –3 , is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein-Home volunteers. PSR J1546–59 has a period of 7.80 ms and a DM of 168.3 pc cm –3 . PSR J1725–3853 is an isolated 4.79 ms pulsar with a DM of 158.2 pc cm –3 . These pulsars were likely missed in earlier processing efforts due to the fact that they have both high DMs and short periods, and also due to the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.

  13. A transient, flat spectrum radio pulsar near the Galactic Centre

    Science.gov (United States)

    Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.

    2017-06-01

    Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.

  14. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  15. THE GALACTIC POPULATION OF YOUNG γ-RAY PULSARS

    International Nuclear Information System (INIS)

    Watters, Kyle P.; Romani, Roger W.

    2011-01-01

    We have simulated a Galactic population of young pulsars and compared with the Fermi LAT sample, constraining the birth properties, beaming and evolution of these spin-powered objects. Using quantitative tests of agreement with the distributions of observed spin and pulse properties, we find that short birth periods P 0 ∼ 50 ms and γ-ray beams arising in the outer magnetosphere, dominated by a single pole, are strongly preferred. The modeled relative numbers of radio-detected and radio-quiet objects agrees well with the data. Although the sample is local, extrapolation to the full Galaxy implies a γ-ray pulsar birthrate 1/(59 yr). This is shown to be in good agreement with the estimated Galactic core collapse rate and with the local density of OB star progenitors. We give predictions for the numbers of expected young pulsar detections if Fermi LAT observations continue 10 years. In contrast to the potentially significant contribution of unresolved millisecond pulsars, we find that young pulsars should contribute little to the Galactic γ-ray background.

  16. On The Origin Of Hyper-Fast Pulsars

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-08-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.

  17. Discovery of Three New Millisecond Pulsars in Terzan 5

    Science.gov (United States)

    Cadelano, M.; Ransom, S. M.; Freire, P. C. C.; Ferraro, F. R.; Hessels, J. W. T.; Lanzoni, B.; Pallanca, C.; Stairs, I. H.

    2018-03-01

    We report on the discovery of three new millisecond pulsars (MSPs; namely J1748‑2446aj, J1748‑2446ak, and J1748‑2446al) in the inner regions of the dense stellar system Terzan 5. These pulsars have been discovered thanks to a method, alternative to the classical search routines, that exploited the large set of archival observations of Terzan 5 acquired with the Green Bank Telescope over five years (from 2010 to 2015). This technique allowed the analysis of stacked power spectra obtained by combining ∼206 hr of observation. J1748‑2446aj has a spin period of ∼2.96 ms, J1748‑2446ak of ∼1.89 ms (thus it is the fourth fastest pulsar in the cluster) and J1748‑2446al of ∼5.95 ms. All three MSPs are isolated, and currently we have timing solutions only for J1748‑2446aj and J1748‑2446ak. For these two systems, we evaluated the contribution to the measured spin-down rate of the acceleration due to the cluster potential field, thus estimating the intrinsic spin-down rates, which are in agreement with those typically measured for MSPs in globular clusters (GCs). Our results increase the number of pulsars known in Terzan 5 to 37, which now hosts 25% of the entire pulsar population identified, so far, in GCs.

  18. NKG2D and its ligands in cancer.

    Science.gov (United States)

    Dhar, Payal; Wu, Jennifer D

    2018-04-01

    NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.

  19. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  20. Multiwavelength Polarization of Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Alice K.; Kalapotharakos, Constantinos [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron–positron pairs and γ -ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%–60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ -ray spectral components would indicate that CR is the γ -ray emission mechanism.

  1. General-relativistic pulsar magnetospheric emission

    Science.gov (United States)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  2. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  3. Rotating Radio Transients and Their Place Among Pulsars

    Science.gov (United States)

    Burke-Spolaor, S.

    2012-01-01

    Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that "the RRAT population" encompasses several phenomenologies. A large subset of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field.

  4. When will a pulsar in supernova 1987a be seen?

    Science.gov (United States)

    Michel, F. Curtis; Kennel, C. F.; Fowler, William A.

    1987-01-01

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magellanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the 'missing' energy in the form of those gamma rays that escape from the remnant instead of powering it.

  5. Black hole/pulsar binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  6. Black Hole/Pulsar Binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-04-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disk. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 Myr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution duo to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3 - 80 BH/pulsar binaries in the Galactic disk and around 10% of them could be detected by the Five-hundred-meter Aperture Spherical radio Telescope.

  7. Nuclear limits on gravitational waves from elliptically deformed pulsars

    International Nuclear Information System (INIS)

    Krastev, Plamen G.; Li Baoan; Worley, Aaron

    2008-01-01

    Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the star's quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude h 0 depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances 0.18 kpc to 0.35 kpc from Earth, the maximalh 0 is found to be in the range of ∼[0.4-1.5]x10 -24 . This prediction serves as the first direct nuclear constraint on the gravitational radiation. Its implications are discussed

  8. The Lovell Telescope and its role in pulsar astronomy

    Science.gov (United States)

    Lyne, Andrew; Morison, Ian

    2017-12-01

    This year marks the 60th anniversary of the commissioning of the 250-ft telescope at Jodrell Bank Observatory, and the 50th anniversary of the discovery of pulsars at Cambridge. Both events resulted in enduring astronomical researches that have become intimately entwined, and here we celebrate them with a brief historical account of their relationship. We describe how the completion of the telescope in October 1957 coincided with the launch of Sputnik 1 at the start of the space race, a timely circumstance that was the financial saviour of Bernard Lovell's ambitious project. The telescope established a vital role in space tracking and, by the time that pulsars were discovered a decade later, was supported by an infrastructure that allowed their prompt, successful observation. Technical innovations to both the telescope and its receivers since then have continued to make it a superb tool for world-leading pulsar investigations and the study of the radio Universe.

  9. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  10. The Frequency Evolution of Interstellar Pulse Broadening from Radio Pulsars

    Science.gov (United States)

    Löhmer, O.; Mitra, D.; Gupta, Y.; Kramer, M.; Ahuja, A.

    2004-10-01

    Using radio pulsars as probes of the interstellar medium (ISM) we study the frequency evolution of interstellar scattering. The frequency dependence of scatter broadening times, τsc, for most of the pulsars with low and intermediate dispersion measures (DM ≲ 400 pc cm-3) is consistent with the Kolmogorov spectrum of electron density fluctuations in a turbulent medium. In contrast, the measured τsc's for highly dispersed pulsars in the central region of the Galaxy are larger than expected and show a spectrum which is flatter than the Kolmogorov law. We analyse the first measurements of spectral indices of scatter broadening over the full known DM range and discuss possible explanations for the anomalous scattering behaviour along peculiar lines of sight (LOS).

  11. Confinement of the crab pulsar's wind by its supernova remnant

    International Nuclear Information System (INIS)

    Kennel, C.F.; Coroniti, F.V.

    1984-01-01

    We construct a steady state, spherically symmetric, magnetohydrodynamic model of the Crab nebual. A highly relativistic, positronic pulsar wind is terminated by a strong MHD shock that decelerates the flow and increases its pressure to match boundary conditions imposed by the recently discovered supernova remnant that surrounds the nebula. If the magnetic luminosity of the pulsar wind upsteam of the shock is about 0.3% of its particle luminosity, the pressure and velocity boundary conditions imposed by the remnant place the shock where we infer it to be; near the outer boundary of an underluminous region observed to surround the pulsar. It is necessary to include the weak magnetization of the wind to satisfy the boundary conditions and to calculate the nebular synchrotron radiation self-consistently

  12. On the theory of X-ray pulsar radiation

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1981-01-01

    The origin of hard X-ray spectrum (continuum and cyclotron lines) of pulsars in binary systems is discussed. A model of the polar region of a neutron star consisting of a hot spot in a dense plasma atmosphere with a quasi-homogeneous magnetic field and an extended accreting column in an inhomogeneous dipolar field is investigated. In the hot spot bremsstrahlung and Thomson scattering form continuum radiation, while bremsstrahlung and cyclotron scattering produce the absorption cyclotron lines. By the observed continuum intensity one can estimate the maximum distances to pulsars. Cyclotron scattering in gyro-resonant layers localized in the accreting column leads to a general attenuation of the radiation of a hot spot, but is unable to ensure the formation of cyclotron lines. For strong accretion the hot spot radiation becomes insignificant, the lines disappear and the pulsating component of an X-ray pulsar is produced by the accreting column bremsstrahlung transformed by Thomson scattering. (orig.)

  13. Crab Flares and Magnetic Reconnection in Pulsar Winds

    Science.gov (United States)

    Harding, Alice K.

    2012-01-01

    The striped winds of rotation-powered pulsars are ideal sites for magnetic reconnection. The magnetic fields of the wind near the current sheet outside the light cylinder alternate polarity every pulsar period and eventually encounter a termination shock. Magnetic reconnection in the wind has been proposed as a mechanism for transferring energy from electromagnetic fields to particles upstream of the shock (the "sigma" problem), but it is not clear if, where and how this occurs. Fermi and AGILE have recently observed powerful gamma-ray flares from the Crab nebula, which challenge traditional models of acceleration at the termination shock. New simulations are revealing that magnetic reconnection may be instrumental in understanding the Crab flares and in resolving the "sigma" problem in pulsar wind nebulae.

  14. Pinning down the superfluid and measuring masses using pulsar glitches.

    Science.gov (United States)

    Ho, Wynn C G; Espinoza, Cristóbal M; Antonopoulou, Danai; Andersson, Nils

    2015-10-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  15. A massive pulsar in a compact relativistic binary.

    Science.gov (United States)

    Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G

    2013-04-26

    Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

  16. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  17. Evolution of the magnetic field structure of the Crab pulsar.

    Science.gov (United States)

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  18. Observations of Accreting Pulsars with the FERMI-GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) on-board Fermi comprises 12 NaI detectors spanning the 8-1000 keV band and 2 BGO detectors spanning the 100 keV to 40 MeV band. These detectors view the entire unocculted sky, providing long (approximately 40 ks/day) observations of accreting pulsars daily, which allow long-term monitoring of spin-frequencies and pulsed uxes via epoch-folded searches plus daily blind searches for new pulsars. Phase averaged uxes can be measured using the Earth occultation technique. In this talk I will present highlights of GBM accretion-powered pulsar monitoring such as the discovery of a torque reversal in 4U1626-67, a high-energy QPO in A0535+26, and evidence for a stable accretion disk in OAO 1657-415.

  19. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  20. Discovery of pulsed OH maser emission stimulated by a pulsar.

    Science.gov (United States)

    Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana

    2005-07-01

    Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.

  1. Nonlinear QED effects in X-ray emission of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri, Soroush [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Haghighat, Mansour [Department of Physics, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122, Pescara (Italy)

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarization characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.

  2. GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    OpenAIRE

    Freire, Paulo C.; Gupta, Yashwant; Ransom, Scott M.; Ishwara-Chandra, C. H.

    2004-01-01

    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star whi...

  3. MHD Interaction of Pulsar Wind Nebulae with SNRs and the ISM

    OpenAIRE

    van der Swaluw, Eric

    2005-01-01

    In the late 1960s the discovery of the Crab pulsar in its associated supernova remnant, launched a new field in supernova remnant research: the study of pulsar-driven or plerionic supernova remnants. In these type of remnants, the relativistic wind emitted by the pulsar, blows a pulsar wind nebula into the interior of its supernova remnant. Now, more then forty years after the discovery of the Crab pulsar, there are more then fifty plerionic supernova remnants known, due to the ever-increasin...

  4. Physical conditions in the reconnection layer in pulsar magnetospheres

    Energy Technology Data Exchange (ETDEWEB)

    Uzdensky, Dmitri A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Spitkovsky, Anatoly, E-mail: uzdensky@colorado.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  5. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  6. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  7. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  8. PSRPOPPy: an open-source package for pulsar population simulations

    Science.gov (United States)

    Bates, S. D.; Lorimer, D. R.; Rane, A.; Swiggum, J.

    2014-04-01

    We have produced a new software package for the simulation of pulsar populations, PSRPOPPY, based on the PSRPOP package. The codebase has been re-written in Python (save for some external libraries, which remain in their native Fortran), utilizing the object-oriented features of the language, and improving the modularity of the code. Pre-written scripts are provided for running the simulations in `standard' modes of operation, but the code is flexible enough to support the writing of personalised scripts. The modular structure also makes the addition of experimental features (such as new models for period or luminosity distributions) more straightforward than with the previous code. We also discuss potential additions to the modelling capabilities of the software. Finally, we demonstrate some potential applications of the code; first, using results of surveys at different observing frequencies, we find pulsar spectral indices are best fitted by a normal distribution with mean -1.4 and standard deviation 1.0. Secondly, we model pulsar spin evolution to calculate the best fit for a relationship between a pulsar's luminosity and spin parameters. We used the code to replicate the analysis of Faucher-Giguère & Kaspi, and have subsequently optimized their power-law dependence of radio luminosity, L, with period, P, and period derivative, Ṗ. We find that the underlying population is best described by L ∝ P-1.39±0.09 Ṗ0.48±0.04 and is very similar to that found for γ-ray pulsars by Perera et al. Using this relationship, we generate a model population and examine the age-luminosity relation for the entire pulsar population, which may be measurable after future large-scale surveys with the Square Kilometre Array.

  9. The spatial distribution and birth-rate of pulsars

    International Nuclear Information System (INIS)

    Guseinov, O.H.; Kasumov, F.K.

    1978-01-01

    The distribution of pulsars in the wide range of observed luminosities has been obtained. It is shown that the function of luminosity (FL) within 3 x 10 26 30 erg s -1 conforms to the power law dN/dL - c 1 Lsup(-γ), where γ = 1.76 +- 0.06. For L 26 erg s -1 , FL changes its inclination and may be approximated as dN/dL approximately Lsup(-γ 1 ), where γ 1 = 0.7 +- 0.2. On the basis of statistical selection, including all pulsars with L > 3 x 10 28 erg s -1 , the distribution of pulsars has been investigated as a function of the distance to the centre R and galactic plane Z. The obtained laws of the radial and Z-distribution of pulsars and galactic supernova remnants and also the radial distribution of types I and II supernovae in the models Sb and Sc support the hypothesis of their origin from the objects of the flat subsystem of Population I. Since there are some arguments in favour of a possible connection between supernovae I and the objects of the intermediate component of the Galaxy, one cannot exclude the possibility of supernovae explosions at the end of the evolution of stars with masses of 1.5-2 Msub(sun). It is also shown that pulsars and supernovae are evidently objects that are connected genetically, and, within the limits of statistical error, they have a similar birth-rate. The empirical law of the evolution of a pulsar's luminosity as a function of its true age has been obtained, according to which L = c 2 tsup(-β), where c 2 = (3.69+- 3.4) x 10 35 ,β = 1.32 +- 0.11. (Auth.)

  10. PROSPECTS FOR PROBING THE SPACETIME OF Sgr A* WITH PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Wex, N.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, M/S 138-308, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-03-01

    The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of this supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 {mu}s precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below {approx}0.3 yr is there the possibility of having negligible external perturbations. For such orbits, we expect a {approx}10{sup -3} test of the frame dragging and a {approx}10{sup -2} test of the no-hair theorem within five years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R{sub 0}. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R{sub 0}.

  11. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  12. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  13. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  14. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  15. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  16. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  17. Strong binary pulsar constraints on Lorentz violation in gravity.

    Science.gov (United States)

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  18. New binary pulsar in a highy eccentric orbit

    International Nuclear Information System (INIS)

    Stokes, G.H.; Taylor, J.H.; Dewey, R.J.

    1985-01-01

    We report the discovery of PSR 2303+46, the fifth radio pulsar known to be in a gravitationally bound orbit around another star. The pulsar period (1.066 s) and the orbital eccentricity (0.658) are the largest amount the five binary systems, while the orbital period (12./sup d/34) lies near the middle of the range. Evolutionary considerations suggest strongly that the companion is another neutron star. The general relativistic precession of periastron should be observable within 1 or 2 yr and, when measured, will specify the total mass of the two stars

  19. Radio pulsars and transients in the Galactic center

    International Nuclear Information System (INIS)

    Lazio, Joseph; Deneva, J S; Bower, Geoffrey C; Cordes, J M; Hyman, Scott D; Backer, D C; Bhat, R; Chatterjee, S; Demorest, P; Ransom, S M; Vlemmings, W

    2006-01-01

    Radio pulsars and transients provide powerful probes of the star formation history, interstellar medium, and gravitational potential of the Galactic center. Historical radio observations of the Galactic center have not emphasized the time domain aspect of observing this region. We summarize a series of recent searches for and observations of radio transients and pulsars that make use of two advances in technology. The first is the formation of large fields of view (∼> 1 0 ) at relatively longer wavelengths (λ > 1 m), and the second is the construction of receivers and instruments capable of collecting data on microsecond time scales at relatively short wavelengths (∼ 3 cm)

  20. $\\gamma$-Ray Pulsars: Emission Zones and Viewing Geometries

    OpenAIRE

    Romani, Roger W.; Yadigaroglu, I. -A.

    1994-01-01

    There are now a half dozen young pulsars detected in high energy photons by the Compton GRO, showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high energy emission on the sky in a model which posits $\\gamma$-ray production by charge depleted gaps in the outer magnetosphere. This model accounts for the radio to $\\gamma$-ray pulse offsets of the known pulsars, as well as the shape of the high energy pulse profiles. We also show that $...

  1. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  2. Polarization and emission geometry of the Crab pulsar

    International Nuclear Information System (INIS)

    Kaiyou Chen; Cheng Ho

    1993-01-01

    Optical emission of the Crab pulsar can best be understood as synchrotron radiation of relativistic particles from the outer magnetosphere of the neutron star. The outer gap model was developed specifically to address energy balance and double-pulsed emission (from optical to high-energy gamma-ray) of young pulsars like the Crab. In this paper, we present the polarization properties of the optical pulses calculated from the outer gap model. We found that the theoretical light curves exhibit the same qualitative behavior as observations

  3. Strong Binary Pulsar Constraints on Lorentz Violation in Gravity

    CERN Document Server

    Yagi, Kent; Yunes, Nicolas; Barausse, Enrico

    2014-01-01

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  4. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma......-ray intensity due to unresolved pulsars is directly linked to the number of objects that should be observed in the EGRET data. We can therefore use our knowledge of the unidentified EGRET sources to constrain model parameters like the pulsar birthrate and their beaming angle. This analysis is based only...... on the properties of the six pulsars that have been identified in the EGRET data and is independent of choice of a pulsar emission model. We find that pulsars contribute very little to the diffuse emission at lower energies, whereas above 1 GeV they can account for 18% of the observed intensity in selected regions...

  5. SEARCH FOR VERY HIGH ENERGY GAMMA-RAY EMISSION FROM PULSAR-PULSAR WIND NEBULA SYSTEMS WITH THE MAGIC TELESCOPE

    International Nuclear Information System (INIS)

    Anderhub, H.; Biland, A.; Antonelli, L. A.; Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Backes, M.; Becker, J. K.; Baixeras, C.; Bastieri, D.; Bock, R. K.; Gonzalez, J. Becerra; Bednarek, W.; Berger, K.; Bernardini, E.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Tridon, D. Borla

    2010-01-01

    The MAGIC collaboration has searched for high-energy gamma-ray emission of some of the most promising pulsar candidates above an energy threshold of 50 GeV, an energy not reachable up to now by other ground-based instruments. Neither pulsed nor steady gamma-ray emission has been observed at energies of 100 GeV from the classical radio pulsars PSR J0205+6449 and PSR J2229+6114 (and their nebulae 3C58 and Boomerang, respectively) and the millisecond pulsar PSR J0218+4232. Here, we present the flux upper limits for these sources and discuss their implications in the context of current model predictions.

  6. The no-hair conjecture in 2D dilaton supergravity

    International Nuclear Information System (INIS)

    Gamboa, J.; Georgelin, Y.

    1993-06-01

    Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs

  7. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming

    2017-01-01

    with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine...... production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...... expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance...

  8. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  9. 2D or Not 2D? Testing the Utility of 2D Vs. 3D Landmark Data in Geometric Morphometrics of the Sculpin Subfamily Oligocottinae (Pisces; Cottoidea).

    Science.gov (United States)

    Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P

    2018-05-01

    We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. The Crab pulsar and its pulsar-wind nebula in the optical and infrared

    Science.gov (United States)

    Tziamtzis, A.; Lundqvist, P.; Djupvik, A. A.

    2009-12-01

    Aims. We investigate the emission mechanism and evolution of pulsars that are associated with supernova remnants. Methods: We used imaging techniques in both the optical and near infrared, using images with very good seeing (≤0.primeprime6) to study the immediate surroundings of the Crab pulsar. In the case of the infrared, we took two data sets with a time window of 75 days to check for variability in the inner part of the Crab nebula. We also measure the spectral indices of all these wisps, the nearby knot, and the interwisp medium, using our optical and infrared data. We then compared the observational results with the existing theoretical models. Results: We report variability in the three nearby wisps located to the northwest of the pulsar and also in a nearby anvil wisp in terms of their structure, position, and emissivity within the time window of 75 days. All the wisps display red spectra with similar spectral indices (α_ν = -0.58 ± 0.08, α_ν = -0.63 ± 0.07, α_ν = -0.53 ± 0.08) for the northwest triplet. The anvil wisp (anvil wisp 1) has a spectral index of α_ν = -0.62 ± 0.10. Similarly, the interwisp medium regions also show red spectra similar to those of the wisps, with the spectral index being α_ν = -0.61 ± 0.08, α_ν = -0.50 ± 0.10, while the third interwisp region has a flatter spectrum with spectral α_ν = -0.49 ± 0.10. The inner knot has a spectral index of α_ν = -0.63 ± 0.02. Also, based on archival HST data and our IR data, we find that the inner knot remains stationary for a time period of 13.5 years. The projected average velocity relative to the pulsar for this period is ≲8 ~km s-1. Conclusions: By comparing the spectral indices of the structures in the inner Crab with the current theoretical models, we find that the Del Zanna et al. model for the synchrotron emission fits our observations, although the spectral index is at the flatter end of their modelled spectra. Based on observations made with the Nordic Optical

  11. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  12. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  13. Versatile directional searches for gravitational waves with Pulsar Timing Arrays

    Science.gov (United States)

    Madison, D. R.; Zhu, X.-J.; Hobbs, G.; Coles, W.; Shannon, R. M.; Wang, J. B.; Tiburzi, C.; Manchester, R. N.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Lasky, P.; Levin, Y.; Osłowski, S.; Ravi, V.; Reardon, D.; Rosado, P.; Spiewak, R.; van Straten, W.; Toomey, L.; Wen, L.; You, X.

    2016-02-01

    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be `phased-up' to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.

  14. Limits on the speed of gravitational waves from pulsar timing

    International Nuclear Information System (INIS)

    Baskaran, D.; Polnarev, A. G.; Pshirkov, M. S.; Postnov, K. A.

    2008-01-01

    In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one to place significant constraints on parameter ε, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on ε and consequently on the mass of the graviton m g . The limits on m g -24 are 2 orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow one to rule out massive gravitons as possible candidates for cold dark matter in the galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing accuracy, will allow one to achieve constraints of ε < or approx. 0.4% and possibly stronger.

  15. Numerical modeling of the pulsar wind interaction with ISM

    NARCIS (Netherlands)

    Bogovalov, S. V.; Chechetkin, V. M.; Koldoba, A. V.; Ustyugova, G. V.; Battiston, R; Shea, MA; Rakowski, C; Chatterjee, S

    2006-01-01

    Time dependent numerical simulation of relativistic wind interaction with interstellar medium was performed. The winds are ejected from magnetosphere of rotation powered pulsars. The particle flux in the winds is assumed to be isotropic. The energy flux is taken as strongly anisotropic in accordance

  16. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey

    NARCIS (Netherlands)

    Spitler, L.G.; Cordes, J.M.; Hessels, J.W.T.; Lorimer, D.R.; McLaughlin, M.A.; Chatterjee, S.; Crawford, F.; Deneva, J.S.; Kaspi, V.M.; Wharton, R.S.; Allen, B.; Bogdanov, S.; Brazier, A.; Camilo, F.; Freire, P.C.C.; Jenet, F.A.; Karako-Argaman, C.; Knispel, B.; Lazarus, P.; Lee, K.J.; van Leeuwen, J.; Lynch, R.; Ransom, S.M.; Scholz, P.; Siemens, X.; Stairs, I.H.; Stovall, K.; Swiggum, J.K.; Venkataraman, A.; Zhu, W.W.; Aulbert, C.; Fehrmann, H.

    2014-01-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities

  17. PULSAR: A Qualitative Study of a Substance Abuse Prevention Program

    Science.gov (United States)

    Martino-McAllister, Jeanne M.

    2004-01-01

    The purpose of this study was to explore the risk, protective factors, and resiliency characteristics of students selected to participate in the Police, Public Educators and Peers Utilizing the Leadership Skills of Students At Risk/As Resources (PULSAR) program. The study is significant as it employed qualitative methods and a resiliency-focused…

  18. Verification of f(R-gravity in binary pulsars

    Directory of Open Access Journals (Sweden)

    Dyadina Polina

    2016-01-01

    Full Text Available We develop the parameterized post-Keplerian approach for class of analytic f (R-gravity models. Using the double binary pulsar system PSR J0737-3039 data we obtain restrictions on the parameters of this class of f (R-models and show that f (R-gravity is not ruled out by the observations in strong field regime.

  19. High-Energy Emission from Rotation-Powered Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2007-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand their pulsed emission at any wavelength. In the last few years there have been some fundamental developments in acceleration and emission models. I will review both the basic physics of the models as well as the latest developments in understanding the high-energy emission of rotation-powered pulsars. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately two new gamma-ray telescopes, AGILE and GLAST, with launches expected this year will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  20. Constraints on pulsar masses from the maximum observed glitch

    Science.gov (United States)

    Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.

    2017-07-01

    Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.

  1. Arecibo pulsar survey using ALFA. III. Precursor survey and population synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Swiggum, J. K.; Lorimer, D. R.; McLaughlin, M. A.; Bates, S. D.; Senty, T. R. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Champion, D. J.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Ellis, J.; Allen, B. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Bhat, N. D. R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); and others

    2014-06-01

    The Pulsar Arecibo L-band Feed Array (PALFA) Survey uses the ALFA 7-beam receiver to search both inner and outer Galactic sectors visible from Arecibo (32° ≲ ℓ ≲ 77° and 168° ≲ ℓ ≲ 214°) close to the Galactic plane (|b| ≲ 5°) for pulsars. The PALFA survey is sensitive to sources fainter and more distant than have previously been seen because of Arecibo's unrivaled sensitivity. In this paper we detail a precursor survey of this region with PALFA, which observed a subset of the full region (slightly more restrictive in ℓ and |b| ≲ 1°) and detected 45 pulsars. Detections included 1 known millisecond pulsar and 11 previously unknown, long-period pulsars. In the surveyed part of the sky that overlaps with the Parkes Multibeam Pulsar Survey (36° ≲ ℓ ≲ 50°), PALFA is probing deeper than the Parkes survey, with four discoveries in this region. For both Galactic millisecond and normal pulsar populations, we compare the survey's detections with simulations to model these populations and, in particular, to estimate the number of observable pulsars in the Galaxy. We place 95% confidence intervals of 82,000 to 143,000 on the number of detectable normal pulsars and 9000 to 100,000 on the number of detectable millisecond pulsars in the Galactic disk. These are consistent with previous estimates. Given the most likely population size in each case (107,000 and 15,000 for normal and millisecond pulsars, respectively), we extend survey detection simulations to predict that, when complete, the full PALFA survey should have detected 1000{sub −230}{sup +330} normal pulsars and 30{sub −20}{sup +200} millisecond pulsars. Identical estimation techniques predict that 490{sub −115}{sup +160} normal pulsars and 12{sub −5}{sup +70} millisecond pulsars would be detected by the beginning of 2014; at the time, the PALFA survey had detected 283 normal pulsars and 31 millisecond pulsars, respectively. We attribute the deficiency in normal pulsar

  2. Structural Theory and Classification of 2D Adinkras

    International Nuclear Information System (INIS)

    Iga, Kevin; Zhang, Yan X.

    2016-01-01

    Adinkras are combinatorial objects developed to study (1-dimensional) supersymmetry representations. Recently, 2D Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2D Adinkras, confirming a conjecture of T. Hübsch. Along the way, we obtain other structural results, including a simple characterization of Hübsch’s even-split doubly even codes.

  3. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    1999-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a

  4. 2D gravity, random surfaces and all that

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1990-11-01

    I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)

  5. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  6. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  7. Detectability of rotation-powered pulsars in future hard X-ray surveys

    International Nuclear Information System (INIS)

    Wang Wei

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10 33 -10 37 erg s -1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of L X ∝ L sd 1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100 keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of L X ∝ L sd 1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the L X - L sd relations: L X ∝ L sd 1.31 and L X ∝ L sd 1.5 . More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  8. A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT

    Energy Technology Data Exchange (ETDEWEB)

    McCann, A., E-mail: mccann@kicp.uchicago.edu [Kavli Institute for Cosmological Physics, University of Chicago 933 East 56th Street, Chicago, IL 60637 (United States)

    2015-05-10

    Due to the low gamma-ray fluxes from pulsars above 50 GeV and the small collecting area of space-based telescopes, the gamma-ray emission discovered by the Fermi Large Area Telescope (LAT) in ∼150 pulsars is largely unexplored at these energies. In this regime, the uncertainties on the spectral data points and/or the constraints from upper limits are not sufficient to provide robust tests of competing emission models in individual pulsars. The discovery of power-law-type emission from the Crab pulsar at energies exceeding 100 GeV provides a compelling justification for exploration of other pulsars at these energies. We applied the method of aperture photometry to measure pulsar emission spectra from Fermi-LAT data and present a stacked analysis of 115 pulsars selected from the Second Fermi-LAT catalog of gamma-ray pulsars. This analysis, which uses an average of ∼4.2 yr of data per pulsar, aggregates low-level emission which cannot be resolved in individual objects but can be detected in an ensemble. We find no significant stacked excess at energies above 50 GeV. An upper limit of 30% of the Crab pulsar level is found for the average flux from 115 pulsars in the 100–177 GeV energy range at the 95% confidence level. Stacked searches exclusive to the young pulsar sample, the millisecond pulsar sample, and several other promising sub-samples also return no significant excesses above 50 GeV.

  9. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  10. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  11. SYSTEMATIC AND STOCHASTIC VARIATIONS IN PULSAR DISPERSION MEASURES

    International Nuclear Information System (INIS)

    Lam, M. T.; Cordes, J. M.; Chatterjee, S.; Jones, M. L.; McLaughlin, M. A.; Armstrong, J. W.

    2016-01-01

    We analyze deterministic and random temporal variations in the dispersion measure (DM) from the full three-dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations over a wide range of length scales. Previous treatments have largely ignored pulsars’ changing distances while favoring interpretations involving changes in sky position from transverse motion. Linear trends in pulsar DMs observed over 5–10 year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can also account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss the possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the ionosphere, annual variations of the solar elongation angle, structure in the heliosphere and ISM boundary, and substructure in the ISM. We assess the solar cycle’s role on the amplitude of ionospheric and solar wind variations. Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and assess their consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in precision pulsar timing experiments

  12. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    Guillemot, L.

    2009-09-01

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  13. Glitches: The Exact Quantum Signatures of Pulsars Metamorphosis

    Science.gov (United States)

    Hujeirat, A. A.

    2018-03-01

    The observed recurrence of glitches in pulsars and neutron stars carries rich information about the evolution of their internal structures. In this article, I show that the glitch-events observed in pulsars are exact quantum signatures for their metamorphosis into dark super-baryons (SBs), whose interiors are made of purely incompressible superconducting gluon-quark superfluids. Here the quantum nuclear shell model is adopted to describe the permitted energy levels of the SB, which are assumed to be identical to the discrete spinning rates Ω_{SB} that SBs are allowed to rotate with. Accordingly, a glitch-event corresponds to a prompt spin-down of the superconducting SB from one energy level to the next, thereby expelling a certain number of vortices, which in turn spins up the ambient medium. The process is provoked mainly by the negative torque of the ambient dissipative nuclear fluid and by a universal scalar field φ at the background of a supranuclear dense matter. As dictated by the Onsager-Feynman equation, the prompt spin-down must be associated with increase of the dimensions of the embryonic SB to finally convert the entire pulsar into SB-Objects on the scale of Gyrs. Based on our calculations, a Vela-like pulsar should display billions of glitches during its lifetime, before it metamorphoses entirely into a maximally compact SB-object and disappears from our observational windows. The present model predicts the mass of SBs and ΔΩ/Ω in young pulsars to be relatively lower than their older counterparts

  14. The largest glitch observed in the Crab pulsar

    Science.gov (United States)

    Shaw, B.; Lyne, A. G.; Stappers, B. W.; Weltevrede, P.; Bassa, C. G.; Lien, A. Y.; Mickaliger, M. B.; Breton, R. P.; Jordan, C. A.; Keith, M. J.; Krimm, H. A.

    2018-05-01

    We have observed a large glitch in the Crab pulsar (PSR B0531+21). The glitch occurred around MJD 58064 (2017 November 8) when the pulsar underwent an increase in the rotation rate of Δν = 1.530 × 10-5 Hz, corresponding to a fractional increase of Δν/ν = 0.516 × 10-6 making this event the largest glitch ever observed in this source. Due to our high-cadence and long-dwell time observations of the Crab pulsar we are able to partially resolve a fraction of the total spin-up of the star. This delayed spin-up occurred over a timescale of ˜1.7 days and is similar to the behaviour seen in the 1989 and 1996 large Crab pulsar glitches. The spin-down rate also increased at the glitch epoch by Δ \\dot{ν } / \\dot{ν } = 7 × 10^{-3}. In addition to being the largest such event observed in the Crab, the glitch occurred after the longest period of glitch inactivity since at least 1984 and we discuss a possible relationship between glitch size and waiting time. No changes to the shape of the pulse profile were observed near the glitch epoch at 610 MHz or 1520 MHz, nor did we identify any changes in the X-ray flux from the pulsar. The long-term recovery from the glitch continues to progress as \\dot{ν } slowly rises towards pre-glitch values. In line with other large Crab glitches, we expect there to be a persistent change to \\dot{ν }. We continue to monitor the long-term recovery with frequent, high quality observations.

  15. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  16. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  17. Pulsed X-Ray Emission from Pulsar A in the Double Pulsar System J0737-3039

    NARCIS (Netherlands)

    Chatterjee, S.; Gaensler, B.M.; Melatos, A.; Brisken, W.F.; Stappers, B.W.

    2007-01-01

    The double pulsar system J0737-3039 is not only a test bed for general relativity and theories of gravity, but also provides a unique laboratory for probing the relativistic winds of neutron stars. Recent X-ray observations have revealed a point source at the position of the J0737-3039 system, but

  18. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    Science.gov (United States)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  19. From 3 d duality to 2 d duality

    Science.gov (United States)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  20. DID THE CRAB PULSAR UNDERGO A SMALL GLITCH IN 2006 LATE MARCH/EARLY APRIL?

    Energy Technology Data Exchange (ETDEWEB)

    Vivekanand, M., E-mail: viv.maddali@gmail.com [No. 24, NTI Layout 1st Stage, 3rd Main, 1st Cross, Nagasettyhalli, Bangalore 560094 (India)

    2016-08-01

    On 2006 August 23 the Crab Pulsar underwent a glitch, which was reported by the Jodrell Bank and the Xinjiang radio observatories. Neither data are available to the public. However, the Jodrell group publishes monthly arrival times of the Crab Pulsar pulse (their actual observations are done daily), and using these, it is shown that about 5 months earlier the Crab Pulsar probably underwent a small glitch, which has not been reported before. Neither observatory discusses the detailed analysis of data from 2006 March to August; either they may not have detected this small glitch, or they may have attributed it to timing noise in the Crab Pulsar. The above result is verified using X-ray data from RXTE . If this is indeed true, this is probably the smallest glitch observed in the Crab Pulsar so far, whose implications are discussed. This work addresses the confusion possible between small-magnitude glitches and timing noise in pulsars.

  1. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    International Nuclear Information System (INIS)

    Tong, H.; Kou, F. F.

    2017-01-01

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  2. Possible Evolution of the Pulsar Braking Index from Larger than Three to About One

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H. [School of Physics and Electronic Engineering, Guangzhou University, 510006 Guangzhou (China); Kou, F. F., E-mail: htong_2005@163.com [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2017-03-10

    The coupled evolution of pulsar rotation and inclination angle in the wind braking model is calculated. The oblique pulsar tends to align. The pulsar alignment affects its spin-down behavior. As a pulsar evolves from the magneto-dipole radiation dominated case to the particle wind dominated case, the braking index first increases and then decreases. In the early time, the braking index may be larger than three. During the following long time, the braking index is always smaller than three. The minimum braking index is about one. This can explain the existence of a high braking index larger than three and a low braking index simultaneously. The pulsar braking index is expected to evolve from larger than three to about one. The general trend is for the pulsar braking index to evolve from the Crab-like case to the Vela-like case.

  3. Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    International Nuclear Information System (INIS)

    Anderson, B.; Atwood, W.B.; Dormody, M.; Johnson, R.P.; Porter, T.A.; Primack, J.R.; Sadrozinski, H.F.W.; Parkinson, P.M.S.; Ziegler, M.; Abdo, A.A.; Dermer, C.D.; Grove, J.E.; Gwon, C.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wolff, M.T.; Wood, K.S.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tajima, H.; Tanaka, T.; Thayer, J.G.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Van Etten, A.; Waite, A.P.; Wang, P.; Watters, K.; Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Pierbattista, M.; Starck, J.L.

    2009-01-01

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. (authors)

  4. Gamma-Ray Pulsars: Beaming Evolution, Statistics, and Unidentified EGRET Sources

    Science.gov (United States)

    Yadigaroglu, I.-A.; Romani, Roger W.

    1995-08-01

    We compute the variation of the beaming fraction with the efficiency of high-energy γ-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of γ-ray pulsars along with their distributions in age and distance. This model also shows that many of the unidentified EGRET plane sources should be pulsars and predicts the γ-ray fluxes of known radio pulsars. The contribution of unresolved pulsars to the background flux in the EGRET band is found to be ˜5%.

  5. Monitoring Baby - Listening in on the Youngest Known Pulsar (XTEAO11)

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR~J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes~75. Based on its spin-down rate and X- ray spectrum, PSR~J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign to measure the pulsar's braking index, characterize its timing noise, and search for evidence of timing glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  6. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu [Institute of Theory and Computation, Center for Astrophysics, Harvard University 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-10

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  7. A 110-ms pulsar, with negative period derivative, in the globular cluster M15

    Science.gov (United States)

    Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.

    1989-01-01

    The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.

  8. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  9. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  10. Effective viscosity of 2D suspensions - Confinement effects

    OpenAIRE

    Doyeux , Vincent; Priem , Stephane; Jibuti , Levan; Farutin , Alexander; Ismail , Mourad; Peyla , Philippe

    2016-01-01

    International audience; We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. Thanks to the direct visualization of the whole 2D flow (th...

  11. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  12. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  13. 32 CFR 1639.4 - Exclusion from Class 2-D.

    Science.gov (United States)

    2010-07-01

    ... recognized; or (c) He ceases to be a full-time student; or (d) He fails to maintain satisfactory academic... Class 2-D when: (a) He fails to establish that the theological or divinity school is a recognized school...

  14. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... protein spots were identified by mass spectrometric analysis. The cDNA of the ..... sensitivity, dynamic range and reproducibility vs the conventional 2-D ... linkage, and also has molecular chaperones activity for inhibiting the ...

  15. MERRA DAS 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...

  16. MERRA CHM 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0FXCHM or const_2d_chm_Fx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native Fv resolution. MERRA, or the Modern Era...

  17. Optical identification using imperfections in 2D materials

    Science.gov (United States)

    Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'ko, Vladimir I.; Young, Robert J.

    2017-12-01

    The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.

  18. Soluble NKG2D ligands: prevalence, release, and functional impact.

    Science.gov (United States)

    Salih, Helmut Rainer; Holdenrieder, Stefan; Steinle, Alexander

    2008-05-01

    Natural Killer (NK) cells are capable to recognize and eliminate malignant cells. Anti-tumor responses of NK cells are promoted by the tumor-associated expression of cell stress-inducible ligands of the activating NK receptor NKG2D. Current evidence suggests that established tumors subvert NKG2D-mediated tumor immunosurveillance by releasing NKG2D ligands (NKG2DL). Release of NKG2DL has been observed in a broad variety of human tumor entities and is thought to interfere with NKG2D-mediated tumor immunity in several ways. Further, levels of soluble NKG2DL (sNKG2DL) were also found to be elevated under various non-malignant conditions, although the functional implications remain largely unclear. Here we review and discuss the available data on the prevalence, release, functional impact, and potential clinical value of sNKG2DL.

  19. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  20. Excitons in atomically thin 2D semiconductors and their applications

    Science.gov (United States)

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang

    2017-06-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  1. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Shannon, Ryan M.; Cordes, James M.

    2010-01-01

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  2. Study of the spectral characteristics of unidentified galactic EGRET sources. Are they pulsar-like?

    Science.gov (United States)

    Merck, M.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Fichtel, C. E.; Fierro, J. M.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Muecke, A.; Mukherjee, R.; Nolan, P. L.; Pohl, M.; Schneid, E.; Sreekumar, P.; Thompson, D. J.; Willis, T. D.

    1996-12-01

    A spectral study of unidentified galactic EGRET sources was performed. The derived spectra are compared to the spectra of pulsars to test the hypothesis, that a significant fraction of these sources are Geminga like radio-quiet pulsars (Yadigaroglu & Romani 1995ApJ...449..211Y). Most of the sources show significantly different spectra than expected under this hypothesis. Of those with spectra consistent with typical pulsar spectra, four are positionally consistent with young spin-powered radio pulsars leaving only very few Geminga type candidates in the sample.

  3. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    Science.gov (United States)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  4. A 5.75-millisecond pulsar in the globular cluster 47 Tucanae

    International Nuclear Information System (INIS)

    Manchester, R.N.; Lyne, A.G.; Johnston, S.; D'Amico, N.; Lim, J.; Kniffen, D.A.

    1990-01-01

    Millisecond pulsars are generally believed to be old pulsars that have been spun up ('recycled') as a result of accretion of matter from a companion in a low-mass X-ray binary system. As there is a high incidence of such systems in globular clusters, these are good places to search for millisecond pulsars; so far, ten globular-cluster pulsars have been detected unambiguously. Using the Parkes radiotelescope in Australia, we have found a pulsar with a period of 5.75 ms and a dispersion measure of 25 cm -3 pc in the direction of 47 Tucanae. Despite its probable origin as a member of a binary system, timing measurements show that the pulsar is now single. The observed dispersion measure is consistent with the pulsar lying outside the galactic electron layer and within 47 Tucanae; but it is very different from the value of 67 cm -3 pc for the pulsars that were reported recently as being in this globular cluster, and we suggest that the latter pulsars probably do not in fact lie within 47 Tucanae. (author)

  5. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Science.gov (United States)

    Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Thankful Cromartie, H.; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gentile, Peter A.; Halmrast, Daniel; Huerta, E. A.; Jenet, Fredrick A.; Jessup, Cody; Jones, Glenn; Jones, Megan L.; Kaplan, David L.; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; Matthews, Allison M.; McLaughlin, Maura A.; McWilliams, Sean T.; Mingarelli, Chiara; Ng, Cherry; Nice, David J.; Pennucci, Timothy T.; Ransom, Scott M.; Ray, Paul S.; Siemens, Xavier; Simon, Joseph; Spiewak, Renée; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Taylor, Stephen R.; Vallisneri, Michele; van Haasteren, Rutger; Vigeland, Sarah J.; Zhu, Weiwei; The NANOGrav Collaboration

    2018-04-01

    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background.

  6. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    Science.gov (United States)

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. Copyright © 2015, American Association for the Advancement of Science.

  7. GMRT Galactic Plane Pulsar and Transient Survey and the Discovery of PSR J1838+1523

    Science.gov (United States)

    Surnis, Mayuresh P.; Joshi, Bhal Chandra; McLaughlin, Maura A.; Lorimer, Duncan R.; M A, Krishnakumar; Manoharan, P. K.; Naidu, Arun

    2018-05-01

    We report the results of a blind pulsar survey carried out with the Giant Metrewave Radio Telescope (GMRT) at 325 MHz. The survey covered about 10% of the region between Galactic longitude 45° pulsars. One of these, PSR J1838+1523, was previously unknown and has a period of 549 ms and a dispersion measure of 68 pc cm-3. We also present the timing solution of this pulsar obtained from multi-frequency timing observations carried out with the GMRT and the Ooty Radio Telescope. The measured flux density of this pulsar is 4.3±1.8 and 1.2±0.7 mJy at 325 and 610 MHz, respectively. This implies a spectral index of -2 ±0.8, thus making the expected flux density at 1.4 GHz to be about 0.2 mJy, which would be just detectable in the high frequency pulsar surveys like the Northern High Time Resolution Universe pulsar survey. This discovery underlines the importance of low frequency pulsar surveys in detecting steep spectrum pulsars, thus providing complementary coverage of the pulsar population.

  8. Implications of the Discovery of Millisecond Pulsar in SN 1987A

    OpenAIRE

    Nagataki, S.; Sato, K.

    2000-01-01

    From the observation of a millisecond pulsar in SN 1987A, the following implications are obtained. 1) The pulsar spindown in SN 1987A is caused by radiating gravitational waves rather than by magnetic dipole radiation and/or relativistic pulsar winds. 2) A mildly deformed shock wave would be formed at the core-collapse and explosion in SN 1987A, which is consistent with the conclusion given in Nagataki (2000). 3) The gravitational waves from the pulsar should be detected in several years usin...

  9. The Highly Relativistic Binary Pulsar PSR J0737-3039A: Discovery and Implications

    OpenAIRE

    Burgay, M.; D'Amico, N.; Possenti, A.; Manchester, R. N.; Lyne, A. G.; Joshi, B. C.; McLaughlin, M. A.; Kramer, M.; Sarkissian, J. M.; Camilo, F.; Kalogera, V.; Kim, C.; Lorimer, D. R.

    2004-01-01

    PSR J0737-3039A is a millisecond pulsar with a spin period of 22.7 ms included in a double-neutron star system with an orbital period of 2.4 hrs. Its companion has also been detected as a radio pulsar, making this binary the first known double-pulsar system. Its discovery has important implications for relativistic gravity tests, gravitational wave detection and plasma physics. Here we will shortly describe the discovery of the first pulsar in this unique system and present the first results ...

  10. Discovery of an optical bow-shock around pulsar B0740-28

    OpenAIRE

    Jones, D.H.; Stappers, B.W.; Gaensler, B.M.

    2002-01-01

    We report the discovery of a faint H-alpha pulsar wind nebula (PWN) powered by the radio pulsar B0740-28. The characteristic bow-shock morphology of the PWN implies a direction of motion consistent with the previously measured velocity vector for the pulsar. The PWN has a flux density more than an order of magnitude lower than for the PWNe seen around other pulsars, but, for a distance 2 kpc, it is consistent with propagation through a medium of atomic density n_H ~ 0.25 cm^{-3}, and neutral ...

  11. Quasars, pulsars and black holes (a bibliography with abstracts). Report for 1964--Feb 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    Astronomical surveys of quasars, pulsars, and black holes are cited. Computer simulations, mathematical models and other methods used for the verification of hypotheses about astrophysical processes are included

  12. Effects of gravitational lensing and companion motion on the binary pulsar timing

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Lai Dong

    2006-01-01

    The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems

  13. Tailored Assembly of 2D Heterostructures beyond Graphene

    Science.gov (United States)

    2017-05-11

    attainable. Here we propose our synthetic approach to construct graphene-based 3D heterostructures composed of 2D layered materials with finely tunable...DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research ...Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid progress in graphene research has attracted further research attentions for other 2D layered

  14. Proteasome modulator 9 and macrovascular pathology of T2D

    Directory of Open Access Journals (Sweden)

    Gragnoli Claudia

    2011-04-01

    Full Text Available Abstract Aims Coronary artery disease (CAD and stroke share a major linkage at the chromosome 12q24 locus. The same chromosome region entails at least a major risk gene for type 2 diabetes (T2D within NIDDM2, the non-insulin-dependent-diabetes 2 locus. The gene of Proteasome Modulator 9 (PSMD9 lies in the NIDDM2 region and is implicated in diabetes in mice. PSMD9 mutations rarely cause T2D and common variants are linked to both late-onset T2D and maturity-onset-diabetes of the young (MODY3. In this study, we aimed at determining whether PSMD9 is linked to macrovascular pathology of T2D. Methods and Results In our 200 T2D families from Italy, we characterized the clinical phenotype of macrovascular pathology by defining the subjects for presence or absence of CAD, stroke and/or transitory ischemic attacks (TIA, plaques of the large arterial vessels (macro-vasculopathy and arterial angioplasty performance. We then screened 200 T2D siblings/families for PSMD9 +nt460A/G, +nt437C/T and exon E197G A/G single nucleotide polymorphisms (SNPs and performed a non-parametric linkage study to test for linkage for coronary artery disease, stroke/TIA, macro-vasculopathy and macrovascular pathology of T2D. We performed 1,000 replicates to test the power of our significant results. Our results show a consistent significant LOD score in linkage with all the above-mentioned phenotypes. Our 1000 simulation analyses, performed for each single test, confirm that the results are not due to random chance. Conclusions In summary, the PSMD9 IVS3+nt460A/G, +nt437C/T and exon E197G A/G SNPs are linked to CAD, stroke/TIA and macrovascular pathology of T2D in Italians.

  15. Photonics of 2D gold nanolayers on sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation); Konovko, A. A.; Belov, I. V.; Gizetdinov, R. M.; Andreev, A. V. [Moscow State University (Russian Federation); Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.

  16. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng

    2017-06-20

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  17. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng; Xu, Weiyu; Yang, Yang

    2017-01-01

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  18. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  19. Benchmarking of FA2D/PARCS Code Package

    International Nuclear Information System (INIS)

    Grgic, D.; Jecmenica, R.; Pevec, D.

    2006-01-01

    FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)

  20. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  1. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  2. X-RAY OBSERVATIONS OF THE YOUNG PULSAR J1357—6429 AND ITS PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Chang, Chulhoon; Pavlov, George G.; Kargaltsev, Oleg; Shibanov, Yurii A.

    2012-01-01

    We observed the young pulsar J1357—6429 with the Chandra and XMM-Newton observatories. The pulsar spectrum fits well a combination of an absorbed power-law model (Γ = 1.7 ± 0.6) and a blackbody model (kT = 140 +60 –40 eV, R ∼ 2 km at the distance of 2.5 kpc). Strong pulsations with pulsed fraction of 42% ± 5%, apparently associated with the thermal component, were detected in 0.3-1.1 keV. Surprisingly, the pulsed fraction at higher energies, 1.1-10 keV, appears to be smaller, 23% ± 4%. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are Γ = 1.3 ± 0.3 and Γ = 1.7 ± 0.2, respectively. The extended PWN with the observed flux of ∼7.5 × 10 –13 erg s –1 cm –2 is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356-645, which strongly suggests that the very high energy emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, ∼0.1, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.

  3. Crab Pulsar Astrometry and Spin-Velocity Alignment

    Science.gov (United States)

    Romani, Roger W.; Ng, C.-Y.

    2009-01-01

    The proper motion of the Crab pulsar and its orientation with respect to the PWN symmetry axis is interesting for testing models of neutron star birth kicks. A number of authors have measured the Crab's motion using archival HST images. The most detailed study by Kaplan et al. (2008) compares a wide range of WFPC and ACS images to obtain an accurate proper motion measurement. However, they concluded that a kick comparison is fundamentally limited by the uncertainty in the progenitor's motion. Here we report on new HST images matched to 1994 and 1995 data frames, providing independent proper motion measurement with over 13 year time base and minimal systematic errors. The new observations also allow us to estimate the systematic errors due to CCD saturation. Our preliminary result indicates a proper motion consistent with Kaplan et al.'s finding. We discuss a model for the progenitor's motion, suggesting that the pulsar spin is much closer to alignment than previously suspected.

  4. A possible mechanism for the pulsar radio emission

    International Nuclear Information System (INIS)

    Hinata, S.

    1977-01-01

    The possibility of radio emission is considered within a model which produces the beam-plasma system near the pulsar. A longitudinal instability develops near the light cylinder for a particular choice of parameters adopted in the paper. The excited wave strongly oscillates the beam particles perpendicular to its average velocity on one hand, and forms bunches of them on the other hand. Consequently, coherent radiation is expected. The frequency of the emission falls within the radio band, but the intensity turns out to be too low to explain observations. An appreciable enhancement of the beam number density over the Goldreich-Julian value (nsub(b) approximately equal to BΩ/2πec) is needed if the mechanism discussed in the present paper is responsible for the pulsar radio emission. (Auth.)

  5. Pulsar spin down and cosmologies with varying gravity

    International Nuclear Information System (INIS)

    Mansfield, V.N.

    1976-01-01

    Reference is made to the measured spin down of the pulsar JP1953 and it is stated that this conflicts with conclusions concerning cosmologies having weakening gravity. An explanation is also given for the lack of long period pulsars in terms of group theory cosmologies with strengthening gravity. The implications of Dirac's large number hypothesis are considered, including possibilities for the implied continuous creation of matter, both 'additive creation' in which nucleons are created uniformly throughout space and 'multiplicative creation' in which matter is created where it already exists in proportion to the amount existing. Malin's suggestion (Phys. Rev. D9:3228 (1974)) that the mass of all particles varies inversely as the four-dimensional radius of curvature of the universe is also considered. (U.K.)

  6. Limits on an optical pulsar in supernova 1987A

    International Nuclear Information System (INIS)

    Pennypacker, C.R.; Morris, D.E.; Muller, R.A.

    1989-01-01

    Since March 1987 the optical flux from supernova 1987A for periodic pulsations has been sought. As of August 1988, after 38 separate observations, no pulsar has been detected. The typical upper limit placed on the pulsed fraction optical light from the supernova is 0.0002, for pulse frequencies in the range 0.03-5000 Hz. The best limit on the pulsed fraction of supernova light is 7 x 10 to the -6th, on January 22, 1988. On August 28, 1988 the faintest limit for the magnitude of the pulsar, dimmer than 20th mag is reached. These limits are based on Fourier transforms of up to 67 million points, covering a range of spindown rates. 25 refs

  7. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  8. Ultra high energy electrons powered by pulsar rotation.

    Science.gov (United States)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  9. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  10. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant Associations

    Science.gov (United States)

    2002-01-01

    I am pleased to be able to report significant progress in my research relevant to my LTSA grant. This progress I believe is demonstrated by a long list of publications in 2002, as detailed below. I summarize the research results my collaborators and I obtained in 2002. First, my group announced the major discovery of soft-gamma-repeater-like X-ray bursts from the anomalous X-ray pulsars lE-1048.1$-$5937 and lE-2259+586, using the Rossi X-ray Timing Explorer. This result provides an elegant and long-sought-after confirmation that this class of objects and the soft gamma repeaters share a common nature, namely that they are magnetars. Magnetars are a novel manifestation of young neutron stars, quite different from conventional Crab-like radio pulsars. This discovery was made as part of our regular monitoring program, among the goals of which was to detect such outbursts.

  11. Gamma-rays and neutrinos from the pulsar wind nebulae

    International Nuclear Information System (INIS)

    Bednarek, W.; Bartosik, M.

    2005-01-01

    We construct the time-dependent radiation model for the pulsar wind nebulae (PWNe), assuming that leptons are accelerated in resonant scattering with heavy nuclei, which are injected into the nebula by the pulsar. The equilibrium spectra of these particles inside the nebula are calculated taking into account their radiation and adiabatic energy losses. The spectra of γ-rays produced by these particles are compared with the observations of the PWNe emitting TeV γ-rays and predictions are made for the expected γ-ray fluxes from other PWNe. Expected neutrino fluxes and neutrino event rates in a 1 km 2 neutrino detector from these nebulae are also calculated. It is concluded that only the Crab Nebula can produce a detectable neutrino event rate in the 1 km 2 neutrino detector. Other PWNe can emit TeV γ-rays on the level of a few percent of that observed from the Crab Nebula

  12. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  13. Pulsar timing signal from ultralight scalar dark matter

    International Nuclear Information System (INIS)

    Khmelnitsky, Andrei; Rubakov, Valery

    2014-01-01

    An ultralight free scalar field with mass around 10 −23 −10 −22 eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10 −15 and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment

  14. Radio pulsar glitches as a state-dependent Poisson process

    Science.gov (United States)

    Fulgenzi, W.; Melatos, A.; Hughes, B. D.

    2017-10-01

    Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.

  15. Evolution of redback radio pulsars in globular clusters

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-02-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  16. Proposed University of California Berkeley fast pulsar search machine

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Backer, D.C.; Werthimer, D.; Heiles, C.

    1984-01-01

    With the discovery of 1937+21 by Backer et al. (1982) there is much renewed interest in an all sky survey for fast pulsars. University of California Berkeley has designed and is in the process of building an innovative and powerful, stand-alone, real-time, digital signal-processor to conduct an all sky survey for pulsars with rotation rates as high as 2000 Hz and dispersion measures less than 120 cm -3 pc at 800 MHz. The machine is anticipated to be completed in the Fall of 1985. The search technique consists of obtaining a 2-dimensional Fourier transform of the microwave signal. The transform is effected in two stages: a 64-channel, 3-level digital autocorrelator provides the radio frequency to delay transform and a fast 128K-point array processor effects the time to intensity fluctuation frequency transform. The use of a digital correlator allows flexibility in the choice of the observing radio frequency. Besides, the bandwidth is not fixed as in a multi-channel filter bank. In the machine, bandwidths can range from less than a MHz to 40 MHz. In the transform plane, the signature of a pulsar consists of harmonically related peaks which lie on a straight line which passes through the origin. The increased computational demand of a fast pulsar survey will be met by a combination of multi-CPU processing and pipeline design which involves a fast array processor and five commercial 68,000-based micro-processors. 6 references, 3 figures

  17. FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Shannon, R. M. [CSIRO Astronomy and Space Science, Box 76, Epping, NSW 1710 (Australia); Stinebring, D. R., E-mail: cordes@astro.cornell.edu, E-mail: ryan.shannon@csiro.au, E-mail: dan.stinebring@oberlin.edu [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States)

    2016-01-20

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency{sup 2}). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ∼ 4 × 10{sup −5} pc cm{sup −3} for pulsars at ∼1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm{sup −3} but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  18. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  19. Frequency-dependent Dispersion Measures and Implications for Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Shannon, R. M.; Stinebring, D. R.

    2016-01-01

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency2). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ˜ 4 × 10-5 pc cm-3 for pulsars at ˜1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm-3 but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  20. Gravitational waves from a pulsar kick caused by neutrino conversions

    International Nuclear Information System (INIS)

    Loveridge, Lee C.

    2004-01-01

    It has been suggested that the observed pulsar velocities are caused by an asymmetric neutrino emission from a hot neutron star during the first seconds after the supernova collapse. We calculate the magnitude of gravitational waves produced by the asymmetries in the emission of neutrinos. The resulting periodic gravitational waves may be detectable by LIGO and LISA in the event of a nearby supernova explosion