WorldWideScience

Sample records for public domain image

  1. Public-domain software for root image analysis

    Directory of Open Access Journals (Sweden)

    Mirian Cristina Gomes Costa

    2014-10-01

    Full Text Available In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk, and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve, at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 % revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm. Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm² as well as in CXve (-4231 to 612.1 mm². However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are

  2. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong

    2013-08-20

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  3. Image-domain full waveform inversion

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.

    2013-01-01

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in velocity model. To reduce this nonlinearity, we define the image-domain objective function to minimize the difference of the suboffset-domain common image gathers (CIGs) obtained by migrating the observed data and the calculated data. The derivation shows that the gradient of this new objective function is the combination of the gradient of the conventional FWI and the image-domain differential semblance optimization (DSO). Compared to the conventional FWI, the imagedomain FWI is immune to cycle skipping problems by smearing the nonzero suboffset images along wavepath. It also can avoid the edge effects and the gradient artifacts that are inherent in DSO due to the falsely over-penalized focused images. This is achieved by subtracting the focused image associated with the calculated data from the unfocused image associated with the observed data in the image-domain misfit function. The numerical results of the Marmousi model show that image-domain FWI is less sensitive the initial model than the conventional FWI. © 2013 SEG.

  4. PUBLIC DOMAIN PROTECTION. USES AND REUSES OF PUBLIC DOMAIN WORKS

    Directory of Open Access Journals (Sweden)

    Monica Adriana LUPAȘCU

    2015-07-01

    Full Text Available This study tries to highlight the necessity of an awareness of the right of access to the public domain, particularly using the example of works whose protection period has expired, as well as the ones which the law considers to be excluded from protection. Such works are used not only by large libraries from around the world, but also by rights holders, via different means of use, including incorporations into original works or adaptations. However, the reuse that follows these uses often only remains at the level of concept, as the notion of the public’s right of access to public domain works is not substantiated, nor is the notion of the correct or legal use of such works.

  5. Frequency Domain Image Filtering Using CUDA

    Directory of Open Access Journals (Sweden)

    Muhammad Awais Rajput

    2014-10-01

    Full Text Available In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA?s CUDA (Compute Unified Device Architecture. In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA?s parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butterworth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output image quality on both the processing architectures

  6. Frequency domain image filtering using cuda

    International Nuclear Information System (INIS)

    Rajput, M.A.; Khan, U.A.

    2014-01-01

    In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA's CUDA (Compute Unified Device Architecture). In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform) which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA's parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butter worth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output) image quality on both the processing architectures. (author)

  7. Remote-sensing image encryption in hybrid domains

    Science.gov (United States)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  8. Finding the Secret of Image Saliency in the Frequency Domain.

    Science.gov (United States)

    Li, Jia; Duan, Ling-Yu; Chen, Xiaowu; Huang, Tiejun; Tian, Yonghong

    2015-12-01

    There are two sides to every story of visual saliency modeling in the frequency domain. On the one hand, image saliency can be effectively estimated by applying simple operations to the frequency spectrum. On the other hand, it is still unclear which part of the frequency spectrum contributes the most to popping-out targets and suppressing distractors. Toward this end, this paper tentatively explores the secret of image saliency in the frequency domain. From the results obtained in several qualitative and quantitative experiments, we find that the secret of visual saliency may mainly hide in the phases of intermediate frequencies. To explain this finding, we reinterpret the concept of discrete Fourier transform from the perspective of template-based contrast computation and thus develop several principles for designing the saliency detector in the frequency domain. Following these principles, we propose a novel approach to design the saliency detector under the assistance of prior knowledge obtained through both unsupervised and supervised learning processes. Experimental results on a public image benchmark show that the learned saliency detector outperforms 18 state-of-the-art approaches in predicting human fixations.

  9. Public Domain; Public Interest; Public Funding: Focussing on the ‘three Ps’ in Scientific Research

    Directory of Open Access Journals (Sweden)

    Mags McGinley

    2005-03-01

    Full Text Available The purpose of this paper is to discuss the ‘three Ps’ of scientific research: Public Domain; Public Interest; Public Funding. This is done by examining some of the difficulties faced by scientists engaged in scientific research who may have problems working within the constraints of current copyright and database legislation, where property claims can place obstacles in the way of research, in other words, the public domain. The article then looks at perceptions of the public interest and asks whether copyright and the database right reflect understandings of how this concept should operate. Thirdly, it considers the relevance of public funding for scientific research in the context of both the public domain and of the public interest. Finally, some recent initiatives seeking to change the contours of the legal framework are be examined.

  10. Violence defied? : A review of prevention of violence in public and semi-public domain

    NARCIS (Netherlands)

    Knaap, L.M. van der; Nijssen, L.T.J.; Bogaerts, S.

    2006-01-01

    This report provides a synthesis of 48 studies of the effects of the prevention of violence in the public and semi-public domain. The following research questions were states for this study:What measures for the prevention of violence in the public and semi-public domain are known and have been

  11. Public licenses and public domain as alternatives to copyright

    OpenAIRE

    Köppel, Petr

    2012-01-01

    The work first introduces the area of public licenses as a space between the copyright law and public domain. After that, consecutively for proprietary software, free and open source software, open hardware and open content, it maps particular types of public licenses and the accompanying social and cultural movements, puts them in mutual as well as historical context, examines their characteristics and compares them to each other, shows how the public licenses are defined by various accompan...

  12. A wavelet domain adaptive image watermarking method based on chaotic encryption

    Science.gov (United States)

    Wei, Fang; Liu, Jian; Cao, Hanqiang; Yang, Jun

    2009-10-01

    A digital watermarking technique is a specific branch of steganography, which can be used in various applications, provides a novel way to solve security problems for multimedia information. In this paper, we proposed a kind of wavelet domain adaptive image digital watermarking method using chaotic stream encrypt and human eye visual property. The secret information that can be seen as a watermarking is hidden into a host image, which can be publicly accessed, so the transportation of the secret information will not attract the attention of illegal receiver. The experimental results show that the method is invisible and robust against some image processing.

  13. Atomic resolution imaging of ferroelectric domains

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1997-01-01

    Electron optical principles involved in obtaining atomic resolution images of ferroelectric domains are reviewed, including the methods available to obtain meaningful interpretation and analysis of the image detail in terms of the atomic structures. Recent work is concerned with establishing the relationship between the essentially static chemical nanodomains and the spatial and temporal fluctuations of the nanoscale polar domains present in the relaxor class of materials, including lead scandium tantalate (PST) and lead magnesium niobate (PMN). Correct interpretation of the images required use of Next Nearest Neighbour Ising model simulations for the chemical domain textures upon which we must superimpose the polar domain textures; an introduction to this work is presented. A thorough analysis of the atomic scale chemical inhomogeneities, based upon the HRTEM results, has lead to an improved formulation of the theory of the dielectric response of PMN and PST, which is capable to predict the observed temperature and frequency dependence. HRTEM may be combined with solid state and statistical physics principles to provide a deeper understanding of structure/property relationships. 15 refs., 6 figs

  14. Preserving the positive functions of the public domain in science

    Directory of Open Access Journals (Sweden)

    Pamela Samuelson

    2003-11-01

    Full Text Available Science has advanced in part because data and scientific methodologies have traditionally not been subject to intellectual property protection. In recent years, intellectual property has played a greater role in scientific work. While intellectual property rights may have a positive role to play in some fields of science, so does the public domain. This paper will discuss some of the positive functions of the public domain and ways in which certain legal developments may negatively impact the public domain. It suggests some steps that scientists can take to preserve the positive functions of the public domain for science.

  15. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    Science.gov (United States)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  16. Second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher; Pedersen, Kjeld

    1998-01-01

    configurations are presented. The SH generation enhancement is found especially pronounced for the polarization of the SH radiation being perpendicular to the domain walls. The origin and selection rules for the contrast in SH images of domain walls are discussed. The results obtained suggest that the domain...

  17. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  18. Show, Adapt and Tell: Adversarial Training of Cross-domain Image Captioner

    OpenAIRE

    Chen, Tseng-Hung; Liao, Yuan-Hong; Chuang, Ching-Yao; Hsu, Wan-Ting; Fu, Jianlong; Sun, Min

    2017-01-01

    Impressive image captioning results are achieved in domains with plenty of training image and sentence pairs (e.g., MSCOCO). However, transferring to a target domain with significant domain shifts but no paired training data (referred to as cross-domain image captioning) remains largely unexplored. We propose a novel adversarial training procedure to leverage unpaired data in the target domain. Two critic networks are introduced to guide the captioner, namely domain critic and multi-modal cri...

  19. Bregmanized Domain Decomposition for Image Restoration

    KAUST Repository

    Langer, Andreas

    2012-05-22

    Computational problems of large-scale data are gaining attention recently due to better hardware and hence, higher dimensionality of images and data sets acquired in applications. In the last couple of years non-smooth minimization problems such as total variation minimization became increasingly important for the solution of these tasks. While being favorable due to the improved enhancement of images compared to smooth imaging approaches, non-smooth minimization problems typically scale badly with the dimension of the data. Hence, for large imaging problems solved by total variation minimization domain decomposition algorithms have been proposed, aiming to split one large problem into N > 1 smaller problems which can be solved on parallel CPUs. The N subproblems constitute constrained minimization problems, where the constraint enforces the support of the minimizer to be the respective subdomain. In this paper we discuss a fast computational algorithm to solve domain decomposition for total variation minimization. In particular, we accelerate the computation of the subproblems by nested Bregman iterations. We propose a Bregmanized Operator Splitting-Split Bregman (BOS-SB) algorithm, which enforces the restriction onto the respective subdomain by a Bregman iteration that is subsequently solved by a Split Bregman strategy. The computational performance of this new approach is discussed for its application to image inpainting and image deblurring. It turns out that the proposed new solution technique is up to three times faster than the iterative algorithm currently used in domain decomposition methods for total variation minimization. © Springer Science+Business Media, LLC 2012.

  20. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  1. The Definition, Dimensions, and Domain of Public Relations.

    Science.gov (United States)

    Hutton, James G.

    1999-01-01

    Discusses how the field of public relations has left itself vulnerable to other fields that are making inroads into public relations' traditional domain, and to critics who are filling in their own definitions of public relations. Proposes a definition and a three-dimensional framework to compare competing philosophies of public relations and to…

  2. Frequency domain analysis of knock images

    Science.gov (United States)

    Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin

    2014-12-01

    High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.

  3. Image-domain full waveform inversion: Field data example

    KAUST Repository

    Zhang, Sanzong

    2014-08-05

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.

  4. Image-domain full waveform inversion: Field data example

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.

    2014-01-01

    The main difficulty with the data-domain full waveform inversion (FWI) is that it tends to get stuck in the local minima associated with the waveform misfit function. This is the result of cycle skipping which degrades the low-wavenumber update in the absence of low-frequencies and long-offset data. An image-domain objective function is defined as the normed difference between the predicted and observed common image gathers (CIGs) in the subsurface offset domain. This new objective function is not constrained by cycle skipping at the far subsurface offsets. To test the effectiveness of this method, we apply it to marine data recorded in the Gulf of Mexico. Results show that image-domain FWI is less sensitive to the initial model and the absence of low-frequency data compared with conventional FWI. The liability, however, is that it is almost an order of magnitude more expensive than standard FWI.

  5. Lessons Learned through the Development and Publication of AstroImageJ

    Science.gov (United States)

    Collins, Karen

    2018-01-01

    As lead author of the scientific image processing software package AstroImageJ (AIJ), I will discuss the reasoning behind why we decided to release AIJ to the public, and the lessons we learned related to the development, publication, distribution, and support of AIJ. I will also summarize the AIJ code language selection, code documentation and testing approaches, code distribution, update, and support facilities used, and the code citation and licensing decisions. Since AIJ was initially developed as part of my graduate research and was my first scientific open source software publication, many of my experiences and difficulties encountered may parallel those of others new to scientific software publication. Finally, I will discuss the benefits and disadvantages of releasing scientific software that I now recognize after having AIJ in the public domain for more than five years.

  6. Far- and near-field second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Pedersen, K.; Skettrup, Torben

    1998-01-01

    Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of about.......5 micrometers in width (as measured with the near-field microscope) for the polarization of the second harmonic radiation perpendicular to the domain walls. Origin and selection rules for the constrast in second harmonic images of domain walls are discussed....

  7. Bulk magnetic domain structures visualized by neutron dark-field imaging

    International Nuclear Information System (INIS)

    Gruenzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kuehne, G.; Schaefer, R.; Pofahl, S.; Roennow, H. M. R.; Pfeiffer, F.

    2008-01-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs

  8. Bulk magnetic domain structures visualized by neutron dark-field imaging

    Science.gov (United States)

    Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.

    2008-09-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.

  9. Epithelium-Stroma Classification via Convolutional Neural Networks and Unsupervised Domain Adaptation in Histopathological Images.

    Science.gov (United States)

    Huang, Yue; Zheng, Han; Liu, Chi; Ding, Xinghao; Rohde, Gustavo K

    2017-11-01

    Epithelium-stroma classification is a necessary preprocessing step in histopathological image analysis. Current deep learning based recognition methods for histology data require collection of large volumes of labeled data in order to train a new neural network when there are changes to the image acquisition procedure. However, it is extremely expensive for pathologists to manually label sufficient volumes of data for each pathology study in a professional manner, which results in limitations in real-world applications. A very simple but effective deep learning method, that introduces the concept of unsupervised domain adaptation to a simple convolutional neural network (CNN), has been proposed in this paper. Inspired by transfer learning, our paper assumes that the training data and testing data follow different distributions, and there is an adaptation operation to more accurately estimate the kernels in CNN in feature extraction, in order to enhance performance by transferring knowledge from labeled data in source domain to unlabeled data in target domain. The model has been evaluated using three independent public epithelium-stroma datasets by cross-dataset validations. The experimental results demonstrate that for epithelium-stroma classification, the proposed framework outperforms the state-of-the-art deep neural network model, and it also achieves better performance than other existing deep domain adaptation methods. The proposed model can be considered to be a better option for real-world applications in histopathological image analysis, since there is no longer a requirement for large-scale labeled data in each specified domain.

  10. Restoration the domain structure from magnetic force microscopy image

    Science.gov (United States)

    Wu, Dongping; Lou, Yuanfu; Wei, Fulin; Wei, Dan

    2012-04-01

    This contribution gives an approximation method to calculate the stray field of the scanning plane from the magnetic force microscopy (MFM) force gradient image. Before calculation, a Butterworth low-pass filter has been used to remove a part of the noise of the image. The discrete Fourier transform (DFT) method has been used to calculate the magnetic potential of the film surface. It shows that the potential is not correct because the low-frequency noise has been enlarged. The approximation method gives a better result of the potential and proves that the MFM force gradient of the perpendicular component image also gives the perpendicular component of the stray field. Supposing that the distance between the tip and the sample is as small as near zero, the force gradient image also gives the magnetic charge distribution of the film surface. So if the orientation of the film from hysteresis loop is known, then the domain structure of the film can be determined. For perpendicular orientation, the absolution value of the perpendicular component of stray field gives the domain and domain wall position. For in-plane orientation, the absolution value of in-plane component of stray field gives the domain and domain wall position.

  11. Cultural Heritage and the Public Domain

    Directory of Open Access Journals (Sweden)

    Bas Savenije

    2012-09-01

    by providing their resources on the Internet” (Berlin Declaration 2003. Therefore, in the spirit of the Berlin Declaration, the ARL encourages its members’ libraries to grant all non-commercial users “a free, irrevocable, worldwide, right of access to, and a license to copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship”. And: “If fees are to be assessed for the use of digitised public domain works, those fees should only apply to commercial uses” (ARL Principles July 2010. In our view, cultural heritage institutions should make public domain material digitised with public funding as widely available as possible for access and reuse. The public sector has the primary responsibility to fund digitisation. The involvement of private partners, however, is encouraged by ARL as well as the Comité des Sages. Private funding for digitisation is a complement to the necessary public investment, especially in times of economic crisis, but should not be seen as a substitute for public funding. As we can see from these reports there are a number of arguments in favour of digitisation and also of providing maximum accessibility to the digitised cultural heritage. In this paper we will investigate the legal aspects of digitisation of cultural heritage, especially public domain material. On the basis of these we will make an inventory of policy considerations regarding reuse. Furthermore, we will describe the conclusions the National Library of the Netherlands (hereafter: KB has formulated and the arguments that support these. In this context we will review public-private partnerships and also the policy of the KB. We will conclude with recommendations for cultural heritage institutions concerning a reuse policy for digitised public domain material.

  12. Image-adaptive and robust digital wavelet-domain watermarking for images

    Science.gov (United States)

    Zhao, Yi; Zhang, Liping

    2018-03-01

    We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.

  13. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.

    Science.gov (United States)

    Gao, W; Wu, X

    2017-11-01

    It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  15. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  16. Multiscale infrared and visible image fusion using gradient domain guided image filtering

    Science.gov (United States)

    Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia

    2018-03-01

    For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

  17. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract)

    Science.gov (United States)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.

    1991-04-01

    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  18. A dual adaptive watermarking scheme in contourlet domain for DICOM images

    Directory of Open Access Journals (Sweden)

    Rabbani Hossein

    2011-06-01

    Full Text Available Abstract Background Nowadays, medical imaging equipments produce digital form of medical images. In a modern health care environment, new systems such as PACS (picture archiving and communication systems, use the digital form of medical image too. The digital form of medical images has lots of advantages over its analog form such as ease in storage and transmission. Medical images in digital form must be stored in a secured environment to preserve patient privacy. It is also important to detect modifications on the image. These objectives are obtained by watermarking in medical image. Methods In this paper, we present a dual and oblivious (blind watermarking scheme in the contourlet domain. Because of importance of ROI (region of interest in interpretation by medical doctors rather than RONI (region of non-interest, we propose an adaptive dual watermarking scheme with different embedding strength in ROI and RONI. We embed watermark bits in singular value vectors of the embedded blocks within lowpass subband in contourlet domain. Results The values of PSNR (peak signal-to-noise ratio and SSIM (structural similarity measure index of ROI for proposed DICOM (digital imaging and communications in medicine images in this paper are respectively larger than 64 and 0.997. These values confirm that our algorithm has good transparency. Because of different embedding strength, BER (bit error rate values of signature watermark are less than BER values of caption watermark. Our results show that watermarked images in contourlet domain have greater robustness against attacks than wavelet domain. In addition, the qualitative analysis of our method shows it has good invisibility. Conclusions The proposed contourlet-based watermarking algorithm in this paper uses an automatically selection for ROI and embeds the watermark in the singular values of contourlet subbands that makes the algorithm more efficient, and robust against noise attacks than other transform

  19. Common-image gathers in the offset domain from reverse-time migration

    KAUST Repository

    Zhan, Ge

    2014-04-01

    Kirchhoff migration is flexible to output common-image gathers (CIGs) in the offset domain by imaging data with different offsets separately. These CIGs supply important information for velocity model updates and amplitude-variation-with-offset (AVO) analysis. Reverse-time migration (RTM) offers more insights into complex geology than Kirchhoff migration by accurately describing wave propagation using the two-way wave equation. But, it has difficulty to produce offset domain CIGs like Kirchhoff migration. In this paper, we develop a method for obtaining offset domain CIGs from RTM. The method first computes the RTM operator of an offset gather, followed by a dot product of the operator and the offset data to form a common-offset RTM image. The offset domain CIGs are then achieved after separately migrating data with different offsets. We generate offset domain CIGs on both the Marmousi synthetic data and 2D Gulf of Mexico real data using this approach. © 2014.

  20. Multiscale Seismic Inversion in the Data and Image Domains

    KAUST Repository

    Zhang, Sanzong

    2015-12-01

    I present a general methodology for inverting seismic data in either the data or image domains. It partially overcomes one of the most serious problems with current waveform inversion methods, which is the tendency to converge to models far from the actual one. The key idea is to develop a multiscale misfit function that is composed of both a simplified version of the data and one associated with the complex part of the data. Misfit functions based on simple data are characterized by many fewer local minima so that a gradient optimization method can make quick progress in getting to the general vicinity of the actual model. Once we are near the actual model, we then use the gradient based on the more complex data. Below, we describe two implementations of this multiscale strategy: wave equation traveltime inversion in the data domain and generalized differential semblance optimization in the image domain. • Wave Equation Traveltime Inversion in the Data Domain (WT): The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we present a waveequation method that inverts the traveltimes of reflection events, and so is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function is a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag which maximizes the crosscorrelation amplitude represents the reflection-traveltime residual that is back-projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions are introduced to estimate the reflection-traveltime residual by semblance analysis and scanning. In theory, only the traveltime information is inverted and there is no need to precisely fit the amplitudes or assume a high-frequency approximation. Results

  1. Domain decomposition methods for solving an image problem

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  2. A Novel Medical Image Watermarking in Three-dimensional Fourier Compressed Domain

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2015-09-01

    Full Text Available Digital watermarking is a research hotspot in the field of image security, which is protected digital image copyright. In order to ensure medical image information security, a novel medical image digital watermarking algorithm in three-dimensional Fourier compressed domain is proposed. The novel medical image digital watermarking algorithm takes advantage of three-dimensional Fourier compressed domain characteristics, Legendre chaotic neural network encryption features and robust characteristics of differences hashing, which is a robust zero-watermarking algorithm. On one hand, the original watermarking image is encrypted in order to enhance security. It makes use of Legendre chaotic neural network implementation. On the other hand, the construction of zero-watermarking adopts differences hashing in three-dimensional Fourier compressed domain. The novel watermarking algorithm does not need to select a region of interest, can solve the problem of medical image content affected. The specific implementation of the algorithm and the experimental results are given in the paper. The simulation results testify that the novel algorithm possesses a desirable robustness to common attack and geometric attack.

  3. Error analysis of a public domain pronunciation dictionary

    CSIR Research Space (South Africa)

    Martirosian, O

    2007-11-01

    Full Text Available ], a popular public domain resource that is widely used in English speech processing systems. The techniques being investigated are applied to the lexicon and the results of each step are illustrated using sample entries. The authors found that as many...

  4. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.

    Science.gov (United States)

    Pang, Shuchao; Yu, Zhezhou; Orgun, Mehmet A

    2017-03-01

    Highly accurate classification of biomedical images is an essential task in the clinical diagnosis of numerous medical diseases identified from those images. Traditional image classification methods combined with hand-crafted image feature descriptors and various classifiers are not able to effectively improve the accuracy rate and meet the high requirements of classification of biomedical images. The same also holds true for artificial neural network models directly trained with limited biomedical images used as training data or directly used as a black box to extract the deep features based on another distant dataset. In this study, we propose a highly reliable and accurate end-to-end classifier for all kinds of biomedical images via deep learning and transfer learning. We first apply domain transferred deep convolutional neural network for building a deep model; and then develop an overall deep learning architecture based on the raw pixels of original biomedical images using supervised training. In our model, we do not need the manual design of the feature space, seek an effective feature vector classifier or segment specific detection object and image patches, which are the main technological difficulties in the adoption of traditional image classification methods. Moreover, we do not need to be concerned with whether there are large training sets of annotated biomedical images, affordable parallel computing resources featuring GPUs or long times to wait for training a perfect deep model, which are the main problems to train deep neural networks for biomedical image classification as observed in recent works. With the utilization of a simple data augmentation method and fast convergence speed, our algorithm can achieve the best accuracy rate and outstanding classification ability for biomedical images. We have evaluated our classifier on several well-known public biomedical datasets and compared it with several state-of-the-art approaches. We propose a robust

  5. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    Science.gov (United States)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  6. Limitations in imaging common conjunctival and corneal pathologies with fourier-domain optical coherence tomography.

    Science.gov (United States)

    Demirci, Hakan; Steen, Daniel W

    2014-01-01

    To describe the limitations of Fourier-domain optical coherence tomography (OCT) in imaging common conjunctival and corneal pathology. Retrospective, single-center case series of 40 patients with conjunctival and cornea pathology. Fourier-domain OCT imaged laser in situ keratomileusis (LASIK) flaps in detail, including its relation to other corneal structures and abnormalities. Similarly, in infectious or degenerative corneal disorders, Fourier-domain OCT successfully showed the extent of infiltration or material deposition, which appeared as hyper-reflective areas. In cases with pterygium, the underlying cornea could not be imaged. All cases of common conjunctival pathologies, such as nevus or pinguecula, were successfully imaged in detail. Nevi, scleritis, pterygium, pinguecula, and subconjunctival hemorrhage were hyper-reflective lesions, while cysts and lymphangiectasia were hyporeflective. The details of the underlying sclera were not uniformly imaged in conjunctival pathologies. Fourier-domain OCT imaged the trabeculectomy bleb in detail, whereas the details of structures of the anterior chamber angle were not routinely visualized in all cases. Light scatter through vascularized, densely inflamed, or thick lesions limits the imaging capabilities of Fourier-domain anterior segment OCT.

  7. Dancing with the Electrons: Time-Domain and CW EPR Imaging

    Directory of Open Access Journals (Sweden)

    Sankaran Subramanian

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T 2 * or T 2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo . We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the ( unpaired electrons’, metaphorically speaking.

  8. NAIP Public Image Services

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — This map provides a preview and information about the National Agriculture Imagery Program (NAIP) image services available on the APFO public image server. Click on...

  9. Into the Dark Domain: The UK Web Archive as a Source for the Contemporary History of Public Health

    Science.gov (United States)

    Gorsky, Martin

    2015-01-01

    With the migration of the written record from paper to digital format, archivists and historians must urgently consider how web content should be conserved, retrieved and analysed. The British Library has recently acquired a large number of UK domain websites, captured 1996–2010, which is colloquially termed the Dark Domain Archive while technical issues surrounding user access are resolved. This article reports the results of an invited pilot project that explores methodological issues surrounding use of this archive. It asks how the relationship between UK public health and local government was represented on the web, drawing on the ‘declinist’ historiography to frame its questions. It points up some difficulties in developing an aggregate picture of web content due to duplication of sites. It also highlights their potential for thematic and discourse analysis, using both text and image, illustrated through an argument about the contradictory rationale for public health policy under New Labour. PMID:26217072

  10. Observation of ferroelastic domains in layered magnetic compounds using birefringence imaging

    Science.gov (United States)

    Miura, Yoko; Okumura, Kazuya; Manaka, Hirotaka

    2018-03-01

    The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 is a candidate compound for the coexistence of ferroelectricity and ferroelasticity; however, the microscopic observations of multiferroic domains may still be unclear. In-plane birefringence imaging measurements were performed to observe the manner in which the ferroelectric and the ferroelastic domains change during phase transitions between 15 K and 300 K. It was found that 90° ferroelastic domains appeared in the ab-plane at 300 K. As the temperature decreased toward 15 K, each domain inverted at a certain temperature (T a) without structural or magnetic phase transitions. The value of T a was found to be significantly influenced by external stresses; therefore, birefringence imaging techniques are useful for investigating variations in ferroelastic domains with temperature. Furthermore, a structural phase transition from orthorhombic to monoclinic or triclinic occurred at 230 ~ 240 K; however, no spontaneous polarization appeared in the ab-plane over the entire investigated range.

  11. A Robust Image Watermarking in the Joint Time-Frequency Domain

    Directory of Open Access Journals (Sweden)

    Yalçın Çekiç

    2010-01-01

    Full Text Available With the rapid development of computers and internet applications, copyright protection of multimedia data has become an important problem. Watermarking techniques are proposed as a solution to copyright protection of digital media files. In this paper, a new, robust, and high-capacity watermarking method that is based on spatiofrequency (SF representation is presented. We use the discrete evolutionary transform (DET calculated by the Gabor expansion to represent an image in the joint SF domain. The watermark is embedded onto selected coefficients in the joint SF domain. Hence, by combining the advantages of spatial and spectral domain watermarking methods, a robust, invisible, secure, and high-capacity watermarking method is presented. A correlation-based detector is also proposed to detect and extract any possible watermarks on an image. The proposed watermarking method was tested on some commonly used test images under different signal processing attacks like additive noise, Wiener and Median filtering, JPEG compression, rotation, and cropping. Simulation results show that our method is robust against all of the attacks.

  12. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  13. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  14. Pornographic image recognition and filtering using incremental learning in compressed domain

    Science.gov (United States)

    Zhang, Jing; Wang, Chao; Zhuo, Li; Geng, Wenhao

    2015-11-01

    With the rapid development and popularity of the network, the openness, anonymity, and interactivity of networks have led to the spread and proliferation of pornographic images on the Internet, which have done great harm to adolescents' physical and mental health. With the establishment of image compression standards, pornographic images are mainly stored with compressed formats. Therefore, how to efficiently filter pornographic images is one of the challenging issues for information security. A pornographic image recognition and filtering method in the compressed domain is proposed by using incremental learning, which includes the following steps: (1) low-resolution (LR) images are first reconstructed from the compressed stream of pornographic images, (2) visual words are created from the LR image to represent the pornographic image, and (3) incremental learning is adopted to continuously adjust the classification rules to recognize the new pornographic image samples after the covering algorithm is utilized to train and recognize the visual words in order to build the initial classification model of pornographic images. The experimental results show that the proposed pornographic image recognition method using incremental learning has a higher recognition rate as well as costing less recognition time in the compressed domain.

  15. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    Science.gov (United States)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  16. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  17. Towards development of a high quality public domain global roads database

    Directory of Open Access Journals (Sweden)

    Andrew Nelson

    2006-12-01

    Full Text Available There is clear demand for a global spatial public domain roads data set with improved geographic and temporal coverage, consistent coding of road types, and clear documentation of sources. The currently best available global public domain product covers only one-quarter to one-third of the existing road networks, and this varies considerably by region. Applications for such a data set span multiple sectors and would be particularly valuable for the international economic development, disaster relief, and biodiversity conservation communities, not to mention national and regional agencies and organizations around the world. The building blocks for such a global product are available for many countries and regions, yet thus far there has been neither strategy nor leadership for developing it. This paper evaluates the best available public domain and commercial data sets, assesses the gaps in global coverage, and proposes a number of strategies for filling them. It also identifies stakeholder organizations with an interest in such a data set that might either provide leadership or funding for its development. It closes with a proposed set of actions to begin the process.

  18. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  19. A novel algorithm for fractional resizing of digital image in DCT domain

    Institute of Scientific and Technical Information of China (English)

    Wang Ci; Zhang Wenjun; Zheng Meng

    2005-01-01

    Fractional resizing of digital images is needed in various applications, such as displaying at different resolution depending on that of display device, building image index for an image database, and changing resolution according to the transmission channel bandwidth. With the wide use of JPEG and MPEG, almost all digital images are stored and transferred in DCT compressed format. Inorder to save the computation and memory cost, it is desirable to do resizing in DCT domain directly. This paper presents a fast and efficient method, which possesses the capability of fractional resizing in DCT domain. Experimental results confirm that this scheme can achieve significant computation cost reduction while maintain better quality.

  20. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    Science.gov (United States)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  1. A symmetrical image encryption scheme in wavelet and time domain

    Science.gov (United States)

    Luo, Yuling; Du, Minghui; Liu, Junxiu

    2015-02-01

    There has been an increasing concern for effective storages and secure transactions of multimedia information over the Internet. Then a great variety of encryption schemes have been proposed to ensure the information security while transmitting, but most of current approaches are designed to diffuse the data only in spatial domain which result in reducing storage efficiency. A lightweight image encryption strategy based on chaos is proposed in this paper. The encryption process is designed in transform domain. The original image is decomposed into approximation and detail components using integer wavelet transform (IWT); then as the more important component of the image, the approximation coefficients are diffused by secret keys generated from a spatiotemporal chaotic system followed by inverse IWT to construct the diffused image; finally a plain permutation is performed for diffusion image by the Logistic mapping in order to reduce the correlation between adjacent pixels further. Experimental results and performance analysis demonstrate the proposed scheme is an efficient, secure and robust encryption mechanism and it realizes effective coding compression to satisfy desirable storage.

  2. Common-image gathers in the offset domain from reverse-time migration

    KAUST Repository

    Zhan, Ge; Zhang, Minyu

    2014-01-01

    Kirchhoff migration is flexible to output common-image gathers (CIGs) in the offset domain by imaging data with different offsets separately. These CIGs supply important information for velocity model updates and amplitude-variation-with-offset (AVO

  3. The method of images and Green's function for spherical domains

    International Nuclear Information System (INIS)

    Gutkin, Eugene; Newton, Paul K

    2004-01-01

    Motivated by problems in electrostatics and vortex dynamics, we develop two general methods for constructing Green's function for simply connected domains on the surface of the unit sphere. We prove a Riemann mapping theorem showing that such domains can be conformally mapped to the upper hemisphere. We then categorize all domains on the sphere for which Green's function can be constructed by an extension of the classical method of images. We illustrate our methods by several examples, such as the upper hemisphere, geodesic triangles, and latitudinal rectangles. We describe the point vortex motion in these domains, which is governed by a Hamiltonian determined by the Dirichlet Green's function

  4. From spoken narratives to domain knowledge: mining linguistic data for medical image understanding.

    Science.gov (United States)

    Guo, Xuan; Yu, Qi; Alm, Cecilia Ovesdotter; Calvelli, Cara; Pelz, Jeff B; Shi, Pengcheng; Haake, Anne R

    2014-10-01

    Extracting useful visual clues from medical images allowing accurate diagnoses requires physicians' domain knowledge acquired through years of systematic study and clinical training. This is especially true in the dermatology domain, a medical specialty that requires physicians to have image inspection experience. Automating or at least aiding such efforts requires understanding physicians' reasoning processes and their use of domain knowledge. Mining physicians' references to medical concepts in narratives during image-based diagnosis of a disease is an interesting research topic that can help reveal experts' reasoning processes. It can also be a useful resource to assist with design of information technologies for image use and for image case-based medical education systems. We collected data for analyzing physicians' diagnostic reasoning processes by conducting an experiment that recorded their spoken descriptions during inspection of dermatology images. In this paper we focus on the benefit of physicians' spoken descriptions and provide a general workflow for mining medical domain knowledge based on linguistic data from these narratives. The challenge of a medical image case can influence the accuracy of the diagnosis as well as how physicians pursue the diagnostic process. Accordingly, we define two lexical metrics for physicians' narratives--lexical consensus score and top N relatedness score--and evaluate their usefulness by assessing the diagnostic challenge levels of corresponding medical images. We also report on clustering medical images based on anchor concepts obtained from physicians' medical term usage. These analyses are based on physicians' spoken narratives that have been preprocessed by incorporating the Unified Medical Language System for detecting medical concepts. The image rankings based on lexical consensus score and on top 1 relatedness score are well correlated with those based on challenge levels (Spearman correlation>0.5 and Kendall

  5. Image processing with ImageJ

    NARCIS (Netherlands)

    Abramoff, M.D.; Magalhães, Paulo J.; Ram, Sunanda J.

    2004-01-01

    Wayne Rasband of NIH has created ImageJ, an open source Java-written program that is now at version 1.31 and is used for many imaging applications, including those that that span the gamut from skin analysis to neuroscience. ImageJ is in the public domain and runs on any operating system (OS).

  6. Elasticity Imaging of Ferroelectric Domain Structure in PZT by Ultrasonic Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Tsuji, T.; Ogiso, H.; Fukuda, K.; Yamanaka, K.

    2004-01-01

    UAFM was applied to the observation of the domain structure in lead zirconate titanate (PZT). It imaged the change of elasticity due to grain and domain boundary (DB). For the quantitative evaluation of the contact stiffness, the lateral contact stiffness was taken into account. The stiffness of DB was 10% lower than that within the domain and the width of the DB was about 30 nm. The implication of this work is the understanding of the fatigue mechanism in a PZT memory and the high resolution imaging for a high-density memory

  7. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    Science.gov (United States)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  8. The public image and image shaping of the nuclear and radiation safety regulatory organization

    International Nuclear Information System (INIS)

    Li Zhiguo

    2013-01-01

    Good image is the basis of trust. It is imminent to build good public image as our society and the public pay close attention to the negative information of relevant government departments which directly or indirectly affects the public image of the government departments in recent years. In order to promote the public image of the government regulatory department, it is required for all staff to figure out how to conscientiously fulfill social responsibility, how to respond to and properly handle emergencies, and how to establish and improve a full-time public relations team. Based on nuclear and radiation safety regulatory task, this paper discussed the necessity of government departments to set up the public image, and how to shape the public image of the nuclear and radiation safety regulatory organization. (author)

  9. Creating a brand image for public health nursing.

    Science.gov (United States)

    Baldwin, Kathleen A; Lyons, Roberta L; Issel, L Michele

    2011-01-01

    Public health nurses (PHNs) have declined as a proportion of both the nursing and the public health workforces in the past 2 decades. This decline comes as 30 states report public health nursing as the sector most affected in the overall public health shortage. Taken together, these data point to a need for renewed recruitment efforts. However, the current public images of nurses are primarily those of professionals employed in hospital settings. Therefore, this paper describes the development of a marketable image aimed at increasing the visibility and public awareness of PHNs and their work. Such a brand image was seen as a precursor to increasing applications for PHN positions. A multimethod qualitative sequential approach guided the branding endeavor. From the thoughts of public health nursing students, faculty, and practitioners came artists' renditions of four award-winning posters. These posters portray public health nursing-incorporating its image, location of practice, and levels of protection afforded the community. Since their initial unveiling, these posters have been distributed by request throughout the United States and Canada. The overwhelming response serves to underline the previous void of current professional images of public health nursing and the need for brand images to aid with recruitment. © 2010 Wiley Periodicals, Inc.

  10. Multiscale Seismic Inversion in the Data and Image Domains

    KAUST Repository

    Zhang, Sanzong

    2015-01-01

    I present a general methodology for inverting seismic data in either the data or image domains. It partially overcomes one of the most serious problems with current waveform inversion methods, which is the tendency to converge to models far from

  11. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  12. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Science.gov (United States)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  13. Resistivity structures imaging using time-domain electromagnetic data; TDEM ho ni yoru chika hiteiko kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K [Waseda University, Tokyo (Japan). School of Science and Engineering; Endo, M [Waseda University, Tokyo (Japan)

    1996-10-01

    The kernel function for transient vertical magnetic dipole was defined for semi-infinite uniform medium, and the 1-D imaging algorithm by TDEM (time-domain electromagnetic) method was developed for underground resistivity structure. Electromagnetic migration method directly images sectional resistivity profiles from the data observed by frequency-domain MT method, and determines underground resistivity profiles by integral equation of MT field using the concept of return travel time in reflection seismic exploration. The method reported in this paper is also one of the EM migration methods. The imaging algorithm of 2-D resistivity structure was developed by correcting 1-D imaging in consideration of the effect of 2-D anomaly on 1-D imaging (the resistivity of anomaly can be obtained from the resistivity contrast between anomaly and medium). The conventional methods require enormous forward computation, while this method can obtain underground resistivity structure in extremely short computation time, resulting in superior practicability. 12 refs., 7 figs.

  14. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Science.gov (United States)

    2011-09-20

    ...] Magnetic Resonance Imaging Safety; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging...

  15. A NEW TECHNIQUE BASED ON CHAOTIC STEGANOGRAPHY AND ENCRYPTION TEXT IN DCT DOMAIN FOR COLOR IMAGE

    Directory of Open Access Journals (Sweden)

    MELAD J. SAEED

    2013-10-01

    Full Text Available Image steganography is the art of hiding information into a cover image. This paper presents a new technique based on chaotic steganography and encryption text in DCT domain for color image, where DCT is used to transform original image (cover image from spatial domain to frequency domain. This technique used chaotic function in two phases; firstly; for encryption secret message, second; for embedding in DCT cover image. With this new technique, good results are obtained through satisfying the important properties of steganography such as: imperceptibility; improved by having mean square error (MSE, peak signal to noise ratio (PSNR and normalized correlation (NC, to phase and capacity; improved by encoding the secret message characters with variable length codes and embedding the secret message in one level of color image only.

  16. Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska

    Science.gov (United States)

    Simpson, S.L.

    1984-01-01

    A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear

  17. Dancing with the Electrons: Time-Domain and CW In Vivo EPR Imaging

    Directory of Open Access Journals (Sweden)

    Murali C. Krishna

    2008-01-01

    Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired electrons’, metaphorically speaking.

  18. A Public Domain Software Library for Reading and Language Arts.

    Science.gov (United States)

    Balajthy, Ernest

    A three-year project carried out by the Microcomputers and Reading Committee of the New Jersey Reading Association involved the collection, improvement, and distribution of free microcomputer software (public domain programs) designed to deal with reading and writing skills. Acknowledging that this free software is not without limitations (poor…

  19. Sources and Resources Into the Dark Domain: The UK Web Archive as a Source for the Contemporary History of Public Health.

    Science.gov (United States)

    Gorsky, Martin

    2015-08-01

    With the migration of the written record from paper to digital format, archivists and historians must urgently consider how web content should be conserved, retrieved and analysed. The British Library has recently acquired a large number of UK domain websites, captured 1996-2010, which is colloquially termed the Dark Domain Archive while technical issues surrounding user access are resolved. This article reports the results of an invited pilot project that explores methodological issues surrounding use of this archive. It asks how the relationship between UK public health and local government was represented on the web, drawing on the 'declinist' historiography to frame its questions. It points up some difficulties in developing an aggregate picture of web content due to duplication of sites. It also highlights their potential for thematic and discourse analysis, using both text and image, illustrated through an argument about the contradictory rationale for public health policy under New Labour.

  20. Simultaneous storage of medical images in the spatial and frequency domain: A comparative study

    Directory of Open Access Journals (Sweden)

    Acharya U Rajendra

    2004-06-01

    Full Text Available Abstract Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT, Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT coefficients is studied. Differential pulse code modulation (DPCM is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient.

  1. Time Domain Filtering of Resolved Images of Sgr A{sup ∗}

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, Hotaka; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gammie, Charles F. [Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801 (United States)

    2017-09-01

    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. The mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.

  2. 37 CFR 201.26 - Recordation of documents pertaining to computer shareware and donation of public domain computer...

    Science.gov (United States)

    2010-07-01

    ... pertaining to computer shareware and donation of public domain computer software. 201.26 Section 201.26... GENERAL PROVISIONS § 201.26 Recordation of documents pertaining to computer shareware and donation of public domain computer software. (a) General. This section prescribes the procedures for submission of...

  3. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    Science.gov (United States)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  4. Evaluation of skin moisturizer effects using terahertz time domain imaging

    Science.gov (United States)

    Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.

    2018-02-01

    We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.

  5. Wavelet Domain Radiofrequency Pulse Design Applied to Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Andrew M Huettner

    Full Text Available A new method for designing radiofrequency (RF pulses with numerical optimization in the wavelet domain is presented. Numerical optimization may yield solutions that might otherwise have not been discovered with analytic techniques alone. Further, processing in the wavelet domain reduces the number of unknowns through compression properties inherent in wavelet transforms, providing a more tractable optimization problem. This algorithm is demonstrated with simultaneous multi-slice (SMS spin echo refocusing pulses because reduced peak RF power is necessary for SMS diffusion imaging with high acceleration factors. An iterative, nonlinear, constrained numerical minimization algorithm was developed to generate an optimized RF pulse waveform. Wavelet domain coefficients were modulated while iteratively running a Bloch equation simulator to generate the intermediate slice profile of the net magnetization. The algorithm minimizes the L2-norm of the slice profile with additional terms to penalize rejection band ripple and maximize the net transverse magnetization across each slice. Simulations and human brain imaging were used to demonstrate a new RF pulse design that yields an optimized slice profile and reduced peak energy deposition when applied to a multiband single-shot echo planar diffusion acquisition. This method may be used to optimize factors such as magnitude and phase spectral profiles and peak RF pulse power for multiband simultaneous multi-slice (SMS acquisitions. Wavelet-based RF pulse optimization provides a useful design method to achieve a pulse waveform with beneficial amplitude reduction while preserving appropriate magnetization response for magnetic resonance imaging.

  6. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    International Nuclear Information System (INIS)

    Soloviev, Vadim Y.

    2006-01-01

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom

  7. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    Science.gov (United States)

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  8. An efficient multiple exposure image fusion in JPEG domain

    Science.gov (United States)

    Hebbalaguppe, Ramya; Kakarala, Ramakrishna

    2012-01-01

    In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.

  9. A new image cipher in time and frequency domains

    Science.gov (United States)

    Abd El-Latif, Ahmed A.; Niu, Xiamu; Amin, Mohamed

    2012-10-01

    Recently, various encryption techniques based on chaos have been proposed. However, most existing chaotic encryption schemes still suffer from fundamental problems such as small key space, weak security function and slow performance speed. This paper introduces an efficient encryption scheme for still visual data that overcome these disadvantages. The proposed scheme is based on hybrid Linear Feedback Shift Register (LFSR) and chaotic systems in hybrid domains. The core idea is to scramble the pixel positions based on 2D chaotic systems in frequency domain. Then, the diffusion is done on the scrambled image based on cryptographic primitive operations and the incorporation of LFSR and chaotic systems as round keys. The hybrid compound of LFSR, chaotic system and cryptographic primitive operations strengthen the encryption performance and enlarge the key space required to resist the brute force attacks. Results of statistical and differential analysis show that the proposed algorithm has high security for secure digital images. Furthermore, it has key sensitivity together with a large key space and is very fast compared to other competitive algorithms.

  10. Noise removal for medical X-ray images in wavelet domain

    International Nuclear Information System (INIS)

    Wang, Ling; Lu, Jianming; Li, Yeqiu; Yahagi, Takashi; Okamoto, Takahide

    2006-01-01

    Many important problems in engineering and science are well-modeled by Poisson noise, the noise of medical X-ray image is Poisson noise. In this paper, we propose a method of noise removal for degraded medical X-ray image using improved preprocessing and improved BayesShrink (IBS) method in wavelet domain. Firstly, we pre-process the medical X-ray image, Secondly, we apply the Daubechies (db) wavelet transform to medical X-ray image to acquire scaling and wavelet coefficients. Thirdly, we apply the proposed IBS method to process wavelet coefficients. Finally, we compute the inverse wavelet transform for the thresholded coefficeints. Experimental results show that the proposed method always outperforms traditional methods. (author)

  11. Normal Inverse Gaussian Model-Based Image Denoising in the NSCT Domain

    Directory of Open Access Journals (Sweden)

    Jian Jia

    2015-01-01

    Full Text Available The objective of image denoising is to retain useful details while removing as much noise as possible to recover an original image from its noisy version. This paper proposes a novel normal inverse Gaussian (NIG model-based method that uses a Bayesian estimator to carry out image denoising in the nonsubsampled contourlet transform (NSCT domain. In the proposed method, the NIG model is first used to describe the distributions of the image transform coefficients of each subband in the NSCT domain. Then, the corresponding threshold function is derived from the model using Bayesian maximum a posteriori probability estimation theory. Finally, optimal linear interpolation thresholding algorithm (OLI-Shrink is employed to guarantee a gentler thresholding effect. The results of comparative experiments conducted indicate that the denoising performance of our proposed method in terms of peak signal-to-noise ratio is superior to that of several state-of-the-art methods, including BLS-GSM, K-SVD, BivShrink, and BM3D. Further, the proposed method achieves structural similarity (SSIM index values that are comparable to those of the block-matching 3D transformation (BM3D method.

  12. Accumulation of Domain-Specific Physical Inactivity and Presence of Hypertension in Brazilian Public Healthcare System.

    Science.gov (United States)

    Turi, Bruna Camilo; Codogno, Jamile S; Fernandes, Romulo A; Sui, Xuemei; Lavie, Carl J; Blair, Steven N; Monteiro, Henrique Luiz

    2015-11-01

    Hypertension is one of the most common noncommunicable diseases worldwide, and physical inactivity is a risk factor predisposing to its occurrence and complications. However, it is still unclear the association between physical inactivity domains and hypertension, especially in public healthcare systems. Thus, this study aimed to investigate the association between physical inactivity aggregation in different domains and prevalence of hypertension among users of Brazilian public health system. 963 participants composed the sample. Subjects were divided into quartiles groups according to 3 different domains of physical activity (occupational; physical exercises; and leisure-time and transportation). Hypertension was based on physician diagnosis. Physical inactivity in occupational domain was significantly associated with higher prevalence of hypertension (OR = 1.52 [1.05 to 2.21]). The same pattern occurred for physical inactivity in leisure-time (OR = 1.63 [1.11 to 2.39]) and aggregation of physical inactivity in 3 domains (OR = 2.46 [1.14 to 5.32]). However, the multivariate-adjusted model showed significant association between hypertension and physical inactivity in 3 domains (OR = 2.57 [1.14 to 5.79]). The results suggest an unequal prevalence of hypertension according to physical inactivity across different domains and increasing the promotion of physical activity in the healthcare system is needed.

  13. Monitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Meghan Halabisky

    2011-10-01

    Full Text Available Urban forest ecosystems provide a range of social and ecological services, but due to the heterogeneity of these canopies their spatial extent is difficult to quantify and monitor. Traditional per-pixel classification methods have been used to map urban canopies, however, such techniques are not generally appropriate for assessing these highly variable landscapes. Landsat imagery has historically been used for per-pixel driven land use/land cover (LULC classifications, but the spatial resolution limits our ability to map small urban features. In such cases, hyperspatial resolution imagery such as aerial or satellite imagery with a resolution of 1 meter or below is preferred. Object-based image analysis (OBIA allows for use of additional variables such as texture, shape, context, and other cognitive information provided by the image analyst to segment and classify image features, and thus, improve classifications. As part of this research we created LULC classifications for a pilot study area in Seattle, WA, USA, using OBIA techniques and freely available public aerial photography. We analyzed the differences in accuracies which can be achieved with OBIA using multispectral and true-color imagery. We also compared our results to a satellite based OBIA LULC and discussed the implications of per-pixel driven vs. OBIA-driven field sampling campaigns. We demonstrated that the OBIA approach can generate good and repeatable LULC classifications suitable for tree cover assessment in urban areas. Another important finding is that spectral content appeared to be more important than spatial detail of hyperspatial data when it comes to an OBIA-driven LULC.

  14. Terahertz time-domain spectroscopy and imaging of artificial RNA

    DEFF Research Database (Denmark)

    Fischer, Bernd M.; Hoffmann, Matthias; Helm, Hanspeter

    2005-01-01

    We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands......, and we show that we can use this difference to record images of spot arrays of the RNA strands. Under controlled conditions it is possible to use the THz image to distinguish between the two RNA strands. We discuss the requirements to sample preparation imposed by the lack of sharp spectral features...

  15. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    Science.gov (United States)

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  16. Language Choice and Use of Malaysian Public University Lecturers in the Education Domain

    Directory of Open Access Journals (Sweden)

    Tam Lee Mei

    2016-02-01

    Full Text Available It is a norm for people from a multilingual and multicultural country such as Malaysia to speak at least two or more languages. Thus, the Malaysian multilingual situation resulted in speakers having to make decisions about which languages are to be used for different purposes in different domains. In order to explain the phenomenon of language choice, Fishman domain analysis (1964 was adapted into this research. According to Fishman’s domain analysis, language choice and use may depend on the speaker’s experiences situated in different settings, different language repertoires that are available to the speaker, different interlocutors and different topics. Such situations inevitably cause barriers and difficulties to those professionals who work in the education domain. Therefore, the purpose of this research is to explore the language choice and use of Malaysian public university lecturers in the education domain and to investigate whether any significant differences exist between ethnicity and field of study with the English language choice and use of the lecturers. 200 survey questionnaires were distributed to examine the details of the lecturers’ language choice and use. The findings of this research reveal that all of the respondents generally preferred to choose and use English language in both formal and informal education domain. Besides, all of the respondents claimed that they chose and used more than one language. It is also found that ethnicity and field of study of the respondents influence the language choice and use in the education domain. In addition, this research suggested that the language and educational policy makers have been largely successful in raising the role and status of the English language as the medium of instruction in tertiary education while maintaining the Malay language as having an important role in the communicative acts, thus characterizing the lecturers’ language choice and use. Keywords: Language

  17. X-ray magnetic circular dichroism used to image magnetic domains

    CERN Document Server

    Fischer, P; Kalchgruber, R; Schütz, G M; Schmahl, G; Guttmann, P; Bayreuther, G

    1999-01-01

    A new technique to image magnetic domain structures has been established by the combination of the high resolution transmission X- ray microscope (TXM) at BESSY I based on the zone plate technique with the X-ray magnetic circular $9 dichroism (X-MCD) providing a huge magnetic contrast. A lateral spatial resolution down to 30 nm could be achieved. Basic features of X-MCD are the inherent element- specificity and the potential to gain information on the local spin $9 and orbital moments of the absorbing species applying magneto-optical sum rules. Key results at the Fe L/sub 3,2/ edges of Fe in a layered GdFe system and at the Co L/sub 3/ edge of a PtCo layered system demonstrate the potential of $9 this microscopy. The images can be recorded in varying magnetic fields which allows to study the evolution of magnetic domains within a complete hysteresis loop. (8 refs).

  18. Problems with Permatrace: a note on digital image publication

    Directory of Open Access Journals (Sweden)

    Guy Hopkinson

    2004-01-01

    Full Text Available The methodology presented here developed out of work required to convert the hard-copy illustrations submitted to Internet Archaeology for publication of the 1975 excavations at Cricklade. The publication (and digital image preparatory work was funded by English Heritage and was, in part, an experiment designed to explore some of the possibilities presented by digital image publication. Various challenges in how to transform the drawings on permatrace to a digital format were encountered. While a full exploration of the potential of all areas of digital image preparation and publication was not possible, some interesting technical options were evaluated. This short article explains the processes applied in creating the images that were finally incorporated within the publication. It also examines some other avenues regarding the presentation of archaeological drawings that could be explored in both future Internet Archaeology content and other digital publications.

  19. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  20. Influence of Bias on the Friction Imaging of Ferroelectric Domains in Single Crystal Barium Titanate Energy Storage Materials

    Directory of Open Access Journals (Sweden)

    Lan Chen

    2014-01-01

    Full Text Available The friction imaging of newlycleaved surface domains of single crystal BaTiO3 energy storage materials under both positive and negative voltage bias is investigated by scanning force microscope. When the bias was applied and reversed, three regions with different brightness and contrast in friction image indicated different response to the biases: the friction image of domain A displayed a great change in brightness while domains B and C displayed only a very small change. Possible mechanisms of the interesting phenomena originating from different static force between different charged tip and the periodical array of surface charges inside the inplane domains were proposed. These results provide a new method for the determination of the polarization direction for the domain parallel to the surface and may be useful in the investigation of ferroelectric energy storage materials, especially the relationship between the polarization direction of domain and the bias.

  1. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    Science.gov (United States)

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole

  2. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    Science.gov (United States)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  3. Ultrasound breast imaging using frequency domain reverse time migration

    Science.gov (United States)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  4. Image Denoising Using Singular Value Difference in the Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available Singular value (SV difference is the difference in the singular values between a noisy image and the original image; it varies regularly with noise intensity. This paper proposes an image denoising method using the singular value difference in the wavelet domain. First, the SV difference model is generated for different noise variances in the three directions of the wavelet transform and the noise variance of a new image is used to make the calculation by the diagonal part. Next, the single-level discrete 2-D wavelet transform is used to decompose each noisy image into its low-frequency and high-frequency parts. Then, singular value decomposition (SVD is used to obtain the SVs of the three high-frequency parts. Finally, the three denoised high-frequency parts are reconstructed by SVD from the SV difference, and the final denoised image is obtained using the inverse wavelet transform. Experiments show the effectiveness of this method compared with relevant existing methods.

  5. Blockchain-based Public Key Infrastructure for Inter-Domain Secure Routing

    OpenAIRE

    de la Rocha Gómez-Arevalillo , Alfonso; Papadimitratos , Panos

    2017-01-01

    International audience; A gamut of secure inter-domain routing protocols has been proposed in the literature. They use traditional PGP-like and centralized Public Key Infrastructures for trust management. In this paper, we propose our alternative approach for managing security associations, Secure Blockchain Trust Management (SBTM), a trust management system that instantiates a blockchain-based PKI for the operation of securerouting protocols. A main motivation for SBTM is to facilitate gradu...

  6. Remotely Piloted Aircraft and War in the Public Relations Domain

    Science.gov (United States)

    2014-10-01

    the terms as they appear in quoted texts. 2. Peter Kreeft, Socratic Logic: A Logic Text Using Socratic Method , Platonic Questions, and Aristotelian...Ronald Brooks.22 This method of refuting an argu- ment reflects option C (above), demonstrating that the conclusion does not follow from the premises...and War in the Public Relations Domain Feature tional Security Assistance Force (ISAF) met to discuss methods of elim- inating civilian casualties in

  7. Near-field terahertz imaging of ferroelectric domains in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Berta, Milan; Kadlec, Filip

    2010-01-01

    Roč. 83, 10-11 (2010), 985-993 ISSN 0141-1594 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : singular value decomposition * domain structure imaging * near-field terahertz microscopy * subwavelength resolution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  8. A method for analysis of lipid vesicle domain structure from confocal image data

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Fidorra, Matthias; Hartel, Steffen

    2012-01-01

    Quantitative characterization of the lateral structure of curved membranes based on fluorescence microscopy requires knowledge of the fluorophore distribution on the surface. We present an image analysis approach for extraction of the fluorophore distribution on a spherical lipid vesicle from...... confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms...

  9. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    Science.gov (United States)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  10. Breaching Biological Barriers: Protein Translocation Domains as Tools for Molecular Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Benjamin L. Franc

    2003-10-01

    Full Text Available The lipid bilayer of a cell presents a significant barrier for the delivery of many molecular imaging reagents into cells at target sites in the body. Protein translocation domains (PTDs are peptides that breach this barrier. Conjugation of PTDs to imaging agents can be utilized to facilitate the delivery of these agents through the cell wall, and in some cases, into the cell nucleus, and have potential for in vitro and in vivo applications. PTD imaging conjugates have included small molecules, peptides, proteins, DNA, metal chelates, and magnetic nanoparticles. The full potential of the use of PTDs in novel in vivo molecular probes is currently under investigation. Cells have been labeled in culture using magnetic nanoparticles derivatized with a PTD and monitored in vivo to assess trafficking patterns relative to cells expressing a target antigen. In vivo imaging of PTD-mediated gene transfer to cells of the skin has been demonstrated in living animals. Here we review several natural and synthetic PTDs that have evolved in the quest for easier translocation across biological barriers and the application of these peptide domains to in vivo delivery of imaging agents.

  11. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    International Nuclear Information System (INIS)

    Gholipour, Ali; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K.; Aganj, Iman; Sahin, Mustafa

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  12. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  13. Facial Image Compression Based on Structured Codebooks in Overcomplete Domain

    Directory of Open Access Journals (Sweden)

    Vila-Forcén JE

    2006-01-01

    Full Text Available We advocate facial image compression technique in the scope of distributed source coding framework. The novelty of the proposed approach is twofold: image compression is considered from the position of source coding with side information and, contrarily to the existing scenarios where the side information is given explicitly; the side information is created based on a deterministic approximation of the local image features. We consider an image in the overcomplete transform domain as a realization of a random source with a structured codebook of symbols where each symbol represents a particular edge shape. Due to the partial availability of the side information at both encoder and decoder, we treat our problem as a modification of the Berger-Flynn-Gray problem and investigate a possible gain over the solutions when side information is either unavailable or available at the decoder. Finally, the paper presents a practical image compression algorithm for facial images based on our concept that demonstrates the superior performance in the very-low-bit-rate regime.

  14. A Domain Specific Language for Performance Evaluation of Medical Imaging Systems

    NARCIS (Netherlands)

    van den Berg, Freek; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Turau, Volker; Kwiatkowska, Marta; Mangharam, Rahul; Weyer, Christoph

    2014-01-01

    We propose iDSL, a domain specific language and toolbox for performance evaluation of Medical Imaging Systems. iDSL provides transformations to MoDeST models, which are in turn converted into UPPAAL and discrete-event MODES models. This enables automated performance evaluation by means of model

  15. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    Science.gov (United States)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  16. The public cancer radiology imaging collections of The Cancer Imaging Archive.

    Science.gov (United States)

    Prior, Fred; Smith, Kirk; Sharma, Ashish; Kirby, Justin; Tarbox, Lawrence; Clark, Ken; Bennett, William; Nolan, Tracy; Freymann, John

    2017-09-19

    The Cancer Imaging Archive (TCIA) is the U.S. National Cancer Institute's repository for cancer imaging and related information. TCIA contains 30.9 million radiology images representing data collected from approximately 37,568 subjects. This data is organized into collections by tumor-type with many collections also including analytic results or clinical data. TCIA staff carefully de-identify and curate all incoming collections prior to making the information available via web browser or programmatic interfaces. Each published collection within TCIA is assigned a Digital Object Identifier that references the collection. Additionally, researchers who use TCIA data may publish the subset of information used in their analysis by requesting a TCIA generated Digital Object Identifier. This data descriptor is a review of a selected subset of existing publicly available TCIA collections. It outlines the curation and publication methods employed by TCIA and makes available 15 collections of cancer imaging data.

  17. X-ray holographic imaging of magnetic order in meander domain structures

    Directory of Open Access Journals (Sweden)

    Jaouen Nicolas

    2013-01-01

    Full Text Available We performed x-ray holography experiments using synchrotron radiation. By analyzing the scattering of coherent circularly polarized x-rays tuned at the Co-2p resonance, we imaged perpendicular magnetic domains in a Co/Pd multilayer. We compare results obtained for continuous and laterally confined films.

  18. Suburban development – a search for public domains in Danish suburban neighbourhoods

    DEFF Research Database (Denmark)

    Melgaard, Bente; Bech-Danielsen, Claus

    These years some of the post-war Danish suburbs are facing great challenges – social segregation, demographic changes and challenges in building technology. In particular, segregation prevents social life from unfolding across social, economic and cultural borders. Therefore, in this paper......, potentials for bridge-building across the enclaves of the suburb are looked for through a combined architectural-anthropological mapping of public spaces in a specific suburb in Denmark, the analyses being carried out in the light of Hajer & Reijndorp’s definition of public domains and the term exchange...

  19. A theory of frequency domain invariants: spherical harmonic identities for BRDF/lighting transfer and image consistency.

    Science.gov (United States)

    Mahajan, Dhruv; Ramamoorthi, Ravi; Curless, Brian

    2008-02-01

    This paper develops a theory of frequency domain invariants in computer vision. We derive novel identities using spherical harmonics, which are the angular frequency domain analog to common spatial domain invariants such as reflectance ratios. These invariants are derived from the spherical harmonic convolution framework for reflection from a curved surface. Our identities apply in a number of canonical cases, including single and multiple images of objects under the same and different lighting conditions. One important case we consider is two different glossy objects in two different lighting environments. For this case, we derive a novel identity, independent of the specific lighting configurations or BRDFs, that allows us to directly estimate the fourth image if the other three are available. The identity can also be used as an invariant to detecttampering in the images. While this paper is primarily theoretical, it has the potential to lay the mathematical foundations for two important practical applications. First, we can develop more general algorithms for inverse rendering problems, which can directly relight and change material properties by transferring the BRDF or lighting from another object or illumination. Second, we can check the consistency of an image, to detect tampering or image splicing.

  20. The Value of Privacy and Surveillance Drones in the Public Domain : Scrutinizing the Dutch Flexible Deployment of Mobile Cameras Act

    NARCIS (Netherlands)

    Gerdo Kuiper; Quirine Eijkman

    2017-01-01

    The flexible deployment of drones in the public domain, is in this article assessed from a legal philosophical perspective. On the basis of theories of Dworkin and Moore the distinction between individual rights and collective security policy goals is discussed. Mobile cameras in the public domain

  1. Agents unleashed a public domain look at agent technology

    CERN Document Server

    Wayner, Peter

    1995-01-01

    Agents Unleashed: A Public Domain Look at Agent Technology covers details of building a secure agent realm. The book discusses the technology for creating seamlessly integrated networks that allow programs to move from machine to machine without leaving a trail of havoc; as well as the technical details of how an agent will move through the network, prove its identity, and execute its code without endangering the host. The text also describes the organization of the host's work processing an agent; error messages, bad agent expulsion, and errors in XLISP-agents; and the simulators of errors, f

  2. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach

    DEFF Research Database (Denmark)

    Fidorra, Matthias; Garcia, Alejandra; Ipsen, John Hjort

    2009-01-01

    We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks...

  3. Optical image encryption using QR code and multilevel fingerprints in gyrator transform domains

    Science.gov (United States)

    Wei, Yang; Yan, Aimin; Dong, Jiabin; Hu, Zhijuan; Zhang, Jingtao

    2017-11-01

    A new concept of GT encryption scheme is proposed in this paper. We present a novel optical image encryption method by using quick response (QR) code and multilevel fingerprint keys in gyrator transform (GT) domains. In this method, an original image is firstly transformed into a QR code, which is placed in the input plane of cascaded GTs. Subsequently, the QR code is encrypted into the cipher-text by using multilevel fingerprint keys. The original image can be obtained easily by reading the high-quality retrieved QR code with hand-held devices. The main parameters used as private keys are GTs' rotation angles and multilevel fingerprints. Biometrics and cryptography are integrated with each other to improve data security. Numerical simulations are performed to demonstrate the validity and feasibility of the proposed encryption scheme. In the future, the method of applying QR codes and fingerprints in GT domains possesses much potential for information security.

  4. Transcript structure and domain display: a customizable transcript visualization tool.

    Science.gov (United States)

    Watanabe, Kenneth A; Ma, Kaiwang; Homayouni, Arielle; Rushton, Paul J; Shen, Qingxi J

    2016-07-01

    Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html : jeffery.shen@unlv.nevada.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    Science.gov (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  6. Domains of State-Owned, Privately Held, and Publicly Traded Firms in International Competition.

    Science.gov (United States)

    Mascarenhas, Briance

    1989-01-01

    Hypotheses relating ownership to domain differences among state-owned, publicly traded, and privately held firms in international competition were examined in a controlled field study of the offshore drilling industry. Ownership explained selected differences in domestic market dominance, international presence, and customer orientation, even…

  7. DATABASES AND THE SUI-GENERIS RIGHT – PROTECTION OUTSIDE THE ORIGINALITY. THE DISREGARD OF THE PUBLIC DOMAIN

    Directory of Open Access Journals (Sweden)

    Monica LUPAȘCU

    2018-05-01

    Full Text Available This study focuses on databases as they are regulated by Directive no.96/9/EC regarding the protection of databases. There are also several references to Romanian Law no.8/1996 on copyright and neighbouring rights which implements the mentioned European Directive. The study analyses certain effects that the sui-generis protection has on public domain. The study tries to demonstrate that the reglementation specific to databases neglects the interests correlated with the public domain. The effect of such a regulation is the abusive creation of some databases in which the public domain (meaning information not protected by copyright such as news, ideas, procedures, methods, systems, processes, concepts, principles, discoveries ends up being encapsulated and made available only to some private interests, the access to public domain being regulated indirectly. The study begins by explaining the sui- generis right and its origin. The first mention of databases can be found in “Green Paper on Copyright (1998,” a document that clearly shows, the database protection was thought to cover a sphere of information non-protectable from the scientific and industrial fields. Several arguments are made by the author, most of them based on the report of the Public Consultation sustained in 2014 in regards to the necessity of the sui-generis right. There are some references made to a specific case law, namely British Houseracing Board vs William Hill and Fixture Marketing Ldt. The ECJ’s decision în that case is of great importance for the support of public interest to access information corresponding to some restrictive fields that are derived as a result of the maker’s activities, because in the absence of the sui-generis right, all this information can be freely accessed and used.

  8. STEGO TRANSFORMATION OF SPATIAL DOMAIN OF COVER IMAGE ROBUST AGAINST ATTACKS ON EMBEDDED MESSAGE

    Directory of Open Access Journals (Sweden)

    Kobozeva A.

    2014-04-01

    Full Text Available One of the main requirements to steganografic algorithm to be developed is robustness against disturbing influences, that is, to attacks against the embedded message. It was shown that guaranteeing the stego algorithm robustness does not depend on whether the additional information is embedded into the spatial or transformation domain of the cover image. Given the existing advantages of the spatial domain of the cover image in organization of embedding and extracting processes, a sufficient condition for ensuring robustness of such stego transformation was obtained in this work. It was shown that the amount of brightness correction related to the pixels of the cover image block is similar to the amount of correction related to the maximum singular value of the corresponding matrix of the block in case of embedding additional data that ensures robustness against attacks on the embedded message. Recommendations were obtained for selecting the size of the cover image block used in stego transformation as one of the parameters determining the calculation error of stego message. Given the inversely correspondence between the stego capacity of the stego channel being organized and the size of the cover image block, l=8 value was recommended.

  9. Predicting detection performance with model observers: Fourier domain or spatial domain?

    Science.gov (United States)

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  10. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  11. Robust Digital Image Watermarking Against Cropping Using Sudoku Puzzle in Spatial and Transform Domain

    Directory of Open Access Journals (Sweden)

    shadi saneie

    2016-10-01

    Full Text Available With rapid development of digital technology, protecting information such as copyright, content ownership confirmation has become more important. In image watermarking, information of the image is inserted such that the visual quality of the image is not reduced and the receiver is able to get the required information. Some attacks such as image cropping, destroy the watermark’s information. In this article, a new watermarking scheme is proposed which is robust against tough cropping. In the proposed scheme, classic Sudoku table which is a 9*9 table, has been used. One feature of Sudoku table is that Sudoku's limitations cause uniform scattering of symbols or numbers throughout the table. In the proposed scheme, Sudoku table and both watermarking approaches based on spatial domain and transform domain such as DCT and DWT are used. Lack of using of soduko solution at the stage of extraction and finding correct solution to obtain watermark, is innovation of this scheme. Robustness of watermarking against cropping attack is up to 92%, which shows good and effective performance of the proposed scheme.

  12. The complexity of changes in the domain of managing public expenditures

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marina

    2016-01-01

    Full Text Available Public expenditures are a huge problem in contemporary states. In the conditions of a global economic crisis and the circumstances involving high level of citizen dissatisfaction related to the former methods of funding and managing the public sector (reflected in ruining the funding sources, irrational spending of public expenditure funds, increase in the budget deficit and the level of public debt, the changes in the domain of managing public expenditures have become a priority. By their nature, these changes are complex and long-lasting, and they should bring significant improvements in the field of public expenditure; they have to provide for lawful and purposeful spending of public funds. It is expected to lower the needed public incomes for financing public expenditure, to improve production and competition in the market economy, and to increase personal consumption, living standard and the quality of life of the population. Regardless of the social, economic, legal or political environment in each of state, the topical issue of reforming the management of public expenditures seems to imply a return to a somewhat neglected need for the public sector to function within its own financial possibilities. The state modernisation processes and advancement in the process of managing public expenditures call for a realistic evaluation of the existing condition and circumstances in which these processes occur, as well as the assessment of potential and actual risks that may hinder their effectiveness. Otherwise, it seems that the establishment of a significant level of responsibility in spending the budget funds and a greater transparency of public expenditure may be far-fetched goals.

  13. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging.

    Science.gov (United States)

    Jiang, Shaowei; Liao, Jun; Bian, Zichao; Guo, Kaikai; Zhang, Yongbing; Zheng, Guoan

    2018-04-01

    A whole slide imaging (WSI) system has recently been approved for primary diagnostic use in the US. The image quality and system throughput of WSI is largely determined by the autofocusing process. Traditional approaches acquire multiple images along the optical axis and maximize a figure of merit for autofocusing. Here we explore the use of deep convolution neural networks (CNNs) to predict the focal position of the acquired image without axial scanning. We investigate the autofocusing performance with three illumination settings: incoherent Kohler illumination, partially coherent illumination with two plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different defocus distances as the training data set. Different defocus distances lead to different spatial features of the captured images. However, solely relying on the spatial information leads to a relatively bad performance of the autofocusing process. It is better to extract defocus features from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus distance for two-plane-wave illumination. In our implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the inputs for the CNNs. We show that the information from the transform domains can improve the performance and robustness of the autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires little hardware modification for conventional WSI systems and the images can be captured on the fly without focus map surveying. It may find applications in WSI and time-lapse microscopy. The transform- and multi-domain approaches may also provide new insights for developing microscopy-related deep-learning networks. We have made

  14. Combating Identity Fraud in the Public Domain: Information Strategies for Healthcare and Criminal Justice

    NARCIS (Netherlands)

    Plomp, M.G.A.; Grijpink, J.H.A.M.

    2011-01-01

    Two trends are present in both the private and public domain: increasing interorganisational co-operation and increasing digitisation. Nowadays, more and more processes within and between organisations take place electronically. These developments are visible on local, national and European scale.

  15. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Filtenborg, Troels; Fukunaga, Kaori

    2015-01-01

    Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurfacecomposition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18CDanish neoclassical painter of historical and mythological subjects. For the first time...

  16. Feature extraction for magnetic domain images of magneto-optical recording films using gradient feature segmentation

    International Nuclear Information System (INIS)

    Quanqing, Zhu.; Xinsai, Wang; Xuecheng, Zou; Haihua, Li; Xiaofei, Yang

    2002-01-01

    In this paper, we present a method to realize feature extraction on low contrast magnetic domain images of magneto-optical recording films. The method is based on the following three steps: first, Lee-filtering method is adopted to realize pre-filtering and noise reduction; this is followed by gradient feature segmentation, which separates the object area from the background area; finally the common linking method is adopted and the characteristic parameters of magnetic domain are calculated. We describe these steps with particular emphasis on the gradient feature segmentation. The results show that this method has advantages over other traditional ones for feature extraction of low contrast images

  17. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model

    International Nuclear Information System (INIS)

    Zhou, Jian; Qi, Jinyi

    2014-01-01

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D time-of-flight PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon’s ray-tracer, we propose another more simplified geometrical projector based on the Bresenham’s ray-tracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a non-factored model, while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve the optimal reconstruction performance based on a sparse factorization model with an image domain resolution model. (paper)

  18. THE USE OF PUBLIC RELATIONS IN PROJECTING AN ORGANIZATION'S POSITIVE IMAGE

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2017-07-01

    Full Text Available This article is a theoretical approach on the importance of using public relations in helping an organization to project a positive image. The study of the impact information has on the image of organisations seems to be an interesting research topic. Practice has proved that the image of institutions has a patrimonial value and it is sometimes essential in raising their credibility. It can be said that an image is defined as the representation of certain attitudes, opinions or prejudices concerning a person, a group of persons or the public opinion concerning an institution. In other words, an image is the opinion of a person, of a group of persons or of the public opinion regarding that institution. All specialists agree that a negative image affects, sometimes to an incredible extent, the success of an institution. In the contemporary age, we cannot speak about public opinion without taking into consideration the mass media as a main agent in transmitting the information to the public, with unlimited possibilities of influencing or forming it. The plan for the PR department starts with its own declaration of principles, which describes its roles and contribution to the organisation.

  19. Image Fusion of CT and MR with Sparse Representation in NSST Domain

    Directory of Open Access Journals (Sweden)

    Chenhui Qiu

    2017-01-01

    Full Text Available Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR- based approach. And the dynamic group sparsity recovery (DGSR algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation.

  20. Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    2012-01-01

    Full Text Available The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

  1. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).

    Science.gov (United States)

    Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J

    2015-01-01

    To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.

  2. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  3. Multiscale registration of remote sensing image using robust SIFT features in Steerable-Domain

    Directory of Open Access Journals (Sweden)

    Xiangzeng Liu

    2011-12-01

    Full Text Available This paper proposes a multiscale registration technique using robust Scale Invariant Feature Transform (SIFT features in Steerable-Domain, which can deal with the large variations of scale, rotation and illumination between images. First, a new robust SIFT descriptor is presented, which is invariant under affine transformation. Then, an adaptive similarity measure is developed according to the robust SIFT descriptor and the adaptive normalized cross correlation of feature point’s neighborhood. Finally, the corresponding feature points can be determined by the adaptive similarity measure in Steerable-Domain of the two input images, and the final refined transformation parameters determined by using gradual optimization are adopted to achieve the registration results. Quantitative comparisons of our algorithm with the related methods show a significant improvement in the presence of large scale, rotation changes, and illumination contrast. The effectiveness of the proposed method is demonstrated by the experimental results.

  4. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    Science.gov (United States)

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  5. Fra Angelico’s painting technique revealed by terahertz time-domain imaging (THz-TDI)

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza

    2016-01-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding te...

  6. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoliang Ge

    2018-02-01

    Full Text Available This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.

  7. Image encryption using random sequence generated from generalized information domain

    International Nuclear Information System (INIS)

    Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou

    2016-01-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)

  8. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  9. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    OpenAIRE

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies)...

  10. Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging

    International Nuclear Information System (INIS)

    Shah, Prasanna; Gavrin, A.

    2006-01-01

    We have developed a modified sputtering gun for direct synthesis of metallic nanoparticles, and used this system to produce magnetic domain images using high-resolution Bitter microscopy (HRBM). The nanoparticles are produced at 900 mTorr inside the gun and transported to the main vacuum chamber by the pressure difference between the chamber and the gun interior. Fe particles synthesized using the particle gun have been characterized using X-ray diffraction, atomic force microscopy, and transmission electron microscopy techniques. The particles are 15-30 nm in size with a pure BCC phase. Further, we have deposited these Fe nanoparticles on magnetic recording media and observed the domain patterns using optical microscopy, scanning electron microscopy, and atomic force microscopy. We achieve a spatial resolution of at most 80 nm

  11. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  12. Collective symbolic coping with new technology: Knowledge, images and public discourse.

    Science.gov (United States)

    Wagner, Wolfgang; Kronberger, Nicole; Seifert, Franz

    2002-09-01

    Using data from policy analyses, media analyses and a European-wide survey about public perceptions of biotechnology conducted in 1996 and again in 1999, it is shown how a country's public develops an everyday understanding of a new technology (genetic modification) construed as potentially harmful by the media. To understand the reliance on images and related beliefs, we propose a theory of collective symbolic coping. It identifies four steps: first, the creation of awareness; second, production of divergent images; third, convergence upon a couple of dominant images in the public sphere; fourth, normalization. It is suggested that symbolic coping occurs in countries where a recent increase in policy activity and of media reporting has alerted the public; that this public show a high proportion of beliefs in menacing images; that these beliefs are relatively independent of pre-existing popular science knowledge; and that they are functionally equivalent to scientific knowledge in providing judgmental confidence and reducing self-ascribed ignorance. These propositions are shown to be true in Austria and Greece. Several implications of the theory are discussed, including social representation theory and public understanding of science.

  13. THE INFLUENCE OF MARKETING PUBLIC RELATION AND SERVICE QUALITY ON CORPORATE IMAGE THROUGH PUBLIC OPINION: STUDIES AT MANDIRI BANK

    Directory of Open Access Journals (Sweden)

    Vera Suciyati

    2015-09-01

    Full Text Available This research aims to analyze the influence of marketing public relation and service quality at Bank Mandiri on corporate image through public. Convenience sampling method has been selected in order to obtain the data in this study. The analysis method that used was the path analysis. The research result had shown that: marketing public relation and service quality have significant influence simultaneously and partially on public opinion on the first structure equation. The second structure equation shows that: marketing public relation, service quality had significant influence simultaneously on corporate image. The service quality have not partially the quality of service have not influence significant partially on corporate, but variable marketing and public relation have  partially influential public opinion influence significant partially on corporate image.DOI: 10.15408/etk.v12i2.1916

  14. Localization of epileptogenic zones in Lennox–Gastaut syndrome using frequency domain source imaging of intracranial electroencephalography: a preliminary investigation

    International Nuclear Information System (INIS)

    Cho, Jae-Hyun; Jung, Young-Jin; Kim, Jeong-Youn; Im, Chang-Hwan; Kang, Hoon-Chul; Kim, Heung Dong; Yoon, Dae Sung; Lee, Yong-Ho

    2013-01-01

    Although intracranial electroencephalography (iEEG) has been widely used to localize epileptogenic zones in epilepsy, visual inspection of iEEG recordings does not always result in a favorable surgical outcome, especially in secondary generalized epilepsy such as Lennox–Gastaut syndrome (LGS). Various computational iEEG analysis methods have recently been introduced to confirm the visual inspection results. Of these methods, high gamma oscillation in iEEG has attracted interest because a series of studies have reported a close relationship between epileptogenic zones and cortical areas with high gamma oscillation. Meanwhile, frequency domain source imaging of EEG and MEG oscillations has proven to be a useful auxiliary tool for identifying rough locations of epileptogenic zones. To the best of our knowledge, however, frequency domain source imaging of high gamma iEEG oscillations has not been studied. In this study, we investigated whether the iEEG-based frequency domain source imaging of high gamma oscillation (60–100 Hz) would be a useful supplementary tool for identifying epileptogenic zones in patients with secondary generalized epilepsy. The method was applied to three successfully operated on LGS patients, whose iEEG contained some ictal events with distinct high gamma oscillations before seizure onset. The resultant cortical source distributions were compared with surgical resection areas and with high gamma spectral power distributions on the intracranial sensor plane. While the results of the sensor-level analyses contained many spurious activities, the results of frequency domain source imaging coincided better with the surgical resection areas, suggesting that the frequency domain source imaging of iEEG high gamma oscillations might help enhance the accuracy of pre-surgical evaluations of patients with secondary generalized epilepsy. (paper)

  15. Clothing style preference of working women related to self- image/clothing-image congruity and public self-consciousness

    OpenAIRE

    Park, Jae Ok

    1990-01-01

    The purpose of the study was to extend knowledge concerning the influence of self-image congruity and public self-consciousness on clothing behavior from the symbolic consumption perspective. Thus, relationships among the three major constructs, public self-consciousness (PSC), self-image/clothing-image congruity (actual self-congruity, ASC and ideal social-congruity, ISSC) and clothing-style preference (CSP), were examined. The five objectives that guided the study were ...

  16. Materialities of Law: Celebrity Production and the Public Domain

    Directory of Open Access Journals (Sweden)

    Esther Milne

    2009-12-01

    Full Text Available Celebrity production and consumption are powerful socio-economic forces. The celebrity functions as a significant economic resource for the commercial sector and plays a fundamental symbolic role within culture by providing a shared ‘vocabulary’ through which to understand contemporary social relations. A pivotal element of this allure is the process by which the celebrity figure is able to forge an intimate link with its audience, often producing public expressions of profound compassion, respect or revulsion. This process, however, is complicated by emerging participatory media forms whose impact is experienced as new conditions of possibility for celebrity production and consumption. As Marshall argues, video mash-ups of celebrity interviews, such as those of Christian Bale or Tom Cruise, are dramatically changing the relation between celebrity and audience (Marshall, 2006: 640. Meanings produced by these audience remixes challenge the extent to which a celebrity might control her image. So is the celebrity personality, therefore, a public or private commodity? Who owns the celebrity image within remix culture? Although the celebrity figure has been thoroughly researched in relation to its patterns of consumption; semiotic power; and industry construction; less attention has been focused on the forms of celebrity governance enabled by legislative and case law settings. How might the law deal with the significant economic and cultural power exercised within celebrity culture?

  17. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Kun-Yu, Zhao; Hua-Rong, Zeng; Hong-Zhang, Song; Sen-Xing, Hui; Guo-Rong, Li; Qing-Rui, Yin; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion Antonia Garcia; Takekawa, Shunji; Kitamura, Kenji

    2008-01-01

    We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10kHz, and reached maximum at 8.1kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.

    Science.gov (United States)

    Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V

    2011-03-01

    The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals

    Directory of Open Access Journals (Sweden)

    John E. Huber

    2011-02-01

    Full Text Available The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  20. Chiral Domain Structure in Superfluid 3He-A Studied by Magnetic Resonance Imaging

    Science.gov (United States)

    Kasai, J.; Okamoto, Y.; Nishioka, K.; Takagi, T.; Sasaki, Y.

    2018-05-01

    The existence of a spatially varying texture in superfluid 3He is a direct manifestation of the complex macroscopic wave function. The real space shape of the texture, namely, a macroscopic wave function, has been studied extensively with the help of theoretical modeling but has never been directly observed experimentally with spatial resolution. We have succeeded in visualizing the texture by a specialized magnetic resonance imaging. With this new technology, we have discovered that the macroscopic chiral domains, of which sizes are as large as 1 mm, and corresponding chiral domain walls exist rather stably in 3He - A film at temperatures far below the transition temperature.

  1. Account Credibility and Public Image: Excuses, Justifications, Denials, and Sexual Harassment.

    Science.gov (United States)

    Dunn, Deborah; Cody, Michael J.

    2000-01-01

    Examines and challenges theories of account giving and public image following an accusation of sexual harassment in the workplace, using college students and working adults as subjects. Challenges the existing theories of account giving and public image, and lays to rest the notion that full apologies and excuses are mitigating in serious account…

  2. Hardware architecture design of image restoration based on time-frequency domain computation

    Science.gov (United States)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  3. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    Science.gov (United States)

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  4. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  5. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane, E-mail: j.thielsch@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany)

    2010-10-15

    Textured composite samples consisting of Nd{sub 13.6}Fe{sub 73.6}Ga{sub 0.6}Co{sub 6.6}B{sub 5.6} (MQU-F{sup TM}) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  6. Magnetization reversal in textured NdFeB-Fe composites observed by domain imaging

    International Nuclear Information System (INIS)

    Thielsch, Juliane; Hinz, Dietrich; Schultz, Ludwig; Gutfleisch, Oliver

    2010-01-01

    Textured composite samples consisting of Nd 13.6 Fe 73.6 Ga 0.6 Co 6.6 B 5.6 (MQU-F TM ) and micron-sized Fe particles with weight ratios from 100:0 to 70:30 have been prepared by hot deformation. Microstructure studies revealed a layered structure of both phases with the layer normal parallel to the pressing direction. Magnetic measurements showed single-phase hysteresis curves for all samples when measured along the pressing direction, which is also the easy axis of magnetization. Coercivity decreased drastically from 1.32 T for pure NdFeB samples to 0.154 T for a sample with 30 wt% Fe. Magneto-optical Kerr microscopy with a digitally enhanced imaging technique has been used to examine the evolution of magnetic domains in the hard and soft phase during demagnetizing a sample consisting of 70 wt% NdFeB and 30 wt% Fe. It is shown that demagnetization takes place via domain rearrangements within the soft phase, which lead to and support the nucleation of reversed interaction domains at phase boundaries. Also nucleation of interaction domains within the hard magnetic phase could be revealed.

  7. The nursing profession: public image, self-concept and professional identity. A discussion paper.

    Science.gov (United States)

    ten Hoeve, Yvonne; Jansen, Gerard; Roodbol, Petrie

    2014-02-01

    To discuss the actual public image of nurses and other factors that influence the development of nurses' self-concept and professional identity. Nurses have become healthcare professionals in their own right who possess a great deal of knowledge. However, the public does not always value the skills and competences nurses have acquired through education and innovation. Discussion paper. We identified 1216 relevant studies by searching MEDLINE, CINAHL and PsycINFO databases in the period 1997-2010. Finally, 18 studies met our inclusion criteria. The included studies show that the actual public image of nursing is diverse and incongruous. This image is partly self-created by nurses due to their invisibility and their lack of public discourse. Nurses derive their self-concept and professional identity from their public image, work environment, work values, education and traditional social and cultural values. Nurses should work harder to communicate their professionalism to the public. Social media like the Internet and YouTube can be used to show the public what they really do. To improve their public image and to obtain a stronger position in healthcare organizations, nurses need to increase their visibility. This could be realized by ongoing education and a challenging work environment that encourages nurses to stand up for themselves. Furthermore, nurses should make better use of strategic positions, such as case manager, nurse educator or clinical nurse specialist and use their professionalism to show the public what their work really entails. © 2013 John Wiley & Sons Ltd.

  8. Unsupervised domain adaptation for early detection of drought stress in hyperspectral images

    Science.gov (United States)

    Schmitter, P.; Steinrücken, J.; Römer, C.; Ballvora, A.; Léon, J.; Rascher, U.; Plümer, L.

    2017-09-01

    Hyperspectral images can be used to uncover physiological processes in plants if interpreted properly. Machine Learning methods such as Support Vector Machines (SVM) and Random Forests have been applied to estimate development of biomass and detect and predict plant diseases and drought stress. One basic requirement of machine learning implies, that training and testing is done in the same domain and the same distribution. Different genotypes, environmental conditions, illumination and sensors violate this requirement in most practical circumstances. Here, we present an approach, which enables the detection of physiological processes by transferring the prior knowledge within an existing model into a related target domain, where no label information is available. We propose a two-step transformation of the target features, which enables a direct application of an existing model. The transformation is evaluated by an objective function including additional prior knowledge about classification and physiological processes in plants. We have applied the approach to three sets of hyperspectral images, which were acquired with different plant species in different environments observed with different sensors. It is shown, that a classification model, derived on one of the sets, delivers satisfying classification results on the transformed features of the other data sets. Furthermore, in all cases early non-invasive detection of drought stress was possible.

  9. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    Science.gov (United States)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  10. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.

    Science.gov (United States)

    Choudhry, Netan; Golding, John; Manry, Matthew W; Rao, Rajesh C

    2016-06-01

    To describe the spectral-domain optical coherence tomography (SD OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Observational study. A total of 68 patients (68 eyes) with 19 peripheral retinal features. Spectral-domain OCT-based structural features. Nineteen peripheral retinal features, including vortex vein, congenital hypertrophy of the retinal pigment epithelium, pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment, typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen, were identified by peripheral clinical examination. Near-infrared scanning laser ophthalmoscopy images and SD OCT of these entities were registered to UWF color photographs. Spectral-domain OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, retinal pigment epithelium loss, or hypertrophy was seen in several entities, including congenital hypertrophy of the retinal pigment epithelium, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice, and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision

  11. Adaptive Binary Arithmetic Coder-Based Image Feature and Segmentation in the Compressed Domain

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Hsin

    2012-01-01

    Full Text Available Image compression is necessary in various applications, especially for efficient transmission over a band-limited channel. It is thus desirable to be able to segment an image in the compressed domain directly such that the burden of decompressing computation can be avoided. Motivated by the adaptive binary arithmetic coder (MQ coder of JPEG2000, we propose an efficient scheme to segment the feature vectors that are extracted from the code stream of an image. We modify the Compression-based Texture Merging (CTM algorithm to alleviate the influence of overmerging problem by making use of the rate distortion information. Experimental results show that the MQ coder-based image segmentation is preferable in terms of the boundary displacement error (BDE measure. It has the advantage of saving computational cost as the segmentation results even at low rates of bits per pixel (bpp are satisfactory.

  12. Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain

    Science.gov (United States)

    Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi

    2018-01-01

    The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson–Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson–Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods. PMID:29596335

  13. Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.

    Science.gov (United States)

    Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi

    2018-03-29

    The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.

  14. Fast resolution of the neutron diffusion equation through public domain Ode codes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, V.M.; Vidal, V.; Garayoa, J. [Universidad Politecnica de Valencia, Departamento de Sistemas Informaticos, Valencia (Spain); Verdu, G. [Universidad Politecnica de Valencia, Departamento de Ingenieria Quimica y Nuclear, Valencia (Spain); Gomez, R. [I.E.S. de Tavernes Blanques, Valencia (Spain)

    2003-07-01

    The time-dependent neutron diffusion equation is a partial differential equation with source terms. The resolution method usually includes discretizing the spatial domain, obtaining a large system of linear, stiff ordinary differential equations (ODEs), whose resolution is computationally very expensive. Some standard techniques use a fixed time step to solve the ODE system. This can result in errors (if the time step is too large) or in long computing times (if the time step is too little). To speed up the resolution method, two well-known public domain codes have been selected: DASPK and FCVODE that are powerful codes for the resolution of large systems of stiff ODEs. These codes can estimate the error after each time step, and, depending on this estimation can decide which is the new time step and, possibly, which is the integration method to be used in the next step. With these mechanisms, it is possible to keep the overall error below the chosen tolerances, and, when the system behaves smoothly, to take large time steps increasing the execution speed. In this paper we address the use of the public domain codes DASPK and FCVODE for the resolution of the time-dependent neutron diffusion equation. The efficiency of these codes depends largely on the preconditioning of the big systems of linear equations that must be solved. Several pre-conditioners have been programmed and tested; it was found that the multigrid method is the best of the pre-conditioners tested. Also, it has been found that DASPK has performed better than FCVODE, being more robust for our problem.We can conclude that the use of specialized codes for solving large systems of ODEs can reduce drastically the computational work needed for the solution; and combining them with appropriate pre-conditioners, the reduction can be still more important. It has other crucial advantages, since it allows the user to specify the allowed error, which cannot be done in fixed step implementations; this, of course

  15. Contesting the African Public Sphere: A Philosophical Re-imaging of ...

    African Journals Online (AJOL)

    ... Crow is to situate them within broader analytical frameworks. By adopting the basic methods of philosophical inquiry – exposition, critical analysis and reconstruction – the issues are lifted from the domain of fiction to the space of systematized knowledge directed at presenting a comprehensive notion of the African public ...

  16. Image denoising by sparse 3-D transform-domain collaborative filtering.

    Science.gov (United States)

    Dabov, Kostadin; Foi, Alessandro; Katkovnik, Vladimir; Egiazarian, Karen

    2007-08-01

    We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2-D image fragments (e.g., blocks) into 3-D data arrays which we call "groups." Collaborative filtering is a special procedure developed to deal with these 3-D groups. We realize it using the three successive steps: 3-D transformation of a group, shrinkage of the transform spectrum, and inverse 3-D transformation. The result is a 3-D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  17. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  18. The public understanding of nanotechnology in the food domain: the hidden role of views on science, technology, and nature.

    Science.gov (United States)

    Vandermoere, Frederic; Blanchemanche, Sandrine; Bieberstein, Andrea; Marette, Stephan; Roosen, Jutta

    2011-03-01

    In spite of great expectations about the potential of nanotechnology, this study shows that people are rather ambiguous and pessimistic about nanotechnology applications in the food domain. Our findings are drawn from a survey of public perceptions about nanotechnology food and nanotechnology food packaging (N = 752). Multinomial logistic regression analyses further reveal that knowledge about food risks and nanotechnology significantly influences people's views about nanotechnology food packaging. However, knowledge variables were unrelated to support for nanofood, suggesting that an increase in people's knowledge might not be sufficient to bridge the gap between the excitement some business leaders in the food sector have and the restraint of the public. Additionally, opposition to nanofood was not related to the use of heuristics but to trust in governmental agencies. Furthermore, the results indicate that public perceptions of nanoscience in the food domain significantly relate to views on science, technology, and nature.

  19. Greek intensive and emergency care nurses' perception of their public image: a phenomenological approach.

    Science.gov (United States)

    Karanikola, Maria N K; Papathanassoglou, Elizabeth D E; Nicolaou, Christiana; Koutroubas, Anna; Lemonidou, Chrysoula

    2011-01-01

    The public image of the nurse constitutes an important factor for recruitment into the profession, retention, and also for work satisfaction. The aim of this qualitative study was to disclose the way nurses internalize their professional public image and professional worth, as well as nurses' feelings about that image. Findings showed that although nurses have made a tremendous effort to improve the public image of their profession, negative nursing stereotypes still persist. Therefore, nurses have to actively participate in policy making and enhance their educational and cultural profile through the media.

  20. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device.

    Science.gov (United States)

    Hahn, Paul; Carrasco-Zevallos, Oscar; Cunefare, David; Migacz, Justin; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2015-07-01

    To characterize the first in-human intraoperative imaging using a custom prototype spectral-domain microscope-integrated optical coherence tomography (MIOCT) device during vitreoretinal surgery with instruments in the eye. Under institutional review board approval for a prospective intraoperative study, MIOCT images were obtained at surgical pauses with instruments held static in the vitreous cavity and then concurrently with surgical maneuvers. Postoperatively, MIOCT images obtained at surgical pauses were compared with images obtained with a high-resolution handheld spectral-domain OCT (HHOCT) system with objective endpoints, including acquisition of images acceptable for analysis and identification of predefined macular morphologic or pathologic features. Human MIOCT images were successfully obtained before incision and during pauses in surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as epiretinal membrane, full-thickness macular hole, and vitreomacular traction and demonstrated successful achievement of surgical goals. MIOCT and HHOCT images obtained at surgical pauses in two cohorts of five patients were comparable with greater than or equal to 80% correlation in 80% of patients. Real-time video-imaging concurrent with surgical manipulations enabled, for the first time using this device, visualization of dynamic instrument-retina interaction with targeted OCT tracking. MIOCT is successful for imaging at surgical pauses and for real-time image guidance with implementation of targeted OCT tracking. Even faster acquisition speeds are currently being developed with incorporation of a swept-source MIOCT engine. Further refinements and investigations will be directed toward continued integration for real-time volumetric imaging of surgical maneuvers. Ongoing development of seamless MIOCT systems will likely transform surgical visualization, approaches, and decision-making.

  1. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  2. Infrared imaging and spectral-domain optical coherence tomography findings correlate with microperimetry in acute macular neuroretinopathy: a case report

    Directory of Open Access Journals (Sweden)

    Grover Sandeep

    2011-10-01

    Full Text Available Abstract Introduction Spectral-domain optical coherence tomography findings in a patient with acute macular neuroretinopathy, and correlation with functional defects on microperimetry, are presented. Case presentation A 25-year old Caucasian woman presented with bitemporal field defects following an upper respiratory tract infection. Her visual acuity was 20/20 in both eyes and a dilated fundus examination revealed bilateral hyperpigmentary changes in the papillomacular bundle. Our patient underwent further evaluation with spectral-domain optical coherence tomography, infrared and fundus autofluorescence imaging. Functional changes were assessed by microperimetry. Infrared imaging showed the classic wedge-shaped defects and spectral-domain optical coherence tomography exhibited changes at the inner segment-outer segment junction, with a thickened outer plexiform layer overlying these areas. Fluorescein and indocyanine green angiography did not demonstrate any perfusion defects or any other abnormality. Microperimetry demonstrated focal elevation in threshold correlating with the wedge-shaped defects in both eyes. Conclusion Spectral-domain optical coherence tomography findings provide new evidence of the involvement of the outer plexiform layer of the retina in acute macular neuroretinopathy.

  3. An instructional guide for leaf color analysis using digital imaging software

    Science.gov (United States)

    Paula F. Murakami; Michelle R. Turner; Abby K. van den Berg; Paul G. Schaberg

    2005-01-01

    Digital color analysis has become an increasingly popular and cost-effective method utilized by resource managers and scientists for evaluating foliar nutrition and health in response to environmental stresses. We developed and tested a new method of digital image analysis that uses Scion Image or NIH image public domain software to quantify leaf color. This...

  4. Multi-domain, higher order level set scheme for 3D image segmentation on the GPU

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Zhang, Qin; Anton, François

    2010-01-01

    to evaluate level set surfaces that are $C^2$ continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming...

  5. Time domain SAR raw data simulation using CST and image focusing of 3D objects

    Science.gov (United States)

    Saeed, Adnan; Hellwich, Olaf

    2017-10-01

    This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.

  6. Imaging magnetic domains in Ni nanostructures

    International Nuclear Information System (INIS)

    Asenjo, A.; Jaafar, M.; Gonzalez, E.M.; Martin, J.I.; Vazquez, M.; Vicent, J.L.

    2007-01-01

    The study of nanomagnets is the subject of increasing scientific effort. The size, the thickness and the geometric shape of the elements determine the magnetic properties and then the domain configuration. In this work, we fabricated by electron-beam lithography the three different arrays of Ni nanostructures keeping the size, the thickness and also the distance constant between the elements but varying the geometry: square, triangular and circular. The domain structure of the nanomagnets is studied by magnetic force microscopy

  7. Towards an information strategy for combating identity fraud in the public domain: Cases from healthcare and criminal justice

    NARCIS (Netherlands)

    Plomp, M.G.A.; Grijpink, J.H.A.M.

    2011-01-01

    Two trends are present in both the private and public domain: increasing interorganisational co-operation and increasing digitisation. More and more processes within and between organisations take place electronically, on local, national and European scale. The technological and organisational

  8. Infrared and Visible Image Fusion Based on Different Constraints in the Non-Subsampled Shearlet Transform Domain

    Science.gov (United States)

    Huang, Yan; Bi, Duyan; Wu, Dongpeng

    2018-01-01

    There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods. PMID:29641505

  9. Single image super resolution algorithm based on edge interpolation in NSCT domain

    Science.gov (United States)

    Zhang, Mengqun; Zhang, Wei; He, Xinyu

    2017-11-01

    In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

  10. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  11. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    Science.gov (United States)

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  12. [Images of Ageing in Health Care Magazines of the Public Health System].

    Science.gov (United States)

    Hartmann-Tews, Ilse; Hoppe, Theresa

    2018-03-01

    Collective images of ageing influence attitudes towards ageing and health- related activities. The aim of this study was to explore images of ageing and old age in magazines published by public health institutions, namely health insurance companies and pharmacies. A standardized content analysis was conducted covering age-related articles (n=146) and accompanying photographs (n=218) of public health institutions. The stock of material comprises age-related articles of all magazines published 2012-2013 of 2 public health insurance companies (Allgemeine Ortskrankenkasse: "Bleib gesund", Barmer Ersatzkasse: "Gesundheit konkret"), 2 private health insurance companies (Gothaer Versicherung: "Gothaer magazin", Deutsche Krankenversicherung: "DKV impulse") and 2 consumer magazines of pharmacies ("Apothekenumschau","Senioren Ratgeber"). Illness turns out to be the most often focused main theme and key issue of age-related articles. With reference to the central dimensions of somatic culture - health, body-centered performance and appearance - most of the articles focus on deficits of old age, in particular illness and decrease of performance, and thus communicate a negative image of ageing. The visual presentation of elderly people is much more positive. There are various differences in the communication of images of ageing between the 2 types of magazines, with the consumer magazines of the pharmacy covering a broader spectrum of topics, referring more often to a healthy lifestyle and prevention and communicating a more multifaceted image of old age and ageing in comparison to the membership magazines of health insurance companies. Institutions of public health have many duties and responsibilities. One of these is to strengthen health competencies and locus of control of the population - in our case - elderly people. As images of ageing influence attitudes towards ageing and health-related activities, it seems to be sensible and of good economic sense to communicate a

  13. Developing the Image and Public Reputation of Universities: The Managerial Process.

    Science.gov (United States)

    Davies, John L.; Melchiori, Gerlinda S.

    1982-01-01

    Managerial processes used in developing programs to improve an institution's public image are outlined, drawing on both theory and experience in college administration and public relations. Eight case studies provide illustrations. A five-stage managerial plan is presented. (MSE)

  14. Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI)

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Yoshei

    2017-01-01

    Lacquering is considered one of the most representative Asian artistic techniques. While the decorative part of lacquerwares is the lacquer itself, their substructures serve as the backbone of the object itself. Very little is known about these hidden substructures. Since lacquerwares are mostly...... by inspecting the substructures of Asian lacquerwares by means of THz time-domain imaging (THz-TDI). Three different kinds of Asian lacquerwares were examined by THz-TDI, and the outcomes have been compared with those obtained by standard X-radiography. THz-TDI provides unique information on lacquerwares...

  15. Image encryption with chaotic map and Arnold transform in the gyrator transform domains

    Science.gov (United States)

    Sang, Jun; Luo, Hongling; Zhao, Jun; Alam, Mohammad S.; Cai, Bin

    2017-05-01

    An image encryption method combing chaotic map and Arnold transform in the gyrator transform domains was proposed. Firstly, the original secret image is XOR-ed with a random binary sequence generated by a logistic map. Then, the gyrator transform is performed. Finally, the amplitude and phase of the gyrator transform are permutated by Arnold transform. The decryption procedure is the inverse operation of encryption. The secret keys used in the proposed method include the control parameter and the initial value of the logistic map, the rotation angle of the gyrator transform, and the transform number of the Arnold transform. Therefore, the key space is large, while the key data volume is small. The numerical simulation was conducted to demonstrate the effectiveness of the proposed method and the security analysis was performed in terms of the histogram of the encrypted image, the sensitiveness to the secret keys, decryption upon ciphertext loss, and resistance to the chosen-plaintext attack.

  16. Microscopic observation of ferroelectric domains in SrTiO3 using birefringence imaging techniques under high electric fields

    International Nuclear Information System (INIS)

    Manaka, Hirotaka; Nozaki, Hirofumi; Miura, Yoko

    2017-01-01

    Phase transitions in SrTiO 3 between quantum paraelectric, coherent paraelectric, and electric-field-induced ferroelectric states are governed by tetragonal domains with quantum fluctuations. However, their characteristics are still unclear. To observe the electric-field-induced ferroelectric state using birefringence imaging techniques, we developed a suitable sample holder to apply high electric fields of up to E ≃ 5 kV/cm and temperatures down to T = 20 K. From birefringence imaging measurements of the ferroelectric LiNbO 3 with varying electric field, distributions of the electric field in the sample stage were found to be negligible. In SrTiO 3 , a huge-retardance area corresponding to the ferroelectric domains appears at E > 2 kV/cm and T ≤ 60 K even though the paraelectric domains partially remain. Furthermore, the fast-axis direction rotates by 90° at the ferroelectric phase transition because of an electrostrictive effect in ferroelectrics. The phase diagram of the critical electric field and temperature agrees with previous reports obtained from dielectric and neutron scattering measurements. (author)

  17. Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

    Science.gov (United States)

    Zhao, Yan; Belov, Pavel A.; Hao, Yang

    2006-06-01

    In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

  18. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions

    Science.gov (United States)

    Robbins, Constance M.; Raghavan, Guruprasad; Antaki, James F.; Kainerstorfer, Jana M.

    2017-12-01

    In breast cancer diagnosis and therapy monitoring, there is a need for frequent, noninvasive disease progression evaluation. Breast tumors differ from healthy tissue in mechanical stiffness as well as optical properties, which allows optical methods to detect and monitor breast lesions noninvasively. Spatial frequency-domain imaging (SFDI) is a reflectance-based diffuse optical method that can yield two-dimensional images of absolute optical properties of tissue with an inexpensive and portable system, although depth penetration is limited. Since the absorption coefficient of breast tissue is relatively low and the tissue is quite flexible, there is an opportunity for compression of tissue to bring stiff, palpable breast lesions within the detection range of SFDI. Sixteen breast tissue-mimicking phantoms were fabricated containing stiffer, more highly absorbing tumor-mimicking inclusions of varying absorption contrast and depth. These phantoms were imaged with an SFDI system at five levels of compression. An increase in absorption contrast was observed with compression, and reliable detection of each inclusion was achieved when compression was sufficient to bring the inclusion center within ˜12 mm of the phantom surface. At highest compression level, contrasts achieved with this system were comparable to those measured with single source-detector near-infrared spectroscopy.

  19. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  20. Stereo matching and view interpolation based on image domain triangulation.

    Science.gov (United States)

    Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce

    2013-09-01

    This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.

  1. Advances in imaging and electron physics

    CERN Document Server

    Hawkes, Peter W

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.

  2. Assessment of current cybersecurity practices in the public domain : cyber indications and warnings domain.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Keliiaa, Curtis M.

    2010-09-01

    This report assesses current public domain cyber security practices with respect to cyber indications and warnings. It describes cybersecurity industry and government activities, including cybersecurity tools, methods, practices, and international and government-wide initiatives known to be impacting current practice. Of particular note are the U.S. Government's Trusted Internet Connection (TIC) and 'Einstein' programs, which are serving to consolidate the Government's internet access points and to provide some capability to monitor and mitigate cyber attacks. Next, this report catalogs activities undertaken by various industry and government entities. In addition, it assesses the benchmarks of HPC capability and other HPC attributes that may lend themselves to assist in the solution of this problem. This report draws few conclusions, as it is intended to assess current practice in preparation for future work, however, no explicit references to HPC usage for the purpose of analyzing cyber infrastructure in near-real-time were found in the current practice. This report and a related SAND2010-4766 National Cyber Defense High Performance Computing and Analysis: Concepts, Planning and Roadmap report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.

  3. First-in-human pilot study of a spatial frequency domain oxygenation imaging system

    Science.gov (United States)

    Gioux, Sylvain; Mazhar, Amaan; Lee, Bernard T.; Lin, Samuel J.; Tobias, Adam M.; Cuccia, David J.; Stockdale, Alan; Oketokoun, Rafiou; Ashitate, Yoshitomo; Kelly, Edward; Weinmann, Maxwell; Durr, Nicholas J.; Moffitt, Lorissa A.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2011-08-01

    Oxygenation measurements are widely used in patient care. However, most clinically available instruments currently consist of contact probes that only provide global monitoring of the patient (e.g., pulse oximetry probes) or local monitoring of small areas (e.g., spectroscopy-based probes). Visualization of oxygenation over large areas of tissue, without a priori knowledge of the location of defects, has the potential to improve patient management in many surgical and critical care applications. In this study, we present a clinically compatible multispectral spatial frequency domain imaging (SFDI) system optimized for surgical oxygenation imaging. This system was used to image tissue oxygenation over a large area (16×12 cm) and was validated during preclinical studies by comparing results obtained with an FDA-approved clinical oxygenation probe. Skin flap, bowel, and liver vascular occlusion experiments were performed on Yorkshire pigs and demonstrated that over the course of the experiment, relative changes in oxygen saturation measured using SFDI had an accuracy within 10% of those made using the FDA-approved device. Finally, the new SFDI system was translated to the clinic in a first-in-human pilot study that imaged skin flap oxygenation during reconstructive breast surgery. Overall, this study lays the foundation for clinical translation of endogenous contrast imaging using SFDI.

  4. Imaging of the iridocorneal angle with the RTVue spectral domain optical coherence tomography.

    Science.gov (United States)

    Perera, Shamira A; Ho, Ching Lin; Aung, Tin; Baskaran, Mani; Ho, Henrietta; Tun, Tin A; Lee, Tian Loon; Kumar, Rajesh S

    2012-04-02

    To determine the ability of the RTVue spectral domain optical coherence tomography (SDOCT) to image the anterior chamber angle (ACA). Consecutive subjects, recruited from glaucoma clinics, prospectively underwent ophthalmic evaluation including gonioscopy by an ophthalmologist and anterior chamber imaging with SDOCT, adapted with a corneal lens adapter (cornea anterior module-low magnification [CAM-L]) and anterior segment OCT (ASOCT), both performed by a technician. Two different ophthalmologists, masked to gonioscopy findings, assessed visualization of the scleral spur (SS), Schwalbe's line (SL), and trabecular meshwork (TM) by the two modalities. The ability to detect a closed angle was compared with gonioscopy. The average age (SD) of the 81 subjects enrolled was 64.1 (11.4) years; the majority were Chinese (91.4%) and female (61.7%). SDOCT images revealed the SS in 26.9% (56/324) of quadrants and the SL in 44.1% (143/324) of quadrants; in ASOCT images, the SS could be visualized in 69.1% (224/324) of quadrants (P gonioscopy. When analyzing the horizontal quadrants only, both modalities agreed well with gonioscopy, 0.75 and 0.74, respectively (AC1 statistics). The RTVue SDOCT allowed visualization of SL, TM, and SS. However, these landmarks were not detected in a large percentage of images.

  5. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  6. Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI)

    Science.gov (United States)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Yoshei; Kiriyama, Kyoko; Matsuda, Kazutaka; Jepsen, Peter Uhd

    2017-04-01

    Lacquering is considered one of the most representative Asian artistic techniques. While the decorative part of lacquerwares is the lacquer itself, their substructures serve as the backbone of the object itself. Very little is known about these hidden substructures. Since lacquerwares are mostly composed of organic materials, such as urushi, wood, carbon black, and fabrics which are very X-ray transparent, standard X-ray radiography has some problems in achieving clear X-ray radiographic images. Therefore, we wanted to contribute to the understanding of the lacquer manufacturing technique by inspecting the substructures of Asian lacquerwares by means of THz time-domain imaging (THz-TDI). Three different kinds of Asian lacquerwares were examined by THz-TDI, and the outcomes have been compared with those obtained by standard X-radiography. THz-TDI provides unique information on lacquerwares substructures, aiding in the comprehension of the manufacturing technology yielding to these precious artefacts.

  7. A Public Image Database for Benchmark of Plant Seedling Classification Algorithms

    DEFF Research Database (Denmark)

    Giselsson, Thomas Mosgaard; Nyholm Jørgensen, Rasmus; Jensen, Peter Kryger

    A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained...

  8. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall

    Science.gov (United States)

    Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.

    2018-01-01

    Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.

  9. Fingerprint Image Enhancement Based on Second Directional Derivative of the Digital Image

    Directory of Open Access Journals (Sweden)

    Onnia Vesa

    2002-01-01

    Full Text Available This paper presents a novel approach of fingerprint image enhancement that relies on detecting the fingerprint ridges as image regions where the second directional derivative of the digital image is positive. A facet model is used in order to approximate the derivatives at each image pixel based on the intensity values of pixels located in a certain neighborhood. We note that the size of this neighborhood has a critical role in achieving accurate enhancement results. Using neighborhoods of various sizes, the proposed algorithm determines several candidate binary representations of the input fingerprint pattern. Subsequently, an output binary ridge-map image is created by selecting image zones, from the available binary image candidates, according to a MAP selection rule. Two public domain collections of fingerprint images are used in order to objectively assess the performance of the proposed fingerprint image enhancement approach.

  10. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  11. Creation and Validation of the Self-esteem/Self-image Female Sexuality (SESIFS Questionnaire

    Directory of Open Access Journals (Sweden)

    Maria C.O. Lordello

    2014-01-01

    Full Text Available Introduction Self-esteem and self-image are psychological aspects that affect sexual function. AIMS To validate a new measurement tool that correlates the concepts of self-esteem, self-image, and sexuality. Methods A 20-question test (the self-esteem/self-image female sexuality [SESIFS] questionnaire was created and tested on 208 women. Participants answered: Rosenberg's self-esteem scale, the female sexual quotient (FSQ, and the SESIFS questionnaire. Pearson's correlation coefficient was used to test concurrent validity of the SESIFS against Rosenberg's self-esteem scale and the FSQ. Reliability was tested using the Cronbach's alpha coefficient. Result The new questionnaire had a good overall reliability (Cronbach's alpha r = 0.862, p < 0.001, but the sexual domain scored lower than expected ( r = 0.65. The validity was good: overall score r = 0.38, p < 0.001, self-esteem domain r = 0.32, p < 0.001, self-image domain r = 0.31, p < 0.001, sexual domain r = 0.29, p < 0.001. Conclusions The SESIFS questionnaire has limitations in measuring the correlation among self-esteem, self-image, and sexuality domains. A new, revised version is being tested and will be presented in an upcoming publication.

  12. Enhancing public access to legal information : A proposal for a new official legal information generic top-level domain

    NARCIS (Netherlands)

    Mitee, Leesi Ebenezer

    2017-01-01

    Abstract: This article examines the use of a new legal information generic Top-Level Domain (gTLD) as a viable tool for easy identification of official legal information websites (OLIWs) and enhancing global public access to their resources. This intervention is necessary because of the existence of

  13. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Rizzi, Julien

    2013-01-01

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  14. Quality of life domains affected in women with breast cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Nunes Garcia

    Full Text Available OBJECTIVE: This study aimed to investigate the quality of life of women suffering from breast cancer undergoing chemotherapy in public and private health care systems. METHOD: It is an observational, prospective study with 64 women suffering from breast cancer. Data was collected with two instruments: Quality of Life Questionnaire C30 and Breast Cancer Module BR23. By applying Mann Whitney and Friedman's statistical tests, p values < 0.05 were considered statistically significant. RESULTS: The significant results in public health care systems were: physical functions, pain symptom, body image, systemic effects and outlook for the future. In private health care systems, the results were sexual, social functions and body image. Women's quality of life was harmed by chemotherapy in both institutions. CONCLUSION: The quality of life of women has been harmed as a result of the chemotherapy treatment in both institutions, but in different domains, indicating the type of nursing care that should be provided according to the characteristics of each group.

  15. Fusion of MODIS Images Using Kriging With External Drift

    NARCIS (Netherlands)

    Ribeiro Sales, M.H.; Souza, C.M.; Kyriakidis, P.C.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) has been used in several remote sensing studies, including land, ocean, and atmospheric applications. The advantages of this sensor are its high spectral resolution, with 36 spectral bands; its high revisiting frequency; and its public domain

  16. Images of eyes enhance investments in a real-life public good.

    Directory of Open Access Journals (Sweden)

    Damien Francey

    Full Text Available A key issue in cooperation research is to determine the conditions under which individuals invest in a public good. Here, we tested whether cues of being watched increase investments in an anonymous public good situation in real life. We examined whether individuals would invest more by removing experimentally placed garbage (paper and plastic bottles from bus stop benches in Geneva in the presence of images of eyes compared to controls (images of flowers. We provided separate bins for each of both types of garbage to investigate whether individuals would deposit more items into the appropriate bin in the presence of eyes. The treatment had no effect on the likelihood that individuals present at the bus stop would remove garbage. However, those individuals that engaged in garbage clearing, and were thus likely affected by the treatment, invested more time to do so in the presence of eyes. Images of eyes had a direct effect on behaviour, rather than merely enhancing attention towards a symbolic sign requesting removal of garbage. These findings show that simple images of eyes can trigger reputational effects that significantly enhance on non-monetary investments in anonymous public goods under real life conditions. We discuss our results in the light of previous findings and suggest that human social behaviour may often be shaped by relatively simple and potentially unconscious mechanisms instead of very complex cognitive capacities.

  17. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wu Yiquan

    2017-08-01

    Full Text Available To investigate the problems of the large grayscale difference between infrared and Synthetic Aperture Radar (SAR images and their fusion image not being fit for human visual perception, we propose a fusion method for SAR and infrared images in the complex contourlet domain based on joint sparse representation. First, we perform complex contourlet decomposition of the infrared and SAR images. Then, we employ the KSingular Value Decomposition (K-SVD method to obtain an over-complete dictionary of the low-frequency components of the two source images. Using a joint sparse representation model, we then generate a joint dictionary. We obtain the sparse representation coefficients of the low-frequency components of the source images in the joint dictionary by the Orthogonal Matching Pursuit (OMP method and select them using the selection maximization strategy. We then reconstruct these components to obtain the fused low-frequency components and fuse the high-frequency components using two criteria——the coefficient of visual sensitivity and the degree of energy matching. Finally, we obtain the fusion image by the inverse complex contourlet transform. Compared with the three classical fusion methods and recently presented fusion methods, e.g., that based on the Non-Subsampled Contourlet Transform (NSCT and another based on sparse representation, the method we propose in this paper can effectively highlight the salient features of the two source images and inherit their information to the greatest extent.

  18. Secure public cloud platform for medical images sharing.

    Science.gov (United States)

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking.

  19. The Influence of Marketing Public Relation and Service Quality on Corporate Image Through Public Opinion: Studies at Mandiri Bank

    OpenAIRE

    Suciyati, Vera

    2013-01-01

    This research aims to analyze the influence of marketing public relation and service quality at Bank Mandiri on corporate image through public. Convenience sampling method has been selected in order to obtain the data in this study. The analysis method that used was the path analysis. The research result had shown that: marketing public relation and service quality have significant influence simultaneously and partially on public opinion on the first structure equation. The second structure e...

  20. Estimating Snow Cover from Publicly Available Images

    OpenAIRE

    Fedorov, Roman; Camerada, Alessandro; Fraternali, Piero; Tagliasacchi, Marco

    2016-01-01

    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to...

  1. Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging.

    Science.gov (United States)

    Pastorelli, Gianluca; Trafela, Tanja; Taday, Phillip F; Portieri, Alessia; Lowe, David; Fukunaga, Kaori; Strlič, Matija

    2012-05-01

    Terahertz (THz) time-domain spectroscopy and 3D THz pulsed imaging have been explored with regard to polymer materials, both commodity and historic polymers. A systematic spectroscopic study of a wide range of different polymer materials showed significant differences in their spectra. Polyolefins and polystyrenes generally exhibit lower absorption than other examined polymers, various cellulose derivates, poly(vinyl chloride), poly(methyl methacrylate), polyamide, hard rubber and phenol formaldehyde resin, the last of these exhibiting the most intense absorption over the entire range, 0.15-4.2 THz. It was also examined how the presence of plasticisers in poly(vinyl chloride), the presence of fillers in polypropylene, and the degree of branching in polyethylene and polystyrene affect the spectra; inorganic fillers in polypropylene affected the absorption most. With 3D THz pulsed imaging, features in polymer objects were explored, appearing either as integral parts of the material (coatings and pores in foams) or as a consequence of physical deterioration (cracks, delamination). All of these features of various complexities can be successfully imaged in 3D. Terahertz technology is thus shown to have significant potential for both chemical and structural characterisation of polymers, which will be of interest to heritage science, but also to the polymer industry and development of analytical technologies in general.

  2. Bridging the gap between data, publications, and images

    Science.gov (United States)

    Ritchey, N. A.; Collins, D.; Sprain, M.

    2017-12-01

    NOAA's National Centers for Environmental Information (NCEI) manages the most comprehensive, accessible, and trusted source of environmental data and information in the US. It archives data from the depths of the ocean to the surface of the sun and from million-year-old sediment records to near real-time satellite observations. NCEI has a wealth of knowledge and experience in long-term data preservation with the goal of supporting today's scientists as well as future generations. In order to reduce fragmentation of data, publications, images, and documentation, and to improve preservation, curation, and stewardship of data, NCEI continues to partner with the NOAA Central Library (NCL). NCEI and NCL have long-established linkages between data metadata, published reports, and data or archival information packages (AIP). We also have analog AIPs that are stored and maintained in the NCL collection and discoverable in both NCEI and NCL collections via the AIP identifier. We are currently working with NCL to establish a workflow for submitting reports to their Institutional Repository and linking the data and report via digital object identifiers. We hope to establish linkages between images of physical samples and the NCL Photo Collection management infrastructure in the future. This presentation will detail how NCEI engages with the NCL in order to fully integrate documentation, images, publications, and data in preservation practices and improve the discovery and usability of NOAA's billion dollar investment in environmental data and information.

  3. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy

    Science.gov (United States)

    Fukunaga, K.; Cortes, E.; Cosentino, A.; Stã¼nkel, I.; Leona, M.; Duling, N.; Mininberg, D. T.

    2011-08-01

    This paper reports the first use of terahertz time domain reflection imaging involving textiles on part of a complete human mummy, still in original wrapping. X-ray technique has been used extensively to investigate anatomical features, since X-ray pass through the wrapping. Terahertz waves, on the other hand, can penetrate into non-metallic materials and its reflection depends on the refractive index of materials at the interface, such as textiles and the air. The mummy of Kharushere (ca. 945-712 B.C.) was examined by using Terahertz time domain reflection imaging in the Egyptian galleries of The Metropolitan Museum of Art. Experimental results suggest that the Terahetz imaging is a promising technique for probing the fabric layers surrounding Egyptian mummies, although it is still very limited in its current state. In the future it could become a useful complement to CT scanning when materials with low radiographic density and contrast are being investigated

  4. A method of directly extracting multiwave angle-domain common-image gathers

    Science.gov (United States)

    Han, Jianguang; Wang, Yun

    2017-10-01

    Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.

  5. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

    International Nuclear Information System (INIS)

    Yang, Bingxin; Yuan, Min; Ma, Yide; Zhang, Jiuwen; Zhan, Kun

    2015-01-01

    Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images. In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm. Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods. The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented

  6. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  7. Pengaruh Marketing Public Relations Terhadap Brand Image Dan Loyalitas Pelanggan (Survei Pada Wisatawan Taman Rekreasi Selecta, Batu)

    OpenAIRE

    Sitepu, Rehulina Desviora

    2015-01-01

    This research aims to: investigate the influence of Marketing Public Relations on Brand Image, investigate the influence of Brand Image on Customer Loyalty and investigate the influence of Marketing Public Relations on Customer Loyalty. The research method that used is explanatory research with quantitative approach. Variables that used in this research are Marketing Public Relations, Brand Image, and Customer Loyalty. The respondents of this research are the visitors of Selecta Recreational ...

  8. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    NARCIS (Netherlands)

    B. Antony (Bhavna); M.D. Abràmoff (Michael); L. Tang (Li); W.D. Ramdas (Wishal); J.R. Vingerling (Hans); N.M. Jansonius (Nomdo); K. Lee (Kyungmoo); Y.H. Kwon (Young); M. Sonka (Milan); M.K. Garvin (Mona)

    2011-01-01

    textabstractThe 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate

  9. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.

    Science.gov (United States)

    Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Lee, Mi Jung; Park, Bae Ho; Lee, Changgu; Yoon, Duhee; Cheong, Hyeonsik; Lee, Ki Ho; Son, Young-Woo; Park, Jeong Young; Salmeron, Miquel

    2011-07-29

    Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.

  10. Comparison between the public opinion and the image of public opinion on nuclear power generation. From the viewpoint of risk communication

    International Nuclear Information System (INIS)

    Matsuda, Toshihiro

    2003-01-01

    One objective for risk communication is to improve the understanding of public values and concerns. This paper examined the perceptions of nuclear power plant engineers of an electric power company, about public values and concerns regarding nuclear power generation (image of public opinion), and compared them with actual public opinion. The image of public opinion was surveyed by questionnaire method. In the questionnaire, the subjects were asked to estimate the most preferred answer given to questions posed to the Japanese public. For some questions, subjects were asked to estimate the percentage of Japanese who selected a certain answer for a question or the distribution of the answers. The results showed: (1) Nuclear power plant engineers correctly recognized the existence of high anxiety in the public's mind concerning nuclear power generation. (2) Engineers were apt to underestimate the percentage of Japanese who think nuclear power generation is useful in our society. (3) The majority of Japanese assume that when nuclear power plant accidents occur radioactive leakage is so severe that it affects the health of inhabitants. However, the engineers were apt to estimate that the majority of Japanese think radioactive leakage is not so severe. (4) Engineers correctly recognized that the majority of Japanese think it is a realistic option to use the nuclear power generation. However, they incorrectly estimated that only 40% of Japanese think it is a realistic option to use the nuclear power generation when in fact 67% think so. These gaps between public opinion and the image of public opinion by the engineers were classified into two groups, one that stems from the cognitive bias when people estimate public opinion and one that is inherent in the engineers of nuclear power plants. (author)

  11. The selling of Sellafield (the public image)

    International Nuclear Information System (INIS)

    White, David.

    1986-01-01

    The advertising campaign planned to restore the public image of Sellafield is discussed. Two aspects of the Sellafield site are being promoted especially, the first is that the discharges of long life radioactivity are being reduced. The second is the 'site accessibility' of Sellafield -BNFL is trying to encourage visitors to see for themselves what goes on at Sellafield. There is evidence that this will allay the fears and suspicions of the public. It is suggested, however, that providing information about nuclear power may be counter-productive as the concept of nuclear disaster may receive greater attention. The Sellafield site is difficult to promote whilst it continues to suffer leaks and it is suggested that the only way to promote Sellafield successfully may be by appealing to nationalism as the French have done in their nuclear campaign. (U.K.)

  12. Histopathological Breast-Image Classification Using Local and Frequency Domains by Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Abdullah-Al Nahid

    2018-01-01

    Full Text Available Identification of the malignancy of tissues from Histopathological images has always been an issue of concern to doctors and radiologists. This task is time-consuming, tedious and moreover very challenging. Success in finding malignancy from Histopathological images primarily depends on long-term experience, though sometimes experts disagree on their decisions. However, Computer Aided Diagnosis (CAD techniques help the radiologist to give a second opinion that can increase the reliability of the radiologist’s decision. Among the different image analysis techniques, classification of the images has always been a challenging task. Due to the intense complexity of biomedical images, it is always very challenging to provide a reliable decision about an image. The state-of-the-art Convolutional Neural Network (CNN technique has had great success in natural image classification. Utilizing advanced engineering techniques along with the CNN, in this paper, we have classified a set of Histopathological Breast-Cancer (BC images utilizing a state-of-the-art CNN model containing a residual block. Conventional CNN operation takes raw images as input and extracts the global features; however, the object oriented local features also contain significant information—for example, the Local Binary Pattern (LBP represents the effective textural information, Histogram represent the pixel strength distribution, Contourlet Transform (CT gives much detailed information about the smoothness about the edges, and Discrete Fourier Transform (DFT derives frequency-domain information from the image. Utilizing these advantages, along with our proposed novel CNN model, we have examined the performance of the novel CNN model as Histopathological image classifier. To do so, we have introduced five cases: (a Convolutional Neural Network Raw Image (CNN-I; (b Convolutional Neural Network CT Histogram (CNN-CH; (c Convolutional Neural Network CT LBP (CNN-CL; (d Convolutional

  13. A reaction time advantage for calculating beliefs over public representations signals domain specificity for 'theory of mind'.

    Science.gov (United States)

    Cohen, Adam S; German, Tamsin C

    2010-06-01

    In a task where participants' overt task was to track the location of an object across a sequence of events, reaction times to unpredictable probes requiring an inference about a social agent's beliefs about the location of that object were obtained. Reaction times to false belief situations were faster than responses about the (false) contents of a map showing the location of the object (Experiment 1) and about the (false) direction of an arrow signaling the location of the object (Experiment 2). These results are consistent with developmental, neuro-imaging and neuropsychological evidence that there exist domain specific mechanisms within human cognition for encoding and reasoning about mental states. Specialization of these mechanisms may arise from either core cognitive architecture or via the accumulation of expertise in the social domain.

  14. 2008 Public Relations and Image Making for Libraries and the ...

    African Journals Online (AJOL)

    Gbaje E.S

    Samaru Journal of Information Studies Vol.8 (1)2008. 17. Public Relations and Image Making for Libraries and the Profession in Nigeria. By .... An investigation carried out by Morrisey and Case .... can sponsor bills aimed at developing library.

  15. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    NARCIS (Netherlands)

    Antony, Bhavna; Abramoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.

    2011-01-01

    The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct

  16. The dimensions of urban public space in user’s mental image

    Directory of Open Access Journals (Sweden)

    Matej Nikšič

    2006-01-01

    Full Text Available The article presents a method for recognising qualitative and quantitative dimensions of open urban space in the user’s perceptual image. It stems from the hypothesis that the open urban space in mental perception isn’t a uniform continuum, which in general applies to its physical phenomenon. It discloses where and how users experience the limits of real open public space that they occupy and what they perceive as the neighbourhood of such a place. Therefore it researches rules applied by the user to mentally structure physically continuous space into smaller units and then reassemble these into a network. Knowledge of such rules enables expansion of open urban public spaces, which user’s experience as positive, into the wider area, thus revitalising those neighbouring spaces that are perceived as negative or are completely absent in the mental image and consequentially unused. The presence of people is in fact the essential component of quality public spaces.

  17. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    Energy Technology Data Exchange (ETDEWEB)

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.; Barcellos-Hoff, Mary Helen

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulations topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.

  18. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  19. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    Science.gov (United States)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  20. Asymmetric double-image encryption method by using iterative phase retrieval algorithm in fractional Fourier transform domain

    Science.gov (United States)

    Sui, Liansheng; Lu, Haiwei; Ning, Xiaojuan; Wang, Yinghui

    2014-02-01

    A double-image encryption scheme is proposed based on an asymmetric technique, in which the encryption and decryption processes are different and the encryption keys are not identical to the decryption ones. First, a phase-only function (POF) of each plain image is retrieved by using an iterative process and then encoded into an interim matrix. Two interim matrices are directly modulated into a complex image by using the convolution operation in the fractional Fourier transform (FrFT) domain. Second, the complex image is encrypted into the gray scale ciphertext with stationary white-noise distribution by using the FrFT. In the encryption process, three random phase functions are used as encryption keys to retrieve the POFs of plain images. Simultaneously, two decryption keys are generated in the encryption process, which make the optical implementation of the decryption process convenient and efficient. The proposed encryption scheme has high robustness to various attacks, such as brute-force attack, known plaintext attack, cipher-only attack, and specific attack. Numerical simulations demonstrate the validity and security of the proposed method.

  1. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.

    Science.gov (United States)

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Hariri, Amirhossein; Wu, Xiaodong; Sadda, Srinivas R

    2013-12-30

    Geographic atrophy (GA) is the atrophic late-stage manifestation of age-related macular degeneration (AMD), which may result in severe vision loss and blindness. The purpose of this study was to develop a reliable, effective approach for GA segmentation in both spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) images using a level set-based approach and to compare the segmentation performance in the two modalities. To identify GA regions in SD-OCT images, three retinal surfaces were first segmented in volumetric SD-OCT images using a double-surface graph search scheme. A two-dimensional (2-D) partial OCT projection image was created from the segmented choroid layer. A level set approach was applied to segment the GA in the partial OCT projection image. In addition, the algorithm was applied to FAF images for the GA segmentation. Twenty randomly chosen macular SD-OCT (Zeiss Cirrus) volumes and 20 corresponding FAF (Heidelberg Spectralis) images were obtained from 20 subjects with GA. The algorithm-defined GA region was compared with consensus manual delineation performed by certified graders. The mean Dice similarity coefficients (DSC) between the algorithm- and manually defined GA regions were 0.87 ± 0.09 in partial OCT projection images and 0.89 ± 0.07 in registered FAF images. The area correlations between them were 0.93 (P segment GA regions in both SD-OCT and FAF images. This approach demonstrated good agreement between the algorithm- and manually defined GA regions within each single modality. The GA segmentation in FAF images performed better than in partial OCT projection images. Across the two modalities, the GA segmentation presented reasonable agreement.

  2. On LSB Spatial Domain Steganography and Channel Capacity

    Science.gov (United States)

    2008-03-21

    reveal the hidden information should not be taken as proof that the image is now clean. The survivability of LSB type spatial domain steganography ...the mindset that JPEG compressing an image is sufficient to destroy the steganography for spatial domain LSB type stego. We agree that JPEGing...modeling of 2 bit LSB steganography shows that theoretically there is non-zero stego payload possible even though the image has been JPEGed. We wish to

  3. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    Science.gov (United States)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  4. Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.

    Science.gov (United States)

    Zhan, Huijing; Shi, Boxin; Kot, Alex C

    2017-08-04

    Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.

  5. New image of psychiatry, mass media impact and public relations.

    Science.gov (United States)

    Jakovljević, Miro; Tomić, Zoran; Maslov, Boris; Skoko, Iko

    2010-06-01

    The mass media has a powerful impact on public attitudes about mental health and psychiatry. The question of identity of psychiatry as a medical profession as well as of the future of psychiatry has been the subject of much controversial discussion. Psychiatry today has the historical opportunity to shape the future of mental health care, medicine and society. It has gained in scientific and professional status by the tremendous increase of knowledge and treatment skills. Psychiatry should build up new transdisciplinary and integrative image of a specialized profession, promote it and make it public. Good public relations are very important for the future of psychiatry.

  6. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    Science.gov (United States)

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  7. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis.A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager.With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral×512(axial pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images.A miniature handheld OCT imager that can be used for intraoperative evaluation of

  8. Management strategies of the financial-economical crisis in the hotel’s domain

    OpenAIRE

    Carmen IORDACHE

    2013-01-01

    During the crises period, the advertising budgets in the hotel’s domain are considerable reducing. If, in the beggining, the hotels offer important sums to promote the brand’s image, with the aim of going public, during the crises period they focuse on tactical and advertising campaignes. Realizing the place and the role of the hotels’s industry like a part of the tourist activity, this paper wants to tap the responsible management problem of the financial-economical crises which affects the ...

  9. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  10. Non-invasive Florentine Renaissance Panel Painting Replica Structures Investigation by Using Terahertz Time-Domain Imaging (THz-TDI) Technique

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza

    2016-01-01

    The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to pr...

  11. DAE emergency response centre (ERC) at Kalpakkam for response to nuclear and radiological emergencies in public domain

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Mathiyarasu, R.; Subramanian, V.; Rajaram, S.; Somayaji, K.M.; Kannan, V.; Rajagopalan, H.

    2008-01-01

    In India, Department of Atomic Energy (DAE) has been identified as the nodal agency/authority in respect of providing the necessary technical inputs in the event of any radiation emergency that may occur in public domain. The overall system takes into consideration statutory requirements, executive decisions as well as National and International obligations. This paper highlights the details about the strength of the Kalpakkam ERC and other essential requisites and their compliance since its formation

  12. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  13. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    Science.gov (United States)

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  14. Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy

    International Nuclear Information System (INIS)

    Rodríguez, L. A.; Magén, C.; Snoeck, E.; Gatel, C.; Serrano-Ramón, L.

    2013-01-01

    Direct observation of domain wall (DW) nucleation and propagation in focused electron beam induced deposited Co nanowires as a function of their dimensions was carried out by Lorentz microscopy (LTEM) upon in situ application of magnetic field. Optimal dimensions favoring the unambiguous DW nucleation/propagation required for applications were found in 500-nm-wide and 13-nm-thick Co nanowires, with a maximum nucleation field and the largest gap between nucleation and propagation fields. The internal DW structures were resolved using the transport-of-intensity equation formalism in LTEM images and showed that the optimal nanowire dimensions correspond to the crossover between the nucleation of transverse and vortex walls.

  15. Creation and Validation of the Self-esteem/Self-image Female Sexuality (SESIFS) Questionnaire.

    Science.gov (United States)

    Lordello, Maria Co; Ambrogini, Carolina C; Fanganiello, Ana L; Embiruçu, Teresa R; Zaneti, Marina M; Veloso, Laise; Piccirillo, Livia B; Crude, Bianca L; Haidar, Mauro; Silva, Ivaldo

    2014-01-01

    Self-esteem and self-image are psychological aspects that affect sexual function. To validate a new measurement tool that correlates the concepts of self-esteem, self-image, and sexuality. A 20-question test (the self-esteem/self-image female sexuality [SESIFS] questionnaire) was created and tested on 208 women. Participants answered: Rosenberg's self-esteem scale, the female sexual quotient (FSQ), and the SESIFS questionnaire. Pearson's correlation coefficient was used to test concurrent validity of the SESIFS against Rosenberg's self-esteem scale and the FSQ. Reliability was tested using the Cronbach's alpha coefficient. The new questionnaire had a good overall reliability (Cronbach's alpha r = 0.862, p self-esteem domain r = 0.32, p self-esteem, self-image, and sexuality domains. A new, revised version is being tested and will be presented in an upcoming publication.

  16. UTILIZATION OF FUNDUS AUTOFLUORESCENCE, SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY, AND ENHANCED DEPTH IMAGING IN THE CHARACTERIZATION OF BIETTI CRYSTALLINE DYSTROPHY IN DIFFERENT STAGES.

    Science.gov (United States)

    Li, Qian; Li, Yang; Zhang, Xiaohui; Xu, Zhangxing; Zhu, Xiaoqing; Ma, Kai; She, Haicheng; Peng, Xiaoyan

    2015-10-01

    To characterize Bietti crystalline dystrophy (BCD) in different stages using multiple imaging modalities. Sixteen participants clinically diagnosed as BCD were included in the retrospective study and were categorized into 3 stages according to fundus photography. Eleven patients were genetically confirmed. Fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging features of BCD were analyzed. On fundus autofluorescence, the abnormal autofluorescence was shown to enlarge in area and decrease in intensity with stages. Using spectral domain optical coherence tomography, the abnormalities in Stage 1 were observed to localize in outer retinal layers, whereas in Stage 2 and Stage 3, more extensive retinal atrophy was seen. In enhanced depth imaging, the subfoveal choroidal layers were delineated clearly in Stage 1; in Stage 2, destructions were primarily found in the choriocapillaris with associated alterations in the outer vessels; Stage 3 BCD displayed severe choroidal thinning. Choroidal neovascularization and macular edema were exhibited with high incidence. IVS6-8del17bp/inGC of the CYP4V2 gene was the most common mutant allele. Noninvasive fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging may help to characterize the chorioretinal pathology of BCD at different degrees, and therefore, we propose staging of BCD depending on those methods. Physicians should be cautious of the vision-threatening complications of the disease.

  17. Stimulated Emission Computed Tomography (NSECT) images enhancement using a linear filter in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Rodrigo S.S.; Tardelli, Tiago C.; Yoriyaz, Helio, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jackowski, Marcel P., E-mail: mjack@ime.usp.b [University of Sao Paulo (USP), SP (Brazil). Dept. of Computer Science

    2011-07-01

    In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was presented as Neutron Stimulated Emission Computed Tomography (NSECT). In this technique, a fast neutrons beam stimulates stable nuclei in a sample, which emit characteristic gamma radiation. The photon energy is unique and is used to identify the emitting nuclei. The emitted gamma energy spectra can be used for reconstruction of the target tissue image and for determination of the tissue elemental composition. Due to the stochastic nature of photon emission process by irradiated tissue, one of the most suitable algorithms for tomographic reconstruction is the Expectation-Maximization (E-M) algorithm, once on its formulation are considered simultaneously the probabilities of photons emission and detection. However, a disadvantage of this algorithm is the introduction of noise in the reconstructed image as the number of iterations increases. This increase can be caused either by features of the algorithm itself or by the low sampling rate of projections used for tomographic reconstruction. In this work, a linear filter in the frequency domain was used in order to improve the quality of the reconstructed images. (author)

  18. Stimulated Emission Computed Tomography (NSECT) images enhancement using a linear filter in the frequency domain

    International Nuclear Information System (INIS)

    Viana, Rodrigo S.S.; Tardelli, Tiago C.; Yoriyaz, Helio; Jackowski, Marcel P.

    2011-01-01

    In recent years, a new technique for in vivo spectrographic imaging of stable isotopes was presented as Neutron Stimulated Emission Computed Tomography (NSECT). In this technique, a fast neutrons beam stimulates stable nuclei in a sample, which emit characteristic gamma radiation. The photon energy is unique and is used to identify the emitting nuclei. The emitted gamma energy spectra can be used for reconstruction of the target tissue image and for determination of the tissue elemental composition. Due to the stochastic nature of photon emission process by irradiated tissue, one of the most suitable algorithms for tomographic reconstruction is the Expectation-Maximization (E-M) algorithm, once on its formulation are considered simultaneously the probabilities of photons emission and detection. However, a disadvantage of this algorithm is the introduction of noise in the reconstructed image as the number of iterations increases. This increase can be caused either by features of the algorithm itself or by the low sampling rate of projections used for tomographic reconstruction. In this work, a linear filter in the frequency domain was used in order to improve the quality of the reconstructed images. (author)

  19. Estimation of Poisson noise in spatial domain

    Science.gov (United States)

    Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana

    2017-09-01

    This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.

  20. Public Relations Efforts for the Third World: Images in the News.

    Science.gov (United States)

    Albritton, Robert B.; Manheim, Jarol B.

    1985-01-01

    Found that, after Argentina, Indonesia, Korea, the Philippines, and Turkey hired U. S. public relations consultants, their news image in the "New York Times" improved in positive coverage and portrayal as more cooperative nations. (PD)

  1. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Science.gov (United States)

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  2. The image of public space on planned housing based on environmental and behavior cognition mapping (case study: Cemara Asri Estate)

    Science.gov (United States)

    Nirfalini Aulia, Dwira; Zahara, Aina

    2018-03-01

    Public spaces in a planned housing is a place of social interaction for every visitor of public space. The research on public space image uses four public spaces that meet the criteria of public space such as pedestrian sidewalks, public park, water front and worship place. Research on the perception of public space is interesting to investigate because housing development is part of the forming of a society that should design with proper architectural considerations. The purpose of this research is to know the image of public space on the planned housing in Medan City based on the mapping of environmental and behavior cognition and to know the difference between the image that happened to four group respondent. The research method of architecture used in this research is a descriptive qualitative method with case study approach (most similar case). Analysis of data used using mental maps and questionnaires. Then the image of public space is formed based on the elements of public space, wayfinding, route choice, and movement. The image difference that occurs to the housing residents and architecture students, design and planning are outstanding, visitors to the public housing space is good, people who have never visited the public space is inadequate.

  3. The nursing profession: public image, self-concept and professional identity: a discussion paper

    NARCIS (Netherlands)

    ten Hoeve, Yvonne; Jansen, Gerard; Roodbol, Petrie

    2013-01-01

    Aim To discuss the actual public image of nurses and other factors that influence the development of nurses' self-concept and professional identity. Background Nurses have become healthcare professionals in their own right who possess a great deal of knowledge. However, the public does not always

  4. The nursing profession : public image, self-concept and professional identity. A discussion paper

    NARCIS (Netherlands)

    ten Hoeve, Yvonne; Jansen, Gerard; Roodbol, Petrie

    Aim To discuss the actual public image of nurses and other factors that influence the development of nurses' self-concept and professional identity. Background Nurses have become healthcare professionals in their own right who possess a great deal of knowledge. However, the public does not always

  5. The nursing profession: public image, self-concept and professional identity : a discussion paper

    NARCIS (Netherlands)

    Yvonne ten Hoeve; Prof. Dr. Petrie F. Roodbol; Gerard Jansen

    2013-01-01

    Aim. To discuss the actual public image of nurses and other factors that influence the development of nurses’ self-concept and professional identity. Background. Nurses have become healthcare professionals in their own right who possess a great deal of knowledge. However, the public does not always

  6. An optical color image watermarking scheme by using compressive sensing with human visual characteristics in gyrator domain

    Science.gov (United States)

    Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian

    2017-05-01

    A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.

  7. Image simulation for HardWare In the Loop simulation in EO domain

    Science.gov (United States)

    Cathala, Thierry; Latger, Jean

    2015-10-01

    Infrared camera as a weapon sub system for automatic guidance is a key component for military carrier such as missile for example. The associated Image Processing, that controls the navigation, needs to be intensively assessed. Experimentation in the real world is very expensive. This is the main reason why hybrid simulation also called HardWare In the Loop (HWIL) is more and more required nowadays. In that field, IR projectors are able to cast IR fluxes of photons directly onto the IR camera of a given weapon system, typically a missile seeker head. Though in laboratory, the missile is so stimulated exactly like in the real world, provided a realistic simulation tool enables to perform synthetic images to be displayed by the IR projectors. The key technical challenge is to render the synthetic images at the required frequency. This paper focuses on OKTAL-SE experience in this domain through its product SE-FAST-HWIL. It shows the methodology and Return of Experience from OKTAL-SE. Examples are given, in the frame of the SE-Workbench. The presentation focuses on trials on real operational complex 3D cases. In particular, three important topics, that are very sensitive with regards to IG performance, are detailed: first the 3D sea surface representation, then particle systems rendering especially to simulate flares and at last sensor effects modelling. Beyond "projection mode", some information will be given on the SE-FAST-HWIL new capabilities dedicated to "injection mode".

  8. Telling and measuring urban floods: event reconstruction by means of public-domain media

    Science.gov (United States)

    Macchia, S.; Gallo, E.; Claps, P.

    2012-04-01

    In the last decade, the diffusion of mobile telephones and ond of low-cost digital cameras have changed the public approach to catastrophes. As regards floods, it has become widespread the availability of images and videos taken in urban areas. Searching into Youtube or Youreporter, for example, one can understand how often citizen are considering to report even scary events. Nowadays these amateurs videos are often used in news world reports, which often increase or dampen the public perception of flood risk. More importantly, these amateur videos can play a crucial role in a didactic and technical representation of media flooding problems. The question so arise: why don't use the amateur videos for civil protection purposes? This work shows a new way to use flood images and videos to obtain technical data and spread safety information. Specifically, we show how to determine the height and speed of water flow, which have been achieved in some places during Genoa flood - 4th November 2011 - For this event we have downloaded more than 50 videos from different websites, where the authors have provided information about the time of recording, the geographical coordinates and the height above ground of the point of recording. The support by Google tools, such as Google maps and StreetWiew © has allowed us to geographically locate the recording points, so to put together shots and slides necessary to put together a whole reconstruction of the event. Future research will be in the direction of using these videos to generate a tool for the Google platforms, in order to address an easily achievable, yet accurate, information to the public, so to warn people on how to behave in front of imminent floods.

  9. A RESEARCH THRU A LOGISTIC PERSPECTIVE REGARDING THE MANAGEMENT OF IMAGE-CRISES OF PUBLIC INSTITUTIONS FROM ROMANIA

    OpenAIRE

    Antoniu Ovidiu BALINT

    2015-01-01

    Image Crises are explained by the specialists in this field of study as a process of damaging an organization's / institution’s reputation through loss of public confidence in the products and / or services provided to the targeted public / consumers. The main reason why we chose this topic, for this paper, is to find out how image crisis can affect public institutions in Romania at national (central) and local (regional) level. Based on the studies we conducted in several public institutions...

  10. Selections from 2017: Image Processing with AstroImageJ

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  11. New Inversion and Interpretation of Public-Domain Electromagnetic Survey Data from Selected Areas in Alaska

    Science.gov (United States)

    Smith, B. D.; Kass, A.; Saltus, R. W.; Minsley, B. J.; Deszcz-Pan, M.; Bloss, B. R.; Burns, L. E.

    2013-12-01

    Public-domain airborne geophysical surveys (combined electromagnetics and magnetics), mostly collected for and released by the State of Alaska, Division of Geological and Geophysical Surveys (DGGS), are a unique and valuable resource for both geologic interpretation and geophysical methods development. A new joint effort by the US Geological Survey (USGS) and the DGGS aims to add value to these data through the application of novel advanced inversion methods and through innovative and intuitive display of data: maps, profiles, voxel-based models, and displays of estimated inversion quality and confidence. Our goal is to make these data even more valuable for interpretation of geologic frameworks, geotechnical studies, and cryosphere studies, by producing robust estimates of subsurface resistivity that can be used by non-geophysicists. The available datasets, which are available in the public domain, include 39 frequency-domain electromagnetic datasets collected since 1993, and continue to grow with 5 more data releases pending in 2013. The majority of these datasets were flown for mineral resource purposes, with one survey designed for infrastructure analysis. In addition, several USGS datasets are included in this study. The USGS has recently developed new inversion methodologies for airborne EM data and have begun to apply these and other new techniques to the available datasets. These include a trans-dimensional Markov Chain Monte Carlo technique, laterally-constrained regularized inversions, and deterministic inversions which include calibration factors as a free parameter. Incorporation of the magnetic data as an additional constraining dataset has also improved the inversion results. Processing has been completed in several areas, including Fortymile and the Alaska Highway surveys, and continues in others such as the Styx River and Nome surveys. Utilizing these new techniques, we provide models beyond the apparent resistivity maps supplied by the original

  12. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  13. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    Science.gov (United States)

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  14. Body image and personality among British men: associations between the Big Five personality domains, drive for muscularity, and body appreciation.

    Science.gov (United States)

    Benford, Karis; Swami, Viren

    2014-09-01

    The present study examined associations between the Big Five personality domains and measures of men's body image. A total of 509 men from the community in London, UK, completed measures of drive for muscularity, body appreciation, the Big Five domains, and subjective social status, and provided their demographic details. The results of a hierarchical regression showed that, once the effects of participant body mass index (BMI) and subjective social status had been accounted for, men's drive for muscularity was significantly predicted by Neuroticism (β=.29). In addition, taking into account the effects of BMI and subjective social status, men's body appreciation was significantly predicted by Neuroticism (β=-.35) and Extraversion (β=.12). These findings highlight potential avenues for the development of intervention approaches based on the relationship between the Big Five personality traits and body image. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  16. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  17. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    Directory of Open Access Journals (Sweden)

    Bjoern Traenkle

    2017-08-01

    Full Text Available Single-domain antibodies (sdAbs have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  18. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy.

    Science.gov (United States)

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  19. Digital Image Authentication Algorithm Based on Fragile Invisible Watermark and MD-5 Function in the DWT Domain

    Directory of Open Access Journals (Sweden)

    Nehad Hameed Hussein

    2015-04-01

    Full Text Available Using watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they are less sensitive to the Human Visual System (HVS and preserve high image fidelity. MD-5 and RSA algorithms are used for generating the digital signature from the watermark data that is also embedded in the medical image. We apply the algorithm on number of medical images. The Electronic Patient Record (EPR is used as watermark data. Experiments demonstrate the effectiveness of our algorithm in terms of robustness, invisibility, and fragility. Watermark and digital signature can be extracted without the need to the original image.

  20. A Novel Image Authentication with Tamper Localization and Self-Recovery in Encrypted Domain Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2018-01-01

    Full Text Available This paper proposes a novel tamper detection, localization, and recovery scheme for encrypted images with Discrete Wavelet Transformation (DWT and Compressive Sensing (CS. The original image is first transformed into DWT domain and divided into important part, that is, low-frequency part, and unimportant part, that is, high-frequency part. For low-frequency part contains the main information of image, traditional chaotic encryption is employed. Then, high-frequency part is encrypted with CS to vacate space for watermark. The scheme takes the processed original image content as watermark, from which the characteristic digest values are generated. Comparing with the existing image authentication algorithms, the proposed scheme can realize not only tamper detection and localization but also tamper recovery. Moreover, tamper recovery is based on block division and the recovery accuracy varies with the contents that are possibly tampered. If either the watermark or low-frequency part is tampered, the recovery accuracy is 100%. The experimental results show that the scheme can not only distinguish the type of tamper and find the tampered blocks but also recover the main information of the original image. With great robustness and security, the scheme can adequately meet the need of secure image transmission under unreliable conditions.

  1. New public dataset for spotting patterns in medieval document images

    Science.gov (United States)

    En, Sovann; Nicolas, Stéphane; Petitjean, Caroline; Jurie, Frédéric; Heutte, Laurent

    2017-01-01

    With advances in technology, a large part of our cultural heritage is becoming digitally available. In particular, in the field of historical document image analysis, there is now a growing need for indexing and data mining tools, thus allowing us to spot and retrieve the occurrences of an object of interest, called a pattern, in a large database of document images. Patterns may present some variability in terms of color, shape, or context, making the spotting of patterns a challenging task. Pattern spotting is a relatively new field of research, still hampered by the lack of available annotated resources. We present a new publicly available dataset named DocExplore dedicated to spotting patterns in historical document images. The dataset contains 1500 images and 1464 queries, and allows the evaluation of two tasks: image retrieval and pattern localization. A standardized benchmark protocol along with ad hoc metrics is provided for a fair comparison of the submitted approaches. We also provide some first results obtained with our baseline system on this new dataset, which show that there is room for improvement and that should encourage researchers of the document image analysis community to design new systems and submit improved results.

  2. Danish dentists' career satisfaction in relation to perceived occupational stress and public image

    DEFF Research Database (Denmark)

    Moore, R.

    2000-01-01

    The relationship between Danish dentists' perceptions of satisfaction with their career choice and beliefs about their occupational stress or public image was surveyed. A mailed questionnaire was completed by 216 randomly selected Danish private dentists in and around Århus. Of these, only 19% were...... dissatisfied and would not recommend dentistry as a career to young people, while almost 60% perceived dentistry as more stressful than other professions and 31% felt that dentists' public image was less than good or poor. Odds ratio (OR) analyses indicated that perceived career dissatisfaction was most...... prevalent in dentists aged >45 years (OR = 3.1) or who practiced more than 18 years (OR = 2.7), with perceived poor role image (OR = 3.0) or high perceived stress (OR = 2.1). The contribution of perceived high stress approached, but did not attain statistical significance. Adjusted odds ratios provided...

  3. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging

    Science.gov (United States)

    Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid

    2018-05-01

    In this paper, a comprehensive set of techniques for quality control and authentication of packaged integrated circuits (IC) using terahertz (THz) time-domain spectroscopy (TDS) is developed. By material characterization, the presence of unexpected materials in counterfeit components is revealed. Blacktopping layers are detected using THz time-of-flight tomography, and thickness of hidden layers is measured. Sanded and contaminated components are detected by THz reflection-mode imaging. Differences between inside structures of counterfeit and authentic components are revealed through developing THz transmission imaging. For enabling accurate measurement of features by THz transmission imaging, a novel resolution enhancement technique (RET) has been developed. This RET is based on deconvolution of the THz image and the THz point spread function (PSF). The THz PSF is mathematically modeled through incorporating the spectrum of the THz imaging system, the axis of propagation of the beam, and the intensity extinction coefficient of the object into a Gaussian beam distribution. As a result of implementing this RET, the accuracy of the measurements on THz images has been improved from 2.4 mm to 0.1 mm and bond wires as small as 550 μm inside the packaging of the ICs are imaged.

  4. Bragg projection ptychography on niobium phase domains

    Science.gov (United States)

    Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian

    2017-07-01

    Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.

  5. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model☆

    Science.gov (United States)

    Burmeister, David M.; Ponticorvo, Adrien; Yang, Bruce; Becerra, Sandra C.; Choi, Bernard; Durkin, Anthony J.; Christy, Robert J.

    2015-01-01

    Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing severity were created on the dorsum of a Yorkshire pig, and wounds were imaged with SFDI/LSI starting immediately after-burn and then daily for the next 4 days. In addition, on each day the burn wounds were biopsied for histological analysis of burn depth, defined by collagen coagulation, apoptosis, and adnexal/vascular necrosis. Histological results show that collagen coagulation progressed from day 0 to day 1, and then stabilized. Results of burn wound imaging using non-invasive techniques were able to produce metrics that correlate to different predictors of burn depth. Collagen coagulation and apoptosis correlated with SFDI scattering coefficient parameter ( μs′) and adnexal/vascular necrosis on the day of burn correlated with blood flow determined by LSI. Therefore, incorporation of SFDI scattering coefficient and blood flow determined by LSI may provide an algorithm for accurate assessment of the severity of burn wounds in real time. PMID:26138371

  6. MO-FG-204-03: Using Edge-Preserving Algorithm for Significantly Improved Image-Domain Material Decomposition in Dual Energy CT

    International Nuclear Information System (INIS)

    Zhao, W; Niu, T; Xing, L; Xiong, G; Elmore, K; Min, J; Zhu, J; Wang, L

    2015-01-01

    Purpose: To significantly improve dual energy CT (DECT) imaging by establishing a new theoretical framework of image-domain material decomposition with incorporation of edge-preserving techniques. Methods: The proposed algorithm, HYPR-NLM, combines the edge-preserving non-local mean filter (NLM) with the HYPR-LR (Local HighlY constrained backPRojection Reconstruction) framework. Image denoising using HYPR-LR framework depends on the noise level of the composite image which is the average of the different energy images. For DECT, the composite image is the average of high- and low-energy images. To further reduce noise, one may want to increase the window size of the filter of the HYPR-LR, leading resolution degradation. By incorporating the NLM filtering and the HYPR-LR framework, HYPR-NLM reduces the boost material decomposition noise using energy information redundancies as well as the non-local mean. We demonstrate the noise reduction and resolution preservation of the algorithm with both iodine concentration numerical phantom and clinical patient data by comparing the HYPR-NLM algorithm to the direct matrix inversion, HYPR-LR and iterative image-domain material decomposition (Iter-DECT). Results: The results show iterative material decomposition method reduces noise to the lowest level and provides improved DECT images. HYPR-NLM significantly reduces noise while preserving the accuracy of quantitative measurement and resolution. For the iodine concentration numerical phantom, the averaged noise levels are about 2.0, 0.7, 0.2 and 0.4 for direct inversion, HYPR-LR, Iter- DECT and HYPR-NLM, respectively. For the patient data, the noise levels of the water images are about 0.36, 0.16, 0.12 and 0.13 for direct inversion, HYPR-LR, Iter-DECT and HYPR-NLM, respectively. Difference images of both HYPR-LR and Iter-DECT show edge effect, while no significant edge effect is shown for HYPR-NLM, suggesting spatial resolution is well preserved for HYPR-NLM. Conclusion: HYPR

  7. Throughput increase of the covert communication channel organized by the stable steganography algorithm using spatial domain of the image

    Directory of Open Access Journals (Sweden)

    O.V. Kostyrka

    2016-09-01

    Full Text Available At the organization of a covert communication channel a number of requirements are imposed on used steganography algorithms among which one of the main are: resistance to attacks against the built-in message, reliability of perception of formed steganography message, significant throughput of a steganography communication channel. Aim: The aim of this research is to modify the steganography method, developed by the author earlier, which will allow to increase the throughput of the corresponding covert communication channel when saving resistance to attacks against the built-in message and perception reliability of the created steganography message, inherent to developed method. Materials and Methods: Modifications of a steganography method that is steady against attacks against the built-in message which is carrying out the inclusion and decoding of the sent (additional information in spatial domain of the image allowing to increase the throughput of the organized communication channel are offered. Use of spatial domain of the image allows to avoid accumulation of an additional computational error during the inclusion/decoding of additional information due to “transitions” from spatial domain of the image to the area of conversion and back that positively affects the efficiency of decoding. Such methods are considered as attacks against the built-in message: imposing of different noise on a steganography message, filtering, lossy compression of a ste-ganography message where the JPEG and JPEG2000 formats with different quality coefficients for saving of a steganography message are used. Results: It is shown that algorithmic implementations of the offered methods modifications remain steady against the perturbing influences, including considerable, provide reliability of perception of the created steganography message, increase the throughput of the created steganography communication channel in comparison with the algorithm implementing

  8. Denoising in Wavelet Packet Domain via Approximation Coefficients

    Directory of Open Access Journals (Sweden)

    Zahra Vahabi

    2012-01-01

    Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.

  9. WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT.

    Science.gov (United States)

    Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa

    2018-03-02

    To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.

  10. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Delage, O.

    2010-01-01

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  11. Automatic Diabetic Macular Edema Detection in Fundus Images Using Publicly Available Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Garg, Seema [University of North Carolina; Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publicly available datasets are employed to evaluate our algorithm. We are able to achieve diagnosis performance comparable to retina experts on the MESSIDOR (an independently labelled dataset with 1200 images) with cross-dataset testing. Our algorithm is robust to segmentation uncertainties, does not need ground truth at lesion level, and is very fast, generating a diagnosis on an average of 4.4 seconds per image on an 2.6 GHz platform with an unoptimised Matlab implementation.

  12. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    Science.gov (United States)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  13. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning

    International Nuclear Information System (INIS)

    Wang, Ruikang K

    2007-01-01

    The author describes a Fourier domain optical coherence tomography (FDOCT) system that is capable of full range complex imaging in vivo. This is achieved by introducing a constant carrier frequency into the OCT spectral interferograms at the time when imaging is performed. The complex functions of the spatial interferograms formed by each single wavelength are constructed before performing the Fourier transformation to localize the scatters within a sample. Two algorithms, based on Fourier filtering and Hilbert transformation, respectively, are described to achieve the full range complex FDOCT imaging. It is shown that the Hilbert transformation approach delivers better performance than the Fourier filtering method does in terms of tolerating the sample movement in vivo. The author finally demonstrates experimentally the system and algorithms for true in vivo imaging at a rate of 20 000 axial scans per second

  14. The Use of Personal Value Estimations to Select Images for Preservation in Public Library Digital Community Collections

    Directory of Open Access Journals (Sweden)

    Andrea Copeland

    2014-05-01

    Full Text Available A considerable amount of information, particularly in image form, is shared on the web through social networking sites. If any of this content is worthy of preservation, who decides what is to be preserved and based on what criteria. This paper explores the potential for public libraries to assume this role of community digital repositories through the creation of digital collections. Thirty public library users and thirty librarians were solicited from the Indianapolis metropolitan area to evaluate five images selected from Flickr in terms of their value to public library digital collections and their worthiness of long-term preservation. Using a seven-point Likert scale, participants assigned a value to each image in terms of its importance to self, family and society. Participants were then asked to explain the reasoning behind their valuations. Public library users and librarians had similar value estimations of the images in the study. This is perhaps the most significant finding of the study, given the importance of collaboration and forming partnerships for building and sustaining community collections and archives.

  15. Ratsnake: A Versatile Image Annotation Tool with Application to Computer-Aided Diagnosis

    Directory of Open Access Journals (Sweden)

    D. K. Iakovidis

    2014-01-01

    Full Text Available Image segmentation and annotation are key components of image-based medical computer-aided diagnosis (CAD systems. In this paper we present Ratsnake, a publicly available generic image annotation tool providing annotation efficiency, semantic awareness, versatility, and extensibility, features that can be exploited to transform it into an effective CAD system. In order to demonstrate this unique capability, we present its novel application for the evaluation and quantification of salient objects and structures of interest in kidney biopsy images. Accurate annotation identifying and quantifying such structures in microscopy images can provide an estimation of pathogenesis in obstructive nephropathy, which is a rather common disease with severe implication in children and infants. However a tool for detecting and quantifying the disease is not yet available. A machine learning-based approach, which utilizes prior domain knowledge and textural image features, is considered for the generation of an image force field customizing the presented tool for automatic evaluation of kidney biopsy images. The experimental evaluation of the proposed application of Ratsnake demonstrates its efficiency and effectiveness and promises its wide applicability across a variety of medical imaging domains.

  16. What is the public's role in 'space' policymaking? Images of the public by practitioners of 'space' communication in the United Kingdom.

    Science.gov (United States)

    Entradas, Marta

    2016-07-01

    Studies on experts' understanding of the public have mainly focused on the views of scientists. We add to the literature on constructions of the public by analyzing the views of decision-makers, professional science communicators and scientists involved in 'space' communication on the public and public participation in policy. Findings show that contextual situations and roles determine the way the public is conceptualised: the public is sophisticated and knowledgeable to participate in space activities/citizen science, but in matters of policy, a gullible image of the public is brought up. Despite the democratic talk on participation, practitioners delimited public involvement in policy in some way or other to protect their own power and decision-making capabilities. This conception of the public competes with the stated aims of scientific and political institutions for public engagement and the substantive value of public participation, leaving a limited role for the public in space policymaking. © The Author(s) 2015.

  17. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

    International Nuclear Information System (INIS)

    Tang Shaojie; Tang Xiangyang

    2012-01-01

    Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation of interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of “salt-and-pepper” noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain

  18. Development of a novel fluorescent imaging probe for tumor hypoxia by use of a fusion protein with oxygen-dependent degradation domain of HIF-1α

    Science.gov (United States)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Harada, Hiroshi; Hiraoka, Masahiro

    2007-02-01

    More malignant tumors contain more hypoxic regions. In hypoxic tumor cells, expression of a series of hypoxiaresponsive genes related to malignant phenotype such as angiogenesis and metastasis are induced. Hypoxia-inducible factor-1 (HIF-1) is a master transcriptional activator of such genes, and thus imaging of hypoxic tumor cells where HIF-1 is active, is important in cancer therapy. We have been developing PTD-ODD fusion proteins, which contain protein transduction domain (PTD) and the VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of HIF-1 alpha subunit (HIF-1α). Thus PTD-ODD fusion proteins can be delivered to any tissue in vivo through PTD function and specifically stabilized in hypoxic cells through ODD function. To investigate if PTD-ODD fusion protein can be applied to construct hypoxia-specific imaging probes, we first constructed a fluorescent probe because optical imaging enable us to evaluate a probe easily, quickly and economically in a small animal. We first construct a model fusion porein PTD-ODD-EGFP-Cy5.5 named POEC, which is PTD-ODD protein fused with EGFP for in vitro imaging and stabilization of fusion protein, and conjugated with a near-infrared dye Cy5.5. This probe is designed to be degraded in normoxic cells through the function of ODD domain and followed by quick clearance of free fluorescent dye. On the other hand, this prove is stabilized in hypoxic tumor cells and thus the dye is stayed in the cells. Between normoxic and hypoxic conditions, the difference in the clearance rate of the dye will reveals suited contrast for tumor-hypoxia imaging. The optical imaging probe has not been optimized yet but the results presented here exhibit a potential of PTD-ODD fusion protein as a hypoxia-specific imaging probe.

  19. Robustness Design for CNN Templates with Performance of Extracting Closed Domain

    International Nuclear Information System (INIS)

    Li Weidong; Min Lequan

    2006-01-01

    The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. This paper introduces a kind of CNNs with performance of extracting closed domains in binary images, and gives a general method for designing templates of such a kind of CNNs. One theorem provides parameter inequalities for determining parameter intervals for implementing prescribed image processing functions, respectively. Examples for extracting closed domains in binary scale images are given.

  20. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  1. A secure online image trading system for untrusted cloud environments.

    Science.gov (United States)

    Munadi, Khairul; Arnia, Fitri; Syaryadhi, Mohd; Fujiyoshi, Masaaki; Kiya, Hitoshi

    2015-01-01

    In conventional image trading systems, images are usually stored unprotected on a server, rendering them vulnerable to untrusted server providers and malicious intruders. This paper proposes a conceptual image trading framework that enables secure storage and retrieval over Internet services. The process involves three parties: an image publisher, a server provider, and an image buyer. The aim is to facilitate secure storage and retrieval of original images for commercial transactions, while preventing untrusted server providers and unauthorized users from gaining access to true contents. The framework exploits the Discrete Cosine Transform (DCT) coefficients and the moment invariants of images. Original images are visually protected in the DCT domain, and stored on a repository server. Small representation of the original images, called thumbnails, are generated and made publicly accessible for browsing. When a buyer is interested in a thumbnail, he/she sends a query to retrieve the visually protected image. The thumbnails and protected images are matched using the DC component of the DCT coefficients and the moment invariant feature. After the matching process, the server returns the corresponding protected image to the buyer. However, the image remains visually protected unless a key is granted. Our target application is the online market, where publishers sell their stock images over the Internet using public cloud servers.

  2. Lesion insertion in the projection domain: Methods and initial results

    International Nuclear Information System (INIS)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia

    2015-01-01

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically

  3. Lesion insertion in the projection domain: Methods and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia, E-mail: mccollough.cynthia@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2015-12-15

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically

  4. Lesion insertion in the projection domain: Methods and initial results.

    Science.gov (United States)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia

    2015-12-01

    To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR

  5. Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain

    Science.gov (United States)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2017-02-01

    A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption-decryption scheme.

  6. Associations among adolescent risk behaviours and self-esteem in six domains.

    Science.gov (United States)

    Wild, Lauren G; Flisher, Alan J; Bhana, Arvin; Lombard, Carl

    2004-11-01

    This study investigated associations among adolescents' self-esteem in 6 domains (peers, school, family, sports/athletics, body image and global self-worth) and risk behaviours related to substance use, bullying, suicidality and sexuality. A multistage stratified sampling strategy was used to select a representative sample of 939 English-, Afrikaans- and Xhosa-speaking students in Grades 8 and 11 at public high schools in Cape Town, South Africa. Participants completed the multidimensional Self-Esteem Questionnaire (SEQ; DuBois, Felner, Brand, Phillips, & Lease, 1996) and a self-report questionnaire containing items about demographic characteristics and participation in a range of risk behaviours. It included questions about their use of tobacco, alcohol, cannabis, solvents and other substances, bullying, suicidal ideation and attempts, and risky sexual behaviour. Data was analysed using a series of logistic regression models, with the estimation of model parameters being done through generalised estimation equations. Scores on each self-esteem scale were significantly associated with at least one risk behaviour in male and female adolescents after controlling for the sampling strategy, grade and race. However, specific self-esteem domains were differentially related to particular risk behaviours. After taking the correlations between the self-esteem scales into account, low self-esteem in the family and school contexts and high self-esteem in the peer domain were significantly independently associated with multiple risk behaviours in adolescents of both sexes. Low body-image self-esteem and global self-worth were also uniquely associated with risk behaviours in girls, but not in boys. Overall, the findings suggest that interventions that aim to protect adolescents from engaging in risk behaviours by increasing their self-esteem are likely to be most effective and cost-efficient if they are aimed at the family and school domains.

  7. Corporate Image and Public Health: An Analysis of the Philip Morris, Kraft, and Nestlé Websites

    Science.gov (United States)

    SMITH, ELIZABETH

    2012-01-01

    Companies need to maintain a good reputation to do business; however, companies in the infant formula, tobacco, and processed food industries have been identified as promoting disease. Such companies use their websites as a means of promulgating a positive public image, thereby potentially reducing the effectiveness of public health campaigns against the problems they perpetuate. The author examined documents from the websites of Philip Morris, Kraft, and Nestlé for issue framing and analyzed them using Benoit’s typology of corporate image repair strategies. All three companies defined the problems they were addressing strategically, minimizing their own responsibility and the consequences of their actions. They proposed solutions that were actions to be taken by others. They also associated themselves with public health organizations. Health advocates should recognize industry attempts to use relationships with health organizations as strategic image repair and reject industry efforts to position themselves as stakeholders in public health problems. Denormalizing industries that are disease vectors, not just their products, may be critical in realizing positive change. PMID:22420639

  8. Quantum Image Filtering in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    MANTA, V. I.

    2013-08-01

    Full Text Available In this paper we address the emerging field of Quantum Image Processing. We investigate the use of quantum computing systems to represent and manipulate images. In particular, we consider the basic task of image filtering. We prove that a quantum version for this operation can be achieved, even though the quantum convolution of two sequences is physically impossible. In our approach we use the principle of the quantum oracle to implement the filter function. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on grayscale images. There are important differences between the classical and the quantum implementations for image filtering. We analyze these differences and show that the major advantage of the quantum approach lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  9. Single-photon imaging

    International Nuclear Information System (INIS)

    Seitz, Peter; Theuwissen, Albert J.P.

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist's view from different domains to the forthcoming ''single-photon imaging'' revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields. (orig.)

  10. Application of homomorphism to secure image sharing

    Science.gov (United States)

    Islam, Naveed; Puech, William; Hayat, Khizar; Brouzet, Robert

    2011-09-01

    In this paper, we present a new approach for sharing images between l players by exploiting the additive and multiplicative homomorphic properties of two well-known public key cryptosystems, i.e. RSA and Paillier. Contrary to the traditional schemes, the proposed approach employs secret sharing in a way that limits the influence of the dealer over the protocol and allows each player to participate with the help of his key-image. With the proposed approach, during the encryption step, each player encrypts his own key-image using the dealer's public key. The dealer encrypts the secret-to-be-shared image with the same public key and then, the l encrypted key-images plus the encrypted to-be shared image are multiplied homomorphically to get another encrypted image. After this step, the dealer can safely get a scrambled image which corresponds to the addition or multiplication of the l + 1 original images ( l key-images plus the secret image) because of the additive homomorphic property of the Paillier algorithm or multiplicative homomorphic property of the RSA algorithm. When the l players want to extract the secret image, they do not need to use keys and the dealer has no role. Indeed, with our approach, to extract the secret image, the l players need only to subtract their own key-image with no specific order from the scrambled image. Thus, the proposed approach provides an opportunity to use operators like multiplication on encrypted images for the development of a secure privacy preserving protocol in the image domain. We show that it is still possible to extract a visible version of the secret image with only l-1 key-images (when one key-image is missing) or when the l key-images used for the extraction are different from the l original key-images due to a lossy compression for example. Experimental results and security analysis verify and prove that the proposed approach is secure from cryptographic viewpoint.

  11. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  12. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2017-10-01

    Full Text Available Precise azimuth-variant motion compensation (MOCO is an essential and difficult task for high-resolution synthetic aperture radar (SAR imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA, have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

  13. Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization.

    Science.gov (United States)

    Liao, Shu; Gao, Yaozong; Shi, Yinghuan; Yousuf, Ambereen; Karademir, Ibrahim; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Automatic prostate segmentation in MR images plays an important role in prostate cancer diagnosis. However, there are two main challenges: (1) Large inter-subject prostate shape variations; (2) Inhomogeneous prostate appearance. To address these challenges, we propose a new hierarchical prostate MR segmentation method, with the main contributions lying in the following aspects: First, the most salient features are learnt from atlases based on a subclass discriminant analysis (SDA) method, which aims to find a discriminant feature subspace by simultaneously maximizing the inter-class distance and minimizing the intra-class variations. The projected features, instead of only voxel-wise intensity, will be served as anatomical signature of each voxel. Second, based on the projected features, a new multi-atlases sparse label fusion framework is proposed to estimate the prostate likelihood of each voxel in the target image from the coarse level. Third, a domain-specific semi-supervised manifold regularization method is proposed to incorporate the most reliable patient-specific information identified by the prostate likelihood map to refine the segmentation result from the fine level. Our method is evaluated on a T2 weighted prostate MR image dataset consisting of 66 patients and compared with two state-of-the-art segmentation methods. Experimental results show that our method consistently achieves the highest segmentation accuracies than other methods under comparison.

  14. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  15. Time domain localization technique with sparsity constraint for imaging acoustic sources

    Science.gov (United States)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  16. RESEARCH ON TOURISM DESTINATIONS MARKETING FROM THE PUBLIC RELATIONS’ PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Gabriela ARIONESEI

    2012-12-01

    Full Text Available Nowadays, tourism destinations are more and more determined to build a unique and competitive identity and image in consumers’ minds. Even though the marketing of tourism destinations has been awarded an intended purpose, in practice there is a lack of steadiness, sometimes an unexplained deficiency of empirical academic research. In some countries, many without "a tradition in tourism", building a marketing strategy for travel destinations is based on artificial and without substance images/perceptions of real and potential tourists. The paper describes the role of marketing in the domain of tourism, emphasizing the importance of public relations in the promotion process of the region of Bucovina.

  17. Structural matching of ferroelectric domains and associated distortion in potassium titanyl phosphate crystals

    CERN Document Server

    Pernot-Rejmankova, P; Cloetens, P; Lyford, T; Baruchel, J

    2003-01-01

    The surface deformation and atomic-level distortions associated with crystal structural matching at ferroelectric inversion domain walls are investigated in periodically poled potassium titanyl phosphate (KTP) crystals. A deformation, of the order of 10 sup - sup 8 m in scale and having the periodicity of the domains, is observed at the surfaces by optical interferometry. It is discussed in terms of the piezoelectric effect. The matching of the crystal structures at the domain walls is studied by combining the hard x-ray Fresnel phase-imaging technique with Bragg diffraction imaging methods ('Bragg-Fresnel imaging') and using synchrotron radiation. Quantitative analysis of the contrast of the Bragg-Fresnel images recorded as a function of the propagation distance is demonstrated to allow the determination of how the domains are matched at the atomic (unit cell) level, even though the spatial resolution of the images is on the scale of micrometres. The atom P(1) is determined as the linking atom for connecting...

  18. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    Energy Technology Data Exchange (ETDEWEB)

    Claypool, John E.; Rogers, Scott [AECOM, Denver, Colorado, 80202 (United States)

    2012-07-01

    their clients. When it comes to the public domain, Federal government agencies are spearheading the development of software tools to measure and report emissions of air pollutants (e.g., carbon dioxide, other greenhouse gases, criteria air pollutants); consumption of energy, water and natural resources; accident and safety risks; project costs and other economic metrics. Most of the tools developed for the Government are available to environmental practitioners without charge, so they are growing in usage and popularity. The key features and metrics calculated by the available public-domain tools for measuring the sustainability of environmental remediation projects share some commonalities but there are differences amongst the tools. The SiteWise{sup TM} sustainability tool developed for the Navy and US Army will be compared with the Sustainable Remediation Tool (SRT{sup TM}) developed for the US Air Force (USAF). In addition, the USAF's Clean Solar and Wind Energy in Environmental Programs (CleanSWEEP), a soon-to-be-released tool for evaluating the economic feasibility of utilizing renewal energy for powering remediation systems will be described in the paper. (authors)

  19. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  20. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection

    Science.gov (United States)

    Sibai, Mira; Fisher, Carl; Veilleux, Israel; Elliott, Jonathan T.; Leblond, Frederic; Roberts, David W.; Wilson, Brian C.

    2017-07-01

    5-Aminolevelunic acid-induced protoporphyrin IX (PpIX) fluorescence-guided resection (FGR) enables maximum safe resection of glioma by providing real-time tumor contrast. However, the subjective visual assessment and the variable intrinsic optical attenuation of tissue limit this technique to reliably delineating only high-grade tumors that display strong fluorescence. We have previously shown, using a fiber-optic probe, that quantitative assessment using noninvasive point spectroscopic measurements of the absolute PpIX concentration in tissue further improves the accuracy of FGR, extending it to surgically curable low-grade glioma. More recently, we have shown that implementing spatial frequency domain imaging with a fluorescent-light transport model enables recovery of two-dimensional images of [PpIX], alleviating the need for time-consuming point sampling of the brain surface. We present first results of this technique modified for in vivo imaging on an RG2 rat brain tumor model. Despite the moderate errors in retrieving the absorption and reduced scattering coefficients in the subdiffusive regime of 14% and 19%, respectively, the recovered [PpIX] maps agree within 10% of the point [PpIX] values measured by the fiber-optic probe, validating its potential as an extension or an alternative to point sampling during glioma resection.

  1. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    Science.gov (United States)

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  2. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu

    2014-01-01

    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  3. Image segmentation-based robust feature extraction for color image watermarking

    Science.gov (United States)

    Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen

    2018-04-01

    This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.

  4. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    Science.gov (United States)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  5. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model.

    Science.gov (United States)

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J; Roblyer, Darren

    2016-10-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.

  6. Image encryption based on nonlinear encryption system and public-key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Chi, Yingying

    2015-03-01

    Recently, optical asymmetric cryptosystem (OACS) has became the focus of discussion and concern of researchers. Some researchers pointed out that OACS was not tenable because of misunderstanding the concept of asymmetric cryptosystem (ACS). We propose an improved cryptosystem using RSA public-key algorithm based on existing OACS and the new system conforms to the basic agreement of public key cryptosystem. At the beginning of the encryption process, the system will produce an independent phase matrix and allocate the input image, which also conforms to one-time pad cryptosystem. The simulation results show that the validity of the improved cryptosystem and the high robustness against attack scheme using phase retrieval technique.

  7. Retrieval Architecture with Classified Query for Content Based Image Recognition

    Directory of Open Access Journals (Sweden)

    Rik Das

    2016-01-01

    Full Text Available The consumer behavior has been observed to be largely influenced by image data with increasing familiarity of smart phones and World Wide Web. Traditional technique of browsing through product varieties in the Internet with text keywords has been gradually replaced by the easy accessible image data. The importance of image data has portrayed a steady growth in application orientation for business domain with the advent of different image capturing devices and social media. The paper has described a methodology of feature extraction by image binarization technique for enhancing identification and retrieval of information using content based image recognition. The proposed algorithm was tested on two public datasets, namely, Wang dataset and Oliva and Torralba (OT-Scene dataset with 3688 images on the whole. It has outclassed the state-of-the-art techniques in performance measure and has shown statistical significance.

  8. Assessing water availability over peninsular Malaysia using public domain satellite data products

    International Nuclear Information System (INIS)

    Ali, M I; Hashim, M; Zin, H S M

    2014-01-01

    Water availability monitoring is an essential task for water resource sustainability and security. In this paper, the assessment of satellite remote sensing technique for determining water availability is reported. The water-balance analysis is used to compute the spatio-temporal water availability with main inputs; the precipitation and actual evapotranspiration rate (AET), both fully derived from public-domain satellite products of Tropical Rainfall Measurement Mission (TRMM) and MODIS, respectively. Both these satellite products were first subjected to calibration to suit corresponding selected local precipitation and AET samples. Multi-temporal data sets acquired 2000-2010 were used in this study. The results of study, indicated strong agreement of monthly water availability with the basin flow rate (r 2 = 0.5, p < 0.001). Similar agreements were also noted between the estimated annual average water availability with the in-situ measurement. It is therefore concluded that the method devised in this study provide a new alternative for water availability mapping over large area, hence offers the only timely and cost-effective method apart from providing comprehensive spatio-temporal patterns, crucial in water resource planning to ensure water security

  9. Do the SRS-22 self-image and mental health domain scores reflect the degree of asymmetry of the back in adolescent idiopathic scoliosis?

    Science.gov (United States)

    Cheshire, James; Gardner, Adrian; Berryman, Fiona; Pynsent, Paul

    2017-01-01

    Patient-reported outcomes are becoming increasingly recognised in the management of patients with adolescent idiopathic scoliosis (AIS). Integrated Shape Imaging System 2 (ISIS2) surface topography is a validated tool to assess AIS. Previous studies have failed to demonstrate strong correlations between AIS and patient-reported outcomes highlighting the need for additional objective surface parameters to define the deformities associated with AIS. The aim of this study was to examine whether the Scoliosis Research Society-22 (SRS-22) outcome questionnaire reflects the degree of measurable external asymmetry of the back in AIS and thus is a measure of patient outcome for external appearance. A total of 102 pre-operative AIS patients were identified retrospectively. Objective parameters were measured using ISIS2 surface topography. The associations between these parameters and the self-image and mental health domains of the SRS-22 questionnaire were investigated using correlation coefficients. All correlations between the parameters of asymmetry and SRS-22 self-image score were of weak strength. Similarly, all correlations between the parameters of asymmetry and SRS-22 mental health score were of weak strength. The SRS-22 mental health and self-image domains correlate poorly with external measures of deformity. This demonstrates that the assessment of mental health and self-image by the SRS-22 has little to do with external torso shape. Whilst the SRS-22 assesses the patient as a whole, it provides little information about objective measures of deformity over which a surgeon has control.

  10. EXPERIMENTAL STUDY OF FORMING A PROFESSIONAL IMAGE OF THE FUTURE PUBLIC RELATIONS SPECIALIST

    Directory of Open Access Journals (Sweden)

    Lydia Mikhailovna Semenova

    2013-11-01

    Full Text Available The article is devoted to the organization of research work on forming professional image of the future public relations specialist. The purposes of the work were to study components of students’ image, to test the concept of a professional image of the specialist, and also to process and evaluate the results. The author has presented three phases of experimental research: statement, formative and evaluative. As a result, a positive trend of forming a professional image was found. The conceptual model of forming a professional image of the future experts tested in the course of experiment has shown to be highly effective, while new methods of training (training, workshops, panel discussions, action games, etc. have substantially improved the level of development of a professional image. The results can be used in the training and retraining of specialists of higher education and people whose profession related to communications.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-48

  11. Factors Affecting Corporate Image from the Perspective of Distance Learning Students in Public Higher Education Institutions

    Science.gov (United States)

    da Costa, Fábio Reis; Pelissari, Anderson Soncini

    2016-01-01

    New information technologies enable different interactions in the educational environment, affecting how the image of educational institutions adopting distance-learning programmes is perceived. This article identifies factors affecting the perception of corporate image from the viewpoint of distance-learning students at public higher education…

  12. Gabor Analysis for Imaging

    DEFF Research Database (Denmark)

    Christensen, Ole; Feichtinger, Hans G.; Paukner, Stephan

    2015-01-01

    , it characterizes a function by its transform over phase space, which is the time–frequency plane (TF-plane) in a musical context or the location–wave-number domain in the context of image processing. Since the transition from the signal domain to the phase space domain introduces an enormous amount of data...... of the generalities relevant for an understanding of Gabor analysis of functions on Rd. We pay special attention to the case d = 2, which is the most important case for image processing and image analysis applications. The chapter is organized as follows. Section 2 presents central tools from functional analysis......, the application of Gabor expansions to image representation is considered in Sect. 6....

  13. Image enhancement by using IDL for a mammographic x-ray image in Medical Physics Laboratory

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Md Saion Salikin; Wan Hazlinda Ismail; Norriza Mohd Isa; Azuhar Ripin

    2004-01-01

    Digital image enhancement technique can have a significant impact on the diagnostic quality of a radiographic image. The main aim of image enhancement is to process the image so that the enhanced image is clearer and more useful for specific application. There are three types of image enhancement namely noise reduction, edge enhancement and contrast enhancement. The objective of this project is to enhance the mammographic image by using Interactive Data Language (IDL) software in spatial and frequency domain by using various methods. In spatial domain method, direct manipulation of pixel in an image is used whereas, in frequency domain method, modifying the spectral component or Fourier Transform of an image is used In order to obtain the good quality mammographic image, breast phantom Model 12A with 4.0 cm compressed thickness and Bennett Model DMF- 150 Mammography Machine with various kV and mA are employed. The results of enhanced image with selected technique by using IDL are presented in this paper. (Author)

  14. Imaging vibration of the cochlear partition of an excised guinea pig cochlea using phase-sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Choudhury, Niloy; Zeng, Yaguang; Fridberger, Anders; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.; Wang, Ruikang K.

    2011-03-01

    Studying the sound stimulated vibrations of various membranes that form the complex structure of the organ of Corti in the cochlea of the inner ear is essential for understanding how the travelling sound wave of the basilar membrane couples its energy to the organ structures. In this paper we report the feasibility of using phase-sensitive Fourier domain optical coherence tomography (FD-OCT) to image the vibration of various micro-structures of the cochlea at the same time. An excised cochlea of a guinea pig was stimulated using sounds at various frequencies and vibration image was obtained. When measuring the apex area, vibration signal from different turns, which have different best response frequencies are obtained in the same image. The method has the potential to measure the response from a much wider region of the cochlea than any other currently used method. The noise floor for vibration image for the system at 200 Hz was ~0.3nm.

  15. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  16. Assuring image authenticity within a data grid using lossless digital signature embedding and a HIPAA-compliant auditing system

    Science.gov (United States)

    Lee, Jasper C.; Ma, Kevin C.; Liu, Brent J.

    2008-03-01

    A Data Grid for medical images has been developed at the Image Processing and Informatics Laboratory, USC to provide distribution and fault-tolerant storage of medical imaging studies across Internet2 and public domain. Although back-up policies and grid certificates guarantee privacy and authenticity of grid-access-points, there still lacks a method to guarantee the sensitive DICOM images have not been altered or corrupted during transmission across a public domain. This paper takes steps toward achieving full image transfer security within the Data Grid by utilizing DICOM image authentication and a HIPAA-compliant auditing system. The 3-D lossless digital signature embedding procedure involves a private 64 byte signature that is embedded into each original DICOM image volume, whereby on the receiving end the signature can to be extracted and verified following the DICOM transmission. This digital signature method has also been developed at the IPILab. The HIPAA-Compliant Auditing System (H-CAS) is required to monitor embedding and verification events, and allows monitoring of other grid activity as well. The H-CAS system federates the logs of transmission and authentication events at each grid-access-point and stores it into a HIPAA-compliant database. The auditing toolkit is installed at the local grid-access-point and utilizes Syslog [1], a client-server standard for log messaging over an IP network, to send messages to the H-CAS centralized database. By integrating digital image signatures and centralized logging capabilities, DICOM image integrity within the Medical Imaging and Informatics Data Grid can be monitored and guaranteed without loss to any image quality.

  17. Radiological emergencies due to postulated events of melted radioactive material mixed in steel reaching public domain

    International Nuclear Information System (INIS)

    Meena, T.R.; Anoj Kumar; Patra, R.P.; Vikas; Patil, S.S.; Chatterjee, M.K.; Sharma, Ranjit; Murali, S.

    2014-01-01

    National level response mechanism is developed at emergency response centres of DAE (DAE-ERCs) at 22 different locations spread all over the country and National Disaster Response Forces with National Disaster Management Authority (NDMA). ERCs are equipped with radiation monitors, radionuclide identifinders, Personnel Radiation Dosimeters (PRD) with monitoring capabilities of the order of tens of nGy/h (μR/hr) above the radiation background at any suspected locations. Even if small amounts of radioactive material is smuggled and brought in some other form into public domain, ERCs are capable to detect, identify and segregate the radioactive material from any inactive scrap. DAE-ERCs have demonstrated their capability in source search, detection, identification and recovery during the radiological emergency at Mayapuri, New Delhi

  18. Radiological emergencies due to postulated events of melted radioactive material mixed in steel reaching public domain

    Energy Technology Data Exchange (ETDEWEB)

    Meena, T. R.; Kumar, Anoj; Patra, R. P.; Vikas,; Patil, S. S.; Chatterjee, M. K.; Sharma, Ranjit; Murali, S., E-mail: tejram@barc.gov.in [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    National level response mechanism is developed at emergency response centres of DAE (DAE-ERCs) at 22 different locations spread all over the country and National Disaster Response Forces with National Disaster Management Authority (NDMA). ERCs are equipped with radiation monitors, radionuclide identifinders, Personnel Radiation Dosimeters (PRD) with monitoring capabilities of the order of tens of nGy/h (μR/hr) above the radiation background at any suspected locations. Even if small amounts of radioactive material is smuggled and brought in some other form into public domain, ERCs are capable to detect, identify and segregate the radioactive material from any inactive scrap. DAE-ERCs have demonstrated their capability in source search, detection, identification and recovery during the radiological emergency at Mayapuri, New Delhi.

  19. Solute Dynamics and Imaging in the Tear Film on an Eye-shaped Domain

    Science.gov (United States)

    Braun, R. J.; Li, Longfei; Henshaw, William; Driscoll, Tobin; King-Smith, P. E.

    2015-11-01

    The concentration of ions in the tear film (osmolarity) is a key variable in understanding dry eye symptoms and disease, yet its global distribution is not available; direct measurements are restricted to a region near the temporal canthus. It has been suggested that imaging methods that use solutes such as fluorescein can be used as a proxy for estimating the osmolarity. The concentration of fluorescein is not measured directly either but the intensity as a function of concentration and thickness of the film is well established. We derived a mathematical model that couples multiple solutes and fluid dynamics within the tear film on a 2D eye-shaped domain. The model includes the physical effects of evaporation, surface tension, viscosity, ocular surface wettability, osmolarity, osmosis, fluorescence and tear fluid supply and drainage. We solved the governing system of coupled nonlinear PDEs using the Overture computational framework developed at LLNL, together with a hybrid time stepping scheme (using variable step BDF and RKC). Results of our numerical simulations provide new insight about the osmolarity distribution and its connection with images obtained in vivo over the whole ocular surface and in local regions of tear thinning due to evaporation and other effects. This work was supported in part by NSF grants 1022706 and 1412085, and NIH grant 1R01EY021794.

  20. High-capacity method for hiding data in the discrete cosine transform domain

    Science.gov (United States)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  1. Public Satisfaction And Quality Of Service Corner Driving License Forming Image Police

    Directory of Open Access Journals (Sweden)

    Asmara Indahingwati

    2017-03-01

    Full Text Available 46 sampling research taking care of people who are driving license (SIM in the police force aims to examine the relationship between service quality and satisfaction with the public image of the police institution. Data were collected through questionnaires and analyzed using the Likert model of multiple regression techniques. Results of hypothesis testing showed R = 0.619; F = 44.422; and p = 0.000 (p <0.05 showed that the quality of services and satisfaction of the people together influenced the image of the police. The coefficient of determination explains that the simultaneous quality of services and satisfaction of the people were able to contribute effectively to the image of the police amounted to 38.3%. The results of partial analysis shows that the relationship between service quality and image of the police has a value of p = 0.000 (p <5%, and r = 0.361, which means the quality of service to the image of the police institution is low. Partial assay analysis results between people's satisfaction with the image of the police obtained value of p = 0.000 (p <0.05; r = 0.322, which means people's satisfaction with the image of the police institutions have a significant positive correlation with the level of relationships is low

  2. The role of public relations for image creating in health services: a sample patient satisfaction survey.

    Science.gov (United States)

    Kirdar, YalçIn

    2007-01-01

    This study discusses the role of public relations for image creating in health services. Hospitals require public relations activities to distinguish them from competitors, provide bidirectional communication between the society and the hospital, and assist to create of a strong hospital image and culture. A satisfaction survey was conducted on 264 patients who have received health services at Maltepe University Hospital. The research focused on how the Hospital's examination, care, catering and physical services; doctor and nurse politeness towards patients and patient relatives, their attitudes and behaviors; examination, check-in, bedding and discharge operations; public relations activities in and out of the hospital were perceived. Another subject of the study was the degree of recommendation of patients who have been served by the hospital's health services to prospective patients seeking treatment.

  3. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    Science.gov (United States)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses

  4. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    International Nuclear Information System (INIS)

    Glukhov, S; Berestovoy, M; Nabiev, I; Sukhanova, A; Chames, P; Baty, D

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or 'nanobodies') conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD–sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis. (paper)

  5. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Science.gov (United States)

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD-sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  6. Software Image J to study soil pore distribution

    Directory of Open Access Journals (Sweden)

    Sabrina Passoni

    2014-04-01

    Full Text Available In the soil science, a direct method that allows the study of soil pore distribution is the bi-dimensional (2D digital image analysis. Such technique provides quantitative results of soil pore shape, number and size. The use of specific softwares for the treatment and processing of images allows a fast and efficient method to quantify the soil porous system. However, due to the high cost of commercial softwares, public ones can be an interesting alternative for soil structure analysis. The objective of this work was to evaluate the quality of data provided by the Image J software (public domain used to characterize the voids of two soils, characterized as Geric Ferralsol and Rhodic Ferralsol, from the southeast region of Brazil. The pore distribution analysis technique from impregnated soil blocks was utilized for this purpose. The 2D image acquisition was carried out by using a CCD camera coupled to a conventional optical microscope. After acquisition and treatment of images, they were processed and analyzed by the software Noesis Visilog 5.4® (chosen as the reference program and ImageJ. The parameters chosen to characterize the soil voids were: shape, number and pore size distribution. For both soils, the results obtained for the image total porosity (%, the total number of pores and the pore size distribution showed that the Image J is a suitable software to be applied in the characterization of the soil sample voids impregnated with resin.

  7. Web Syndication Approaches for Sharing Primary Data in "Small Science" Domains

    Directory of Open Access Journals (Sweden)

    Eric C Kansa

    2010-06-01

    Full Text Available In some areas of science, sophisticated web services and semantics underlie "cyberinfrastructure". However, in "small science" domains, especially in field sciences such as archaeology, conservation, and public health, datasets often resist standardization. Publishing data in the small sciences should embrace this diversity rather than attempt to corral research into "universal" (domain standards. A growing ecosystem of increasingly powerful Web syndication based approaches for sharing data on the public Web can offer a viable approach. Atom Feed based services can be used with scientific collections to identify and create linkages across different datasets, even across disciplinary boundaries without shared domain standards.

  8. Twin-Foucault imaging method

    Science.gov (United States)

    Harada, Ken

    2012-02-01

    A method of Lorentz electron microscopy, which enables observation two Foucault images simultaneously by using an electron biprism instead of an objective aperture, was developed. The electron biprism is installed between two electron beams deflected by 180° magnetic domains. Potential applied to the biprism deflects the two electron beams further, and two Foucault images with reversed contrast are then obtained in one visual field. The twin Foucault images are able to extract the magnetic domain structures and to reconstruct an ordinary electron micrograph. The developed Foucault method was demonstrated with a 180° domain structure of manganite La0.825Sr0.175MnO3.

  9. Cross-sectional analysis of ferroelectric domains in PZT capacitors via piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J S [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang City (China); Zeng, H Z [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Kholkin, A L [Department of Ceramic and Glass Engineering and CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)

    2007-11-21

    Ferroelectric domains have been investigated on the cross-section of Pb(Zr{sub 0.55}Ti{sub 0.45})O{sub 3} (PZT) thin film capacitors by scanning probe microscopy. The static domain images on the cross-section were obtained by the lateral piezoresponse force microscopy (LPFM) method, in which the ac voltage used to induce the converse piezoelectric effect was applied between the conductive tip and the bottom electrode. The polarization component normal to the substrate could be characterized via both d{sub 33} and d{sub 15} piezoelectric coefficients, which resulted in a high resolution of LPFM images. After a variable dc bias was applied between the top and the bottom electrodes, the variations of domain image on the cross-section were recorded by the LPFM immediately. Upon the application of low bias, new domain sites appeared near the PZT/Pt interface opposite to the initial polarization. Forward stretch of new domains was facilitated under the dc field approaching the coercive field E{sub c}. Under a very high field (about three times of the E{sub c}), the sidewise expansion of columnar domains was observed. However, the domains were only partially switched even though a very high field was applied. The observed domain growth process indicated a lower energy barrier for nucleation compared with that of domain wall motion. Possible reasons for the incomplete switching are the substantial influences of the interface and depolarization in thin film capacitors.

  10. Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu

    2017-05-01

    Full Text Available Ultra-high resolution (UHR radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB signals using a vector network analyzer (VNA. However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR imaging is used because it is applicable to several fields, including medical- and security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

  11. A Spatial Domain Quantum Watermarking Scheme

    International Nuclear Information System (INIS)

    Wei Zhan-Hong; Chen Xiu-Bo; Niu Xin-Xin; Yang Yi-Xian; Xu Shu-Jiang

    2016-01-01

    This paper presents a spatial domain quantum watermarking scheme. For a quantum watermarking scheme, a feasible quantum circuit is a key to achieve it. This paper gives a feasible quantum circuit for the presented scheme. In order to give the quantum circuit, a new quantum multi-control rotation gate, which can be achieved with quantum basic gates, is designed. With this quantum circuit, our scheme can arbitrarily control the embedding position of watermark images on carrier images with the aid of auxiliary qubits. Besides reversely acting the given quantum circuit, the paper gives another watermark extracting algorithm based on quantum measurements. Moreover, this paper also gives a new quantum image scrambling method and its quantum circuit. Differ from other quantum watermarking schemes, all given quantum circuits can be implemented with basic quantum gates. Moreover, the scheme is a spatial domain watermarking scheme, and is not based on any transform algorithm on quantum images. Meanwhile, it can make sure the watermark be secure even though the watermark has been found. With the given quantum circuit, this paper implements simulation experiments for the presented scheme. The experimental result shows that the scheme does well in the visual quality and the embedding capacity. (paper)

  12. Corporate Image of Public Higher Education Institutions: Relevant Factors to Distance Learning Students

    Science.gov (United States)

    da Costa, Fabio R.; Pelissari, Anderson S.; Gonzalez, Inayara V. D. P.

    2018-01-01

    Technological advances are generating a significant increase in the supply of distance learning (DL) courses via the Internet, increasing the importance of this type of education for the university's structure. This article identifies factors associated with perceptions of the public higher education institutions' image from the perspective of DL…

  13. Multimedia presentation of radiological image data using the internet

    International Nuclear Information System (INIS)

    Beier, J.; Sell, C.; Hosten, N.; Fleck, E.; Felix, R.

    1997-01-01

    Aim: Recent developments of the Internet (World Wide Web) allow the integration of audio, video, digital film sequences, and three-dimensional data. The applicability of these innovations for medical documentation is demonstrated. Methods: Our existing software for medical image processing and 3D reconstruction was extended to provide images, film sequences, and complex 3D models in an Internet-compatible data format. Results: The multimedia results of the image processing were integrated into Internet documents. Specialized programs are no longer necessary for visualization. The Internet software allows for user-friendly handling and interactive presentation of the 2D and 3D data. Conclusions: The Internet offers public-domain software for display of images, audio/video, and 3D data. Thus, the tools of the Internet represent an ideal basis for local hospital information systems, computer-aided medical education, and teleconferencing. (orig.) [de

  14. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia)

    Science.gov (United States)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.

    2017-12-01

    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  15. Wall Painting Investigation by Means of Non-invasive Terahertz Time-Domain Imaging (THz-TDI): Inspection of Subsurface Structures Buried in Historical Plasters

    Science.gov (United States)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2016-02-01

    Characterization of subsurface features of wall paintings is important in conservation and technical art history as well as in building archaeology and architecture fields. In this study, an area of the apsidal wall painting of Nebbelunde Church (Rødby, Denmark) has been investigated by means of terahertz time-domain imaging (THz-TDI). Subsurface structures have been detected at different depths inside the lime-based plaster of the wall painting until approximately 1 cm from the surface. The surface morphology of the buried structures has been 3D imaged in detail, providing a substantial contribution in their characterization.

  16. Bregmanized Domain Decomposition for Image Restoration

    KAUST Repository

    Langer, Andreas; Osher, Stanley; Schö nlieb, Carola-Bibiane

    2012-01-01

    Computational problems of large-scale data are gaining attention recently due to better hardware and hence, higher dimensionality of images and data sets acquired in applications. In the last couple of years non-smooth minimization problems

  17. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Science.gov (United States)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  18. [The professional self and hetero image among public health nurses: a study of social representations].

    Science.gov (United States)

    Gomes, Antonio Marcos Tosoli; Oliveira, Denize Cristina de

    2005-01-01

    The object of this study is the professional image constructed by public health nurses and the objective is to describe and analyze the professional images present in the representations of nurses who deliver direct care to this clientele. The theoretical-methodological reference framework adopted was Social Representations Theory. A qualitative study was developed in Petrópolis-Rio de Janeiro/Brazil, through in-depth interviews with 30 nurses. Alceste 4.5 software was used for the lexical analysis. The results reveal the existence of a professional self-image with three groups of meanings: being a reference for the team, the non-specific image and the image of plaster; and a professional hetero-image with four groups of meanings: administrator, invisible, positive image and superposition. The study of the professional image reflects the construction of the nurse's identity in itself and emphasizes Social Representations Theory as a useful tool for nursing research development.

  19. Ferroelastic domain switching in tetragonal zirconia

    International Nuclear Information System (INIS)

    Chan, C.J.; Ruhle, M.; Jue, J.F.; Virkar, A.V.

    1991-01-01

    Ferroelastic domain switching is one of the possible toughening mechanisms in ceramic materials. Microstructural evidence of domain reorientation (switching) in polydomain tetragonal zirconia single crystals is observed upon the application of a unidirectional compressive stress. Dark field imaging of the three (112) tetragonal twin variants in a [111] zone indicates that two sets of twin variants grow at the expense of the third set upon application of uniaxial compression. The diminishing variant is the one with its c axis parallel to the compression axis. Indentation experiments on uniaxially compressed samples show an anisotropy in crack length. Crack propogates more easily along the loading direction. In this paper construction for the orientation relationship of domains and their twin boundaries is presented

  20. Atomic force microscopy on domains in biological model membranes

    NARCIS (Netherlands)

    Rinia, H.A.

    2001-01-01

    This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force

  1. Iterative image-domain ring artifact removal in cone-beam CT

    Science.gov (United States)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  2. Opening of energy markets: consequences on the missions of public utility and of security of supplies in the domain of electric power and gas

    International Nuclear Information System (INIS)

    2001-01-01

    This conference was jointly organized by the International Energy Agency (IEA) and the French ministry of economy, finances, and industry (general direction of energy and raw materials, DGEMP). It was organized in 6 sessions dealing with: 1 - the public utility in the domain of energy: definition of the public utility missions, experience feedback about liberalized markets, public utility obligation and pricing regulation; 2 - the new US energy policy and the lessons learnt from the California crisis; 3 - the security of electric power supplies: concepts of security of supplies, opinion of operators, security of power supplies versus liberalization and investments; 4 - security of gas supplies: markets liberalization and investments, long-term contracts and security of supplies; 5 - debate: how to integrate the objectives of public utility and of security of supplies in a competing market; 6 - conclusions. This document brings together the available talks and transparencies presented at the conference. (J.S.)

  3. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Garg, Seema [University of North Carolina; Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME through the presence of exudation. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publicly available datasets are employed to evaluate our algorithm. We are able to achieve diagnosis performance comparable to retina experts on the MESSIDOR (an independently labelled dataset with 1200 images) with cross-dataset testing (e.g., the classifier was trained on an independent dataset and tested on MESSIDOR). Our algorithm obtained an AUC between 0.88 and 0.94 depending on the dataset/features used. Additionally, it does not need ground truth at lesion level to reject false positives and is computationally efficient, as it generates a diagnosis on an average of 4.4 s (9.3 s, considering the optic nerve localization) per image on an 2.6 GHz platform with an unoptimized Matlab implementation.

  4. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Men, Shaojie; Wang, Ruikang K.

    2017-11-01

    There is an increasing demand for imaging tools in clinical dermatology that can perform in vivo wide-field morphological and functional examination from surface to deep tissue regions at various skin sites of the human body. The conventional spectral-domain optical coherence tomography-based angiography (SD-OCTA) system is difficult to meet these requirements due to its fundamental limitations of the sensitivity roll-off, imaging range as well as imaging speed. To mitigate these issues, we demonstrate a swept-source OCTA (SS-OCTA) system by employing a swept source based on a vertical cavity surface-emitting laser. A series of comparisons between SS-OCTA and SD-OCTA are conducted. Benefiting from the high system sensitivity, long imaging range, and superior roll-off performance, the SS-OCTA system is demonstrated with better performance in imaging human skin than the SD-OCTA system. We show that the SS-OCTA permits remarkable deep visualization of both structure and vasculature (up to ˜2 mm penetration) with wide field of view capability (up to 18×18 mm2), enabling a more comprehensive assessment of the morphological features as well as functional blood vessel networks from the superficial epidermal to deep dermal layers. It is expected that the advantages of the SS-OCTA system will provide a ground for clinical translation, benefiting the existing dermatological practice.

  5. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    Science.gov (United States)

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  6. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  7. Interaction domains in high-performance NdFeB thick films

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)], E-mail: t.woodcock@ifw-dresden.de; Khlopkov, K. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Walther, A. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); CEA Leti - MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Dempsey, N.M.; Givord, D. [Insitut Neel, CNRS-UJF, 25 avenue de Martyrs, 38042 Grenoble (France); Schultz, L.; Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2009-05-15

    The magnetic domain structure in sputtered NdFeB thick films has been imaged by magnetic force microscopy. The local texture of the films was investigated by electron backscatter diffraction. The average misorientation of the grains was shown to decrease with increasing substrate temperature during deposition. Interaction domains were observed and are discussed with reference (i) to the sample grain size compared to the single domain particle size and (ii) to sample texture.

  8. Images and symbols of nuclear energy and environment in Argentine public opinion: the need of a new strategy

    International Nuclear Information System (INIS)

    Chahab, Martin

    2006-01-01

    The need to create in the Argentine public opinion new positives symbols and images on nuclear energy and on the benefits of its peaceful applications, is al present so important as the development of new technical tools to improve the nuclear industry. These positives symbols and imagines on nuclear energy must be created in the framework of a joint strategy of all the country's nuclear institutions as well as other public organizations, in view of the new nuclear plan recently announced. This joint strategy will permit to create not only the new positives symbols and images in the public opinion, but also to obtain the support of the mass media and new spaces for negotiation in the national, provincial and municipal levels. (author) [es

  9. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    Science.gov (United States)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  10. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  11. Climiate Resilience Screening Index and Domain Scores

    Data.gov (United States)

    U.S. Environmental Protection Agency — CRSI and related-domain scores for all 50 states and 3135 counties in the U.S. This dataset is not publicly accessible because: They are already available within the...

  12. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  13. prepare_taxa_charts.py: A Python program to automate generation of publication ready taxonomic pie chart images from QIIME.

    Science.gov (United States)

    Lakhujani, Vijay; Badapanda, Chandan

    2017-06-01

    QIIME (Quantitative Insights Into Microbial Ecology) is one of the most popular open-source bioinformatics suite for performing metagenome, 16S rRNA amplicon and Internal Transcribed Spacer (ITS) data analysis. Although, it is very comprehensive and powerful tool, it lacks a method to provide publication ready taxonomic pie charts. The script plot_taxa_summary . py bundled with QIIME generate a html file and a folder containing taxonomic pie chart and legend as separate images. The images have randomly generated alphanumeric names. Therefore, it is difficult to associate the pie chart with the legend and the corresponding sample identifier. Even if the option to have the legend within the html file is selected while executing plot_taxa_summary . py , it is very tedious to crop a complete image (having both the pie chart and the legend) due to unequal image sizes. It requires a lot of time to manually prepare the pie charts for multiple samples for publication purpose. Moreover, there are chances of error while identifying the pie chart and legend pair due to random alphanumeric names of the images. To bypass all these bottlenecks and make this process efficient, we have developed a python based program, prepare_taxa_charts . py , to automate the renaming, cropping and merging of taxonomic pie chart and corresponding legend image into a single, good quality publication ready image. This program not only augments the functionality of plot_taxa_summary . py but is also very fast in terms of CPU time and user friendly.

  14. MIVIS image geocoding experience on merging position attitude system data and public domain GPS stream (ASI-GeoDAF

    Directory of Open Access Journals (Sweden)

    S. Pignatti

    2006-06-01

    Full Text Available The use of airborne scanners involves geo-referencing problems, which are difficult because of the need to know the exact platform position and attitude for each scan line. The errors of the onboard navigation system are normally corrected using ground control point on the image. This post-processing correction procedure is too long in case of multiple flight campaigns, and besides it implies the need to have available 1:10000 orthophotoimages or maps in digital format. To optimize the above procedure a new method to correct MIVIS navigational data in the post-processing phase has been implemented. The procedure takes into consideration the GPS stream in Rinex format of common knowledge and findable on the web, acquired at the ground stations of the Geodetic Data Archiving Facilities provided by ASI. The application of this correction entails the assumption that the environmental variables affecting both onboard and geodetic GPS equally affect the position measurements. The airborne data correction was carried out merging the two data sets (onboard and ground station GPS to achieve a more precise aircraft trajectory. The present study compares the geo-coded images obtained by means of the two post-processing methods.

  15. Dynamics of one-dimensional domain walls interacting with disorder potential

    International Nuclear Information System (INIS)

    Krusin-Elbaum, L.; Shibauchi, T.; Argyle, B.; Gignac, L.; Zabel, T.; Weller, D.

    2001-01-01

    Dynamics of 1D perpendicular-anisotropy domain walls in a few monolayer-thin Co films is imaged by polar Kerr microscopy. When domain walls, driven by a square-pulsed magnetic fields, travel through a random disordered potential landscape, they display Gaussian-distributed roughness characteristic of this landscape. Average velocity of the domain wall driven by a constant magnetic field strongly depends on a strain field which modifies (increases) the elastic energy of the wall and reduces the wall velocity

  16. Polar and chemical domain structures of lead scandium tantalate (PST)

    International Nuclear Information System (INIS)

    Peng, J.L.; Bursill, L.A.

    1993-01-01

    The local structure of chemical and polar domains and domain walls is determined directly by atomic resolution high-resolution electron microscopy. Thus the Pb, Ta and Sc atomic positions may be located in the images of very thin crystals. Furthermore the Pb cation displacements away from the ideal perovskite A-site have been measured directly for the first time. Local variations in polarization direction may be mapped directly off the images, provided certain electron optical conditions are met. The results are relevant to recent theories of polar-glass behaviour in relaxor-type complex oxide functional ceramics. 17 refs., 9 figs

  17. Optical image-hiding method with false information disclosure based on the interference principle and partial-phase-truncation in the fractional Fourier domain

    International Nuclear Information System (INIS)

    Dai, Chaoqing; Wang, Xiaogang; Zhou, Guoquan; Chen, Junlang

    2014-01-01

    An image-hiding method based on the optical interference principle and partial-phase-truncation in the fractional Fourier domain is proposed. The primary image is converted into three phase-only masks (POMs) using an analytical algorithm involved partial-phase-truncation and a fast random pixel exchange process. A procedure of a fake silhouette for a decryption key is suggested to reinforce the encryption and give a hint of the position of the key. The fractional orders of FrFT effectively enhance the security of the system. In the decryption process, the POM with false information and the other two POMs are, respectively, placed in the input and fractional Fourier planes to recover the primary image. There are no unintended information disclosures and iterative computations involved in the proposed method. Simulation results are presented to verify the validity of the proposed approach. (letters)

  18. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    Science.gov (United States)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  19. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  20. Public-private partnership: between legal requirements and the real needs

    Directory of Open Access Journals (Sweden)

    Sergiu CORNEA

    2012-12-01

    Full Text Available The overview image of the public-private partnership is represented by cooperation between the public and private actors to carry out the activities of public interest, cooperation based on the capacities of each partner to allocate properly the resources, risks and benefits. The main elements of the institutional framework are established by the national legislation. The traditional domains for the development of the partnerships are necessary at the national level and for infrastructure. The increasing tendency toward decentralization of the provision of services introduces a lot of public-private opportunities like health, education and other social services in the non-traditional areas, as well. The study analysis presents the idea of partnership as a means of solving the problem of more and more limited resources which are at the disposal of public administration. The quality of legal framework and government policies for the development of partnerships gives to this way of cooperation, either the quality of strategy in the public policies, which purpose is to obtain greater benefits by combining the resources of those two sectors, or the limited solution to the re-launch of the economy and to meet the general interest.

  1. Common-image gathers using the excitation amplitude imaging condition

    KAUST Repository

    Kalita, Mahesh

    2016-06-06

    Common-image gathers (CIGs) are extensively used in migration velocity analysis. Any defocused events in the subsurface offset domain or equivalently nonflat events in angle-domain CIGs are accounted for revising the migration velocities. However, CIGs from wave-equation methods such as reverse time migration are often expensive to compute, especially in 3D. Using the excitation amplitude imaging condition that simplifies the forward-propagated source wavefield, we have managed to extract extended images for space and time lags in conjunction with prestack reverse time migration. The extended images tend to be cleaner, and the memory cost/disk storage is extensively reduced because we do not need to store the source wavefield. In addition, by avoiding the crosscorrelation calculation, we reduce the computational cost. These features are demonstrated on a linear v(z) model, a two-layer velocity model, and the Marmousi model.

  2. New tools for digital medical image processing implemented in DIP software

    International Nuclear Information System (INIS)

    Araujo, Erica A.C.; Santana, Ivan E.; Lima, Fernando R.A.; Viera, Jose W.

    2011-01-01

    The anthropomorphic models used in computational dosimetry, also called phantoms, are mostly built from stacks of images CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) obtained from scans of patients or volunteers. The construction of voxel phantoms requires computational processing for transforming image formats, dimensional image compression (2D) to form three-dimensional arrays (3D), quantization, resampling, enhancement, restoration and image segmentation, among others. Hardly the computational dosimetry researcher finds all these skills into a single software and often it results in a decreased development of their research or inadequate use of alternative tools. The need to integrate the various tasks of the original digital image processing to obtain an image that can be used in a computational model of exposure led to the development of software DIP (Digital Image Processing). This software reads, writes and edits binary files containing the 3D matrix corresponding to a stack of cross-sectional images of a given geometry that can be a human body or other volume of interest. It can also read any type of computer image and do conversions. When the task involves only one output image, it is saved in the JPEG standard Windows. When it involves a stack of images, the binary output file is called SGI (Interactive Graphic Simulations, a symbol already used in other publications of the Research Group in Numerical Dosimetry). The following paper presents the third version of the DIP software and emphasizes the new tools it implemented. Currently it has the menus Basics, Views, Spatial Domain, Frequency Domain, Segmentations and Study. Each menu contains items and subitems with features that generally require an image as input and produce an image or an attribute in the output. (author)

  3. Imaging retinal degeneration in mice by combining Fourier domain optical coherence tomography and fluorescent scanning laser ophthalmoscopy

    Science.gov (United States)

    Hossein-Javaheri, Nima; Molday, Laurie L.; Xu, Jing; Molday, Robert S.; Sarunic, Marinko V.

    2009-02-01

    Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. Optical Coherence Tomography (OCT) is emerging as the preferred technique for non-contact sub-surface depth-resolved imaging of the retina. The high resolution cross sectional images acquired in vivo by OCT can be compared to histology to visually delineate the retinal layers. The recent demonstration of the significant sensitivity increase obtained through use of Fourier domain (FD) detection with OCT has been used to facilitate high speed scanning for volumetric reconstruction of the retina in software. The images acquired by OCT are purely structural, relying on refractive index differences in the tissue for contrast, and do not provide information on the molecular content of the sample. We have constructed a FDOCT prototype and combined it with a fluorescent Scanning Laser Ophthalmoscope (fSLO) to permit real time alignment of the field of view on the retina. The alignment of the FDOCT system to the specimen is crucial for the registration of measurements taken throughout longitudinal studies. In addition, fluorescence detection has been integrated with the SLO to enable the en face localization of a molecular contrast signal, which is important for retinal angiography, and also for detection of autofluorescence associated with some forms of retinal degeneration, for example autofluorescence lipofuscin accumulations are associated with Stargardt's Macular Dystrophy. The integrated FD OCT/fSLO system was investigated for imaging the retina of the mice in vivo.

  4. A Sociological Approach to Institutional Communication: The Public Image in Organizational Administration in Education

    Science.gov (United States)

    Serpa, Sandro

    2016-01-01

    Acknowledging that the external context visibly affects any organization, this investigation seeks to constitute a specific contribution to the study of the importance of public image in organizational administration. To that end, a collection and documentary analysis of news stories from the newspaper "O Fayalense on the Asylum for the…

  5. Contribution of Reflection Terahertz Time Domain-Imaging (THz-TDI) to Imaging Analysis of Artworks

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Y.

    Different kind s of artefacts (easel painting, panel paintings and Asian lacquerwares) have been scanned by THz - TDI and results have been compared with those obtained by others standard imaging techniques (x-ray radiography, cross sectional imaging, technical photography) .......Different kind s of artefacts (easel painting, panel paintings and Asian lacquerwares) have been scanned by THz - TDI and results have been compared with those obtained by others standard imaging techniques (x-ray radiography, cross sectional imaging, technical photography) ....

  6. Multisensor fusion in gastroenterology domain through video and echo endoscopic image combination: a challenge

    Science.gov (United States)

    Debon, Renaud; Le Guillou, Clara; Cauvin, Jean-Michel; Solaiman, Basel; Roux, Christian

    2001-08-01

    Medical domain makes intensive use of information fusion. In particular, the gastro-enterology is a discipline where physicians have the choice between several imagery modalities that offer complementary advantages. Among all existing systems, videoendoscopy (based on a CCD sensor) and echoendoscopy (based on an ultrasound sensor) are the most efficient. The use of each system corresponds to a given step in the physician diagnostic elaboration. Nowadays, several works aim to achieve automatic interpretation of videoendoscopic sequences. These systems can quantify color and superficial textures of the digestive tube. Unfortunately the relief information, which is important for the diagnostic, is very difficult to retrieve. On the other hand, some studies have proved that 3D information can be easily quantified using echoendoscopy image sequences. That is why the idea to combine these information, acquired from two very different points of view, can be considered as a real challenge for the medical image fusion topic. In this paper, after a review of actual works concerning numerical exploitation of videoendoscopy and echoendoscopy, the following question will be discussed: how can the use of complementary aspects of the different systems ease the automatic exploitation of videoendoscopy ? In a second time, we will evaluate the feasibility of the achievement of a realistic 3D reconstruction based both on information given by echoendoscopy (relief) and videoendoscopy (texture). Enumeration of potential applications of such a fusion system will then follow. Further discussions and perspectives will conclude this first study.

  7. Brand Revitalization: Penciptaan Brand Image Produk Green Sands Bebas Alkohol melalui Marketing Communication (Advertising dan Public Relation pada PT Multi Bintang Indonesia Tb

    Directory of Open Access Journals (Sweden)

    Cooky Tri Adhikara

    2011-05-01

    Full Text Available PT Multi Bintang Indonesia is a beverages production company, and one of its products are Green Sands. In early 2002, Green Sands revitalize to Green Sands Alcohol-Free and communicated through several promotional tools, including advertising and public relations. This study examines what brand image embedded on the consumers, and what is the level of influence of advertising and public relations toward the creation of brand image of products Green Sands Alcohol-Free. The research methods used in this study is test Cochran, multiple regression, and cobwebs. The result, brand image that is embedded in consumer brand is cool and trendy and unique and refreshing taste. Advertising and public relations by creating a brand image is only 7.2%, the rest from other factors. Brand image is embedded in the customers had not yet reached the desired scale of the company. 

  8. Design and Implementation of a Novel Compatible Encoding Scheme in the Time Domain for Image Sensor Communication

    Directory of Open Access Journals (Sweden)

    Trang Nguyen

    2016-05-01

    Full Text Available This paper presents a modulation scheme in the time domain based on On-Off-Keying and proposes various compatible supports for different types of image sensors. The content of this article is a sub-proposal to the IEEE 802.15.7r1 Task Group (TG7r1 aimed at Optical Wireless Communication (OWC using an image sensor as the receiver. The compatibility support is indispensable for Image Sensor Communications (ISC because the rolling shutter image sensors currently available have different frame rates, shutter speeds, sampling rates, and resolutions. However, focusing on unidirectional communications (i.e., data broadcasting, beacons, an asynchronous communication prototype is also discussed in the paper. Due to the physical limitations associated with typical image sensors (including low and varying frame rates, long exposures, and low shutter speeds, the link speed performance is critically considered. Based on the practical measurement of camera response to modulated light, an operating frequency range is suggested along with the similar system architecture, decoding procedure, and algorithms. A significant feature of our novel data frame structure is that it can support both typical frame rate cameras (in the oversampling mode as well as very low frame rate cameras (in the error detection mode for a camera whose frame rate is lower than the transmission packet rate. A high frame rate camera, i.e., no less than 20 fps, is supported in an oversampling mode in which a majority voting scheme for decoding data is applied. A low frame rate camera, i.e., when the frame rate drops to less than 20 fps at some certain time, is supported by an error detection mode in which any missing data sub-packet is detected in decoding and later corrected by external code. Numerical results and valuable analysis are also included to indicate the capability of the proposed schemes.

  9. Comparison of peripapillary choroidal thickness measurements via spectral domain optical coherence tomography with and without enhanced depth imaging.

    Science.gov (United States)

    Ayyildiz, Onder; Kucukevcilioglu, Murat; Ozge, Gokhan; Koylu, Mehmet Talay; Ozgonul, Cem; Gokce, Gokcen; Mumcuoglu, Tarkan; Durukan, Ali Hakan; Mutlu, Fatih Mehmet

    2016-05-01

    To compare peripapillary choroidal thickness (PP-CT) measurements using a spectral domain optical coherence tomography (SD-OCT) device with and without enhanced depth imaging (EDI). Sixty healthy subjects aged from 18 to 40 years were included in this study. PP-CTs were measured in the right eyes by manual segmentation via SD-OCT both with and without EDI. The intraclass correlation coefficient (ICC) for each technique and comparison of PP-CT measurements between two techniques were evaluated. The correlation between retinal nerve fiber layer (RNFL) thickness and PP-CT was also explored on images of SD-OCT without EDI. The PP-CT measurements of 55 subjects were evaluated. The ICC was 0.999 (95% CI: 0.998-1.0, p  0.05). Additionally, there was no correlation between RNFL thickness and PP-CT (r = -0.109; p = 0.335). The PP-CT measurements via SD-OCT without EDI were consistent with the measurements via SD-OCT with EDI. Ophthalmologists who do not have access to EDI technology can use images of SD-OCT without EDI to measure the peripapillary choroid for research purposes. However, thicker peripapillary choroids cannot be measured using this technique and require further modifications or newer technologies, such as SD-OCT with EDI.

  10. Psychometric characteristics of a public-domain self-report measure of vocational interests: the Oregon Vocational Interest Scales.

    Science.gov (United States)

    Pozzebon, Julie A; Visser, Beth A; Ashton, Michael C; Lee, Kibeom; Goldberg, Lewis R

    2010-03-01

    We investigated the psychometric properties of the Oregon Vocational Interest Scales (ORVIS), a brief public-domain alternative to commercial inventories, in a large community sample and in a college sample. In both samples, we examined the factor structure, scale intercorrelations, and personality correlates of the ORVIS, and in the community sample, we also examined the correlations of the ORVIS scales with cognitive abilities and with the scales of a longer, proprietary interest survey. In both samples, all 8 scales-Leadership, Organization, Altruism, Creativity, Analysis, Producing, Adventuring, and Erudition-showed wide variation in scores, high internal-consistency reliabilities, and a pattern of high convergent and low discriminant correlations with the scales of the proprietary interest survey. Overall, the results support the construct validity of the scales, which are recommended for use in research on vocational interests and other individual differences.

  11. La apropiación del dominio público y las posibilidades de acceso a los bienes culturales | The appropriation of the public domain and the possibilities of access to cultural goods

    Directory of Open Access Journals (Sweden)

    Joan Ramos Toledano

    2017-06-01

    Full Text Available Resumen: Las normas de propiedad intelectual y copyright prevén un periodo de protección otorgando unos derechos económicos exclusivos y temporales. Pasado un plazo determinado, las obras protegidas entran en lo que se denomina dominio público. Éste suele ser considerado como el momento en el que los bienes culturales pasan a estar bajo el dominio y control de la sociedad en conjunto. El presente trabajo pretende argumentar que, dado nuestro actual sistema económico, en realidad el dominio público funciona más como una posibilidad de negocio para determinadas empresas que como una verdadera opción para que el público pueda acceder a las obras.   Abstract: The legislation of continental intellectual property and copyright provide for a period of protection granting exclusive and temporary economic rights. After a certain period, protected works enter into what is called the public domain. This is often considered as the moment in which the cultural goods come under the control and domain of society as a whole. The present paper pretends to argue that, given our current economic system, the public domain actually functions more as a business opportunity for certain companies than as a real option for the public to access artistic and intellectual works.

  12. An Analysis of Perturbed Quantization Steganography in the Spatial Domain

    Science.gov (United States)

    2005-03-01

    Transform Domain While LSB steganography hides data in the least significant areas of image pixels, this data is not robust against lossy digital...introduced a technique for detecting least significant bit ( LSB ) steganography in digital images called RS Steganalysis. RS Steganalysis produces a...the function has the effect of additive noise similar to that introduced by pixel based LSB steganography . In clean cover images , the flipping

  13. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Mohammed Rigi

    2016-01-01

    Full Text Available Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4 years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69 and FD ASOCT (0.58 and 0.75. Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86 and FD ASOCT (0.57 and 0.85. Interinstrument agreements were fair to good (0.34 to 0.63, with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy.

  14. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Science.gov (United States)

    Nguyen, Donna; Minnal, Vandana R.

    2016-01-01

    Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300

  15. Selected ICAR Data from the SAPA-Project: Development and Initial Validation of a Public-Domain Measure

    Directory of Open Access Journals (Sweden)

    David M. Condon

    2016-01-01

    Full Text Available These data were collected during the initial evaluation of the International Cognitive Ability Resource (ICAR project. ICAR is an international collaborative effort to develop open-source public-domain tools for cognitive ability assessment, including tools that can be administered in non-proctored environments (e.g., online administration and those which are based on automatic item generation algorithms. These data provide initial validation of the first four ICAR item types as reported in Condon & Revelle [1]. The 4 item types contain a total of 60 items: 9 Letter and Number Series items, 11 Matrix Reasoning items, 16 Verbal Reasoning items and 24 Three-dimensional Rotation items. Approximately 97,000 individuals were administered random subsets of these 60 items using the Synthetic Aperture Personality Assessment method between August 18, 2010 and May 20, 2013. The data are available in rdata and csv formats and are accompanied by documentation stored as a text file. Re-use potential includes a wide range of structural and item-level analyses.

  16. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA

    Science.gov (United States)

    Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan

    2016-11-01

    The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.

  17. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  18. Deep learning methods for CT image-domain metal artifact reduction

    Science.gov (United States)

    Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Shan, Hongming; Claus, Bernhard; Jin, Yannan; De Man, Bruno; Wang, Ge

    2017-09-01

    Artifacts resulting from metal objects have been a persistent problem in CT images over the last four decades. A common approach to overcome their effects is to replace corrupt projection data with values synthesized from an interpolation scheme or by reprojection of a prior image. State-of-the-art correction methods, such as the interpolation- and normalization-based algorithm NMAR, often do not produce clinically satisfactory results. Residual image artifacts remain in challenging cases and even new artifacts can be introduced by the interpolation scheme. Metal artifacts continue to be a major impediment, particularly in radiation and proton therapy planning as well as orthopedic imaging. A new solution to the long-standing metal artifact reduction (MAR) problem is deep learning, which has been successfully applied to medical image processing and analysis tasks. In this study, we combine a convolutional neural network (CNN) with the state-of-the-art NMAR algorithm to reduce metal streaks in critical image regions. Training data was synthesized from CT simulation scans of a phantom derived from real patient images. The CNN is able to map metal-corrupted images to artifact-free monoenergetic images to achieve additional correction on top of NMAR for improved image quality. Our results indicate that deep learning is a novel tool to address CT reconstruction challenges, and may enable more accurate tumor volume estimation for radiation therapy planning.

  19. Research on fusion algorithm of polarization image in tetrolet domain

    Science.gov (United States)

    Zhang, Dexiang; Yuan, BaoHong; Zhang, Jingjing

    2015-12-01

    Tetrolets are Haar-type wavelets whose supports are tetrominoes which are shapes made by connecting four equal-sized squares. A fusion method for polarization images based on tetrolet transform is proposed. Firstly, the magnitude of polarization image and angle of polarization image can be decomposed into low-frequency coefficients and high-frequency coefficients with multi-scales and multi-directions using tetrolet transform. For the low-frequency coefficients, the average fusion method is used. According to edge distribution differences in high frequency sub-band images, for the directional high-frequency coefficients are used to select the better coefficients by region spectrum entropy algorithm for fusion. At last the fused image can be obtained by utilizing inverse transform for fused tetrolet coefficients. Experimental results show that the proposed method can detect image features more effectively and the fused image has better subjective visual effect

  20. Forensic steganalysis: determining the stego key in spatial domain steganography

    Science.gov (United States)

    Fridrich, Jessica; Goljan, Miroslav; Soukal, David; Holotyak, Taras

    2005-03-01

    This paper is an extension of our work on stego key search for JPEG images published at EI SPIE in 2004. We provide a more general theoretical description of the methodology, apply our approach to the spatial domain, and add a method that determines the stego key from multiple images. We show that in the spatial domain the stego key search can be made significantly more efficient by working with the noise component of the image obtained using a denoising filter. The technique is tested on the LSB embedding paradigm and on a special case of embedding by noise adding (the +/-1 embedding). The stego key search can be performed for a wide class of steganographic techniques even for sizes of secret message well below those detectable using known methods. The proposed strategy may prove useful to forensic analysts and law enforcement.

  1. Magnetic domains in Ni-Mn-Ga martensitic thin films

    International Nuclear Information System (INIS)

    Chernenko, V A; Anton, R Lopez; Kohl, M; Ohtsuka, M; Orue, I; Barandiaran, J M

    2005-01-01

    A series of martensitic Ni 52 Mn 24 Ga 24 thin films deposited on alumina ceramic substrates has been prepared by using RF(radio-frequency) magnetron sputtering. The film thickness, d, varies from 0.1 to 5.0m. Magnetic domain patterns have been imaged by the MFM (magnetic force microscopy) technique. A maze domain structure is found for all studied films. MFM shows a large out-of-plane magnetization component and a rather uniform domain width for each film thickness. The domain width, δ, depends on the film thickness as δ∝√d in the whole studied range of film thickness. This dependence is the expected one for magnetic anisotropy and magnetostatic contributions in a perpendicular magnetic domain configuration. The proportionality coefficient is also consistent with the values of saturation magnetization and magnetic anisotropy determined in the samples

  2. Domain structure in soft ferrites by the longitudinal Kerr effect

    International Nuclear Information System (INIS)

    Kaczmarek, R.; Dautain, M.; Barradi-Ismail, T.

    1992-01-01

    For the first time, the longitudinal Kerr effect has been used in order to observe magnetic domains and their development in power ferrites. Image subtraction and processing leads to a magnetic contrast being a quasi derivative of the domains. A kind of integration procedure applied to them permits a reconstruction of a local hysteresis which parameters closely approach the global hysteresis data. (orig.)

  3. Face recognition in the thermal infrared domain

    Science.gov (United States)

    Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.

    2017-10-01

    Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.

  4. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    Science.gov (United States)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  5. Advances in functional brain imaging technology and developmental neuro-psychology: their applications in the Jungian analytic domain.

    Science.gov (United States)

    Petchkovsky, Leon

    2017-06-01

    Analytical psychology shares with many other psychotherapies the important task of repairing the consequences of developmental trauma. The majority of analytic patients come from compromised early developmental backgrounds: they may have experienced neglect, abuse, or failures of empathic resonance from their carers. Functional brain imagery techniques including Quantitative Electroencephalogram (QEEG), and functional Magnetic Resonance Imagery (fMRI), allow us to track mental processes in ways beyond verbal reportage and introspection. This independent perspective is useful for developing new psychodynamic hypotheses, testing current ones, providing diagnostic markers, and monitoring treatment progress. Jung, with the Word Association Test, grasped these principles 100 years ago. Brain imaging techniques have contributed to powerful recent advances in our understanding of neurodevelopmental processes in the first three years of life. If adequate nurturance is compromised, a range of difficulties may emerge. This has important implications for how we understand and treat our psychotherapy clients. The paper provides an overview of functional brain imaging and advances in developmental neuropsychology, and looks at applications of some of these findings (including neurofeedback) in the Jungian psychotherapy domain. © 2017, The Society of Analytical Psychology.

  6. Reducing the absorbed dose in analogue radiography of infant chest images by improving the image quality, using image processing techniques

    International Nuclear Information System (INIS)

    Karimian, A.; Yazdani, S.; Askari, M. A.

    2011-01-01

    Radiographic inspection is one of the most widely employed techniques for medical testing methods. Because of poor contrast and high un-sharpness of radiographic image quality in films, converting radiographs to a digital format and using further digital image processing is the best method of enhancing the image quality and assisting the interpreter in their evaluation. In this research work, radiographic films of 70 infant chest images with different sizes of defects were selected. To digitise the chest images and employ image processing the two algorithms (i) spatial domain and (ii) frequency domain techniques were used. The MATLAB environment was selected for processing in the digital format. Our results showed that by using these two techniques, the defects with small dimensions are detectable. Therefore, these suggested techniques may help medical specialists to diagnose the defects in the primary stages and help to prevent more repeat X-ray examination of paediatric patients. (authors)

  7. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  8. Magnetic force microscopy: advanced technique for the observation of magnetic domains

    International Nuclear Information System (INIS)

    Asenjo, A.; Garcia, J. M.; Vazquez, M.

    2001-01-01

    An overview on the Magnetic Force Microscopy, MFM, as an advanced technique to observe magnetic domains and walls is displayed. Basic concepts are first introduced on the domain structure formation as well as on other techniques to observe magnetic domains. Afterwards, the MFM instrumentation is described making also an emphasis in micro magnetic consideration to interpret the images. Finally, a set of selected advanced magnetic materials with different domain structures is chosen to show the wide possibilities of this techniques to characterise the surface magnetic behaviour. The domain structure of materials as commercial magnetic recording media, thin films and multilayers, amorphous micro tubes, nanocrystalline ribbons, perovskites or magnetic nano wires is shown. (Author) 16 refs

  9. Posterior lattice degeneration characterized by spectral domain optical coherence tomography.

    Science.gov (United States)

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G; Duker, Jay S

    2011-03-01

    The purpose of this study was to use high-resolution spectral domain optical coherence tomography in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. A cross-sectional retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. Spectral domain optical coherence tomography images taken through the region of lattice degeneration were qualitatively analyzed. Four characteristic changes of the retina and vitreous were seen in the 13 eyes with lattice degeneration: 1) anterior/posterior U-shaped vitreous traction; 2) retinal breaks; 3) focal retinal thinning; and 4) vitreous membrane formation. The morphologic appearance of vitreous traction and retinal breaks were found to be consistent with previous histologic reports. It is possible to image posterior lattice degeneration in many eyes using spectral domain optical coherence tomography and to visualize the spectrum of retinal and vitreous changes throughout the area of lattice degeneration.

  10. Direct nanoscale imaging of evolving electric field domains in quantum structures.

    Science.gov (United States)

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-11-28

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

  11. Angle-domain inverse scattering migration/inversion in isotropic media

    Science.gov (United States)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  12. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  13. Spectral Difference in the Image Domain for Large Neighborhoods, a GEOBIA Pre-Processing Step for High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Roeland de Kok

    2012-08-01

    Full Text Available Contrast plays an important role in the visual interpretation of imagery. To mimic visual interpretation and using contrast in a Geographic Object Based Image Analysis (GEOBIA environment, it is useful to consider an analysis for single pixel objects. This should be done before applying homogeneity criteria in the aggregation of pixels for the construction of meaningful image objects. The habit or “best practice” to start GEOBIA with pixel aggregation into homogeneous objects should come with the awareness that feature attributes for single pixels are at risk of becoming less accessible for further analysis. Single pixel contrast with image convolution on close neighborhoods is a standard technique, also applied in edge detection. This study elaborates on the analysis of close as well as much larger neighborhoods inside the GEOBIA domain. The applied calculations are limited to the first segmentation step for single pixel objects in order to produce additional feature attributes for objects of interest to be generated in further aggregation processes. The equation presented functions at a level that is considered an intermediary product in the sequential processing of imagery. The procedure requires intensive processor and memory capacity. The resulting feature attributes highlight not only contrasting pixels (edges but also contrasting areas of local pixel groups. The suggested approach can be extended and becomes useful in classifying artificial areas at national scales using high resolution satellite mosaics.

  14. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples

    Science.gov (United States)

    Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.

    2018-05-01

    We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.

  15. Aperiodic topological order in the domain configurations of functional materials

    Science.gov (United States)

    Huang, Fei-Ting; Cheong, Sang-Wook

    2017-03-01

    In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.

  16. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  17. A Survey of Image Encryption Algorithms

    Science.gov (United States)

    Kumari, Manju; Gupta, Shailender; Sardana, Pranshul

    2017-12-01

    Security of data/images is one of the crucial aspects in the gigantic and still expanding domain of digital transfer. Encryption of images is one of the well known mechanisms to preserve confidentiality of images over a reliable unrestricted public media. This medium is vulnerable to attacks and hence efficient encryption algorithms are necessity for secure data transfer. Various techniques have been proposed in literature till date, each have an edge over the other, to catch-up to the ever growing need of security. This paper is an effort to compare the most popular techniques available on the basis of various performance metrics like differential, statistical and quantitative attacks analysis. To measure the efficacy, all the modern and grown-up techniques are implemented in MATLAB-2015. The results show that the chaotic schemes used in the study provide highly scrambled encrypted images having uniform histogram distribution. In addition, the encrypted images provided very less degree of correlation coefficient values in horizontal, vertical and diagonal directions, proving their resistance against statistical attacks. In addition, these schemes are able to resist differential attacks as these showed a high sensitivity for the initial conditions, i.e. pixel and key values. Finally, the schemes provide a large key spacing, hence can resist the brute force attacks, and provided a very less computational time for image encryption/decryption in comparison to other schemes available in literature.

  18. Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu

    2007-05-15

    The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.

  19. Denoising of MR images using FREBAS collaborative filtering

    International Nuclear Information System (INIS)

    Ito, Satoshi; Hizume, Masayuki; Yamada, Yoshifumi

    2011-01-01

    We propose a novel image denoising strategy based on the correlation in the FREBAS transformed domain. FREBAS transform is a kind of multi-resolution image analysis which consists of two different Fresnel transforms. It can decompose images into down-scaled images of the same size with a different frequency bandwidth. Since these decomposed images have similar distributions for the same directions from the center of the FREBAS domain, even when the FREBAS signal is hidden by noise in the case of a low-signal-to-noise ratio (SNR) image, the signal distribution can be estimated using the distribution of the FREBAS signal located near the position of interest. We have developed a collaborative Wiener filter in the FREBAS transformed domain which implements collaboration of the standard deviation of the position of interest and that of analogous positions. The experimental results demonstrated that the proposed algorithm improves the SNR in terms of both the total SNR and the SNR at the edges of images. (author)

  20. Individual domain wall resistance in submicron ferromagnetic structures.

    Science.gov (United States)

    Danneau, R; Warin, P; Attané, J P; Petej, I; Beigné, C; Fermon, C; Klein, O; Marty, A; Ott, F; Samson, Y; Viret, M

    2002-04-15

    The resistance generated by individual domain walls is measured in a FePd nanostructure. Combining transport and magnetic imaging measurements, the intrinsic domain wall resistance is quantified. It is found positive and of a magnitude consistent with that predicted by models based on spin scattering effects within the walls. This magnetoresistance at a nanometer scale allows a direct counting of the number of walls inside the nanostructure. The effect is then used to measure changes in the magnetic configuration of submicron stripes under application of a magnetic field.

  1. Characteristics of scientific web publications

    DEFF Research Database (Denmark)

    Thorlund Jepsen, Erik; Seiden, Piet; Ingwersen, Peter Emil Rerup

    2004-01-01

    were generated based on specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AllTheWeb, and AltaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality...... of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various...... types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both Alta...

  2. Fractional Regularization Term for Variational Image Registration

    Directory of Open Access Journals (Sweden)

    Rafael Verdú-Monedero

    2009-01-01

    Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.

  3. Response to a widespread, unauthorized dispersal of radioactive waste in the public domain

    International Nuclear Information System (INIS)

    Wenslawski, F.A.; North, H.S.

    1979-01-01

    In March 1976 State of Nevada radiological health officials became aware that radioactive items destined for disposal at a radioactive waste burial facility near Beatty, Nevada had instead been distributed to wide segments of the public domain. Because the facility was jointly licensed by the State of Nevada and the Federal Nuclear Regulatory Commission, both agencies quickly responded. It was learned that over a period of several years a practice existed at the disposal facility of opening containers, removing contents and allowing employees to take items of worth or fancy. Numerous items such as hand tools, electric motors, laboratory instruments, shipping containers, etc., had received widespread and uncontrolled distribution in the town of Beatty as well as lesser distributions to other locations. Because the situation might have had the potential for a significant health and safety impact, a comprehensive recovery operation was conducted. During the course of seven days of intense effort, thirty-five individuals became involved in a comprehensive door by door survey and search of the town. Aerial surveys were performed using a helicopter equipped with sensitive radiation detectors, while ground level scans were conducted using a van containing similar instrumentation. Aerial reconnaissance photographs were taken, a special town meeting was held and numerous persons were interviewed. The recovery effort resulted in a retrieval of an estimated 20 to 25 pickup truck loads of radioactively contaminated equipment as well as several loads of large items returned on a 40-foot flatbed trailer

  4. Use of media and public-domain Internet sources for detection and assessment of plant health threats.

    Science.gov (United States)

    Thomas, Carla S; Nelson, Noele P; Jahn, Gary C; Niu, Tianchan; Hartley, David M

    2011-09-05

    Event-based biosurveillance is a recognized approach to early warning and situational awareness of emerging health threats. In this study, we build upon previous human and animal health work to develop a new approach to plant pest and pathogen surveillance. We show that monitoring public domain electronic media for indications and warning of epidemics and associated social disruption can provide information about the emergence and progression of plant pest infestation or disease outbreak. The approach is illustrated using a case study, which describes a plant pest and pathogen epidemic in China and Vietnam from February 2006 to December 2007, and the role of ducks in contributing to zoonotic virus spread in birds and humans. This approach could be used as a complementary method to traditional plant pest and pathogen surveillance to aid global and national plant protection officials and political leaders in early detection and timely response to significant biological threats to plant health, economic vitality, and social stability. This study documents the inter-relatedness of health in human, animal, and plant populations and emphasizes the importance of plant health surveillance.

  5. Overview of ImageCLEF 2017: information extraction from images

    OpenAIRE

    Ionescu, Bogdan; Müller, Henning; Villegas, Mauricio; Arenas, Helbert; Boato, Giulia; Dang Nguyen, Duc Tien; Dicente Cid, Yashin; Eickhoff, Carsten; Seco de Herrera, Alba G.; Gurrin, Cathal; Islam, Bayzidul; Kovalev, Vassili; Liauchuk, Vitali; Mothe, Josiane; Piras, Luca

    2017-01-01

    This paper presents an overview of the ImageCLEF 2017 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs 2017. ImageCLEF is an ongoing initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access to collections of images in various usage scenarios and domains. In 2017, the 15th edition of ImageCLEF, three main tasks were proposed and one pil...

  6. Transverse field-induced nucleation pad switching modes during domain wall injection

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2010-03-12

    We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.

  7. Infrared images target detection based on background modeling in the discrete cosine domain

    Science.gov (United States)

    Ye, Han; Pei, Jihong

    2018-02-01

    Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.

  8. Fast hybrid fractal image compression using an image feature and neural network

    International Nuclear Information System (INIS)

    Zhou Yiming; Zhang Chao; Zhang Zengke

    2008-01-01

    Since fractal image compression could maintain high-resolution reconstructed images at very high compression ratio, it has great potential to improve the efficiency of image storage and image transmission. On the other hand, fractal image encoding is time consuming for the best matching search between range blocks and domain blocks, which limits the algorithm to practical application greatly. In order to solve this problem, two strategies are adopted to improve the fractal image encoding algorithm in this paper. Firstly, based on the definition of an image feature, a necessary condition of the best matching search and FFC algorithm are proposed, and it could reduce the search space observably and exclude most inappropriate domain blocks according to each range block before the best matching search. Secondly, on the basis of FFC algorithm, in order to reduce the mapping error during the best matching search, a special neural network is constructed to modify the mapping scheme for the subblocks, in which the pixel values fluctuate greatly (FNFC algorithm). Experimental results show that the proposed algorithms could obtain good quality of the reconstructed images and need much less time than the baseline encoding algorithm

  9. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  10. Fourier phase in Fourier-domain optical coherence tomography

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  11. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  12. Automatic fog detection for public safety by using camera images

    Science.gov (United States)

    Pagani, Giuliano Andrea; Roth, Martin; Wauben, Wiel

    2017-04-01

    to classify the dense fog conditions (i.e., visibility below 250 meters) show promising results (in terms of accuracy and type I and II errors). We are currently extending the approach to images obtained with traffic-monitoring cameras along highways. This is a first step to reach a solution that is closer to an operational artificial intelligence application for automatic fog alarm signaling for public safety.

  13. "How much realism is needed?" - the wrong question in silico imagers have been asking.

    Science.gov (United States)

    Badano, Aldo

    2017-05-01

    To discuss the use of realism as a first approximation for assessing computational imaging methods. Although in silico methods are increasingly becoming promising surrogates to physical experimentation for various stages of device development, their acceptance remains challenging. Realism is often considered as a first approximation for assessing computational imaging methods. However, realism is subjective and does not always ensure that key features of the methodologies reflect relevant aspects of devices of interest to imaging scientists, regulators, and medical practitioners. Moreover, in some cases (e.g., in computerized image analysis applications where human interpretation is not needed) how realistic in silico images are is irrelevant and perhaps misleading. I emphasize a divergence from this methodology by providing a rationale for evaluating in silico imaging methods and tools in an objective and measurable manner. Improved approaches for in silico imaging will lead to the rapid advancement and acceptance of computational techniques in medical imaging primarily but not limited to the regulatory evaluation of new imaging products. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  15. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-02-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  16. PUBLIC DIPLOMACY AS A TOOL TO CHANGE THE IMAGE OF A COUNTRY IN CRISIS

    Directory of Open Access Journals (Sweden)

    Maria Vaxevanidou

    2016-12-01

    Full Text Available The aim of this study is to explore the means, the methods, and the techniques of public diplomacy that a country in crisis, such as Greece, should use. The paper addresses the very issues of whether a country in crisis can conduct public diplomacy and whether it should be recognized as a legitimate and powerful actor in the field. In a broader sense, it focuses on the processes that a country should follow and how a better understanding and framing of its situation, principles, and policy can be provided. A crucial factor for such countries is the choice of communication channels, which includes traditional tools like press releases, letters to editor, editorials, interviews, or more active tools like social media, events, campaigns, and networking. In this paper, three dimensions of public diplomacy are examined, and appropriate tools to be developed in the short, medium and long-term are proposed. The results of the study are based on case studies, methods, and tools employed by Greece during the last years that the country has faced a huge economic crisis. There is a short presentation on the methods that Greece tries to adopt in order to enhance its image worldwide. Keywords: reactive public diplomacy, proactive public diplomacy, relationship building

  17. Wavelet domain image restoration with adaptive edge-preserving regularization.

    Science.gov (United States)

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.

  18. A report on digital image processing and analysis

    International Nuclear Information System (INIS)

    Singh, B.; Alex, J.; Haridasan, G.

    1989-01-01

    This report presents developments in software, connected with digital image processing and analysis in the Centre. In image processing, one resorts to either alteration of grey level values so as to enhance features in the image or resorts to transform domain operations for restoration or filtering. Typical transform domain operations like Karhunen-Loeve transforms are statistical in nature and are used for a good registration of images or template - matching. Image analysis procedures segment grey level images into images contained within selectable windows, for the purpose of estimating geometrical features in the image, like area, perimeter, projections etc. In short, in image processing both the input and output are images, whereas in image analyses, the input is an image whereas the output is a set of numbers and graphs. (author). 19 refs

  19. Magnetic domain structure investigation of Bi: YIG-thin films by combination of AFM and cantilever-based aperture SNOM

    International Nuclear Information System (INIS)

    Vysokikh, Yu E; Shevyakov, V I; Krasnoborodko, S Yu; Shelaev, A V; Prokopov, A R

    2016-01-01

    We present the results of magnetic domain structure investigation by combination of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). Special hollow-pyramid AFM cantilevers with aperture was used. This combination allows us use same probe for both topography and domain structure visualization of Bi -substituted ferrite garnet films of micro- and nano-meter thickness. Samples were excited through aperture by tightly focused linearly polarized laser beam. Magneto-optical effect rotates polarization of transmitted light depend on domain orientation. Visualization of magnetic domains was performed by detecting cross polarized component of transmitted light. SNOM allows to obtain high resolution magnetic domain image and prevent sample from any disturbance by magnetic probe. Same area SNOM and MFM images are presented. (paper)

  20. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    Science.gov (United States)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  1. High energy transients: The millisecond domain

    Science.gov (United States)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  2. Regular periodical public disclosure obligations of public companies

    Directory of Open Access Journals (Sweden)

    Marjanski Vladimir

    2011-01-01

    Full Text Available Public companies in the capacity of capital market participants have the obligation to inform the public on their legal and financial status, their general business operations, as well as on the issuance of securities and other financial instruments. Such obligations may be divided into two groups: The first group consists of regular periodical public disclosures, such as the publication of financial reports (annual, semi-annual and quarterly, and the management's reports on the public company's business operations. The second group comprises the obligation of occasional (ad hoc public disclosure. The thesis analyses the obligation of public companies to inform the public in course of their regular reporting. The new Capital Market Law based on two EU Directives (the Transparency Directive and the Directive on Public Disclosure of Inside Information and the Definition of Market Manipulation regulates such obligation of public companies in substantially more detail than the prior Law on the Market of Securities and Other Financial Instruments (hereinafter: ZTHV. Due to the above the ZTHV's provisions are compared to the new solutions within the domain of regular periodical disclosure of the Capital Market Law.

  3. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  4. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  5. Automatic Image Alignment and Stitching of Medical Images with Seam Blending

    OpenAIRE

    Abhinav Kumar; Raja Sekhar Bandaru; B Madhusudan Rao; Saket Kulkarni; Nilesh Ghatpande

    2010-01-01

    This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together usin...

  6. Medical imaging

    International Nuclear Information System (INIS)

    Loshkajian, A.

    2000-01-01

    This didactical book presents the medical imaging techniques: radiography, scanner, nuclear magnetic resonance (NMR). Examples are given for the most common pathologies in all domains of medicine. (J.S.)

  7. Information security system based on virtual-optics imaging methodology and public key infrastructure

    Science.gov (United States)

    Peng, Xiang; Zhang, Peng; Cai, Lilong

    In this paper, we present a virtual-optical based information security system model with the aid of public-key-infrastructure (PKI) techniques. The proposed model employs a hybrid architecture in which our previously published encryption algorithm based on virtual-optics imaging methodology (VOIM) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). For an asymmetric system, given an encryption key, it is computationally infeasible to determine the decryption key and vice versa. The whole information security model is run under the framework of PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOIM security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network.

  8. Halftoning processing on a JPEG-compressed image

    Science.gov (United States)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.

  9. A time domain phase-gradient based ISAR autofocus algorithm

    CSIR Research Space (South Africa)

    Nel, W

    2011-10-01

    Full Text Available . Results on simulated and measured data show that the algorithm performs well. Unlike many other ISAR autofocus techniques, the algorithm does not make use of several computationally intensive iterations between the data and image domains as part...

  10. Understanding images using knowledge based approach

    International Nuclear Information System (INIS)

    Tascini, G.

    1985-01-01

    This paper presents an approach to image understanding focusing on low level image processing and proposes a rule-based approach as part of larger knowledge-based system. The general system has a yerarchical structure that comprises several knowledge-based layers. The main idea is to confine at the lower level the domain independent knowledge and to reserve the higher levels for the domain dependent knowledge, that is for the interpretation

  11. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  12. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    Science.gov (United States)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  13. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    Science.gov (United States)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  14. Wide-azimuth angle-domain imaging for anisotropic reverse-time migration

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2011-01-01

    Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.

  15. Health domains for sale: the need for global health Internet governance.

    Science.gov (United States)

    Mackey, Tim Ken; Liang, Bryan A; Kohler, Jillian C; Attaran, Amir

    2014-03-05

    A debate on Internet governance for health, or "eHealth governance", is emerging with the impending award of a new dot-health (.health) generic top-level domain name (gTLD) along with a host of other health-related domains. This development is critical as it will shape the future of the health Internet, allowing largely unrestricted use of .health second-level domain names by future registrants, raising concerns about the potential for privacy, use and marketing of health-related information, credibility of online health content, and potential for Internet fraud and abuse. Yet, prospective .health gTLD applicants do not provide adequate safeguards for use of .health or related domains and have few or no ties to the global health community. If approved, one of these for-profit corporate applicants would effectively control the future of the .health address on the Internet with arguably no active oversight from important international public health stakeholders. This would represent a lost opportunity for the public health, medical, and broader health community in establishing a trusted, transparent and reliable source for health on the Internet. Countries, medical associations, civil society, and consumer advocates have objected to these applications on grounds that they do not meet the public interest. We argue that there is an immediate need for action to postpone awarding of the .health gTLD and other health-related gTLDs to address these concerns and ensure the appropriate development of sound eHealth governance rules, principles, and use. This would support the crucial need of ensuring access to quality and evidence-based sources of health information online, as well as establishing a safe and reliable space on the Internet for health. We believe, if properly governed, .health and other domains could represent such a promise in the future.

  16. Using Surveillance Camera Systems to Monitor Public Domains: Can Abuse Be Prevented

    Science.gov (United States)

    2006-03-01

    relationship with a 16-year old girl failed. The incident was captured by a New York City Police Department surveillance camera. Although the image...administrators stated that the images recorded were “…nothing more than images of a few bras and panties .”17 The use of CCTV surveillance systems for

  17. Clinician, patient and general public beliefs about diagnostic imaging for low back pain: protocol for a qualitative evidence synthesis.

    Science.gov (United States)

    Traeger, Adrian C; Reed, Benjamin J; O'Connor, Denise A; Hoffmann, Tammy C; Machado, Gustavo C; Bonner, Carissa; Maher, Chris G; Buchbinder, Rachelle

    2018-02-10

    Little is known about how to reduce unnecessary imaging for low back pain. Understanding clinician, patient and general public beliefs about imaging is critical to developing strategies to reduce overuse. To synthesise qualitative research that has explored clinician, patient or general public beliefs about diagnostic imaging for low back pain. We will perform a qualitative evidence synthesis of relevant qualitative research exploring clinician, patient and general public beliefs about diagnostic imaging for low back pain. Exclusions will be studies not using qualitative methods and studies not published in English. Studies will be identified using sensitive search strategies in MEDLINE, EMBASE, CINAHL, AMED and PsycINFO. Two reviewers will independently apply inclusion and exclusion criteria, extract data, and use the Critical Appraisal Skills Programme quality assessment tool to assess the quality of included studies. To synthesise the data we will use a narrative synthesis approach that involves developing a theoretical model, conducting a preliminary synthesis, exploring relations in the data, and providing a structured summary. We will code the data using NVivo. At least two reviewers will independently apply the thematic framework to extracted data. Confidence in synthesis findings will be evaluated using the GRADE Confidence in the Evidence from Reviews of Qualitative Research tool. Ethical approval is not required to conduct this review. We will publish the results in a peer-reviewed journal. CRD42017076047. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Mars Public Mapping Project: Public Participation in Science Research; Providing Opportunities for Kids of All Ages

    Science.gov (United States)

    Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.

    2007-12-01

    The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to

  19. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  20. Holy images on blades: unique swords from the State Hermitage Museum (preliminary publication

    Directory of Open Access Journals (Sweden)

    Vsevolod Obraztsov

    2013-12-01

    Full Text Available The focus of this article are interesting rarities from the collection of the State Hermitage Museum - swords of the 17th-18th centuries with inscriptions in Greek and Slavonic, with images of Christian saints inlaid in gold. The authors offer the general characteristics of 17 exemplars of this kind of arms which are divided into several groups according to the shape of the hilt. A brief overview of the relatively few publications on this subject includes articles by Vasilii Prokhorov (1877; data from the Index of the Medieval Department of the Imperial Hermitage published by Nikodim Kondakov (1891, a catalogue of Count Sergei Sheremetev's collection of arms compiled by Eduard Lenz (1895, and a monograph by E. Astvatsaturian on Turkish arms from the collection of the State Historical Museum (2002. The authors pay special attention to the description and analysis of two swords from the Hermit- age collection. One of them belonged to Count Michail Miloradovich, and was presented to him in 1807 from the city of Bucharest. The second sword came to the Hermitage after the Bolshevik Revolution from the Marble Palace, the residency of the Grand Dukes Konstantinovichi. Besides the traditional inscriptions and images of the Virgin with Child crowned by angels, the blade bears a unique image of Byzantine Emperor Nikephoros Phokas blessed by Jesus Christ with both hands. There are also two cartouches with quotations from Psalms in Greek. The extremely rich décor of this sword and the unique depiction of the Byzantine Emperor leave no doubt that they were made on a special order. The authors connect the sword to the Greek Project initiated by the Russian Empress Catherine the Great. The main idea of the project was a restoration of the Byzantine Empire with Constantinople-Istanbul as its capital, where Grand Duke Konstantin, Catherine the Great's grandchild, would be ascended to the throne. This article is a preliminary publication of a project in process

  1. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  2. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG-Based Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Xin Chai

    2017-05-01

    Full Text Available Electroencephalography (EEG-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of the classification performance. Domain adaptation methods offer an effective way to reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal and conditional distributions may be mismatched. In addition, the existing domain adaptation strategies always require a high level of additional computation. To address this problem, a novel strategy named adaptive subspace feature matching (ASFM is proposed in this paper in order to integrate both the marginal and conditional distributions within a unified framework (without any labeled samples from target subjects. Specifically, we develop a linear transformation function which matches the marginal distributions of the source and target subspaces without a regularization term. This significantly decreases the time complexity of our domain adaptation procedure. As a result, both marginal and conditional distribution discrepancies between the source domain and unlabeled target domain can be reduced, and logistic regression (LR can be applied to the new source domain in order to train a classifier for use in the target domain, since the aligned source domain follows a distribution which is similar to that of the target domain. We compare our ASFM method with six typical approaches using a public EEG dataset with three affective states: positive, neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject offline experimental results demonstrate that our component achieves a mean accuracy and standard deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace alignment auto-encoder (SAAE, which

  3. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

    Directory of Open Access Journals (Sweden)

    Zomaya Albert Y

    2006-12-01

    Full Text Available Abstract Background Knowledge of protein domain boundaries is critical for the characterisation and understanding of protein function. The ability to identify domains without the knowledge of the structure – by using sequence information only – is an essential step in many types of protein analyses. In this present study, we demonstrate that the performance of DomainDiscovery is improved significantly by including the inter-domain linker index value for domain identification from sequence-based information. Improved DomainDiscovery uses a Support Vector Machine (SVM approach and a unique training dataset built on the principle of consensus among experts in defining domains in protein structure. The SVM was trained using a PSSM (Position Specific Scoring Matrix, secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results Improved DomainDiscovery is compared with other methods by benchmarking against a structurally non-redundant dataset and also CASP5 targets. Improved DomainDiscovery achieves 70% accuracy for domain boundary identification in multi-domains proteins. Conclusion Improved DomainDiscovery compares favourably to the performance of other methods and excels in the identification of domain boundaries for multi-domain proteins as a result of introducing support vector machine with benchmark_2 dataset.

  4. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  5. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  6. Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.

    Science.gov (United States)

    Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C

    2018-03-01

    To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.

  7. Columbia Public Health Core Curriculum: Short-Term Impact.

    Science.gov (United States)

    Begg, Melissa D; Fried, Linda P; Glover, Jim W; Delva, Marlyn; Wiggin, Maggie; Hooper, Leah; Saxena, Roheeni; de Pinho, Helen; Slomin, Emily; Walker, Julia R; Galea, Sandro

    2015-12-01

    We evaluated a transformed core curriculum for the Columbia University, Mailman School of Public Health (New York, New York) master of public health (MPH) degree. The curriculum, launched in 2012, aims to teach public health as it is practiced: in interdisciplinary teams, drawing on expertise from multiple domains to address complex health challenges. We collected evaluation data starting when the first class of students entered the program and ending with their graduation in May 2014. Students reported being very satisfied with and challenged by the rigorous curriculum and felt prepared to integrate concepts across varied domains and disciplines to solve public health problems. This novel interdisciplinary program could serve as a prototype for other schools that wish to reinvigorate MPH training.

  8. Low dose CT image restoration using a database of image patches

    Science.gov (United States)

    Ha, Sungsoo; Mueller, Klaus

    2015-01-01

    Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

  9. Image feature extraction in encrypted domain with privacy-preserving SIFT.

    Science.gov (United States)

    Hsu, Chao-Yung; Lu, Chun-Shien; Pei, Soo-Chang

    2012-11-01

    Privacy has received considerable attention but is still largely ignored in the multimedia community. Consider a cloud computing scenario where the server is resource-abundant, and is capable of finishing the designated tasks. It is envisioned that secure media applications with privacy preservation will be treated seriously. In view of the fact that scale-invariant feature transform (SIFT) has been widely adopted in various fields, this paper is the first to target the importance of privacy-preserving SIFT (PPSIFT) and to address the problem of secure SIFT feature extraction and representation in the encrypted domain. As all of the operations in SIFT must be moved to the encrypted domain, we propose a privacy-preserving realization of the SIFT method based on homomorphic encryption. We show through the security analysis based on the discrete logarithm problem and RSA that PPSIFT is secure against ciphertext only attack and known plaintext attack. Experimental results obtained from different case studies demonstrate that the proposed homomorphic encryption-based privacy-preserving SIFT performs comparably to the original SIFT and that our method is useful in SIFT-based privacy-preserving applications.

  10. Sequential injection of domain walls into ferroelectrics at different bias voltages: Paving the way for “domain wall memristors”

    Energy Technology Data Exchange (ETDEWEB)

    Whyte, J. R.; McQuaid, R. G. P.; Einsle, J. F.; Gregg, J. M., E-mail: m.gregg@qub.ac.uk [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ashcroft, C. M. [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Department of Physics, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Canalias, C. [Department of Applied Physics, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Gruverman, A. [Department of Physics and Astronomy, University of Nebraska Lincoln, Nebraska 68588–0299 (United States)

    2014-08-14

    Simple meso-scale capacitor structures have been made by incorporating thin (∼300 nm) single crystal lamellae of KTiOPO{sub 4} (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.

  11. Evaluation to Obtain the Image According to the Spatial Domain Filtering of Various Convolution Kernels in the Multi-Detector Row Computed Tomography

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoo, Beong Gyu; Kweon, Dae Cheol

    2008-01-01

    Our objective was to evaluate the image of spatial domain filtering as an alternative to additional image reconstruction using different kernels in MDCT. Derived from thin collimated source images were generated using water phantom and abdomen B10(very smooth), B20(smooth), B30(medium smooth), B40 (medium), B50(medium sharp), B60(sharp), B70(very sharp) and B80(ultra sharp) kernels. MTF and spatial resolution measured with various convolution kernels. Quantitative CT attenuation coefficient and noise measurements provided comparable HU(Hounsfield) units in this respect. CT attenuation coefficient(mean HU) values in the water were values in the water were 1.1∼1.8 HU, air(-998∼-1000 HU) and noise in the water(5.4∼44.8 HU), air(3.6∼31.4 HU). In the abdominal fat a CT attenuation coefficient(-2.2∼0.8 HU) and noise(10.1∼82.4 HU) was measured. In the abdominal was CT attenuation coefficient(53.3∼54.3 HU) and noise(10.4∼70.7 HU) in the muscle and in the liver parenchyma of CT attenuation coefficient(60.4∼62.2 HU) and noise (7.6∼63.8 HU) in the liver parenchyma. Image reconstructed with a convolution kernel led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image scanned with a high convolution kernel(B80) led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image medications of image sharpness and noise eliminate the need for reconstruction using different kernels in the future. Adjusting CT various kernels, which should be adjusted to take into account the kernels of the CT undergoing the examination, may control CT images increase the diagnostic accuracy.

  12. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    Science.gov (United States)

    Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.

    2011-01-01

    The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377

  13. PET Imaging of Macrophage Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments.

    Science.gov (United States)

    Blykers, Anneleen; Schoonooghe, Steve; Xavier, Catarina; D'hoe, Kevin; Laoui, Damya; D'Huyvetter, Matthias; Vaneycken, Ilse; Cleeren, Frederik; Bormans, Guy; Heemskerk, Johannes; Raes, Geert; De Baetselier, Patrick; Lahoutte, Tony; Devoogdt, Nick; Van Ginderachter, Jo A; Caveliers, Vicky

    2015-08-01

    Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing (18)F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer (18)F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. (18)F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%-10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a (99m)Tc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2-deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the (18)F tracer for MMR and macrophages, respectively. Anti

  14. 2017 Emerging Technology Domains Risk Survey

    Science.gov (United States)

    2017-10-01

    REV-03.18.2016.0 2017 Emerging Technology Domains Risk Survey Daniel Klinedinst Joel Land Kyle O’Meara October 2017 TECHNICAL REPORT CMU/SEI...Distribution Statement A: Approved for Public Release. Distribution is Unlimited. List of Tables Table 1: New and Emerging Technologies 2 Table 2: Security...Impact of New and Emerging Technologies 4 Table 3: Severity Classifications and Impact Scores 5 CMU/SEI-2017-TR-008 | SOFTWARE ENGINEERING

  15. 2016 Emerging Technology Domains Risk Survey

    Science.gov (United States)

    2016-04-05

    measures upon which the CERT/CC based its recommendations and how each domain was triaged for importance. 6. Exploitation Examples details concepts or...Distribution Statement A: Approved for Public Release; Distribution is Unlimited 2 Methodology A measured approach to analysis is required when...only a few vehicles had access to a cellular Internet connection, and only at 3G speeds. Some vehicles already have LTE connections, and many

  16. Digital processing of radiographic images

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  17. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock

    Directory of Open Access Journals (Sweden)

    Ding Zhen-yu

    2015-08-01

    Full Text Available Airborne array antenna SAR is used to obtain three-dimensional imaging; however it is impaired by motion errors. In particular, rotation error changes the relative position among the different antenna units and strongly affects the image quality. Unfortunately, the presently available algorithm can not compensate for the rotation error. In this study, an airborne array antenna SAR three-dimensional imaging model is discussed along with the effect of rotation errors, and more specifically, the yaw angle error. The analysis reveals that along- and cross-track wavenumbers can be obtained from the echo phase, and when used to calculate the range error, these wavenumbers lead to a target position irrelevant result that eliminates the error's spatial variance. Therefore, a wavenumber-domain subblock compensation method is proposed by computing the range error in the subblock of the along- and cross-track 2-D wavenumber domain and precisely compensating for the error in the space domain. Simulations show that the algorithm can compensate for the effect of yaw angle error.

  18. Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies

    Science.gov (United States)

    Hafian, Hilal; Sukhanova, Alyona; Chames, Patrick; Baty, Daniel; Pluot, Michel; Cohen, Jacques H. M.; Nabiev, Igor R.; Millot, Jean-Marc

    2012-10-01

    Semiconductor fluorescent quantum dots (QDs) have just demonstrated their numerous advantages over organic dyes in bioimaging and diagnostics. One of characteristics of QDs is a very large cross section of their twophoton absorption. A common approach to biodetection by means of QDs is to use monoclonal antibodies (mAbs) for targeting. Recently, we have engineered ultrasmall diagnostic nanoprobes (sdAb-QD) based on highly oriented conjugates of QDs with the single-domain antibodies (sdAbs) against cancer biomarkers. With a molecular weight of only 13 kDa (12-fold smaller than full-size mAbs) and extreme stability and capacity to refolding, sdAbs are the smallest functional Ab fragments capable of binding antigens with affinities comparable to those of conventional Abs. Ultrasmall diagnostic sdAb-QD nanoprobes were engineered through oriented conjugation of QDs with sdAbs. This study is the first to demonstrate the possibility of immunohistochemical imaging of colon carcinoma biomarkers with sdAb-QD conjugates by means of two-photon excitation. The optimal excitation conditions for imaging of the markers in clinical samples with sdAb-QD nanoprobes have been determined. The absence of sample autofluorescence significantly improves the sensitivity of biomarker detection with the use of the two-photon excitation diagnostic setup.

  19. A robust image watermarking in contourlet transform domain

    Science.gov (United States)

    Sharma, Rajat; Gupta, Abhishek Kumar; Singh, Deepak; Verma, Vivek Singh; Bhardwaj, Anuj

    2017-10-01

    A lot of work has been done in the field of image watermarking to overcome the problems of rightful ownership, copyright protection etc. In order to provide a robust solution of such issues, the authors propose a hybrid approach that involves contourlet, lifting wavelet, and discrete cosine transform. The first level coefficients of the original image which are obtained using contourlet transform are further decomposed using one level lifting wavelet transform. After that, these coefficients are modified using discrete cosine transform. Whereas, second level subband of contourlet transform coefficients are used to obtain block wise modification parameter based on edge detection and entropy calculations. Watermark bits are embedded by quantizing the discrete cosine transform coefficient blocks obtained using HL sub-band of first level lifting wavelet transform coefficients. The experimental results reveal that the proposed scheme has high robustness and imperceptibility.

  20. Using Sentence-Level Classifiers for Cross-Domain Sentiment Analysis

    Science.gov (United States)

    2014-09-01

    National Defence, 2014 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 DRDC-RDDC...domain sentiment classification via spectral feature alignment. In Proceedings of the 19th international conference on World Wide Web, WWW ’10...Dennis, S. 5. DATE OF PUBLICATION (Month and year of publication of document.) September 2014 6a. NO. OF PAGES (Total containing information

  1. Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Sachit Rajbhandari

    2017-11-01

    Full Text Available In Geographic Object-based Image Analysis (GEOBIA, identification of image objects is normally achieved using rule-based classification techniques supported by appropriate domain knowledge. However, GEOBIA currently lacks a systematic method to formalise the domain knowledge required for image object identification. Ontology provides a representation vocabulary for characterising domain-specific classes. This study proposes an ontological framework that conceptualises domain knowledge in order to support the application of rule-based classifications. The proposed ontological framework is tested with a landslide case study. The Web Ontology Language (OWL is used to construct an ontology in the landslide domain. The segmented image objects with extracted features are incorporated into the ontology as instances. The classification rules are written in Semantic Web Rule Language (SWRL and executed using a semantic reasoner to assign instances to appropriate landslide classes. Machine learning techniques are used to predict new threshold values for feature attributes in the rules. Our framework is compared with published work on landslide detection where ontology was not used for the image classification. Our results demonstrate that a classification derived from the ontological framework accords with non-ontological methods. This study benchmarks the ontological method providing an alternative approach for image classification in the case study of landslides.

  2. INFLUENCE OF DOMAIN SHIFT FACTORS ON DEEP SEGMENTATION OF THE DRIVABLE PATH OF AN AUTONOMOUS VEHICLE

    Directory of Open Access Journals (Sweden)

    R. P. A. Bormans

    2018-05-01

    Full Text Available One of the biggest challenges for an autonomous vehicle (and hence the WEpod is to see the world as humans would see it. This understanding is the base for a successful and reliable future of autonomous vehicles. Real-world data and semantic segmentation generally are used to achieve full understanding of its surroundings. However, deploying a pretrained segmentation network to a new, previously unseen domain will not attain similar performance as it would on the domain where it is trained on due to the differences between the domains. Although research is done concerning the mitigation of this domain shift, the factors that cause these differences are not yet fully explored. We filled this gap with the investigation of several factors. A base network was created by a two-step finetuning procedure on a convolutional neural network (SegNet which is pretrained on CityScapes (a dataset for semantic segmentation. The first tuning step is based on RobotCar (road scenery dataset recorded in Oxford, UK while afterwards this network is fine-tuned for a second time but now on the KITTI (road scenery dataset recorded in Germany dataset. With this base, experiments are used to obtain the importance of factors such as horizon line, colour and training order for a successful domain adaptation. In this case the domain adaptation is from the KITTI and RobotCar domain to the WEpod domain. For evaluation, groundtruth labels are created in a weakly-supervised setting. Negative influence was obtained for training on greyscale images instead of RGB images. This resulted in drops of IoU values up to 23.9 % for WEpod test images. The training order is a main contributor for domain adaptation with an increase in IoU of 4.7 %. This shows that the target domain (WEpod is more closely related to RobotCar than to KITTI.

  3. Reclaiming public space: designing for public interaction with private devices

    DEFF Research Database (Denmark)

    Eriksson, Eva; Hansen, Thomas Riisgaard; Lykke-Olesen, Andreas

    2007-01-01

    . In this paper we explore the implications of interacting in public space and how technology can be rethought to not only act as personal devices, but be the tool to reclaim the right and possibility to interact in public spaces. We introduce information exchange, social support and regulation as three central......Public spaces are changing from being ungoverned places for interaction to be more formalized, controlled, less interactive, and designed places aimed at fulfilling a purpose. Simultaneously, new personal mobile technology aims at providing private individual spaces in the public domain...... aspects for reclaiming public space. The PhotoSwapper application is presented as an example of a system designed to integrate pervasive technology in a public setting. The system is strongly inspired by the activities at a traditional market place. Based on the design of the application we discuss four...

  4. Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging

    Science.gov (United States)

    Karagoz, Burcu; Kamburoglu, Kıvanc; Altan, Hakan

    2017-07-01

    Dental caries in sliced samples are investigated using terahertz pulsed imaging. Frequency domain terahertz response of these structures consistent with X-ray imaging results show the potential of this technique in the detection of early caries.

  5. What do we do with all this video? Better understanding public engagement for image and video annotation

    Science.gov (United States)

    Wiener, C.; Miller, A.; Zykov, V.

    2016-12-01

    Advanced robotic vehicles are increasingly being used by oceanographic research vessels to enable more efficient and widespread exploration of the ocean, particularly the deep ocean. With cutting-edge capabilities mounted onto robotic vehicles, data at high resolutions is being generated more than ever before, enabling enhanced data collection and the potential for broader participation. For example, high resolution camera technology not only improves visualization of the ocean environment, but also expands the capacity to engage participants remotely through increased use of telepresence and virtual reality techniques. Schmidt Ocean Institute is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation and analysis, and open sharing of information. Telepresence-enabled research is an important component of Schmidt Ocean Institute's science research cruises, which this presentation will highlight. Schmidt Ocean Institute is one of the only research programs that make their entire underwater vehicle dive series available online, creating a collection of video that enables anyone to follow deep sea research in real time. We encourage students, educators and the general public to take advantage of freely available dive videos. Additionally, other SOI-supported internet platforms, have engaged the public in image and video annotation activities. Examples of these new online platforms, which utilize citizen scientists to annotate scientific image and video data will be provided. This presentation will include an introduction to SOI-supported video and image tagging citizen science projects, real-time robot tracking, live ship-to-shore communications, and an array of outreach activities that enable scientists to interact with the public and explore the ocean in fascinating detail.

  6. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    NARCIS (Netherlands)

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of

  7. Improvements in image quality with pseudo-parallel imaging in the phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, in which the amplitude of the PSFT presents some kind of blurred image of the objects. Therefore, the signal can be considered to exist in the object domain as well as the Fourier domain of the object. This notable feature makes it possible to assign weights to the reconstructed images by applying a weighting function to the PSFT signal after data acquisition, and as a result, pseudo-parallel image reconstruction using these aliased image data with different weights on the images is feasible. In this study, the improvements in image quality with such pseudo-parallel imaging were examined and demonstrated. The weighting function of the PSFT signal that provides a given weight on the image is estimated using the obtained image data and is iteratively updated after sensitivity encoding (SENSE)-based image reconstruction. Simulation studies showed that reconstruction errors were dramatically reduced and that the spatial resolution was also improved in almost all image spaces. The proposed method was applied to signals synthesized from MR image data with phase variations to verify its effectiveness. It was found that the image quality was improved and that images almost entirely free of aliasing artifacts could be obtained. (author)

  8. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  9. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    International Nuclear Information System (INIS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-01-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as M uon Central Slice Theorem . Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction

  10. Depiction of global trends in publications on mobile health

    Directory of Open Access Journals (Sweden)

    Shahla Foozonkhah

    2017-07-01

    Full Text Available Background: Variety of mobile health initiatives in different levels have been undertaken across many countries. Trends of these initiatives can be reflected in the research published in m-health domain. Aim: This paper aims to depict global trends in the published works on m-health topic. Materials and Methods: The Web of Science database was used to identify all relevant published papers on mobile health domain worldwide. The search was conducted on documents published from January 1898 to December 2014. The criteria for searching were set to be “mHealth” or “Mobile health” or “m health” or “m_health” or “m-health” in topics. Results: Findings revealed an increasing trend of citations and publications on m-health research since 2012. English was the first most predominant language of the publication. The US had the highest number of publication with 649 papers; however, the Netherlands ranked first after considering publication number in terms of countries population. “Studies in Health Technology and Informatics” was the source title with highest number of publications on mobile health topics. Conclusion: Trend of research observed in this study indicates the continuing growth is happening in mobile health domain. This may imply that the new model of health-care delivery is emerging. Further research is needed to specify directions of mobile health research. It is necessary to identify and prioritize the research gaps in this domain.

  11. A Visible and Passive Millimeter Wave Image Fusion Algorithm Based on Pulse-Coupled Neural Network in Tetrolet Domain for Early Risk Warning

    Directory of Open Access Journals (Sweden)

    Yuanjiang Li

    2018-01-01

    Full Text Available An algorithm based on pulse-coupled neural network (PCNN constructed in the Tetrolet transform domain is proposed for the fusion of the visible and passive millimeter wave images in order to effectively identify concealed targets. The Tetrolet transform is applied to build the framework of the multiscale decomposition due to its high sparse degree. Meanwhile, a Laplacian pyramid is used to decompose the low-pass band of the Tetrolet transform for improving the approximation performance. In addition, the maximum criterion based on regional average gradient is applied to fuse the top layers along with selecting the maximum absolute values of the other layers. Furthermore, an improved PCNN model is employed to enhance the contour feature of the hidden targets and obtain the fusion results of the high-pass band based on the firing time. Finally, the inverse transform of Tetrolet is exploited to obtain the fused results. Some objective evaluation indexes, such as information entropy, mutual information, and QAB/F, are adopted for evaluating the quality of the fused images. The experimental results show that the proposed algorithm is superior to other image fusion algorithms.

  12. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  13. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2014-01-01

    Full Text Available Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT, the fast discrete curvelet transform (FDCT, and the dual tree complex wavelet transform (DTCWT based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images.

  14. The Role of Public Interaction with the Juno Mission: Documentation, Discussion, Selection and Processing of JunoCam Images of Jovian Cloud Features

    Science.gov (United States)

    Orton, Glenn; Hansen, Candice; Momary, Thomas; Bolton, Scott

    2017-04-01

    Among the many "firsts" of the Juno mission is the open enlistment of the public in the operation of its visible camera, JunoCam. Although the scientific thrust of the Juno mission is largely focused on innovative approaches to understanding the structure and composition of Jupiter's interior, JunoCam was added to the payload largely to function in the role of education and public outreach (E/PO). For the first time, the public was able to engage in the discussion and choice of targets for a major NASA mission. The discussion about which features to image is enabled by a continuously updated map of Jupiter's cloud system while Jupiter is far enough from the sun to be observable by non-professional astronomers. Contributors range from very devoted astrophotographers to telescope and video 'hobbyists'. Juno therefore engages the world-wide amateur-astronomy community as a vast network of co-investigators, whose products stimulate conversation and global public awareness of Jupiter and Juno's investigative role. Contributed images also provide a temporal context to inform the Juno atmospheric investigation team of the state and evolution of the atmosphere. The contributed images are used to create s global map on a bi-weekly basis. These bi-weekly maps provide the focus for ongoing discussion about various planetary features over a long time frame. Approximately two weeks before Juno's closest approach to Jupiter on each orbit ("perijove" or PJ), starting in mid-November of 2016 in preparation for PJ3 on December 11, the atmospheric features that have been under discussion and available to JunoCam on that perijove were nominated for voting, and the public at large voted on where to point JunoCam's "elective" features. In addition, JunoCam provides the first close-up images of Jupiter's polar regions from a non-oblique viewpoint for the first time in over 40 years since the passage of Pioneer 11 over Jupiter's north pole. The Juno mission science team also provides

  15. Light-Activated Gigahertz Ferroelectric Domain Dynamics

    Science.gov (United States)

    Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman

    2018-03-01

    Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

  16. Domain morphology controlled crystal habits in PbTiO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudhe, C.M., E-mail: chandraguptadudhe@gmail.com; Khambadkar, S.J.

    2015-11-05

    Various crystal habits and associated domain structures in PbTiO{sub 3} nanocrystals synthesized by a modified sol–gel method have been studied. Structural and morphological characterizations of synthesized nanoparticles have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found from the -z coordinates of O{sub 1} and O{sub 2} that the Ti–O{sub 6} octahedra were distorted slightly, favorable for the ferroelectric nature. TEM images show butterfly like, plate like, irregular sphere like and oval-shaped habits of the nanocrystals. 90° and 180° domain structures in these crystal habits were explored from their morphologies and appearance in the field of views. The mutual association between the crystal habit and the direction spontaneous polarization P{sub s} due to domain structures was explored. Domain wall energies of 90° and 180° domains were also estimated from the kinetic process of domain nucleation. - Highlights: • Various crystal habits of PbTiO{sub 3} nanoparticles were examined by TEM. • 90° and 180° domains were explored in the nanocrystal. • Crystal habits and domain structures were correlated. • Domain wall energies were estimated.

  17. Diffusion in Altered Tonalite Sample Using Time Domain Diffusion Simulations in Tomographic Images Combined with Lab-scale Diffusion Experiments

    Science.gov (United States)

    Voutilainen, M.; Sardini, P.; Togneri, L.; Siitari-Kauppi, M.; Timonen, J.

    2010-12-01

    In this work an effect of rock heterogeneity on diffusion was investigated. Time domain diffusion simulations were used to compare behavior of diffusion in homogeneous and heterogeneous 3D media. Tomographic images were used as heterogeneous rock media. One altered tonalite sample from Sievi, Finland, was chosen as test case for introduced analysis procedure. Effective diffusion coefficient of tonalite sample was determined with lab-scale experiments and the same coefficient was used also for homogeneous media. Somewhat technically complicated mathematical solution for analysis of through diffusion experiment is shortly described. Computed tomography (CT) is already quite widely used in many geological, petrological, and paleontological applications when the three-dimensional (3D) structure of the material is of interest, and is an excellent method for gaining information especially about its heterogeneity, grain size, or porosity. In addition to offering means for quantitative characterization, CT provides a lot of qualitative information [1]. A through -diffusion laboratory experiment using radioactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities [2]. As a result we found out that heterogeneity has only a small effect to diffusion coefficient and in-diffusion profile for used geometry. Also direction dependency was tested and was found to be negligible. Whereas significant difference between generally accepted value and value obtained from simulations for constant m in Archie’s law was found. [1] Voutilainen, M., Siitari-Kauppi, M., Sardini, P., and Timonen, J., (2010). On pore-space characterization of an altered tonalite by X-ray µCT and the 14C-PMMA method (in progress). [2] Sardini, P., Robinet, J., Siitari-Kauppi, M., Delay, F., and Hellmuth, K-H, (2007). On direct simulation of heterogeneous

  18. Public health program capacity for sustainability: a new framework.

    Science.gov (United States)

    Schell, Sarah F; Luke, Douglas A; Schooley, Michael W; Elliott, Michael B; Herbers, Stephanie H; Mueller, Nancy B; Bunger, Alicia C

    2013-02-01

    Public health programs can only deliver benefits if they are able to sustain activities over time. There is a broad literature on program sustainability in public health, but it is fragmented and there is a lack of consensus on core constructs. The purpose of this paper is to present a new conceptual framework for program sustainability in public health. This developmental study uses a comprehensive literature review, input from an expert panel, and the results of concept-mapping to identify the core domains of a conceptual framework for public health program capacity for sustainability. The concept-mapping process included three types of participants (scientists, funders, and practitioners) from several public health areas (e.g., tobacco control, heart disease and stroke, physical activity and nutrition, and injury prevention). The literature review identified 85 relevant studies focusing on program sustainability in public health. Most of the papers described empirical studies of prevention-oriented programs aimed at the community level. The concept-mapping process identified nine core domains that affect a program's capacity for sustainability: Political Support, Funding Stability, Partnerships, Organizational Capacity, Program Evaluation, Program Adaptation, Communications, Public Health Impacts, and Strategic Planning. Concept-mapping participants further identified 93 items across these domains that have strong face validity-89% of the individual items composing the framework had specific support in the sustainability literature. The sustainability framework presented here suggests that a number of selected factors may be related to a program's ability to sustain its activities and benefits over time. These factors have been discussed in the literature, but this framework synthesizes and combines the factors and suggests how they may be interrelated with one another. The framework presents domains for public health decision makers to consider when developing

  19. The domain theory: patterns for knowledge and software reuse

    National Research Council Canada - National Science Library

    Sutcliffe, Alistair

    2002-01-01

    ..., retrieval system, or any other means, without prior written permission of the publisher. Lawrence Erlbaum Associates, Inc., Publishers 10 Industrial Avenue Mahwah, New Jersey 07430 Library of Congress Cataloging-in-Publication Data Sutcliffe, Alistair, 1951- The domain theory : patterns for knowledge and software reuse / Alistair Sutcl...

  20. Information access in the art history domain. Evaluating a federated search engine for Rembrandt research

    NARCIS (Netherlands)

    Verberne, S.; Boves, L.W.J.; Bosch, A.P.J. van den

    2016-01-01

    The art history domain is an interesting case for search engines tailored to the digital humanities, because the domain involves different types of sources (primary and secondary; text and images). One example of an art history search engine is RemBench, which provides access to information in four