WorldWideScience

Sample records for pth-induced bone resorption

  1. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    Science.gov (United States)

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

    Directory of Open Access Journals (Sweden)

    Chen-he Zhou

    2018-03-01

    Full Text Available Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK and phosphatidylinositol 3-kinase (PI3K-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist and/or SC79 (an AKT agonist in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

  3. BIOCHEMICAL MARKERS OF BONE RESORPTION AND HORMONAL REGULATION OF BONE METABOLISM FOLLOWING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2013-01-01

    Full Text Available Aim. Comparative evaluation of two biochemical markers of bone resorption and hormonal regulation of bone metabolism in liver recipients. Methods and results. Bоne densitometry of L2–L4 and neck of femur, serum level of some hormones (PTH, vitamin D3, estradiol, testosterone regulating osteoclastogenesis as well as com- parative analyses of two bone resorption markers β-crosslaps and tartrate-resistant acid phosphatase type 5b (TRAP-5b were fulfilled in patients after orthotopic liver transplantation (OLT. In 1 month after OLT bone density reduction of L2–L4 and neck of femur; decrease of vitamin D3, estradiol in women, testosterone in men and increase levels of bone resorption markers were observed. In 1 and 2 years after OLT the rise of bone density, increased levels of PTH, estradiol, testosterone and decreased β-crosslaps levels were revealed, while vitamin D3 and TRAP-5b levels remained stable. Conclusion. TRAP-5b was found to be a more speciffic marker of bone resorption, independent from collagen metabolism in liver. Osteoporosis defined in long-term period after OLT was associated with higher TRAP-5b and revialed in women with low estradiol level. 

  4. Marker of Bone Resorption in Acute Response to Exogenous or Endogenous Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Vit Zikan

    2008-01-01

    Full Text Available Parathyroid hormone (PTH changes morphology of osteoclasts within minutes after its systemic administration. The aim of our study was to test in healthy men whether both exogenous and endogenous PTH could change acutely (minutes to hours the serum cross-linked C-telopeptide of type I collagen (beta CTX, which is released during osteoclastic resorption of bone. Twelve healthy men (age range 24–34 yr were each studied during 180 min on a control period, after a single subcutaneous injection of teriparatide, and after 30 min EDTA infusion to stimulate endogenous PTH secretion. The tests were started after overnight fast, 3 h after a standard calcium load. The EDTA infusion induced a significant decrease in serum ionized calcium (by 8.5% at 33 min and a significant increase in plasma PTH (by 305% at 33 min. Both the EDTA and teriparatide resulted in a significant increase in beta CTX (p < 0.001 with maximum increases of 64% and 80%, respectively. A mild, but significant decrease in beta CTX was observed during the control test period. In conclusion, single-dose teriparatide injection as well as a stimulation of endogenous PTH in healthy men results in an acute increase of the bone resorption marker.

  5. Serum ionized calcium, intact PTH and novel markers of bone turnover in bedridden elderly patients.

    Science.gov (United States)

    Sorva, A; Välimäki, M; Risteli, J; Risteli, L; Elfving, S; Takkunen, H; Tilvis, R

    1994-12-01

    Chronic immobilization could markedly affect calcium and bone metabolism in elderly people. To investigate this, and to test the theory of 'type II' osteoporosis in bedridden elderly patients with low vitamin D status, 55 such subjects were examined. Serum concentrations of ionized calcium (Ca++), intact parathyrin (PTH) and two novel markers of bone collagen formation (carboxyterminal propeptide of type I procollagen; PICP) and resorption (carboxyterminal crosslinked telopeptide of type I collagen; ICTP) were measured. The effects on these parameters after 40 weeks of supplementation with vitamin D (1000 IU d-1) and/or calcium (1 g d-1) were subsequently prospectively evaluated. Despite low (mean 11.6 nmoll-1) serum 25-hydroxyvitamin D levels (25-OHD), those of 1,25-dihydroxy-vitamin D (1,25-(OH)2D) were mostly normal. Neither correlated with Ca++ or PTH. PTH correlated negatively not only with Ca++ (r = -0.328, P r = -0.306, P r = 0.268, P = 0.06). Vitamin D supplementation did not change PICP or ICTP considerably, despite slightly increased 1,25-(OH)2D and slightly decreased PTH. Ca++ values were normal and remained stable. In conclusion, Ca++ and PTH are poor indicators of vitamin D status in chronically immobilized elderly subjects. Furthermore, the results suggest that the increased bone resorption is not due to 'type II' secondary hyperparathyroidism; rather the resorption is primarily increased. Correction of vitamin D deficiency does not seem to benefit ageing bones unless adequate mechanical loading is provided.

  6. The biphasic effect of triiodothyronine compared to bone resorbing effect of PTH on bone modelling of mouse long bone in vitro

    International Nuclear Information System (INIS)

    Soskolne, W.A.; Schwartz, Z.; Goldstein, M.; Ornoy, A.

    1990-01-01

    To examine the effects of T3 on fetal long bone modelling the radii and ulnae of 16 day old fetal mice were grown in vitro for two days. Their growth, mineralization, and resorption were assessed by measuring diaphyseal length, calcium and phosphorus content, hydroxyproline content, and the release of incorporated 45 Ca. The effects of T3 were compared to the effects of 1-34 PTH, a known resorbing agent, on the same system. Devitalized bones were used as a control. The results showed that T3 had a biphasic effect. At high concentrations (10(-5) M-10(-6) M) T3 inhibited the growth of the bones as indicated by their diaphyseal length and hydroxyproline content. Calcium and phosphorus content were significantly decreased while 45 Ca release was increased. Similar effects were also found after the addition of 1-34 PTH to the media. However, T3, at lower concentrations (10(-7) M-10(-9) M), stimulated the growth and calcification of the bones as indicated by an increase in diaphyseal length and the hydroxyproline, calcium, and phosphorus content. 45 Ca release was significantly decreased at these concentrations. Neither T3 nor 1-34 PTH affected devitalized bones in the same system. The results suggest that at physiological concentrations, T3 has a direct, anabolic effect on bone, which may explain its major role in the growth process of various species. At high doses, however, T3 stimulates bone resorption in a way similar to PTH

  7. Effects of growth hormone administration on bone mineral metabolism, PTH sensitivity and PTH secretory rhythm in postmenopausal women with established osteoporosis.

    Science.gov (United States)

    Joseph, Franklin; Ahmad, Aftab M; Ul-Haq, Mazhar; Durham, Brian H; Whittingham, Pauline; Fraser, William D; Vora, Jiten P

    2008-05-01

    Growth hormone (GH) replacement improves target organ sensitivity to PTH, PTH circadian rhythm, calcium and phosphate metabolism, bone turnover, and BMD in adult GH-deficient (AGHD) patients. In postmenopausal women with established osteoporosis, GH and insulin like growth factor-1 (IGF-1) concentrations are low, and administration of GH has been shown to increase bone turnover and BMD, but the mechanisms remain unclear. We studied the effects of GH administration on PTH sensitivity, PTH circadian rhythm, and bone mineral metabolism in postmenopausal women with established osteoporosis. Fourteen postmenopausal women with osteoporosis were compared with 14 healthy premenopausal controls at baseline that then received GH for a period of 12 mo. Patients were hospitalized for 24 h before and 1, 3, 6, and 12 mo after GH administration and half-hourly blood and 3-h urine samples were collected. PTH, calcium (Ca), phosphate (PO(4)), nephrogenous cyclic AMP (NcAMP), beta C-telopeptide of type 1 collagen (betaCTX), procollagen type I amino-terminal propeptide (PINP), and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] were measured. Circadian rhythm analysis was performed using Chronolab 3.0 and Student's t-test and general linear model ANOVAs for repeated measures were used where appropriate. IGF-1 concentration was significantly lower in the women with established osteoporosis compared with controls (101.5 +/- 8.9 versus 140.9 +/- 10.8 mug/liter; p bone mineral metabolism. GH administration to postmenopausal osteoporotic women improves target organ sensitivity to PTH and bone mineral metabolism and alters PTH secretory pattern with greater increases in bone formation than resorption. These changes, resulting in a net positive bone balance, may partly explain the mechanism causing the increase in BMD after long-term administration of GH in postmenopausal women with osteoporosis shown in previous studies and proposes a further component in the development of age

  8. Calcitonin causes a sustained inhibition of protein kinase C-stimulated bone resorption in contrast to the transient inhibition of parathyroid hormone-induced bone resorption

    International Nuclear Information System (INIS)

    Ransjoe, M.; Lerner, U.H.

    1990-01-01

    Calcitonin is a well known inhibitor of osteoclastic bone resortion, both in vivo and in vitro. However, it is also known that calcitonin has only a transient inhibitory effect on bone resorption. The mechanism for this so-called ''escape from inhibition'' phenomenon is not clear. In the present study, the inhibitory effect of calcitonin on phorbol ester-induced bone resorption was examined in cultured neonatal mouse calvaria. Bone resorption was assessed as the release of radioactivity from bones prelabelled in vivo with 45 Ca. Two proteon kinase C-activating phorbol esters, phorbol-12-myristate-13-acetate and phorbol-12,13-dibutyrate, both stimulated 45 Ca release in 120-h cultures at a concentration of 10 nmul/l. Calcitonin (30 nmol/l) inhibited phorbol esterstimulated bone resorption without any ''escape from inhibition''. This was in contrast to the transient inhibitory effect of calcitonin on bone resorption stimulated by parathyroid hormone (10 nmol/l), prostaglandin E 2 (2 μmol/l), and bradykinin (1 μmol/l). Our results suggest that activation of protein kinase C produces a sustained inhibitory effect of calcitonin on bone resorption. (author)

  9. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome

    DEFF Research Database (Denmark)

    Gottschalck, Ida B; Jeppesen, Palle B; Hartmann, Bolette

    2008-01-01

    OBJECTIVE: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome...... (SBS) and they have reduced bone mineral density (BMD). The aim of the study was to investigate the anti-resorptive effect (assessed by s-CTX) of 14 days of GLP-2 treatment in these patients and to determine whether 56 days of treatment would improve BMD. PTH secretion in response to GLP-2 was also...... in the SBS patients, and after 56 days of GLP-2 treatment there was no improvement in BMD. A significant reduction in PTH secretion in response to GLP-2 was observed only in patients with ileostomy. CONCLUSIONS: The decreased bone resorption in response to GLP-2 injections cannot be elicited in SBS patients...

  10. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  11. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  12. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  13. A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat.

    Science.gov (United States)

    Smith, Brenda J; Bu, So Young; Wang, Yan; Rendina, Elizabeth; Lim, Yin F; Marlow, Denver; Clarke, Stephen L; Cullen, Diane M; Lucas, Edralin A

    2014-01-01

    Dried plum has been reported to have potent effects on bone in osteopenic animal models, but the mechanisms through which bone metabolism is altered in vivo remain unclear. To address this issue, a study comparing the metabolic response of dried plum to the anabolic agent, parathyroid hormone (PTH), was undertaken. Six month-old female Sprague Dawley rats (n=84) were sham-operated (SHAM) or ovariectomized (OVX) and maintained on a control diet for 6wks until osteopenia was confirmed. Treatments were initiated consisting of a control diet (AIN-93M) supplemented with dried plum (0, 5, 15 or 25%; w/w) or a positive control group receiving PTH. At the end of 6wks of treatment, whole body and femoral bone mineral density (BMD) were restored by the two higher doses of dried plum to the level of the SHAM group. Trabecular bone volume and cortical thickness were also improved with these two doses of dried plum. Dried plum suppressed the OVX-induced increase in bone turnover as indicated by systemic biomarkers of bone metabolism, N-terminal procollagen type 1 (P1NP) and deoxypyridinoline (DPD). Dynamic bone histomorphometric analysis of the tibial metaphysis revealed that dried plum restored the OVX-induced increase in cancellous bone formation rate (BFR) and mineralizing surface (MS/BS) to the SHAM group, but some doses of dried plum increased endocortical mineral apposition rate (MAR). As expected, PTH significantly increased endocortical MAR and BFR, periosteal BFR, and trabecular MAR and BFR beyond that of the OVX and maintained the accelerated rate of bone resorption associated with OVX. Dried plum up-regulated bone morphogenetic protein 4 (Bmp4) and insulin-like growth factor 1 (Igf1) while down-regulating nuclear factor T cell activator 1 (Nfatc1). These findings demonstrate that in the adult osteopenic OVX animal, the effects of dried plum differ from that of PTH in that dried plum primarily suppressed bone turnover with the exception of the indices of bone

  14. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  15. Long-term effects of intermittent equine parathyroid hormone fragment (ePTH-1-37) administration on bone metabolism in healthy horses.

    Science.gov (United States)

    Weisrock, Katharina U; Winkelsett, Sarah; Martin-Rosset, William; Forssmann, Wolf-Georg; Parvizi, Nahid; Coenen, Manfred; Vervuert, Ingrid

    2011-11-01

    Intermittent administration of parathyroid hormone (PTH) is an anabolic therapy for osteoporotic conditions in humans. This study evaluated the effects of equine PTH fragment (ePTH-1-37) administration on bone metabolism in 12 healthy horses. Six horses each were treated once daily for 120days with subcutaneous injections of 0.5μg/kg ePTH-1-37 or placebo. Blood was collected to determine ionized calcium (Ca(++)), total Ca (Ca(T)), inorganic phosphorus, serum equine osteocalcin (eOC), carboxy-terminal telopeptide of type I collagen (ICTP), bone-specific alkaline phosphatase, and carboxy-terminal cross-linked telopeptide of type I collagen. Bone mineral density (BMD) was determined with dual X-ray absorptiometry of the metacarpus and calcaneus. Significantly higher blood Ca(++) and plasma Ca(T) concentrations were measured 5h after ePTH-1-37 administration compared to placebo. Higher serum eOC concentrations were found for ePTH-1-37 treatment at days 90 (P<0.05) and 120 (P=0.05). Significantly higher serum ICTP levels were observed with ePTH-1-37 treatment at days 60 and 90. For both study groups, BMD increased significantly in the calcaneus. Long-term use of ePTH-1-37 seemed to have no negative effects on bone metabolism in healthy horses. The absence of undesirable side effects is the premise to ensure safety for further clinical investigations in horses with increased bone resorption processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  17. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    Science.gov (United States)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: prestriction did not exaggerate bone resorption during HDBR.

  18. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    Directory of Open Access Journals (Sweden)

    Jodi A. Carlson Scholz

    2012-12-01

    Full Text Available Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH. Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.

  19. Inhibition of bone resorption in vitro and prevention of ovariectomy-induced bone loss in vivo by flurbiprofen nitroxybutylester (HCT1026).

    Science.gov (United States)

    Armour, K J; van 't Hof, R J; Armour, K E; Torbergsen, A C; Del Soldato, P; Ralston, S H

    2001-09-01

    Inhibitors of prostaglandin production, such as nonsteroidal antiinflammatory drugs (NSAIDs), and pharmacologic nitric oxide (NO) donors, such as organic nitrates, have been suggested to protect against bone loss in both humans and experimental animals. Recently, a new class of nitrosylated NSAID (known as NO-NSAIDs) has been developed, which combines the properties of a NO donor with those of a cyclooxygenase (COX) inhibitor. This study investigated the effects of one of these compounds, flurbiprofen nitroxybutylester (HCT1026), on bone metabolism in vitro and in vivo. The effects of HCT1026 on osteoclast formation and resorption were determined in vitro using cocultures of primary mouse osteoblasts and osteoclasts. The effect of HCT1026 in vivo was assessed using a mouse model of ovariectomy-induced bone loss. HCT1026 was significantly more efficacious than the parent compound, flurbiprofen, at inhibiting osteoclast formation and bone resorption in vitro, and these effects could not be reproduced by combinations of flurbiprofen with a variety of NO donors. Studies in vivo showed that HCT1026 protected against ovariectomy-induced bone loss by inhibiting osteoclastic bone resorption, whereas flurbiprofen at similar concentrations was ineffective. These data indicate that HCT1026 is a potent inhibitor of bone resorption in vitro and protects against ovariectomy-induced bone loss in vivo by a novel mechanism that appears to be distinct from its NO donor properties and from its inhibitory effects on COX activity. We conclude that HCT1026 may be of clinical value in the prevention and treatment of inflammatory diseases such as rheumatoid arthritis, which are characterized by joint inflammation as well as periarticular and systemic bone loss.

  20. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    Science.gov (United States)

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  1. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  2. PTH prevents the adverse effects of focal radiation on bone architecture in young rats.

    Science.gov (United States)

    Chandra, Abhishek; Lan, Shenghui; Zhu, Ji; Lin, Tiao; Zhang, Xianrong; Siclari, Valerie A; Altman, Allison R; Cengel, Keith A; Liu, X Sherry; Qin, Ling

    2013-08-01

    Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  4. Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture

    International Nuclear Information System (INIS)

    Eilon, G.; Raisz, L.G.

    1978-01-01

    The release of lysosomal enzymes, collagenase, and previously incorporated 45 Ca from fetal rat long bones cultured in a chemically defined medium is compared. Parathyroid hormone (PTH) and prostaglandin E 2 increased the release of β-glucuronidase, acetylglucosaminidase, and cathepsin D, but showed little effect on collagenase activity in the medium at 48 h. The dose-response relations for β-glucuronidase and 45 Ca release were similar. However, the increase in lysosomal enzyme release was proportionally greater and occurred earlier than the increase in 45 Ca release. PTH also caused a significant increase in total β-glucuronidase activity in bone plus medium. Several agents which stimulate 45 Ca release at an optimal concentration, but not at a higher concentration, including dibutyryl cAMP, isobutylmethylxanthine, and the calcium ionophore, A23187, all increased lysosomal enzyme release at the concentration which increased 45 Ca release. Three inhibitors of bone resorption (calcitonin, cortisol, and colchicine) blocked lysosomal enzyme release at the same time that 45 Ca release decreased. When the bones escaped from calcitonin inhibition, both 45 Ca and lysosomalenzyme release increased. While colchicine blocked both lysosomal enzymes and 45 CA release, it actually increased the release of bone collagenase, and together with PTH or prostaglandin E 2 caused a large increase in free collagenase activity in the medium. These data indicate that lysosomal enzyme release is closely linked to bone resorption and suggest that lysosomal enzymes may have a primary role in initiating resorption, perhaps by acting on noncollagenous matrix or tissue components before mineral removal and collagen degradation

  5. Heterotopic new bone formation causes resorption of the inductive bone matrix

    International Nuclear Information System (INIS)

    Nilsson, O.S.; Persson, P.E.; Ekelund, A.

    1990-01-01

    The bone matrix of growing rats was labeled by multiple injections of 3H-proline, and demineralized bone matrix (DBM) was prepared. The DBM was allotransplanted heterotopically into growing rats. New bone formation was induced in and around the implants. The new bone formation was accompanied by a decrease in the content of 3H; 20 and 30 days after implantation, 72% and 46%, respectively, of the activity remained in the implants. Daily injections of indomethacin (2 mg/kg) inhibited calcium uptake by about 20% at 20 and 30 days and inhibited the release of 3H from the DBM to a similar degree. Heterotopic bone induction by DBM is accompanied by matrix resorption, and inhibition of the new bone formation decreases the resorption of DBM

  6. PTH treatment activates intracortical bone remodeling in patients with hypoparathyroidism

    DEFF Research Database (Denmark)

    Sikjær, Tanja Tvistholm; Rejnmark, Lars; Thomsen, Jesper Skovhus

    2017-01-01

    Hypoparathyroidism (hypoPT) is characterized by a state of low bone turnover and high BMD. We have previously shown that hypoPT patients treated with PTH(1-84) for six months have highly increased bone turnover markers and a decrease in aBMD at the hip and spine(1). The present study aims...... to investigate the effect of PTH(1-84) on cortical bone and intracortical bone remodeling in hypoPT. The study was conducted on 20 transiliac bone biopsies from hypoPT patients after six months of treatment with either PTH(1-84) 100 µg s.c./day N=10 or placebo N=10. The groups were age- (±6 years) and gender...... and diameter were measured. Cortical porosity and pore density did not differ between groups, but PTH treatment had a marked effect on the remodeling status of the pores. The percentage of pores undergoing remodeling was higher in the PTH-group than in placebo-group reported as median values (IQR[25-75%]) (52...

  7. Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women.

    Science.gov (United States)

    Bonjour, Jean-Philippe; Benoit, Valérie; Pourchaire, Olivier; Ferry, Monique; Rousseau, Brigitte; Souberbielle, Jean-Claude

    2009-10-01

    Acceleration of bone remodelling increases the risk of fragility fractures. The objective of the present study was to explore in elderly women whether a vitamin D and Ca-fortified dairy product providing about 17-25 % of the recommended intakes in vitamin D, Ca and proteins would reduce secondary hyperparathyroidism and bone remodelling in a way that may attenuate age-related bone loss in the long term. Thirty-seven institutionalised women, aged 84.8 (sd 8.1) years, with low serum 25-hydroxyvitamin D (5.5 (sd 1.7) ng/ml) were enrolled into a multicentre open trial to consume during 1 month two servings of soft plain cheese made of semi-skimmed milk providing daily 686 kJ (164 kcal), 2.5 microg vitamin D, 302 mg Ca and 14.2 g proteins. The primary endpoint was the change in serum carboxy terminal cross-linked telopeptide of type I collagen (CTX), selected as a marker of bone resorption. Thirty-five subjects remained compliant. Mean serum changes were: 25-hydroyvitamin D, +14.5 % (P = 0.0051); parathyroid hormone (PTH), - 12.3 % (P = 0.0011); CTX, - 7.5 % (P = 0.01); tartrate-resistant acid phosphatase isoform 5b (TRAP 5b), - 9.9 % (P elderly women with vitamin D insufficiency can reduce bone resorption markers by positively influencing Ca and protein economy, as expressed by decreased PTH and increased IGF-I, respectively. The rise in the bone formation marker P1NP could be explained by a protein-mediated increase in IGF-I. Thus, such a dietary intervention might uncouple, at least transiently, bone resorption from bone formation and thereby attenuate age-related bone loss.

  8. Age-related changes in bone in the dog: calcium homeostasis

    International Nuclear Information System (INIS)

    Williams, E.A.; Kelly, P.J.

    1984-01-01

    To explore the changes in the relationship between skeletal and Ca 2+ homeostasis with age, a study was made of 50 dogs divided into four age groups. The skeletal uptake of 85 Sr decreased markedly with age, and the immunoreactive parathyroid hormone (iPTH) level increased. There was a significant correlation between iPTH value and the calculated short-term exchange of Ca in bone. Bone formation and bone resorption decreased with age except that in the oldest group of dogs the resorption increased. The authors suggest that in aging dogs the skeletal exchange of Ca falls to a very low level that decreases the immediate effect of PTH and thus leads to a chronic net increase in circulating PTH. Concomitant with this is an increase in osteoclastic bone resorption and, over a long time, loss of skeletal mass

  9. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    Science.gov (United States)

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  10. Low dose PTH improves metaphyseal bone healing more when muscles are paralyzed.

    Science.gov (United States)

    Sandberg, Olof; Macias, Brandon R; Aspenberg, Per

    2014-06-01

    Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury. One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1-34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma. PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p=0.03). The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Arsenic may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signaling pathway.

    Science.gov (United States)

    Zeng, Qi-bing; Xu, Yu-yan; Yu, Xian; Yang, Jun; Hong, Feng; Zhang, Ai-hua

    2014-01-01

    Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. In recent years, more and more researchers began to focus on the interaction between the fluorine and the arsenic. In this study, the selected investigation site was located in China. The study group was selected from people living in fluoride-arsenic polluted areas due to burning coal. The total number of participants was 196; including the fluoride-arsenic anomaly group (130) and the fluoride-arsenic normal group (63). By observing the changes in gene and protein expression of PTH/PKA/AP1 signaling pathway, the results show that fluoride can increase the expression levels of PTH, PKA, and AP1, but arsenic can only affect the expression of AP1; fluoride and arsenic have an interaction on the expression of AP1. Further study found that fluoride and arsenic can affect the mRNA expression level of c-fos gene (AP1 family members), and have an interaction on the expression of c-fos, but not c-jun. The results indicate that PTH/PKA/AP1 signaling pathway may play an important role in bone toxicity of fluoride. Arsenic can affect the expression of c-fos, thereby affecting the expression of transcription factor AP1, indirectly involved in fluoride-induced bone toxicity. Copyright © 2013. Published by Elsevier B.V.

  12. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34.

    Directory of Open Access Journals (Sweden)

    Yongxin Ren

    Full Text Available Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH.Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/- mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/- mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/- mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/- mice compared to vehicle-treated wild-type and Pth(-/- mice.Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.

  13. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34).

    Science.gov (United States)

    Ren, Yongxin; Liu, Bo; Feng, Yuxu; Shu, Lei; Cao, Xiaojian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2011-01-01

    Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH. Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/-)) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/-) mice compared to vehicle-treated wild-type and Pth(-/-) mice. Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.

  14. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  15. Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Hartmann, Bolette; Gottschalck, Ida B

    2007-01-01

    -bowel syndrome (SBS) or total gastrectomy in order to elucidate whether the signal for the meal-induced reduction of bone resorption is initiated from the stomach or the intestine. MATERIAL AND METHODS: Bone resorption was assessed from the serum concentration of collagen type I C-telopeptide cross-links (s......OBJECTIVE: Food intake inhibits bone resorption by a mechanism thought to involve gut hormones, and the intestinotrophic glucagon-like peptide 2 (GLP-2) is a candidate because exogenous GLP-2 inhibits bone resorption in humans. The purpose of the study was to investigate patients with short...

  16. Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats.

    Science.gov (United States)

    Kurohama, Takeshi; Hotokezaka, Hitoshi; Hashimoto, Megumi; Tajima, Takako; Arita, Kotaro; Kondo, Takanobu; Ino, Airi; Yoshida, Noriaki

    2017-06-01

    The purpose of this study was to evaluate the relationships among the volume of bone cut during corticotomy, amount of tooth movement, volume of root resorption, and volume of the resultant alveolar bone resorption after tooth movement. Ten-week-old female Wistar rats were distributed into the corticotomy groups and a control group that underwent sham corticotomy. Two experiments employing two different orthodontic forces (10 or 25g) and experimental periods (14 or 21 days) were performed. The volumes of the bone cut by corticotomy were 0.1, 1.0, and 1.7mm3 in the 25g groups, and 1.0 and 1.7mm3 in the 10g groups. Nickel-titanium closed-coil springs were set on the maxillary left first molars to induce mesial movement. After orthodontic tooth movement, the amount of tooth movement, volume of root resorption, and volume of alveolar bone resorption were measured. Despite differences in the volume of bone cut among the different corticotomy groups, there were not significant differences in the amount of tooth movement and volume of root resorption between the control group and any of the corticotomy groups. However, higher volume of bone cut during corticotomy was significantly related to the decreased alveolar bone volume-in particular, to the reduced height of the alveolar bone crest after tooth movement. The volume of the alveolar bone cut during corticotomy does not affect tooth movement or root resorption in 10-week-old female Wistar rats; however, it may increase alveolar bone loss after tooth movement. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  17. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  18. Acute and chronic regulation of circulating PTH: significance in health and in disease.

    Science.gov (United States)

    D'Amour, Pierre

    2012-08-01

    Circulating human parathyroid hormone (PTH) is immunoheterogenous. It is composed of 80% carboxyl-terminal (C) fragments and of 20% PTH(1-84). This composition contrasts with the biological activity of the hormone, which is only related to PTH(1-84), creating a paradox between circulating PTH composition and PTH bioactivity. PTH molecular forms are either secreted by the parathyroid glands or generated by the peripheral metabolism of PTH(1-84) in the liver. The kidney has a major role in the disposal of C-PTH fragments. Secretion of PTH molecular forms by the parathyroid glands is highly regulated under a variety of clinical conditions, suggesting that C-PTH fragments could exert some biological effects of their own. Recent data suggest that C-PTH fragments can exert biological actions opposite to those of PTH(1-84) by acting on a C-PTH receptor not yet cloned. They can decrease calcium concentration, phosphate excretion, bone resorption and 1,25(OH)₂ synthesis. The clinical implications of this new concept are reviewed. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Hydroxychloroquine affects bone resorption both in vitro and in vivo.

    Science.gov (United States)

    Both, Tim; Zillikens, M Carola; Schreuders-Koedam, Marijke; Vis, Marijn; Lam, Wai-Kwan; Weel, Angelique E A M; van Leeuwen, Johannes P T M; van Hagen, P Martin; van der Eerden, Bram C J; van Daele, Paul L A

    2018-02-01

    We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 μg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker β-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum β-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker β-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss. © 2017 Wiley Periodicals, Inc.

  20. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  1. 99mTc-HMDP Bone Uptake Quantification and Plasma Osteocalcin, PTH Levels in Hemodialysis Patients

    International Nuclear Information System (INIS)

    Kim, Euy Neyng; Sohn, Hyung Sun; Bang, Chan Young; Chung, Soo Kyo; Kim, Choon Yul; Shinn, Kyung Sub; Park, Chul Whee; Chang, Yoon Sik

    1996-01-01

    In this preliminary study, plasma osteocalcin, PTH level and Tc-99m-HMDP (hydro-xymetylene diphosphonate) bone uptake(BU) were measured in 14 patients with chronic end-stage renal failure who were on maintenance hemodialysis. The aim of this study was to determine the difference of bone uptake between renal failure patients and normal volunteers, and to determine the correlation between bone uptake and osteocalcin a sensitive and specific marker of osteoblastic activity and PTH-a important hormone of bone metabolism. There was a statistically significant increase in 180 minute uptake in the patient group when compared to the normal volunteers while there was no statistically significant difference in 20 minute uptake. Plasma osteocalcin and PTH levels were also significantly elevated compared to normal values. But the correlation between osteocalcin, PTH and 20 and 180 minute bone uptake was not significant. In conclusion, our preliminary study suggests that, in chronic renal failure patients, 180 minute Tc-99m-HMDP bone uptake is increased significantly without direct correlation with serum osteocalcin or PTH levels. It seems that further study is needed to evaluate other unknown factors that may influence the direct correlation between bone uptake and plasma osteocalcin and PTH in patients with chronic renal failure.

  2. Novel anti-cancer strategy in bone tumors by targeting molecular and cellular modulators of bone resorption.

    Science.gov (United States)

    Brounais, Bénédicte; Ruiz, Carmen; Rousseau, Julie; Lamoureux, François; Blanchard, Frédéric; Heymann, Dominique; Redini, Françoise

    2008-11-01

    Tumor cells alter the balanced process of bone formation and bone resorption mediated respectively by osteoblasts and osteoclasts, leading to the disruption of the normal equilibrium and resulting in a spectrum of osteolytic to osteoblastic lesions. This review will summarize research on molecules that play direct and essential roles in the differentiation and activity of osteoclasts, and the role of these molecules in bone destruction caused by cancer. Results from experimental models suggest that the Receptor Activator of NF-kB Ligand (RANKL), a member of the TNF superfamily is a common effector of bony lesions in osteolysis caused by primary and secondary bone tumors. Therefore, osteoclast represents an attractive target across a broad range of tumors that develop in bone. Elucidation of the mechanisms of RANKL interactions with its activator (RANK) and decoy (osteoprotegerin: OPG) receptors has enable the development of pharmacological inhibitors of RANKL (and of its signalling pathway) which have been recently patented, with potential for the treatment of cancer-induced bone disease. Blocking bone resorption by specific other drugs such as bisphosphonates, inhibitors of cathepsin K (the main enzyme involved in bone resorption mechanisms) or signalling pathways regulating osteoclast differentiation and activation is also a promising target for the treatment of osteolysis associated to bone tumors.

  3. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption......) from human osteoclasts cultured on either bone or plastic, and tested their effects on bone nodule formation by osteoblasts. Both types of CM were shown to dose-dependently induce bone nodule formation, whereas non-conditioned osteoclast culture medium had no effects. These data show that osteoclasts...

  4. Management of glucocorticoids-induced osteoporosis: role of teriparatide

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2009-04-01

    Full Text Available Silvia Migliaccio1, Marina Brama1, Nazzarena Malavolta21Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy; 2Dipartimento di Medicina Interna, Policlinico S Orsola Malpighi, Bologna, ItalyAbstract: Glucocorticoids (GC-induced osteoporosis (GIOP is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34 parathyroid hormone (PTH molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34 stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34 modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.Keywords: glucocorticoids, osteoblasts, osteoclasts, osteoporosis, teriparatide

  5. Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system.

    Science.gov (United States)

    Ren, Weiping; Wu, Bin; Mayton, Lois; Wooley, Paul H

    2002-09-01

    There is considerable evidence that orthopaedic wear debris plays a crucial role in the pathology of aseptic loosening of joint prostheses. This study examined the effect of inflammatory membranes stimulated with methyl methacrylate and polyethylene on bone resorption, using the murine air pouch model. The capacity of RAW 264.7 mouse macrophages exposed to polymer particles to produce factors affecting bone metabolism was also studied. Neonatal calvaria bones were co-cultured with either pouch membranes or conditioned media from activated macrophages. Bone resorption was measured by the release of calcium from cultured bones, and the activity of tartrate-resistant acid phosphatase in both bone sections and culture medium was also assayed. Results showed that inflammatory pouch membrane activated by methyl methacrylate and polyethylene enhanced osteoclastic bone resorption. Conditioned media from particles stimulated mouse macrophages also stimulated bone resorption, although this effect was weaker than resorption induced by inflammatory pouch membranes. The addition of the particles directly into the medium of cultured calvaria bones had little effect on bone resorption. Our observations indicate that both inflammatory tissue and macrophages provoked by particles can stimulate bone resorption in cultured mouse neonatal calvaria bones. This simple in vitro bone resorption system allows us to investigate the fundamental cellular and molecular mechanism of wear debris induced bone resorption and to screen potential therapeutic approaches for aseptic loosening.

  6. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    International Nuclear Information System (INIS)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-01

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases

  7. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha (China); Wu, Chuanlong [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Guangwang [Department of Orthopaedic Surgery, The Central Hospital of Xuzhou, Affiliated Hospital of Medical Collage of Southeast University, Xuzhou (China); Fan, Qiming; Tang, Tingting [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Dai, Kerong, E-mail: krdai@163.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  8. Coupling of Bone Resorption and Formation in Real Time

    DEFF Research Database (Denmark)

    Lassen, Nicolai Ernlund; Andersen, Thomas Levin; Pløen, Gro Grunnet

    2017-01-01

    measurements show that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the "reversal/resorption" surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal......It is well known that bone remodeling starts with a resorption event and ends with bone formation. However, what happens in between and how resorption and formation are coupled remains mostly unknown. Remodeling is achieved by so-called basic multicellular units (BMUs), which are local teams...... of osteoclasts, osteoblasts, and reversal cells recently proven identical with osteoprogenitors. Their organization within a BMU cannot be appropriately analyzed in common histology. The originality of the present study is to capture the events ranging from initiation of resorption to onset of formation...

  9. New mechanisms and targets in the treatment of bone fragility.

    Science.gov (United States)

    Martin, T John; Seeman, Ego

    2007-01-01

    Bone modelling and remodelling are cell-mediated processes responsible for the construction and reconstruction of the skeleton throughout life. These processes are chiefly mediated by locally generated cytokines and growth factors that regulate the differentiation, activation, work and life span of osteoblasts and osteoclasts, the cells that co-ordinate the volumes of bone resorbed and formed. In this way, the material composition and structural design of bone is regulated in accordance with its loading requirements. Abnormalities in this regulatory system compromise the material and structural determinants of bone strength producing bone fragility. Understanding the intercellular control processes that regulate bone modelling and remodelling is essential in planning therapeutic approaches to prevention and treatment of bone fragility. A great deal has been learnt in the last decade. Clinical trials carried out exclusively with drugs that inhibit bone resorption have identified the importance of reducing the rate of bone remodelling and so the progression of bone fragility to achieved fracture reductions of approx. 50%. These trials have also identified limitations that should be placed upon interpretation of bone mineral density changes in relation to treatment. New resorption inhibitors are being developed, based on mechanisms of action that are different from existing drugs. Some of these might offer resorption inhibition without reducing bone formation. More recent research has provided the first effective anabolic therapy for bone reconstruction. Daily injections of PTH (parathyroid hormone)-(1-34) have been shown in preclinical studies and in a large clinical trial to increase bone tissue mass and reduce the risk of fractures. The action of PTH differs from that of the resorption inhibitors, but whether it is more effective in fracture reduction is not known. Understanding the cellular and molecular mechanisms of PTH action, particularly its interactions with

  10. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    Science.gov (United States)

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016

  11. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  12. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans

    DEFF Research Database (Denmark)

    Aslan, Derya; Dahl Andersen, Mille; Gede, Lene Bjerring

    2012-01-01

    . However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects...... in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called ‘anabolic window’, which means that during PTH treatment, bone formation is in excess over bone...... resorption during the first 6–18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5...

  13. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Chuandong Wang

    2017-06-01

    Full Text Available Postmenopausal osteoporosis is a disease characterized by excessive osteoclastic bone resorption. Some anti-diabetic drugs were demonstrated for anti-osteoclastic bone-loss effects. The present study investigated the skeletal effects of chronic administration of sitagliptin, a dipeptidyl peptidase IV (DPP IV inhibitor that is increasingly used for type 2 diabetes treatments, in an estrogen deficiency-induced osteoporosis and elucidated the associated mechanisms. This study indicated that sitagliptin effectively prevented ovariectomy-induced bone loss and reduced osteoclast numbers in vivo. It was also indicated that sitagliptin suppressed receptor activator of nuclear factor-κB ligand (RANKL-mediated osteoclast differentiation, bone resorption, and F-actin ring formation in a manner of dose-dependence. In addition, sitagliptin significantly reduced the expression of osteoclast-specific markers in mouse bone-marrow-derived macrophages, including calcitonin receptor (Calcr, dendrite cell-specific transmembrane protein (Dc-stamp, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1. Further study indicated that sitagliptin inhibited osteoclastogenesis by suppressing AKT and ERK signaling pathways, scavenging ROS activity, and suppressing the Ca2+ oscillation that consequently affects the expression and/or activity of the osteoclast-specific transcription factors, c-Fos and NFATc1. Collectively, these findings suggest that sitagliptin possesses beneficial effects on bone and the suppression of osteoclast number implies that the effect is exerted directly on osteoclastogenesis.

  14. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures.

    Science.gov (United States)

    Kakar, Sanjeev; Einhorn, Thomas A; Vora, Siddharth; Miara, Lincoln J; Hon, Gregory; Wigner, Nathan A; Toben, Daniel; Jacobsen, Kimberly A; Al-Sebaei, Maisa O; Song, Michael; Trackman, Philip C; Morgan, Elise F; Gerstenfeld, Louis C; Barnes, George L

    2007-12-01

    Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Since FDA approval of PTH [PTH(1-34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 microg/kg PTH(1-34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Quantitative muCT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to

  15. Ihh and PTH1R signaling in limb mesenchyme is required for proper segmentation and subsequent formation and growth of digit bones.

    Science.gov (United States)

    Amano, Katsuhiko; Densmore, Michael; Fan, Yi; Lanske, Beate

    2016-02-01

    Digit formation is a process, which requires the proper segmentation, formation and growth of phalangeal bones and is precisely regulated by several important factors. One such factor is Ihh, a gene linked to BDA1 and distal symphalangism in humans. In existing mouse models, mutations in Ihh have been shown to cause multiple synostosis in the digits but lead to perinatal lethality. To better study the exact biological and pathological events which occur in these fused digits, we used a more viable Prx1-Cre;Ihh(fl/fl) model in which Cre recombinase is expressed during mesenchymal condensation in the earliest limb buds at E9.5 dpc and found that mutant digits continuously fuse postnatally until phalanges are finally replaced by an unsegmented "one-stick bone". Mutant mice displayed osteocalcin-positive mature osteoblasts, but had reduced proliferation and abnormal osteogenesis. Because of the close interaction between Ihh and PTHrP during endochondral ossification, we also examined the digits of Prx1-Cre;PTH1R(fl/fl) mice, where the receptor for PTHrP was conditionally deleted. Surprisingly, we found PTH1R deletion caused symphalangism, demonstrating another novel function of PTH1R signaling in digit formation. We characterized the symphalangism process whereby initial cartilaginous fusion prevented epiphyseal growth plate formation, resulting in resorption and replacement of the remaining cartilage by bony tissue. Chondrocyte differentiation displayed abnormal directionality in both mutants. Lastly, Prx1-Cre;Ihh(fl/fl);Jansen Tg mice, in which a constitutively active PTH1R allele was introduced into Ihh mutants, were established to address the possible involvement of PTH1R signaling in Ihh mutant digits. These rescue mice failed to show significantly improved phenotype, suggesting that PTH1R signaling in chondrocytes is not sufficient to restore digit formation. Our results demonstrate that Ihh and PTH1R signaling in limb mesenchyme are both essential to regulate

  16. Overproduction of an amino-terminal form of PTH distinct from human PTH(1-84) in a case of severe primary hyperparathyroidism: influence of medical treatment and surgery.

    Science.gov (United States)

    Räkel, Agnès; Brossard, Jean-Hugues; Patenaude, Jean-Victor; Albert, Caroline; Nassif, Edgard; Cantor, Tom; Rousseau, Louise; D'Amour, Pierre

    2005-06-01

    Rare patients with severe primary hyperparathyroidism present with large parathyroid tumours, severe hypercalcaemia, very high PTH levels and osteitis fibrosa cystica. Some of these patients display a large amount of C-PTH fragments in circulation and present with a higher C-PTH/I-PTH ratio than seen in less severe cases of primary hyperparathyroidism. We wanted to determine how PTH levels and circulating PTH high-performance liquid chromatography (HPLC) profiles analysed with PTH assays having different epitopes could be affected by medical and surgical treatment in such patients. A 55-year-old man with severe hypercalcaemia (Ca(2+): 2.01 mmol/l), very high PTH levels (CA-PTH 82.1 and T-PTH 72 pmol/l) caused by a large parathyroid tumour (7.35 g) and accompanied by significant bone involvement (alkaline phosphatase of 185 UI/l and subperiostal bone resorption of hands) was referred to us. Blood was obtained at various time points during his medical treatment, before and after surgery, to measure parameters of calcium and phosphorus metabolism, and of bone turnover. HPLC separations of circulating PTH molecular forms were performed and analysed with PTH assays having 1-4 (CA), 12-18 (T), 26-32 (E) and 65-84 (C) epitopes. Before surgery, serum Ca2+ was nearly normalized with hydratation, intravenous (IV) pamidronate and oral vitamin D administration. Despite a decrease in Ca2+ to 1.31 mmol/l, CA-PTH and T-PTH levels decreased by half in relation to a threefold increase in basal 1,25-dihydroxyvitamin D [1,25(OH)2D] level (94 to 337 pmol/l). After this initial positive response, hypercalcaemia and elevated CA- and T-PTH levels recurred even if 1,25(OH)2D levels remained elevated. The tumour was removed surgically and proved to be poorly differentiated with nuclear atypia and mitosis. After surgery, the Ca2+ level and PTH secretion normalized. The higher CA-PTH level relative to the T-PTH level observed before surgery in this patient was related to the oversecretion of

  17. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinxiu [Department of Physiology, University of California, Los Angeles (United States); Cheng, Henry [Department of Medicine, University of California, Los Angeles (United States); Atti, Elisa [Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (United States); Shih, Diana M. [Department of Medicine, University of California, Los Angeles (United States); Demer, Linda L. [Department of Physiology, University of California, Los Angeles (United States); Department of Medicine, University of California, Los Angeles (United States); Department of Bioengineering, University of California, Los Angeles (United States); Tintut, Yin, E-mail: ytintut@mednet.ucla.edu [Department of Medicine, University of California, Los Angeles (United States)

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, Fox

  18. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    Science.gov (United States)

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of continuous and pulsatile PTH treatments on rat bone marrow stromal cells

    International Nuclear Information System (INIS)

    Yang Chiming; Frei, Hanspeter; Burt, Helen M.; Rossi, Fabio

    2009-01-01

    Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.

  20. The role of lipopolysaccharide in infectious bone resorption of periapical lesion.

    Science.gov (United States)

    Hong, Chi-Yuan; Lin, Sze-Kwan; Kok, Sang-Heng; Cheng, Shih-Jung; Lee, Ming-Shu; Wang, Tong-Mei; Chen, Chuan-Shuo; Lin, Li-Deh; Wang, Juo-Song

    2004-03-01

    The role of lipopolysaccharide (LPS) in periapical lesion-induced bone resorption was investigated. Polymyxin B (PMB), a specific inhibitor of LPS, was evaluated to treat the apical lesion. Lipopolysaccharide isolated from two common endodontic pathogens, Fusobacterium nucleatum and Porphyromonas endodontalis, stimulated mouse macrophage (J774) to release interleukin-1alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) in a time-dependent manner. Combination of LPS further enhanced the stimulation. PMB inhibited these effects significantly. LPS also stimulated matrix metalloproteinase-1 (MMP-1) gene expression in J774, whereas anti-IL-1 alpha and anti-TNF-alpha antibodies, as well as PMB, diminished this effect. A disease model of periapical lesion was established in Wistar rat. Administration of PMB reduced the extent of lesion-associated bone resorption by 76% to approximately 80%, and simultaneously reduced the numbers of MMP-1-producing macrophages. It is suggested that LPS released from the infected root canal triggers the synthesis of IL-1 alpha and TNF-alpha from macrophages. These pro-inflammatory cytokines up-regulate the production of MMP-1 by macrophages to promote periapical bone resorption.

  1. Effects of epidermal growth factor on bone formation and resorption in vivo

    International Nuclear Information System (INIS)

    Marie, P.J.; Hott, M.; Perheentupa, J.

    1990-01-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double [3H]proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in the periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse

  2. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone fo......: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.......BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone...... formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  3. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    Science.gov (United States)

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-12-22

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.

  4. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia

    2016-04-01

    BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Facilitation of bone resorption activities in synovial lavage fluid patients with mandibular condyle fractures.

    Science.gov (United States)

    Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M

    2016-05-01

    The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.

  6. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  7. Mechanisms of Bone Resorption in Periodontitis

    Directory of Open Access Journals (Sweden)

    Stefan A. Hienz

    2015-01-01

    Full Text Available Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.

  8. Bone Resorption Increases as Early as the Second Day in Head- Down Bed Rest

    Science.gov (United States)

    Heer, M.; Kamps, N.; Mika, C.; Boese, A.; Gerzer, R.

    Long-term bed rest and space mission studies have shown that immobilization as well as microgravity induce increased bone resorption while bone formation tends to decrease. In order to analyze the kinetics of short-term changes in bone turnover we studied in a randomized, strictly controlled crossover design the effects of 6 days 6° head-down tilt bed rest (HDT) in 8 male healthy subjects (mean body weight (BW): 70.1 +/- 1.88 kg; mean age: 25.5 +/- 1.04 years) in our metabolic ward. Two days before arriving in the metabolic ward the subjects started with a diet consisting of an energy content of 10 MJ/d, 2000 mg Calcium/d, 400 i.U. Vitamin D, 200 mEq Na+ and 50 ml water/kg BW/d. The diet was continued in the metabolic ward. The metabolic ward period (11days) was divided into 3 parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers, namely C-telopeptide (CTX) and N-telopeptide (NTX). On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers (bone Alkaline Phosphatase (bAP), Procollagen-I-Propeptide (P-I-CP). Both study phases were identical with respect to environmental conditions, study protocol and diet. Urinary calcium excretion was as early as the first day in immobilization increased (pcontrol. But, already on the 2nd day of immobilization both bone resorption markers significantly increased. NTX-excretion was increased by 28.7 +/- 14.0% (pcontrol. In contrast to the bone resorption markers, the formation marker P-I-CP tended to decrease as early as the fifth day of immobilization (phormone-, as well as bAP concentrations were unchanged. We conclude from these results of a pronounced rise of bone resorption markers that already 24 hours of immobilization induce a significant rise in osteoclast

  9. Parathyroid hormone related to bone regeneration in grafted and nongrafted tooth extraction sockets in rats.

    Science.gov (United States)

    Kuroshima, Shinichiro; Al-Salihi, Zeina; Yamashita, Junro

    2013-02-01

    The quality and quantity of bone formed in tooth extraction sockets impact implant therapy. Therefore, the establishment of a new approach to enhance bone formation and to minimize bone resorption is important for the success of implant therapy. In this study, we investigated whether intermittent parathyroid hormone (PTH) therapy enhanced bone formation in grafted sockets. Tooth extractions of the maxillary first molars were performed in rats, and the sockets were grafted with xenograft. Intermittent PTH was administered either for 7 days before extractions, for 14 days after extractions, or both. The effect of PTH therapy on bone formation in the grafted sockets was assessed using microcomputed tomography at 14 days after extractions. PTH therapy for 7 days before extractions was not effective to augment bone fill, whereas PTH therapy for 14 days after operation significantly augmented bone formation in the grafted sockets. Intermittent PTH therapy starting right after tooth extractions significantly enhanced bone fill in the grafted sockets, suggesting that PTH therapy can be a strong asset for the success of the ridge preservation procedure.

  10. Blocking the expression of both bone sialoprotein (BSP) and osteopontin (OPN) impairs the anabolic action of PTH in mouse calvaria bone.

    Science.gov (United States)

    Bouleftour, Wafa; Bouet, Guenaelle; Granito, Renata Neves; Thomas, Mireille; Linossier, Marie-Thérèse; Vanden-Bossche, Arnaud; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2015-03-01

    Osteopontin (OPN) and bone sialoprotein (BSP) are coexpressed in osteoblasts and osteoclasts, and display overlapping properties. We used daily injection of parathyroid hormone 1-84 (iPTH) over the calvaria of BSP knockout (-/-) mice to investigate further their functional specificity and redundancy. iPTH stimulated bone formation in both +/+ and -/- mice, increasing to the same degree periosteum, osteoid and total bone thickness. Expression of OPN, osterix, osteocalcin (OCN) and DMP1 was also increased by iPTH in both genotypes. In contrast to +/+, calvaria cell cultures from -/- mice revealed few osteoblast colonies, no mineralization and little expression of OCN, MEPE or DMP1. In contrast, OPN levels were 5× higher in -/- versus +/+ cultures. iPTH increased alkaline phosphatase (ALP) activity in cell cultures of both genotypes, with higher OCN and the induction of mineralization in -/- cultures. siRNA blocking of OPN expression did not alter the anabolic action of the hormone in BSP +/+ calvaria, while it blunted iPTH effects in -/- mice, reduced to a modest increase in periosteum thickness. In -/- (not +/+) cell cultures, siOPN blocked the stimulation by iPTH of ALP activity and OCN expression, as well as the induction of mineralization. Thus, full expression of either OPN or BSP is necessary for the anabolic effect of PTH at least in the ectopic calvaria injection model. This suggests that OPN may compensate for the lack of BSP in the response to this hormonal challenge, and provides evidence of functional overlap between these cognate proteins. © 2014 Wiley Periodicals, Inc., A Wiley Company.

  11. Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.

    OpenAIRE

    Krieger, N S; Stappenbeck, T S; Stern, P H

    1987-01-01

    The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations bel...

  12. Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.

    Science.gov (United States)

    Krieger, N S; Stappenbeck, T S; Stern, P H

    1987-01-01

    The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations below 0.1 mM did not affect calvarial cyclic AMP. 0.5 microM indomethacin inhibited milrinone effects in calvaria but usually not in limb bones. 3 nM calcitonin inhibited milrinone-stimulated resorption and there was no escape from this inhibition. Structural homology between milrinone and thyroxine has been reported. We find similarities between milrinone and thyroxine actions on bone, because prostaglandin production was crucial for the effects of both agents in calvaria but not in limb bones, and neither agent exhibited escape from calcitonin inhibition. PMID:3027124

  13. Serum Bone Resorption Markers after Parathyroidectomy for Renal Hyperparathyroidism: Correlation Analyses for the Cross-Linked N-telopeptide of Collagen I and Tartrate-Resistant Acid Phosphatase

    Directory of Open Access Journals (Sweden)

    Kuo-Chin Hung

    2012-01-01

    Full Text Available Patients on long-term dialysis may develop secondary hyperparathyroidism (SHPT with increased serum concentrations of bone resorption markers such as the cross-linked N-telopeptide of type I collagen (NTX and type-5b tartrate-resistant acid phosphatase (TRAP. When SHPT proves refractory to treatment, parathyroidectomy (PTX may be needed. Renal patients on maintenance HD who received PTX for refractory SHPT (n=23 or who did not develop refractory SHPT (control subjects; n=25 were followed prospectively for 4 weeks. Serum intact parathyroid hormone (iPTH, NTX, TRAP, and bone alkaline phosphatase (BAP concentrations were measured serially and correlation analyses were performed. iPTH values decreased rapidly and dramatically. BAP values increased progressively with peak increases observed at 2 weeks after surgery. NTX and TRAP values decreased concurrently and progressively through 4 weeks following PTX. A significant correlation between TRAP and NTX values was observed before PTX but not at 4 weeks after PTX. Additionally, the fractional changes in serum TRAP were larger than those in serum NTX at all times examined after PTX. Serum iPTH, TRAP, and NTX values declined rapidly following PTX for SHPT. Serum TRAP values declined to greater degrees than serum NTX values throughout the 4-week period following PTX.

  14. Comparison of Intact PTH and Bio-Intact PTH Assays Among Non-Dialysis Dependent Chronic Kidney Disease Patients.

    Science.gov (United States)

    Einbinder, Yael; Benchetrit, Sydney; Golan, Eliezer; Zitman-Gal, Tali

    2017-09-01

    The third-generation bio-intact parathyroid hormone (PTH) (1-84) assay was designed to overcome problems associated with the detection of C-terminal fragments by the second-generation intact PTH assay. The two assays have been compared primarily among dialysis populations. The present study evaluated the correlations and differences between these two PTH assays among patients with chronic kidney disease (CKD) stages 3 to 5 not yet on dialysis. Blood samples were collected from 98 patients with CKD stages 3 to 5. PTH concentrations were measured simultaneously by using the second-generation - PTH intact-STAT and third-generation bio-intact 1-84 PTH assays. Other serum biomarkers of bone mineral disorders were also assessed. CKD stage was calculated by using the CKD-Epidemiology Collaboration (EPI) formula. Serum bio-intact PTH concentrations were strongly correlated but significantly lower than the intact PTH concentrations (r=0.963, Pbio-intact PTH) positively correlated with urea (r=0.523, r=0.504; P=0.002, respectively), phosphorus (r=0.532, r=0.521; Pbio-intact PTH assay detected significantly lower PTH concentrations compared with intact PTH assay. Additional studies that correlate the diagnosis and management of CKD mineral and bone disorders with bone histomorphometric findings are needed to determine whether bio-intact PTH assay results are better surrogate markers in these early stages of CKD. © The Korean Society for Laboratory Medicine

  15. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption

    DEFF Research Database (Denmark)

    Karsdal, M.A.; Henriksen, K.; Sorensen, M.G.

    2005-01-01

    Patients with defective osteoclastic acidification have increased numbers of osteoclasts, with decreased resorption, but bone formation that remains unchanged. We demonstrate that osteoclast survival is increased when acidification is impaired, and that impairment of acidification results in inhi...

  16. Morphological characteristics of frontal sinus and nasal bone focusing on bone resorption and apposition in hypophosphatemic rickets

    DEFF Research Database (Denmark)

    Gjørup, Hans; Kjaer, I; Sonnesen, L

    2013-01-01

    To characterize the size and the morphology of the frontal sinus (i.e., structure evolved by bone resorption) and the nasal bone (i.e., structure evolved by bone formation) in adults with hypophosphatemic rickets (HR) compared with controls.......To characterize the size and the morphology of the frontal sinus (i.e., structure evolved by bone resorption) and the nasal bone (i.e., structure evolved by bone formation) in adults with hypophosphatemic rickets (HR) compared with controls....

  17. Influence of diphenylhydantoin on lysosomal enzyme release during bone resorption in vitro

    International Nuclear Information System (INIS)

    Lerner, U.; Haenstroem, L.

    1980-01-01

    The effect of diphenylhydantoin (DPH) on the release of lysosomal enzymes during resorption of cultured mouse calvarial bone was studied. The enzyme activities of β-glucuronidase and β-galactosidase in the culture medium was taken as indicators for lysosomal enzyme release. In concentrations 50 μg/ml or higher, DPH inhibited the release of β-glucuronidase and β-galactosidase in parallel with bone resorption as indicated by reduced release of 4 Ca, Ca 2 , Psub(i) and hydroxyproline. The release of the cytosolic enzyme lactate dehydrogenase was not influenced by concentrations of DPH up to 50 μg/ml but higher concentrations caused an increased release indicating cell injury. When bone resorption was stimulated by prostaglandin E 2 , DPH(50 μg/ml) also reduced the mobilization of bone mineral and the release of β- glucuronidase without influencing the release of lactate dehydrogenase. It is suggested that DPH by interfering with cellular release processes reduces the resorption on bone. (author)

  18. Changes in bone geometry and microarchitecture caused by intermittent administration of PTH. Comparison with those by exercise load

    International Nuclear Information System (INIS)

    Mori, Keiya

    2010-01-01

    There have been several studies showing that periodical intermittent medication with parathyroid hormone (PTH) causes increases in cancellous bone mass. However, there have been almost no reports comparing the effects of periodical intermittent PTH medication on bone microarchitecture with changes caused by physiological stimulation such as exercise load. In this study, we compared the effects of these two interventions on the microarchitecturural deterioration of femoral cancellous bone associated with unloading, using micro-computed tomography (micro-CT), and the effects of PTH administration and motion loading on improvement of the deteriorated structure. In the study, 32 eight-week-old male Wistar rats were divided into four groups: a control group without tail suspension (CON), a control recovery group after suspension (S+C), a suspension/PTH group (S+P), and a suspension/jumping exercise group (S+J). Periodical intermittent human PTH (1-34) was given periodically to the S+P group rats at a dose of 75 μg/kg/day five times a week for five weeks, after two weeks of exercise with suspension of the tail. The rats in the S+J group performed 40 cm-high jumping 10 times/day five times a week for five weeks. After this conditioning, upon examination, bilateral femurs were removed and the right distal metaphysis was scanned using micro-CT to obtain images of the cancellous bone region of the femur. Based on the tomographic data, indices of cancellous bone microarchitecture was the index of trabecular bone structure were determined by using three-dimensional image analysis system. In addition, to examine the geometric properties of the diaphysis, mid-portion images of the bone shaft of the left femur were obtained by micro-CT, and then the mechanical bone strength of the left femur was determined by performing a three-point bending test. Compared to the S+C group, the S+P and S+J groups showed significantly higher bone volume, bone surface mass values, superficial bone

  19. The Anabolic Effect of PTH on Bone is Attenuated by Simultaneous Glucocorticoid Treatment

    DEFF Research Database (Denmark)

    Oxlund, Hans; Ørtoft, Gitte; Thomsen, Jesper Skovhus

    2006-01-01

    . The pronounced anabolic effect of PTH injections on the endocortical and trabecular bone surfaces and less pronounced anabolic effect on periosteal surfaces were partially inhibited, but not prevented, by simultaneous GC treatment in old rats. Both cortical and cancellous bone possessed full mechanical...

  20. Modeling of Oxidized PTH (oxPTH) and Non-oxidized PTH (n-oxPTH) Receptor Binding and Relationship of Oxidized to Non-Oxidized PTH in Children with Chronic Renal Failure, Adult Patients on Hemodialysis and Kidney Transplant Recipients

    DEFF Research Database (Denmark)

    Hocher, Berthold; Oberthür, Dominik; Slowinski, Torsten

    2013-01-01

    Background: The biological properties of oxidized and non-oxidized PTH are substantially different. Oxidized PTH (oxPTH) loses its PTH receptor-stimulating properties, whereas non-oxidized PTH (n-oxPTH) is a full agonist of the receptor. This was described in more than 20 well published studies i......PTH measures describes most likely oxidative stress in patients with renal failure rather than the PTH hormone status. This, however, needs to be demonstrated in further clinical studies. © 2013 S. Karger AG, Basel......., we performed modeling of the interaction of either oxPTH or n-oxPTH with the PTH receptor using biophysical structure approaches. Results: The children had the highest mean as well as maximum n-oxPTH concentrations as compared to adult patients (both patients on dialysis as well as kidney transplant......-oxPTH. This indicated that PTH oxidation may induce refolding of PTH and hence alters PTH-PTH receptor interaction via oxidation induced three-dimensional structure alteration of PTH. Conclusion: A huge proportion of circulating PTH measured by current state-of-the-art assay systems is oxidized and thus...

  1. The clinical study of the early soft tissue healing and marginal bone resorption after non-submerged implants

    International Nuclear Information System (INIS)

    Xu Anchen; Yang Desheng; Hu Bei; Leng Bin; Zhang Li

    2009-01-01

    Objective: To compare the amount of early marginal bone resorption in the first three months after non-submerged implants and to explore the relationship between the amount of early marginal bone resorption and the soft tissue healing in the first month. Method: ITI with non-submerged implants were implanted in 33 patients. Digital panoramic radiographs were taken during the operation, one month and three months later. The amount of marginal bone resorption was measured in the first, second and the third month after implant operation. The soft tissue healing was observed after 10 days. Results: There was significant difference (P<0.01) in the amount of early marginal bone resorption between one month and three months later. The early marginal bone resorption in the first month after implantation kept correlation with the soft tissue healing on 10th day(r=0.794, P<0.01). Conclusion: The amount of early marginal bone resorption in the first month exceeds that in the second and the third months after implant operation, and the soft tissue healing affects the amount of early marginal bone resorption in the first month. Biological seal is the critical factor influencing the early marginal bone resorption. (authors)

  2. Sequential treatment with basic fibroblast growth factor and PTH is more efficacious than treatment with PTH alone for increasing vertebral bone mass and strength in osteopenic ovariectomized rats

    DEFF Research Database (Denmark)

    Iwaniec, U.T.; Mosekilde, Li.; Mitova-Caneva, N.G.

    2002-01-01

    The study was designed 1) to determine whether treatment with basic fibroblast growth factor (bFGF) and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic ovariectomized rats, and 2) to assess whethe...

  3. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Shaobo [Department of Orthopaedics, PLA General Hospital, Beijing 100853 (China); Xu, Jiawei [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Chenghua [Department of Orthopaedics, Changle County Hospital of Traditional Chinese Medicine, Weifang 262400 (China); Xu, Chen [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Liu, Ming, E-mail: ming_li4717@sina.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Degang, E-mail: ydg163@126.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China)

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  4. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    International Nuclear Information System (INIS)

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua; Xu, Chen; Liu, Ming; Yu, Degang

    2016-01-01

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  5. ATF4, A Novel Mediator of the Anabolic Actions of PTH on Bone

    Science.gov (United States)

    2008-07-01

    pathways. Lastly, PTH stimulation of Ocn expres- sion was lost by silent interfering RNA down-regulation of ATF4 in MC-4 cells and Atf4/ bone marrow...M 2000 Para- thyroid hormone-related protein downregulates bone sialoprotein gene ex- pression in cementoblasts: role of the protein kinase A pathway

  6. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells.

    Science.gov (United States)

    Nishigaki, Masaru; Yamamoto, Toshiro; Ichioka, Hiroaki; Honjo, Ken-Ichi; Yamamoto, Kenta; Oseko, Fumishige; Kita, Masakazu; Mazda, Osam; Kanamura, Narisato

    2013-07-01

    β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of Nanocrystalline Hydroxyapatite Socket Preservation on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742

  8. Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption.

    Science.gov (United States)

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10(-4)mm(2) in the maxilla and 21.41 ± 11.25×10(-4)mm(2) in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®.

  9. Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study

    Directory of Open Access Journals (Sweden)

    Wong Pius

    2009-07-01

    Full Text Available Abstract Background Asymptomatic local bone resorption of the tibia under the baseplate can occasionally be observed after total knee arthroplasty (TKA. Its occurrence is not well documented, and so far no explanation is available. We report the incidence of this finding in our practice, and investigate whether it can be attributed to specific mechanical factors. Methods The postoperative radiographs of 500 consecutive TKA patients were analyzed to determine the occurrence of local medial bone resorption under the baseplate. Based on these cases, a 3D FE model was developed. Cemented and cementless technique, seven positions of the baseplate and eleven load sharing conditions were considered. The average VonMises stress was evaluated in the bone-baseplate interface, and the medial and lateral periprosthetic region. Results Sixteen cases with local bone resorption were identified. In each, bone loss became apparent at 3 months post-op and did not increase after one year. None of these cases were symptomatic and infection screening was negative for all. The FE analysis demonstrated an influence of baseplate positioning, and also of load sharing, on stresses. The average stress in the medial periprosthetic region showed a non linear decrease when the prosthetic baseplate was shifted laterally. Shifting the component medially increased the stress on the medial periprosthetic region, but did not significantly unload the lateral side. The presence of a cement layer decreases the stresses. Conclusion Local bone resorption of the proximal tibia can occur after TKA and might be attributed to a stress shielding effect. This FE study shows that the medial periprosthetic region of the tibia is more sensitive than the lateral region to mediolateral positioning of the baseplate. Medial cortical support of the tibial baseplate is important for normal stress transfer to the underlying bone. The absence of medial cortical support of the tibial baseplate may lead

  10. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  11. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption.

    Science.gov (United States)

    Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan

    2018-01-16

    In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.

  12. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  13. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  14. Porphyromonas gingivalis GroEL induces osteoclastogenesis of periodontal ligament cells and enhances alveolar bone resorption in rats.

    Directory of Open Access Journals (Sweden)

    Feng-Yen Lin

    Full Text Available Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL activation and alkaline phosphatase (ALP mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption.

  15. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  16. Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement

    Science.gov (United States)

    Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.

    2013-01-01

    Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763

  17. Bone Canopies in Pediatric Renal Osteodystrophy

    DEFF Research Database (Denmark)

    Pereira, Renata C; Levin Andersen, Thomas; Friedman, Peter A

    2016-01-01

    Pediatric renal osteodystrophy (ROD) is characterized by changes in bone turnover, mineralization, and volume that are brought about by alterations in bone resorption and formation. The resorptive and formative surfaces on the cancellous bone are separated from the marrow cavity by canopies...... and their association with biochemical and bone histomorphometric parameters in 106 pediatric chronic kidney disease (CKD) patients (stage 2-5) across the spectrum of ROD. Canopies in CKD patients often appeared as thickened multilayered canopies, similar to previous reports in patients with primary hyperparathyroidism....... This finding contrasts with the thin appearance reported in healthy individuals with normal kidney function. Furthermore, canopies in pediatric CKD patients showed immunoreactivity to the PTH receptor (PTHR1) as well as to the receptor activator of nuclear factor kappa-B ligand (RANKL). The number of surfaces...

  18. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  19. Effect of calvarial burring on resorption of onlay cranial bone graft.

    Science.gov (United States)

    Hassanein, Aladdin H; Clune, James E; Mulliken, John B; Arany, Praveen R; Rogers, Gary F; Kulungowski, Ann M; Greene, Arin K

    2012-09-01

    Variable resorption occurs whenever calvarial bone graft is used for onlay cranioplasty. The recipient ectocortex may be burred to expose vessels and osteocytes to maximize healing. The purpose of this study was to determine whether abrading the recipient site improves the volume of onlay graft. The parietal bones of 17 rabbits were sectioned into split-thickness and full-thickness grafts. The right frontal cortex was abraded with a bur to punctate bleeding. Pairs of split-thickness (n = 48) or full-thickness (n = 20) grafts were onlayed to the burred right frontal bone and to the nonburred left frontal bone. Micro-computed tomography was used to determine graft volume immediately postoperatively and 16 weeks later. Histology, including tartrate-resistant acid phosphatase staining, was performed to quantify vascular channels and osteoclasts per high-power field 10 days postoperatively. Split-thickness graft volume decreased 58.0% when placed on the burred calvarial site, compared with grafts on the nonburred cortex (28.4%) (P = 0.01). Full-thickness grafts showed a similar trend: greater resorption (39.1%) when onlayed onto abraded calvaria compared with nonburred ectocortex (26.0%) (P = 0.11). Split-thickness graft orientation (cortical vs cancellous side in contact with the recipient site) did not affect resorption (P = 0.67). Onlay grafts placed on the burred recipient site had more vascular channels (11.8) and osteoclasts (5.7), compared with grafts over nonabraded cortex (3.4 and 4.2, respectively) (P cranial bone grafting promotes resorption, possibly by increasing vascularization and osteoclastic activity. This technique cannot be recommended.

  20. 3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption

    International Nuclear Information System (INIS)

    Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine

    2007-01-01

    Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41 Ca and measuring urinary 41 Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41 Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3 H-tetracycline ( 3 H-TC) as a proxy for 41 Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3 H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats

  1. Osteoporotic cytokines and bone metabolism on rats with induced hyperthyroidism; changes as a result of reversal to euthyroidism.

    Science.gov (United States)

    Simsek, Gönül; Karter, Yesari; Aydin, Seval; Uzun, Hafize

    2003-12-31

    Hyperthyroidism is characterized by increased bone turnover and resorptive activity. Raised levels of serum osteoporotic cytokines, such as interleukin (IL) -1beta, IL-6 and tumor necrosis factor (TNF)-alpha have been demonstrated previously in hyperthyroidism. These elevations are controversial and it is difficult to differentiate the contribution of thyroid hormones to the elevation of cytokines from that of the autoimmune inflammation in Graves' disease (GD) and follicular cell damage in thyroiditis. Therefore, we investigated the effect of thyroid hormones on serum IL-1beta, IL-6, TNF-alpha levels and bone metabolism on L-thyroxine induced hyperthyroid rats and changes in cytokine levels and bone metabolism on the same rats after reversal to euthyroidism. Rats were treated with L-thyroxine for 5 weeks (0.4 mg/ 100 g food). Plasma T3, T4, TSH and serum IL-1beta, IL-6, TNFalpha, Calcium (Ca), phosphorous (P), parathyroid hormone (PTH), alkaline phosphatase (ALP), bone alkaline phosphatase (B-ALP) levels were measured and differential leucocyte counts were made initially, at the 5th week of the experiment (hyperthyroid state) and 5 weeks after quitting the administration of L-thyroxine (euthyroid state). Significant rises in serum IL-1beta, IL-6 and TNFalpha were noted in hyperthyroidism (P hyperthyroid state while there was no correlation in euthyroid states. Ca and P levels did not differ significantly while PTH levels declined significantly in the hyperthyroid state (P hyperthyroidism (P hyperthyroid state (P metabolism in hyperthyroidism might be mediated by cytokines and the increased bone turnover in hyperthyroidism failed to decrease despite euthyroidism.

  2. [Bone remodeling and modeling/mini-modeling.

    Science.gov (United States)

    Hasegawa, Tomoka; Amizuka, Norio

    Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.

  3. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    Science.gov (United States)

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  4. Quantification and visualization of alveolar bone resorption from 3D dental CT images

    International Nuclear Information System (INIS)

    Nagao, Jiro; Mori, Kensaku; Kitasaka, Takayuki; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2007-01-01

    Purpose A computer aided diagnosis (CAD) system for quantifying and visualizing alveolar bone resorption caused by periodontitis was developed based on three-dimensional (3D) image processing of dental CT images. Methods The proposed system enables visualization and quantification of resorption of alveolar bone surrounding and between the roots of teeth. It has the following functions: (1) vertical measurement of the depth of resorption surrounding the tooth in 3D images, avoiding physical obstruction; (2) quantification of the amount of resorption in the furcation area; and (3) visualization of quantification results by pseudo-color maps, graphs, and motion pictures. The resorption measurement accuracy in the area surrounding teeth was evaluated by comparing with dentist's recognition on five real patient CT images, giving average absolute difference of 0.87 mm. An artificial image with mathematical truth was also used for measurement evaluation. Results The average absolute difference was 0.36 and 0.10 mm for surrounding and furcation areas, respectively. The system provides an intuitive presentation of the measurement results. Conclusion Computer aided diagnosis of 3D dental CT scans is feasible and the technique is a promising new tool for the quantitative evaluation of periodontal bone loss. (orig.)

  5. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. Bone atrophy after tooth loss may leave insufficient bone for implant placement. We compared volumetric changes after autogenous ramus block bone grafting (RBG or guided bone regeneration (GBR in horizontally deficient maxilla before implant placement. Materials and Methods. In this retrospective study, volumetric changes at RBG or GBR graft sites were evaluated using cone-beam computed tomography. The primary outcome variable was the volumetric resorption rate. Secondary outcomes were bone gain, graft success, and implant insertion torque. Results. Twenty-four patients (28 grafted sites were included (GBR, 15; RBG, 13. One patient (RBG suffered mucosal dehiscence at the recipient site 6 weeks after surgery, which healed spontaneously. Mean volume reduction in the GBR and RBG groups was 12.48 ± 2.67% and 7.20 ± 1.40%, respectively. GBR resulted in significantly more bone resorption than RBG (P0.05. Conclusions. Both RBG and GBR hard-tissue augmentation techniques provide adequate bone graft volume and stability for implant insertion. However, GBR causes greater resorption at maxillary augmented sites than RBG, which clinicians should consider during treatment planning.

  6. Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss.

    Science.gov (United States)

    Weske, Sarah; Vaidya, Mithila; Reese, Alina; von Wnuck Lipinski, Karin; Keul, Petra; Bayer, Julia K; Fischer, Jens W; Flögel, Ulrich; Nelsen, Jens; Epple, Matthias; Scatena, Marta; Schwedhelm, Edzard; Dörr, Marcus; Völzke, Henry; Moritz, Eileen; Hannemann, Anke; Rauch, Bernhard H; Gräler, Markus H; Heusch, Gerd; Levkau, Bodo

    2018-05-01

    Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P 2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3β-β-catenin and WNT5A-LRP5 pathways. Accordingly, S1P 2 -deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.

  7. Bone and parathyroid inhibitory effects of S-2(3-aminopropylamino)ethylphosphorothioic acid. Studies in experimental animals and cultured bone cells

    International Nuclear Information System (INIS)

    Attie, M.F.; Fallon, M.D.; Spar, B.; Wolf, J.S.; Slatopolsky, E.; Goldfarb, S.

    1985-01-01

    S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR 2721) is a radio- and chemoprotective agent which produces hypocalcemia in humans. Intravenous injection of 30 mg/kg WR 2721 in rats and 15 mg/kg in dogs lowers serum calcium by 19 and 25%, respectively. Hypocalcemia in dogs is associated with a fall in serum immunoreactive parathyroid hormone (PTH), which suggests that the mechanism of its hypocalcemic effect is acute hypoparathyroidism. Despite this effect on PTH, in eight chronically parathyroidectomized rats on a low phosphate diet, WR 2721 reduced serum calcium from 9.4 to 7.7 mg/dl at 3 h. Furthermore, in dogs rendered hypercalcemic by continuous infusion of PTH, WR 2721 reduced serum calcium from 11.0 to 10.6 mg/dl. To determine whether WR 2721 causes hypocalcemia by enhancing the exit of calcium from the circulation or inhibiting its entry, the drug was infused 3 h after administration of 45 Ca to rats. WR 2721 did not significantly increase the rate of disappearance of 45 Ca from the circulation even though serum calcium fell by 19%. In incubations with fetal rat long bone labeled in utero with 45 Ca, 10(-3) M WR 2721 inhibited PTH-stimulated, but not base-line release of 45 Ca. Bone resorption by primary culture of chick osteoclasts was inhibited by WR 2721 at concentrations as low as 10(-4) M in the absence of hormonal stimulation. These studies suggest that WR 2721 lowers serum calcium predominantly by blocking calcium release from bone. This acute hypocalcemic effect is at least in part independent of its effect on the parathyroid glands, and is most likely a direct effect of the agent on bone resorption

  8. Role of gastrointestinal hormones in postprandial reduction of bone resorption

    DEFF Research Database (Denmark)

    Henriksen, Dennis B; Alexandersen, Peter; Bjarnason, Nina H

    2003-01-01

    Collagen type I fragments, reflecting bone resorption, and release of gut hormones were investigated after a meal. Investigations led to a dose escalation study with glucagon like peptide-2 (GLP-2) in postmenopausal women. We found a dose-dependent effect of GLP-2 on the reduction of bone...

  9. Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation.

    Science.gov (United States)

    Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C

    2017-02-01

    Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. Modeling of Oxidized PTH (oxPTH and Non-oxidized PTH (n-oxPTH Receptor Binding and Relationship of Oxidized to Non-Oxidized PTH in Children with Chronic Renal Failure, Adult Patients on Hemodialysis and Kidney Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Berthold Hocher

    2013-07-01

    Full Text Available Background: The biological properties of oxidized and non-oxidized PTH are substantially different. Oxidized PTH (oxPTH loses its PTH receptor-stimulating properties, whereas non-oxidized PTH (n-oxPTH is a full agonist of the receptor. This was described in more than 20 well published studies in the 1970s and 80s. However, PTH oxidation has been ignored during the development of PTH assays for clinical use so far. Even the nowadays used third generation assay systems do not consider oxidation of PTH We recently developed an assay to differentiate between oxPTH and n-oxPTH. In the current study we established normal values for this assay system. Furthermore, we compare the ratio of oxPTH to n-oxPTH in different population with chronic renal failure: 620 children with renal failure stage 2-4 of the 4C study, 342 adult patients on dialysis, and 602 kidney transplant recipients. In addition, we performed modeling of the interaction of either oxPTH or n-oxPTH with the PTH receptor using biophysical structure approaches. Results: The children had the highest mean as well as maximum n-oxPTH concentrations as compared to adult patients (both patients on dialysis as well as kidney transplant recipients. The relationship between oxPTH and n-oxPTH of individual patients varied substantially in all three populations with renal impairment. The analysis of n-oxPTH in 89 healthy control subjects revealed that n-oxPTH concentrations in patient with renal failure were higher as compared to healthy adult controls (2.25-fold in children with renal failure, 1.53-fold in adult patients on dialysis, and 1.56-fold in kidney transplant recipients, respectively. Computer assisted biophysical structure modeling demonstrated, however, minor sterical- and/or electrostatic changes in oxPTH and n-oxPTH. This indicated that PTH oxidation may induce refolding of PTH and hence alters PTH-PTH receptor interaction via oxidation induced three-dimensional structure alteration of

  11. Quantification and visualization of alveolar bone resorption from 3D dental CT images

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Jiro; Mori, Kensaku; Kitasaka, Takayuki; Suenaga, Yasuhito [Nagoya University, Graduate School of Information Science, Nagoya (Japan); Yamada, Shohzoh; Naitoh, Munetaka [Aichi-Gakuin University, School of Dentistry, Nagoya (Japan)

    2007-06-15

    Purpose A computer aided diagnosis (CAD) system for quantifying and visualizing alveolar bone resorption caused by periodontitis was developed based on three-dimensional (3D) image processing of dental CT images. Methods The proposed system enables visualization and quantification of resorption of alveolar bone surrounding and between the roots of teeth. It has the following functions: (1) vertical measurement of the depth of resorption surrounding the tooth in 3D images, avoiding physical obstruction; (2) quantification of the amount of resorption in the furcation area; and (3) visualization of quantification results by pseudo-color maps, graphs, and motion pictures. The resorption measurement accuracy in the area surrounding teeth was evaluated by comparing with dentist's recognition on five real patient CT images, giving average absolute difference of 0.87 mm. An artificial image with mathematical truth was also used for measurement evaluation. Results The average absolute difference was 0.36 and 0.10 mm for surrounding and furcation areas, respectively. The system provides an intuitive presentation of the measurement results. Conclusion Computer aided diagnosis of 3D dental CT scans is feasible and the technique is a promising new tool for the quantitative evaluation of periodontal bone loss. (orig.)

  12. [In vitro study on bone resorption of odontogenic cysts and ameloblastomas].

    Science.gov (United States)

    Gao, Li; Li, Tie-jun

    2005-05-01

    To investigate the effect of bone resorption by odontogenic cysts and ameloblastomas in vitro. Fragments of odontogenic cysts (14 odontogenic keratocysts, 6 inflamed odontogenic keratocysts, 5 dentigerous cysts) and ameloblastomas (n = 7) were incubated in vitro for 24 h. The supernatant was then removed into the culture system of SD rat calvaria. After incubation (48 h), the calcium contents of the media were measured by atom spectrophotometer. The supernatant of odontogenic cysts and ameloblastomas was measured for the bone resorption related factors such as IL-6, TNF-alpha, PGE(2), bone Gla-containing protein (BGP) and calcitonin (CT) by a radioimmunoassay system. The calcium released in the calvaria culture media by all the odontogenic lesions was significantly higher than that in the blank controls (P keratocyst group had a significantly higher calcium concentration than odontogenic keratocyst and ameloblastoma groups (P keratocyst groups were significantly higher than that of ameloblastoma group (P keratocyst was significantly higher than those of odontogenic keratocyst and dentigerous cyst groups (P < 0.05). Correlation and regression analysis showed that IL-6 was significantly correlated with the calcium content (P < 0.01). The odontogenic lesions could promote bone resorption in vitro and it is likely to be related to some of the cytokines secreted by the lesions.

  13. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    Science.gov (United States)

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  14. Calcium and Bone Turnover Markers in Acromegaly: A Prospective, Controlled Study.

    Science.gov (United States)

    Constantin, Tina; Tangpricha, Vin; Shah, Reshma; Oyesiku, Nelson M; Ioachimescu, Octavian C; Ritchie, James; Ioachimescu, Adriana G

    2017-07-01

    Acromegaly has been associated with calcium-phosphate and bone turnover alterations. Controlled studies of these interactions are sparse. To evaluate calcium and bone metabolism in active and treated acromegaly. We conducted a controlled, prospective study at a tertiary referral center. We studied 22 patients with acromegaly referred for surgical or medical therapy (ACM) and 22 with nonfunctioning pituitary adenomas referred for surgery (control). Calcium (serum and urine), phosphorus, parathyroid hormone (PTH), 25-hydroxy- and 1,25-dihydroxy-vitamin D, bone turnover markers [serum C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP)], and cytokines [receptor activator of nuclear factor κB ligand (RANK-L) and osteoprotegerin (OPG)] at baseline and 3 to 6 months after treatment. At baseline, the ACM group had lower PTH levels than controls (36.3 ± 13.9 pg/mL vs 56.0 ± 19.9 pg/mL) and higher phosphorus (4.34 ± 0.71 mg/dL vs 3.55 ± 0.50 mg/dL) (P acromegaly, serum calcium (9.52 ± 0.43 mg/dL to 9.26 ± 0.28 mg/dL), phosphorus (4.34 ± 0.71 mg/dL to 3.90 ± 0.80 mg/dL), and CTX (0.91 ± 0.75 ng/mL to 0.63 ± 0.68 ng/mL) decreased, while PTH increased (36.3 ± 13.9 pg/mL to 48.9 ± 16.7 pg/mL) (P Acromegaly patients exhibited PTH-independent calcium-phosphate alterations and enhanced coupled bone formation and resorption. Within 6 months of treatment, bone resorption decreased, whereas RANK-L/OPG changes were inconsistent. Copyright © 2017 Endocrine Society

  15. Effects of Hydroxyapatite on Bone Graft Resorption in an Experimental Model of Maxillary Alveolar Arch Defects

    Directory of Open Access Journals (Sweden)

    Ozgur Pilanci

    2013-06-01

    Full Text Available Most commonly used treatments use autologous bone grafts to address bony defects in patients with cleft palate. Major disadvantages of autogenous bone grafts include donor site morbidity and resorption. Suggestions to overcome such problems include biomaterials that can be used alone or in combination with bone. We examined the effect of hydroxyapatite cement on bone graft resorption in a rabbit maxillary alveolar defect model. We divided 16 young adult albino New Zealand rabbits into two groups. A defect 1 cm wide was created in each rabbit's maxillary arch. In Group 1, the removed bone was disrupted, and the pieces were replaced in the defect. In the other group, the pieces were replaced after mixing (1:1 with hydroxyapatite cement. Quantitative computed tomographic evaluation of these grafts was performed in axial and coronal planes for each rabbit at 2 and 12 weeks. In axial images at 12 weeks, the group without cement showed mean bone resorption of 15%. In the cement group, a mean volumetric increase of 68% was seen. No resorption occurred when bone grafts were mixed with hydroxyapatite cement. [Arch Clin Exp Surg 2013; 2(3.000: 170-175

  16. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  17. Does increased local bone resorption secondary to breast and prostate cancer result in increased cartilage degradation?

    DEFF Research Database (Denmark)

    Leeming, Diana J; Byrjalsen, Inger; Qvist, Per

    2008-01-01

    BACKGROUND: Breast and prostate cancer patients often develop lesions of locally high bone turnover, when the primary tumor metastasizes to the bone causing an abnormal high bone resorption at this site. The objective of the present study was to determine whether local increased bone turnover in ...... experiments revealed that osteoclasts released CTXI fragments but not CTXII from bone specimens. The same was observed for cathepsin K. CONCLUSION: Data suggest that an uncoupling between bone resorption and cartilage degradation occurs in breast and lung cancer patient....

  18. [Calcitonin as an alternative treatment for root resorption].

    Science.gov (United States)

    Pierce, A; Berg, J O; Lindskog, S

    1989-01-01

    Inflammatory root resorption is a common finding following trauma and will cause eventual destruction of the tooth root if left untreated. This study examined the effects of intrapulpal application of calcitonin, a hormone known to inhibit osteoclastic bone resorption, on experimental inflammatory root resorption induced in monkeys. Results were histologically evaluated using a morphometric technique and revealed that calcitonin was an effective medicament for the treatment of inflammatory root resorption. It was concluded that this hormone could be a useful therapeutic adjunct in difficult cases of external root resorption.

  19. Effect of Cytokines on Osteoclast Formation and Bone Resorption during Mechanical Force Loading of the Periodontal Membrane

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2014-01-01

    Full Text Available Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.

  20. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  1. The spectrum of bone disease in Jordanian hemodialysis patients

    International Nuclear Information System (INIS)

    Younes, Nidal A.; Al-Mansour, M.; Sroujieh, Ahmad S.; Wahbeh, A.; Ailabouni, W.; Hamzah, Y.; Mahafzah, W.

    2006-01-01

    To evaluate the spectrum of mineral abnormalities and bone disease (BD) in hemodialysis patients at Jordan University Hospital (JUH), Amman, Jordan. A cross-sectional study was conducted among 63 patients (38 males and 25 females), mean age 44.19 years (range 17-76 years), with chronic kidney disease (CKD) on regular hemodialysis at JUH between November 2004 and April 2005. All patients have undergone complete blood count, chemistry profile, alkaline phosphatase, serum albumin, intact parathyroid hormone (iPTH) and plain x-rays. Bone disorders were identified in 45 patients on x-rays (70%). Osteopenia was found in 43 patients (68.3%), subperiosteal resorption in 24 patients (38.3%) and metastatic calcification in 22 patients (35%). Hypocalcemia was found in 28.6% and hypercalcemia in 7.9%. All patients were taking calcium carbonate, and 55.5% of patients were on vitamin D supplements. The calcium levels in 63.5% and the phosphorus levels in 50.8% of patients were within the recommended guidelines of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (K/DOQI). Serum i-PTH level was above 300 pg/ml high turnover bone disease in 24.6% of patients, 21.3% had iPTH of 150-300 pg/ml target, and 44.3% had i-PTH levels below 100 pg/mL suggesting a dynamic bone disease. Patients with severe bone disease had a statistically significant higher iPTH levels (p<0.005). Bone disease and mineral abnormalities are common in hemodialysis patients at JUH. Earlier detection of bone disease and better overall management strategy may reduce the frequency and severity of bone disease in CKD patients in Jordan. (author)

  2. Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic rhBMP-2 and anti-resorptive agents

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2014-01-01

    Full Text Available Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid (PLGA scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 µg ± anti-resorptive agents: zoledronic acid (5 µg ZA, ZA pre-adsorbed onto hydroxyapatite microparticles, (5 µg ZA/2 % HA or IkappaB kinase (IKK inhibitor (10 µg PS-1145. Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01. The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01. Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01. Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation.

  3. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  4. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  5. Bone Density and Dental External Apical Root Resorption

    Science.gov (United States)

    Iglesias-Linares, Alejandro; Morford, Lorri Ann

    2016-01-01

    When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors and disease status all can influence a patients’ overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as is observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR). PMID:27766484

  6. Modified salicylanilide and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as novel inhibitors of osteoclast differentiation and bone resorption.

    Science.gov (United States)

    Chen, Chun-Liang; Liu, Fei-Lan; Lee, Chia-Chung; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Sytwu, Huey-Kang; Chang, Deh-Ming; Huang, Hsu-Shan

    2014-10-09

    Inhibition of osteoclast formation is a potential strategy to prevent inflammatory bone resorption and to treat bone diseases. In the present work, the purpose was to discover modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as potential antiosteoclastogenic agents. Their inhibitory effects on RANKL-induced osteoclastogenesis from RAW264.7 cells were evaluated by TRAP stain assay. The most potent compounds, 1d and 5d, suppressed RANKL-induced osteoclast formation and TRAP activity dose-dependently. The cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds did not result from their cytotoxicity. Moreover, both compounds downregulated RANKL-induced NF-κB and NFATc1 in the nucleus, suppressed the expression of osteoclastogenesis-related marker genes during osteoclastogenesis, and prevented osteoclastic bone resorption but did not impair osteoblast differentiation in MC3T3-E1. Therefore, these modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-diones could be potential lead compounds for the development of a new class of antiresorptive agents.

  7. Calcium and Bone Metabolism Indices.

    Science.gov (United States)

    Song, Lu

    2017-01-01

    Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic

  8. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.

    Science.gov (United States)

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W; Novane, Nora; Shah, Jatin J; Davis, Richard E; Hou, Jian; Gagel, Robert F; Yang, Jing

    2016-08-24

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. Copyright © 2016, American Association for the Advancement of Science.

  9. Effect of concentrated growth factor combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2017-10-01

    Full Text Available Objective: To study the effect of concentrated growth factor (CGF combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis. Methods: Patients with severe periodontitis who were treated in Stomatology Department of Shenmu Hospital between May 2014 and February 2017 were selected as the research subjects and randomly divided into two groups, surgery + CGF group received concentrated growth factor combined with guided bone regeneration, and pure surgery group received guided bone regeneration. The contents of inflammatory response, cell proliferation and bone resorption markers in gingival crevicular fluid were determined 1 week after treatment. Results: 1 week after treatment, HMGB1, ICAM1, E-selectin, Smac, FasL, Caspase-8, Caspase-9, Caspase-3, RANKL and NTX contents in gingival crevicular fluid of surgery + CGF group were significantly lower than those of pure surgery group while PD-L1, hBD-3, Wnt3a, BGP and OPG contents were significantly higher than those of pure surgery group. Conclusion: Concentrated growth factor combined with guided bone regeneration for severe periodontitis can inhibit inflammatory response, apoptosis and bone resorption, which is beneficial to the reconstruction of periodontal tissue.

  10. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation

    Science.gov (United States)

    Crane, Janet L.; Cao, Xu

    2013-01-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256

  11. Function of matrix IGF-1 in coupling bone resorption and formation.

    Science.gov (United States)

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  12. Is there evidence that barrier membranes prevent bone resorption in autologous bone grafts during the healing period? A systematic review

    NARCIS (Netherlands)

    Gielkens, Pepijn F. M.; Bos, Ruud R. M.; Raghoebar, Gerry M.; Stegenga, Boudewijn

    2007-01-01

    Introduction: Autologous bone is considered the "reference standard" for bone-grafting procedures. A barrier membrane covering an autologous bone graft (guided bone regeneration [GBR]) is expected to prevent graft resorption. Good clinical results have been reported for GBR, although potential

  13. Bone Status Among Patients With Nonsurgical Hypoparathyroidism, Autosomal Dominant Hypocalcaemia, and Pseudohypoparathyroidism: A Cohort Study.

    Science.gov (United States)

    Underbjerg, Line; Malmstroem, Sofie; Sikjaer, Tanja; Rejnmark, Lars

    2018-03-01

    Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  14. Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?

    Science.gov (United States)

    Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram

    2015-07-01

    We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.

  15. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-01-01

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced

  16. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ryosuke [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Kayamori, Kou [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Oue, Erika [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Sakamoto, Kei [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Harada, Kiyoshi [Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced

  17. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts

    DEFF Research Database (Denmark)

    Zhai, Yuankun; Li, Yingying; Wang, Yanping

    2017-01-01

    Traditional Chinese medicines (TCM) have been proven to prevent osteoporosis, but their clinical applications are not widely recognized due to their complicated ingredients. Psoralidin, a prenylated coumestan, has been reported to prevent bone loss of ovariectomized rats, but detailed mechanisms...... and osteoclastic bone resorption, as demonstrated by the lower tartrate-resistant acid phosphatase activity and smaller area, with fewer resorption pits formed. Interestingly, psoralidin showed much stronger effects than coumestrol at enhancing osteoblast proliferation/differentiation or inhibiting osteoclast...... differentiation and bone resorption. Moreover, we found that both psoralidin and coumestrol suppressed COX-2 and ROS production in rat osteoblastic calvarias cells, and psoralidin showed stronger effects than coumestrol. Furthermore, we detected that by blocking estrogen receptors with ICI 182.780 (an estrogen...

  18. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    Science.gov (United States)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  19. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  20. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  1. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  2. Vitamin D status and PTH in young men: a cross-sectional study on associations with bone mineral density, body composition and glucose metabolism

    DEFF Research Database (Denmark)

    Nielsen, Morten Frost; Abrahamsen, B; Nielsen, T L

    2010-01-01

    and the effects of vitamin D and parathyroid hormone (PTH) on bone mass, bone markers and metabolic function. Design and Participants  The study population consisted of 783 men aged 20-29 years. Measurements  Bone mineral density (BMD) of the total hip, femoral neck and lumbar spine was measured. dual-energy X......Objective  Although vitamin D and bone metabolism are closely related, few studies have addressed the effects of vitamin D status on bone in men at time of peak bone mass. The objectives of this study were to evaluate the prevalence of vitamin D inadequacy in a cross-sectional study in young men...... (serum 25OHD bone-specific alkaline phosphatase and directly with carboxyterminal telopeptide of type-1-collagen. 25OHD and PTH were inversely associated with BFAT...

  3. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts.

    Science.gov (United States)

    Chen, Xin; Song, In-Hwan; Dennis, James E; Greenfield, Edward M

    2007-05-01

    PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a

  4. [Parathyroid hormone and its analogues - molecular mechanisms of action and efficacy of osteoporosis therapy].

    Science.gov (United States)

    Misiorowski, Waldemar

    2011-01-01

    Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.

  5. Parathyroid hormone and its analogues--molecular mechanisms of action and efficacy in osteoporosis therapy.

    Science.gov (United States)

    Misiorowski, Waldemar

    2011-01-01

    Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.

  6. Effect of glucagon-like peptide-2 exposure on bone resorption

    DEFF Research Database (Denmark)

    Askov-Hansen, Carsten; Jeppesen, Palle B; Lund, Pernille

    2013-01-01

    In healthy subjects, subcutaneous injections of GLP-2 have been shown to elicit dose-related decrease in the bone resorption marker, carboxy-terminal telopeptide of type I collagen (CTX), and have been proposed for the treatment of osteoporosis. This study investigated the relation between GLP-2...

  7. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling.

    Science.gov (United States)

    Fernández, J R; García-Aznar, J M; Martínez, R

    2012-01-07

    We have developed a mathematical approach for modelling the piezoelectric behaviour of bone tissue in order to evaluate the electrical surface charges in bone under different mechanical conditions. This model is able to explain how bones change their curvature, where osteoblasts or osteoclasts could detect in the periosteal/endosteal surfaces the different electrical charges promoting bone formation or resorption. This mechanism also allows to understand the BMU progression in function of the electro-mechanical bone behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Circulating PTH molecular forms: what we know and what we don't.

    Science.gov (United States)

    D'Amour, P

    2006-07-01

    Circulating parathyroid hormone (PTH) molecular forms have been identified by three generations of PTH assays after gel chromatography or high-performance liquid chromatography fractionation of serum. Carboxyl-terminal (C) fragments missing the amino-terminal (N) structure of PTH(1-84) were identified first. They represent 80% of circulating PTH in normal individuals and up to 95% in renal failure patients. They are regulated by calcium (Ca) slightly differently than PTH(1-84), occurring in a relatively smaller proportion relative to the latter in hypocalcemia but in a much larger proportion in hypercalcemia. Synthetic C-PTH fragments do not bind to the PTH/PTHrP type I receptor and are not implicated in the classical biological effect of PTH(1-84). They bind to a different C-PTH receptor and exert biological actions on bone that are opposite to those of PTH(1-84). The integrity of the distal C-structure appears to be important for these biological effects, and it is uncertain if all C-PTH fragments are intact up to position 84. A second category of C-PTH fragment has a partially preserved N-structure. They are called non-(1-84) PTH or N-truncated fragments. They react in Intact (I)-PTH assays but not in PTH assays with a 1-4 epitope. They are acutely regulated by Ca(2+) concentration. They also exert similar hypocalcemic and antiresorptive effects but have 10-fold greater affinity for the C-PTH receptor compared to other C-PTH fragments. Even if they represent only 10% of all C-PTH fragments, they could be as relevant biologically. An N form of PTH other than PTH(1-84) has been identified in the circulation. It reacts very well in PTH assays with a 1-4 epitope but poorly in I-PTH assay with a 12-18 epitope. It is oversecreted in severe primary and secondary hyperparathyroidism and in parathyroid cancers. Its biological activity is still unknown. Overall, these studies suggest that PTH(1-84) and C-PTH fragments are regulated differently to exert opposite biological

  9. Telopéptido carboxilo terminal del colágeno tipo I (b-CTX sérico y compromiso óseo en la insuficiencia renal crónica Serum b-Type I collagen carboxyterminal telopeptide (b-CTXs and bone involvement in chronic renal failure

    Directory of Open Access Journals (Sweden)

    Beatriz Oliveri

    2005-08-01

    Full Text Available La osteodistrofia renal (ODR se caracteriza por alteraciones óseas. Se evaluaron métodos bioquímicos alternativos a la biopsia ósea en pacientes renales para determinar cambios rápidos del remodelamiento óseo en 43 pacientes predialíticos (PD y 49 hemodializados (HD. Los PD presentaron fosfatemia, fosfatasa alcalina ósea (FAO, hormona paratiroidea intacta (PTHi y b-telopéptido carboxilo terminal del colágeno tipo I (bCTXs mayores y clearence de creatinina (Ccr menores (p40 ml/min. En PD, bCTXs (pAn increase in parathyroid hormone (PTH levels in chronic renal failure (CRF induces bone abnormalities known as renal osteodystrophy (ROD. The aim of the present study was to evaluate alternative biochemical methods to bone biopsy, to evaluate changes in bone remodeling in renal patients. Intact PTH (iPTH and bone markers were measured in 43 predialysis (PD, 49 hemodialysis patients (HD and 185 controls. bCTXs, bone alkaline phosphatase (bAL, iPTH were higher and creatinine clearance (Ccr was lower in PD and HD compared with controls (p40 ml/min. bCTXs (p<0.05 in PD and bCTXs and bAL in HD patients were higher than controls, even when iPTH was within normal range (<65 pg/ml. Patients with severe secondary hyperparathyroidism showed higher bone markers than patients with normal or moderately increased iPTH (p<0.001. These results suggest that even when there is no increase in iPTH, bone remodeling increases (possibly due to other factors exhibiting higher bone resorption, and bCTXs would seem to be an adequate non-invasive tool to assess early bone changes in CRF and prevent future fractures. Bone marker measurements in ROD would be useful to identify patients who may require bone biopsy. However, further studies comparing both methods must be performed before replacing bone biopsy with serum b-CTX.

  10. Effect of local injection of Zolena, zoledronic acid made in Iran, on orthodontic tooth movement and root and bone resorption in rats.

    Science.gov (United States)

    Seifi, Massoud; Asefi, Sohrab; Hatamifard, Ghazal; Lotfi, Ali

    2017-01-01

    Background. Anchorage control is an essential part of orthodontic treatment planning, especially in adult patients who demand a more convenient treatment. Zoledronic acid (ZA) is an effective choice to address this problem. It is the most potent member of the bisphosphonates family that has an inhibitory effect on bone resorption by suppressing osteoclast function. Therefore, ZA might be a good option for orthodontic anchorage control. The current study evaluated the effect of local administration of Zolena (ZA made in Iran) on orthodontic tooth movement (OTM) and root and bone resorption. Methods. The experimental group consisted of 30 rats in 3 subgroups (n=10). Anesthesia was induced, and one closed NiTi coil spring was installed between the first molar and central incisor unilaterally, except for the negative control group. The positive control group received vestibular injection of 0.01 mL of saline next to the maxillary first molar, and 0.01 mL of the solution was injected at the same site in the ZA group. After 21 days, the rats were sacrificed and the distance between the first and second molars was measured with a leaf gauge. Histological analysis was conducted by a blind pathologist for the number of Howship's lacunae, blood vessels, osteoclast-like cells and root resorption lacunae. Data were analyzed with ANOVA, Tukey test and t-test. Results. There were no significant differences in OTM between the force-applied groups. ZA significantly inhibited bone/root resorption and angiogenesis compared to the positive control group. Conclusion. Zolena did not decrease OTM but significantly inhibited bone and root resorption. Zolena might be less potent than its foreign counterparts.

  11. Bone Mineral Density in Patients with Growth Hormone Deficiency - Does a Gender Difference Exist?

    DEFF Research Database (Denmark)

    Hitz, Mette; Jensen, Jens-Erik Beck; Eskildsen, PC

    2006-01-01

    OBJECTIVE: The aim of the study was to clarify whether a gender difference exists with respect to bone mineral density (BMD) and bone mineral content (BMC) in adult patients with growth hormone deficiency (GHD). DESIGN: A case-control design. METHODS: Blood sampling for measurements of calcium......, phosphate, creatinine, PTH, vitamin D, IGF-1, markers of bone formation and bone resorption, and dual energy X-ray absorptiometry (DEXA), to determine BMD and BMC of the lumbar spine, hip, distal arm and total body, were performed in 34 patients with GHD (19 females) and 34 sex-, age- and weight...... identical BMD values at all regions. This gender difference was even more obvious when BMD values were expressed as Z-scores or as three-dimensional BMD of the total body. The bone formation and bone resorption markers, as well as calcium and vitamin D, were all at the same levels in GH...

  12. Bone mineral density in patients with growth hormone deficiency: does a gender difference exist?

    DEFF Research Database (Denmark)

    Hitz, Mette Friberg; Jensen, Jens-Erik Beck; Eskildsen, Peter C

    2006-01-01

    OBJECTIVE: The aim of the study was to clarify whether a gender difference exists with respect to bone mineral density (BMD) and bone mineral content (BMC) in adult patients with growth hormone deficiency (GHD). DESIGN: A case-control design. METHODS: Blood sampling for measurements of calcium......, phosphate, creatinine, PTH, vitamin D, IGF-1, markers of bone formation and bone resorption, and dual energy X-ray absorptiometry (DEXA), to determine BMD and BMC of the lumbar spine, hip, distal arm and total body, were performed in 34 patients with GHD (19 females) and 34 sex-, age- and weight...... identical BMD values at all regions. This gender difference was even more obvious when BMD values were expressed as Z-scores or as three-dimensional BMD of the total body. The bone formation and bone resorption markers, as well as calcium and vitamin D, were all at the same levels in GH...

  13. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model

    Directory of Open Access Journals (Sweden)

    Sato T

    2015-05-01

    Full Text Available Toshimi Sato,1 Neil Alles,1,2 Masud Khan,1,3 Kenichi Nagano,1,4 Mariko Takahashi,1 Yukihiko Tamura,1 Asako Shimoda,5,6 Keiichi Ohya,1 Kazunari Akiyoshi,5,6 Kazuhiro Aoki1 1Department of Bio-Matrix (Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan; 2Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; 3Department of Dental Pharmacology, City Dental College and Hospital, Dhaka, Bangladesh; 4Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; 5Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, 6ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency, Katsura Int’tech Center Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan Abstract: We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP nanogels, or W9 (8 and 24 mg/kg/day incorporated in NanoClik nanoparticles for 4 days (n=5. Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices

  14. Possible Role of Garlic Oil and Parsley Extract in Ameliorating Radiation-Induced Bone Loss in Female Rats

    International Nuclear Information System (INIS)

    Ramadan, L.; El-Sabbagh, W.; Kenawy, S.

    2011-01-01

    To Investigate the possible protective effect of garlic oil and parsley extract against bone loss resulted in female virgin rats exposed to fractionated doses of gamma-radiation (1 Gy 3 times weekly for 5 weeks). Urinary calcium (U Ca), calcium to creatinine ratio (Ca/Cr), hydroxyproline and serum phosphorus were measured as bone resorption bio markers, while serum osteocalcine (OST) and serum alkaline phosphatase (ALP) were measured as bone formation bio markers. Furthermore, nitric oxide (NO) which represents the balance in bone remodeling was measured. Malondiadehyde level (MDA) as well as superoxide dismutase activity (SOD) was measured as oxidative stress bio markers. Female irradiated rats in the present study had significant increases in both bone resorption and bone formation bio markers after 6 weeks from the last exposure to gamma-radiation. Irradiated rats also had significant decreases in plasma NO indicating imbalance in bone remodeling as well as significant increase in oxidative stress bio markers. Daily treatment with garlic oil extracted in olive oil improved all measured parameters except OST level, while the vehicle used for garlic oil (extra virgin olive oil) significantly decreased bone resorption bio markers. Parsley extract induced normalization to all bone resorption and formation parameters measured in irradiated rats. Daily administration of garlic oil and parsley extract protected the bone from degeneration induced by exposure to fractionated doses of gamma radiation.

  15. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    International Nuclear Information System (INIS)

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-01-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint

  16. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover.

    Science.gov (United States)

    Kruger, Marlena C; Kruger, Iolanthé M; Wentzel-Viljoen, Edelweiss; Kruger, Annamarie

    2011-10-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the North West Province of South Africa (Prospective Urban and Rural Epidemiology-South Africa project). Fasting blood samples were taken; and participants were interviewed to complete questionnaires on self-reported diseases, fractures, and dietary intakes. Bone health markers were assessed in a subgroup of 658 women older than 45 years. Specific lifestyle risk factors identified were inactivity, smoking, injectable progestin contraception use, and high alcohol consumption. Dietary risk factors identified were low calcium and high animal protein, phosphorous, and sodium intakes. The 25(OH)D3 and C-terminal telopeptide (CTX) levels were significantly higher in the rural vs the urban women older than 50 years. Parathyroid hormone (PTH) levels increased with age in both groups. The 25(OH)D levels were inversely correlated with CTX and PTH in rural women. In urban women, PTH and CTX were correlated while dietary calcium was inversely correlated with CTX and PTH with 25(OH)D3. The combination of low dietary calcium (<230 mg/d), marginally insufficient 25(OH)D3 status, and raised PTH may result in increased bone resorption. Further research is required to assess bone health and fracture risk in black African women. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Role of bone photonic densitometry in uremic osteodystrophy

    International Nuclear Information System (INIS)

    Specchi Bighi, E.; Baldelli, S.; Argalia, G.

    1987-01-01

    The aim of this investigation is to evaluate the role of bone photonic densitometry in uremic osteodystrophy. Bone mineral contenent (BMC) and bone density (BD) have been measured in 80 hemodialyzed patients by double photonic emission densitometry. Photonic densitometry shows an higher sensibility to quantitative changes in bone mineral contenent than metacarpal index (IM). Photonic densitometry is unable to differentiate osteoporosis from osteomalacia; this differential diagnosis can be obtained by radiological analysis: low BD and low IM means osteoporosis, low BD and resorptive changes in cortical bone means osteomalacia and/or hyperparathyroidism. Photonic densitometry is particulary suitable for uremic osteodystrophy follow-up because of its easy ripetibility and innocuousness and for its close correlation with iPTH variations

  18. [Bone metabolism, biochemical markers of bone resorption and formation processes and interleukine 6 cytokin level during coeliac disease].

    Science.gov (United States)

    Fekih, Monia; Sahli, Hela; Ben Mustapha, Nadia; Mestiri, Imen; Fekih, Moncef; Boubaker, Jalel; Kaabachi, Naziha; Sellami, Mohamed; Kallel, Lamia; Filali, Azza

    2013-01-01

    Celiac disease (CD) is characterized by a malabsorption syndrom. The bone anomalies are one of the principal complications of this disease. The osteoporosis frequency is high: 3.4% among patients having with CD versus 0.2% in the general population. To study the bone mineral density during the CD, to compare it to a control group and to determine the anomalies of biochemical markers of bone turn over and level of interleukin 6 cytokin (IL6) in these patients. All patients with CD have a measurement of bone mineral density by dual-energy x-ray absorptiometry (DXA), a biological exam with dosing calcemia, vitamin D, parathormone (PTH), the osteoblastic bone formation markers (serum osteocalcin, ALP phosphates alkaline), bone osteoclastic activity (C Télopeptide: CTX) and of the IL6. 42 patients were included, with a median age of 33.6 years. 52. 8% of the patients had a low level of D vitamine associated to a high level of PTH. An osteoporosis was noted in 21.5% of patients. No case of osteoporosis was detected in the control group. The mean level of the CTX, ostéocalcine and the IL6 was higher among patients having an osteoporosis or ostéopenia compared to patients with normal bone (p = 0,017). The factors associated with an bone loss (osteopenia or osteoporosis) were: an age > 30 years, a weight 90 UI/ml, an hypo albuminemia < 40 g/l and a level of CTX higher than 1.2. Our study confirms the impact of the CD on the bone mineral statute. The relative risk to have an osteopenia or an osteoporosis was 5 in our series. The measurement of the osseous mineral density would be indicated among patients having a CD.

  19. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  20. Serum 25-hydroxyvitamin D and bone turnover markers in Palestinian postmenopausal osteoporosis and normal women.

    Science.gov (United States)

    Kharroubi, Akram; Saba, Elias; Smoom, Riham; Bader, Khaldoun; Darwish, Hisham

    2017-12-01

    This study evaluated the association of vitamin D and bone markers with the development osteoporosis in Palestinian postmenopausal women. Even though vitamin D deficiency was very high for the recruited subjects, it was not associated with osteoporosis except for bones of the hip. Age and obesity were the strongest determining factors of the disease. The purpose of this study was to investigate the association of bone mineral density (BMD) with serum vitamin D levels, parathyroid hormone (PTH), calcium, obesity, and bone turnover markers in Palestinian postmenopausal women. Three hundred eighty-two postmenopausal women (≥45 years) were recruited from various women clinics for BMD assessment (131 women had osteoporosis and 251 were normal and served as controls). Blood samples were obtained for serum calcium, PTH, 25(OH)D, bone formation (N-terminal propeptide (PINP)), and bone resorption (serum C-terminal telopeptide of type I collagen (CTX1)) markers. Women with osteoporosis had statistically significant lower mean weight, height, body mass index (BMI), and serum calcium (p osteoporosis decreased with increasing BMI (overweight OR = 0.11, p = 0.053; obese OR = 0.05, p = 0.007). There was no direct correlation between BMD and PTH, bone turnover markers, and vitamin D except at the lumbar spine. A negative correlation between BMD and age and a positive correlation with BMI were observed. The protective effect of obesity on osteoporosis was complicated by the effect of obesity on vitamin D and PTH.

  1. Eubacterium brachy - Reactivity in In Vitro Bone Resorptive Bioassay,

    Science.gov (United States)

    1983-02-10

    Center Washington, D. C . 20307 If Eubacterium brachy - Reactivity in In Vitro Bone Resorptive Bioassay 1. ABSTRACT Recent studies have demonstrated an...Relative distribution of bacteria at clinically healthy and periodontally diseased sites in humans. J Clin Periodontal 5:115, 1978. 3. Evian, C ...applied foreign protein into rat gingiva. J Periodont Res 6:89, 1971. 21. Gaffer, A., Coleman, E.J., and Marcussen, H.W.: Penetration of dental plaque

  2. Effect of local administration of platelet-rich plasma and guided tissue regeneration on the level of bone resorption in early dental implant insertion

    Directory of Open Access Journals (Sweden)

    Duka Miloš

    2008-01-01

    Full Text Available Background/Aim. Osseointegration is a result of cellular migration, differentiation, bone formation, and bone remodeling on the surface of an implant. Each of these processes depends on platelets and blood coagulum. Platelet-rich plasma (PRP is used to improve osseointegration and stability of implants. The aim of the research was to test the influence that PRP and guided tissue regeneration in bone defects have on bone defect filling and the level of bone resorption in early implant insertion. Methods. This experimental study included 10 dogs. A total of 40 BCT implants were inserted, 4 in each dog (two on the left side and two on the right side, with guided tissue regeneration. Radiologic analyses were done immediately after the insertion and 10 weeks after the insertion. Bone defect filling was measured by a graduated probe 10 weeks after the implant insertion. The following protocols were tested: I - PRP in combination with bovine deproteinized bone (BDB and resorptive membrane of bovine origin (RBDM, II - BDB + RBDM, III - PRP + RBDM and IV - RBDM. Results. The applied protocols affected differently the bone defect filling and the level of bone resorption. Significantly better results (the lowest bone resorption were achieved with protocol I (PRP + BDB + RBDM in comparison with protocols III (PRP + RBDM and IV (RBDM, but not with protocol II (BDB + RBDM. On the other hand, no significant difference was found among protocols II (BDB + RBDM, III (PRP + RBDM and IV (RBDM in the level of bone tissue resorption. Conslusion. The bone defect filling was largest and the level of bone resorption was lowest in the protocol with PRP applied in combination with BDB and RBDM.

  3. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    International Nuclear Information System (INIS)

    Pirih, Flavia Q.; Aghaloo, Tara L.; Bezouglaia, Olga; Nervina, Jeanne M.; Tetradis, Sotirios

    2005-01-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 μg/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 μg/kg i.p. with maximum induction at 40-80 μg/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism

  4. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study.

    Science.gov (United States)

    Klein, Gordon L; Xie, Yixia; Qin, Yi-Xian; Lin, Liangjun; Hu, Minyi; Enkhbaatar, Perenlei; Bonewald, Lynda F

    2014-03-01

    Treatment with bisphosphonates within the first 10 days of severe burn injury completely prevents bone loss. We therefore postulated that bone resorption occurs early post burn and is the primary explanation for acute bone loss in these patients. Our objective was to assess bone for histological and biomechanical evidence of early resorption post burn. We designed a randomized controlled study utilizing a sheep model of burn injury. Three sheep received a 40 % total body surface area burn under isoflurane anesthesia, and three other sheep received cotton-smoke inhalation and served as control. Burned sheep were killed 5 days post procedure and controls were killed 2 days post procedure. Backscatter scanning electron microscopy was performed on iliac crests obtained immediately postmortem along with quantitative histomorphometry and compression testing to determine bone strength (Young's modulus). Blood ionized Ca was also determined in the first 24 h post procedure as was urinary CTx. Three of three sheep killed at 5 days had evidence of scalloping of the bone surface, an effect of bone resorption, whereas none of the three sheep killed at 2 days post procedure had scalloping. One of the three burned sheep killed at 5 days showed quantitative doubling of the eroded surface and halving of the bone volume compared to sham controls. Mean values of Young's modulus were approximately one third lower in the burned sheep killed at 5 days compared to controls, p = 0.08 by unpaired t test, suggesting weaker bone. These data suggest early post-burn bone resorption. Urine CTx normalized to creatinine did not differ between groups at 24 h post procedure because the large amounts of fluids received by the burned sheep may have diluted urine creatinine and CTx and because the urine volume produced by the burned sheep was threefold that of the controls. We calculated 24 h urinary CTx excretion, and with this calculation CTx excretion/24 h in the burned sheep was

  5. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events.

    Science.gov (United States)

    Feller, Liviu; Khammissa, Razia A G; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan

    2016-01-01

    Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.

  6. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events

    Directory of Open Access Journals (Sweden)

    Liviu Feller

    2016-01-01

    Full Text Available Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.

  7. Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H]tetracycline excretion from prelabeled mice

    International Nuclear Information System (INIS)

    Koenig, A.M.; Muehlbauer, R.C.F.; Fleisch, H.

    1988-01-01

    Tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) have been shown to stimulate bone resorption in vitro. We have now investigated whether these cytokines also cause a similar action when administered in vivo. This was made possible by the adaptation of a newly developed technique that enables the continual assessment of bone resorption in vivo in mice by measuring urinary excretion of 3 H from [ 3 H]tetracycline-prelabeled animals. Experiments using maneuvers known to influence bone resorption, such as a change in dietary calcium or administration of parathyroid hormone or dichloromethylenebisphosphonate, indicate that the technique is reliable and sensitive in mice. Daily intravenous administration of either recombinant human or recombinant murine TNF-alpha, as well as subcutaneous administration of recombinant human IL-1 alpha, were found to stimulate bone resorption in a dose-dependent manner. The effect was maximal within 2 days. Thus, exogenous TNF-alpha and IL-1 alpha can stimulate bone resorption in vivo, suggesting that these cytokines may also exert a systemic effect on bone

  8. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  9. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  10. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  11. The use of bone turnover markers in chronic kidney disease-mineral and bone disorders.

    Science.gov (United States)

    Chiang, Cherie

    2017-03-01

    Bone turnover markers assist in fracture risk prediction, management and monitoring of osteoporosis in patients without chronic kidney disease (CKD). The use in CKD-mineral bone disorder (MBD) has been limited as many of these markers and breakdown products are renally excreted, including the most commonly used and well standardized procollagen type I N propeptide and C-terminal cross-linking telopeptide of type I collagen. Of the markers unaffected by renal function, bone specific alkaline phosphatase is associated with mortality and fracture rate in CKD subjects and is now available on several automated analysers. When used in combination with PTH, bone specific alkaline phosphatase as a bone formation marker correlated well with bone biopsy histomorphometry in predicting adynamic bone disease. Tartrate-resistant acid phosphatase 5b is a resorption marker that is under development for automation. Both high and low bone turnover in CKD-MBD patients are associated with increased fracture and mortality risk. Bone biopsy as the gold standard to differentiate between adynamic bone disease and osteitis fibrosa is limited by availability and cost. Appropriate use of bone turnover markers is vital in the decision to commence anti-resorptive agents, and to monitor efficacy in order to avoid over suppression of bone turnover, which may lead to stress fractures. Further efforts are required to develop markers unaffected by renal function with standardized cut-off values and fracture as well as vascular calcification end-points. © 2017 Asian Pacific Society of Nephrology.

  12. Human interleukin 1β (IL-1β), a more powerful inducer of bone demineralization than interleukin 1α (IL-1α), parathyroid hormone (PTH) or prostaglandin E2 (PGE2) in vitro

    International Nuclear Information System (INIS)

    Chin, R.C.; Hodges, Y.C.; Allison, A.C.

    1986-01-01

    Effects of human IL-1α and IL-1β, prepared by recombinant DNA technology on cultures of rat fetal long bones, prelabelled with 45 Ca were studied. IL-1β was found to be the most powerful inducer of bone calcium loss so far known. Maximal activity (2.5 times the control rate of calcium loss) was induced by IL-1β at concentrations between 1 x 10 -10 M to 6 x 10 -12 M. With IL-1α maximal activity (1.5 times the control rate of calcium loss) was obtained at 6 x 10 -10 M. With bovine PTH (1-34) maximal activity (1.8 times the control rate of calcium loss) was obtained at 1 x 10 -8 M. With PGE 2 maximal activity (1.6 times the control rate of calcium loss) was obtained at 1 x 10 -7 M. The calcium loss induced by IL-1β was inhibited in the presence of 1 x 10 -7 M indomethacin, 5 x 10 -5 M naproxen or ketorolac, or 5 x 10 -6 M cyclohexamide. These findings suggest that protein synthesis and prostaglandin formation are required to mediate bone demineralization induced by IL-1β

  13. Cardiovascular diseases in older patients with osteoporotic hip fracture: prevalence, disturbances in mineral and bone metabolism, and bidirectional links

    Directory of Open Access Journals (Sweden)

    Fisher A

    2013-02-01

    Full Text Available A Fisher,1,3 W Srikusalanukul,1 M Davis,1,3 P Smith2,31Departments of Geriatric Medicine, 2Orthopaedic Surgery, The Canberra Hospital, 3Australian National University Medical School, Canberra, ACT, AustraliaBackground: Considerable controversy exists regarding the contribution of mineral/bone metabolism abnormalities to the association between cardiovascular diseases (CVDs and osteoporotic fractures.Aims and methods: To determine the relationships between mineral/bone metabolism biomarkers and CVD in 746 older patients with hip fracture, clinical data were recorded and serum concentrations of parathyroid hormone (PTH, 25-hydroxyvitamin D, calcium, phosphate, magnesium, troponin I, parameters of bone turnover, and renal, liver, and thyroid functions were measured.Results: CVDs were diagnosed in 472 (63.3% patients. Vitamin D deficiency was similarly prevalent in patients with (78.0% and without (82.1% CVD. The CVD group had significantly higher mean PTH concentrations (7.6 vs 6.0 pmol/L, P < 0.001, a higher prevalence of secondary hyperparathyroidism (SPTH (PTH > 6.8 pmol/L, 43.0% vs 23.3%, P < 0.001, and excess bone resorption (urinary deoxypyridinoline corrected by creatinine [DPD/Cr] > 7.5 nmol/µmol, 87.9% vs 74.8%, P < 0.001. In multivariate regression analysis, SHPT (odds ratio [OR] 2.6, P = 0.007 and high DPD/Cr (OR 2.8, P = 0.016 were independent indictors of CVD. Compared to those with both PTH and DPD/Cr in the normal range, multivariate-adjusted ORs for the presence of CVD were 17.3 (P = 0.004 in subjects with SHPT and 9.7 (P < 0.001 in patients with high DPD/Cr. CVD was an independent predicator of SHPT (OR 2.8, P = 0.007 and excess DPD/Cr (OR 2.5, P = 0.031. CVD was predictive of postoperative myocardial injury, while SHPT was also an independent predictor of prolonged hospital stay and in-hospital death.Conclusion: SHPT and excess bone resorption are independent pathophysiological mediators underlying the bidirectional associations

  14. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model.

    Science.gov (United States)

    Perosky, Joseph E; Khoury, Basma M; Jenks, Terese N; Ward, Ferrous S; Cortright, Kai; Meyer, Bethany; Barton, David K; Sinder, Benjamin P; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M

    2016-12-01

    Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Meta-Analysis of Correlations Between Marginal Bone Resorption and High Insertion Torque of Dental Implants.

    Science.gov (United States)

    Li, Haoyan; Liang, Yongqiang; Zheng, Qiang

    2015-01-01

    To evaluate correlations between marginal bone resorption and high insertion torque value (> 50 Ncm) of dental implants and to assess the significance of immediate and early/conventional loading of implants under a certain range torque value. Specific inclusion and exclusion criteria were used to retrieve eligible articles from Ovid, PubMed, and EBSCO up to December 2013. Screening of eligible studies, quality assessment, and data extraction were conducted in duplicate. The results were expressed as random/fixed-effects models using weighted mean differences for continuous outcomes with 95% confidence intervals. Initially, 154 articles were selected (11 from Ovid, 112 from PubMed, and 31 from EBSCO). After exclusion of duplicate articles and articles that did not meet the inclusion criteria, six clinical studies were selected. Assessment of P values revealed that correlations between marginal bone resorption and high insertion torque were not statistically significant and that there was no difference between immediately versus early/conventionally loaded implants under a certain range of torque. None of the meta-analyses revealed any statistically significant differences between high insertion torque and conventional insertion torque in terms of effects on marginal bone resorption.

  16. Large artery stiffness and carotid intima-media thickness in relation to markers of calcium and bone mineral metabolism in African women older than 46 years.

    Science.gov (United States)

    Gafane, L F; Schutte, R; Kruger, I M; Schutte, A E

    2015-03-01

    Vascular calcification and cardiovascular diseases have been associated with altered bone metabolism. We explored the relationships of arterial pressures and carotid intima-media thickness (CIMT) with parathyroid hormone, 25-hydroxycholecalciferol and their ratio (PTH:25(OH)D3) as well as a marker of bone resorption (CTX) in lean and overweight/obese African women. A population of 434 African women older than 46 years was divided into lean and overweight/obese groups. We assessed brachial blood pressure, central pulse pressure (cPP) and CIMT, and determined PTH, 25(OH)D3 and CTX concentrations. Overweight/obese women had elevated PTH and PTH:25(OH)D3 compared with lean women (both Pwomen had higher CTX (Pwomen CIMT was independently associated with PTH:25(OH)D3 (R(2)=0.22; β=0.26; P=0.003), whereas in obese women cPP was associated with both PTH:25(OH)D3 (R2=0.20; β=0.17; P=0.017) and CTX (R2=0.20; β=0.17; P=0.025). In conclusion, we found that in African women with increased adiposity, cPP (as a surrogate measure of arterial stiffness), was positively associated with alterations in bone metabolism and calciotropic hormones, whereas CIMT of lean women was positively associated with PTH:25(OH)D3. Our results suggest that alterations in bone and calcium metabolism may contribute to arterial calcification in older African women.

  17. Fortification of Yogurts with Vitamin D and Calcium Enhances the Inhibition of Serum Parathyroid Hormone and Bone Resorption Markers: A Double Blind Randomized Controlled Trial in Women over 60 Living in a Community Dwelling Home.

    Science.gov (United States)

    Bonjour, J-P; Benoit, V; Atkin, S; Walrand, S

    2015-05-01

    To evaluate whether fortification of yogurts with vitamin D and calcium exerts an additional lowering effect on serum parathyroid hormone (PTH) and bone resorption markers (BRM) as compared to iso-caloric and iso-protein dairy products in aged white women at risk of fragility fractures. A randomized double-blind controlled trial. A community dwelling home. Forty-eight women over 60 years (mean age 73.4). Consumption during 84 days of two 125 g servings of either vitamin D and calcium-fortified yogurts (FY) at supplemental levels of 10 µg vitamin D3/d and 520 mg/d of calcium (total=800 mg/d), or non fortified control yogurts (CY) providing 280 mg/d of calcium. Serum changes from baseline (D0) to D28, D56 and D84 in 25OHD, PTH and in two BRM: Tartrate-resistant-acid-phosphatase-isoform-5b (TRAP5b) and carboxy-terminal-cross-linked-telopeptide of type-I-collagen (CTX). The 10 years risk of major and hip fractures were 13.1 and 5.0%, and 12.9 and 4.2 %, in FY and CY groups, respectively. From D0 to D84, serum 25OHD increased (mean±SE) from 34.3±2.4 to 56.3±2.4 nmol/L in FY (n=24) and from 35.0±2.5 to 41.3±3.0 nmol/L in CY (n=24), (P=0.00001). The corresponding changes in PTH were from 64.1±5.1 to 47.4±3.8 ng/L in FY and from 63.5±4.6 to 60.7±4.2 ng/L in CY (P=0.0011). After D84, TRAP5b was reduced significantly (P=0.0228) and CTX fell though not significantly (P=0.0773) in FY compared to CY. This trial in aged white women living in a community dwelling home at risk for osteoporotic fractures confirms that fortification of dairy products with vitamin D3 and calcium should provide a greater prevention of secondary hyperparathyroidism and accelerated bone resorption as compared to non-fortified equivalent foods.

  18. Study on bone resorption behavior of osteoclast under drug effect using {sup 41}Ca tracing

    Energy Technology Data Exchange (ETDEWEB)

    Dong Kejun [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); Lu Liyan [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); CNNC Third Qinshan Nuclear Power Co. Ltd., Haiyan 314300 (China); He Ming; Ouyang Yinggen; Xue Yan; Li Chaoli; Wu Shaoyong [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); Wang Xianggao [College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Shen Hongtao [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); Gao Jianjun [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Wang Wei [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); China National Nuclear Corporation, Beijing 100822 (China); Chen Dafu; Xing Yonggang [Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035 (China); Jian, Yuan [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); Jiang Shan, E-mail: jiangs@ciae.ac.cn [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China)

    2013-01-15

    The mechanisms governing calcium fluxes during bone remodeling processes in Osteoporosis (OP) patients are poorly known. Understanding the changes of Osteoclasts (OC) during this dynamic transition is important to prevent and cure OP. The exploration of long-lived {sup 41}Ca (T{sub 1/2} = 1.04 Multiplication-Sign 10{sup 5} years) tracer combined with AMS measurements leads to the possibility of monitoring the bone resorption behavior of OC in OP patients. In this work, the behavior of OC with the administration of Strontium Ranelate (SR), a drug for OP, was studied by using {sup 41}Ca labeled hydroxyapatite (HAP) to simulate the bone. AMS on the HI-13 tandem accelerator at CIAE was used to determine trace amounts of {sup 41}Ca. The results show that the technique of {sup 41}Ca tracing with AMS can be used to quantitatively monitor the behavior of OC in bone resorption under the effects of drugs. Experimental details and preliminary results will be presented.

  19. Carboxyl-terminal parathyroid hormone fragments: role in parathyroid hormone physiopathology.

    Science.gov (United States)

    D'Amour, Pierre; Brossard, Jean-Hugues

    2005-07-01

    Carboxyl-terminal parathyroid hormone (C-PTH) fragments constitute 80% of circulating PTH. Since the first 34 amino acids of the PTH structure are sufficient to explain PTH classical biological effects on the type I PTH/PTHrP receptor and since C-PTH fragments do not bind to this receptor, they have long been considered inactive. Recent data suggest the existence of a C-PTH receptor through which C-PTH fragments exert biological effects opposite to those of human PTH(1-84) on the type I PTH/PTHrP receptor. This is why a lot of attention has been paid to these fragments recently. In vivo, synthetic C-PTH fragments are able to decrease calcium concentration, to antagonize the calcemic response to human PTH(1-34) and human PTH(1-84) and to decrease the high bone turnover rate induced by human PTH(1-84). In vitro, they inhibit bone resorption, promote osteocyte apoptosis and exert a variety of effects on bone and cartilaginous cells. These effects are opposite to those of human PTH(1-84) on the PTH/PTHrP type I receptor. This suggests that the molecular forms of circulating PTH may control bone participation in calcium homeostasis via two different receptors. Clinically, the accumulation of C-PTH fragments in renal failure patients may cause PTH resistance and may be associated with adynamic bone disease. Rare parathyroid tumors, without a set point error, overproduce C-PTH fragments. The implication of C-PTH fragments in osteoporosis is still to be explored. C-PTH fragments represent a new field of investigation in PTH biology. More studies are necessary to disclose their real importance in calcium and bone homeostasis in health and disease.

  20. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  1. Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer-related hypercalcemia

    International Nuclear Information System (INIS)

    Warrell, R.P. Jr.; Bockman, R.S.; Coonley, C.J.; Isaacs, M.; Staszewski, H.

    1984-01-01

    Approximately two-thirds of patients who receive the anticancer drug gallium nitrate develop mild hypocalcemia. To evaluate the mechanism of drug-induced hypocalcemia, we tested the effects of gallium nitrate upon in vitro release of 45 Ca++ from explanted fetal rat bones. The drug significantly inhibited 45 Ca++ release in response to stimulation with both parathyroid hormone and a lymphokine preparation with osteoclast activating factor activity. The inhibitory effects on bone resorption were both time- and dose-dependent. Later, in a pilot study, we treated 10 patients who had cancer-related hypercalcemia with gallium nitrate administered by continuous infusion. All patients responded by a reduction of total serum calcium to normal or subnormal concentrations (13.8 +/- 1.05 mg/dl, mean +/- SD pretreatment, to 8.03 +/- 1.03 mg/dl, mean posttreatment nadir). Our results indicate that gallium nitrate effectively treats cancer-related hypercalcemia and that it probably acts by inhibiting calcium release from bone

  2. Effects of calcium-fortified ice cream on markers of bone health.

    Science.gov (United States)

    Ferrar, L; van der Hee, R M; Berry, M; Watson, C; Miret, S; Wilkinson, J; Bradburn, M; Eastell, R

    2011-10-01

    Premenopausal women with low calcium intakes consumed calcium-fortified ice cream daily for 28 days. Bone markers, NTX, CTX and PTH decreased significantly by 7 days, with some evidence of a calcium dose-dependent effect. Bone marker responses were observed within 1 h of consuming ice cream. Body weight remained constant over 28 days. Dietary calcium is important for lifelong bone health. Milk is a good source of bioavailable calcium, but consumption has declined among young adults. The aims were to determine whether calcium-fortified ice cream, a palatable source of calcium, produces significant, sustainable changes in bone turnover markers and parathyroid hormone (PTH) in premenopausal women with calcium intake below recommended UK levels. Eighty women, ages 20-39 years (calcium intake ice cream containing 96, 244, 459 or 676 mg calcium daily for 28 days. Urinary NTX/Cr, serum CTX, PINP, 1,25D and PTH were measured (baseline, days 1, 7 and 28). Acute changes in CTX and PTH were measured over 5 h (n = 29 women). There were significant mean decreases by 7 days in NTX/Cr, CTX, PTH and 1,25D and increases in PINP (one sample t tests), with a significant dose-dependent effect on CTX analysis of covariance. Only CTX remained suppressed at 28 days. Serum CTX and PTH decreased within 1 h. Body weight did not change significantly between baseline and 28 days. Daily consumption of calcium-fortified ice cream by premenopausal women may significantly reduce levels of the bone resorption marker serum CTX, without stimulating weight gain. The ice cream could be incorporated into the diet to replace low-calcium snacks and thus help individuals with habitually low calcium intakes to meet recommended intakes. The 244 mg calcium preparation would provide more than a quarter of the UK daily recommended nutrient intake for premenopausal women.

  3. Gene expression profiles give insight into the molecular pathology of bone in primary hyperparathyroidism

    DEFF Research Database (Denmark)

    Reppe, Sjur; Stilgren, Lis; Olstad, Ole K

    2006-01-01

    to bone and extra-cellular matrix, showed altered expression. Of these were 85 up- and 14 down-regulated before operation. The majority of regulated genes represented structural and adhesion proteins, but included also proteases and protease regulators which promote resorption. Increased expressions...... of collagen type 1 and osteocalcin mRNAs in disease reflecting the PTH anabolic action were paralleled by increased concentrations of these proteins in serum. In addition, genes encoding transcriptional factors and their regulators as well as cellular signal molecules were up-regulated during disease....... The identified genetic signature represents the first extensive description of the ensemble of bone and matrix related mRNAs, which are regulated by chronic PTH action. These results identify the molecular basis for this skeletal disease, and provide new insight into this clinical condition with potential...

  4. Vitamin D status and PTH in young men: a cross-sectional study on associations with bone mineral density, body composition and glucose metabolism

    DEFF Research Database (Denmark)

    Frost, M; Abrahamsen, B; Nielsen, T L

    2010-01-01

    Although vitamin D and bone metabolism are closely related, few studies have addressed the effects of vitamin D status on bone in men at time of peak bone mass. The objectives of this study were to evaluate the prevalence of vitamin D inadequacy in a cross-sectional study in young men...... and the effects of vitamin D and parathyroid hormone (PTH) on bone mass, bone markers and metabolic function....

  5. Healthy looking hospital nurses showing vitamin d deficiency: correlation of vitamin d levels with their levels of parathhyroid hormone and bone turnover markers

    International Nuclear Information System (INIS)

    Nasim, A.; Salim, B.; Niazi, S.; Fatima, N.

    2015-01-01

    To evaluate the correlation of low vitamin D levels with parathyroid hormone (PTH) levels and bone turn over markers among apparently healthy hospital nurses. Methods: Screening was done on 50 recruited healthy female nursing staff, aged between 18 to 35 years, for vitamin D levels. Among them 31 were found to be deficient in vitamin D. These 31 nurses were selected for further evaluation in trance. Their vitamin D levels were calculated by using the electrochemiluminescence immunoassay. Blood samples were drawn to estimate serum PTH levels accordingly. Samples were also collected from these recruited subjects to evaluate their bone turn over markers, including, osteocalcin, procollagen type 1 N propeptide and Beta-Crosslaps. Results: Out of 50 subjects, 31 subjects were found to have Vitamin D levels below 50 nmol/l. Out of these 31 subjects, 13 subjects, 41.9%, showed vitamin D levels below 20 nmol/l. Among these 13 subjects, all had significantly raised PTH levels (p-value: <0.001, r-value: -0.781). In rest of all the subjects, including those having Vitamin D levels above 20nmol/l, inordinately, PTH levels were normal. No reciprocity was found between low Vitamin D and raised PTH levels with bone turnover markers, except with P1NP (r-value 0.022). Conclusion: PTH levels show a steep augmentation in serum, when vitamin D levels hit the trough below 20 nmol/l. These are the subjects who should be treated prior to the development of complications of bone resorption. Moreover we could not find any significant correlation of Vitamin D and PTH with any bone turnover marker except P1NP. (author)

  6. The cell biology and role of resorptive cells in diseases: A review.

    Science.gov (United States)

    Babaji, Prashant; Devanna, Raghu; Jagtap, Kiran; Chaurasia, Vishwajit Rampratap; Jerry, Jeethu John; Choudhury, Basanta Kumar; Duhan, Dinesh

    2017-01-01

    Resorptive cells are responsible for the resorption of mineralized matrix of hard tissues. Bone-resorbing cells are called osteoclasts; however, they can resorb mineralized dental tissues or calcified cartilage and then they are called odontoclasts and chondroclasts, respectively. Resorptive cells form when mononuclear precursors derived from a monocyte-macrophage cell lineage are attracted to certain mineralized surfaces and subsequently fuse and adhere onto them for exerting their resorbing activity. These cells are responsible for degradation of calcified extracellular matrix composed of organic molecules and hydroxyapatite. The activity of these cells can be observed in both physiological and pathological processes throughout life and their activity is mainly required in bone turnover and growth, spontaneous and induced (orthodontic) tooth movement, tooth eruption, and bone fracture healing, as well as in pathological conditions such as osteoporosis, osteoarthritis, and bone metastasis. In addition, they are responsible for daily control of calcium homeostasis. Clastic cells also resorb the primary teeth for shedding before the permanent teeth erupt into the oral cavity.

  7. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2

    DEFF Research Database (Denmark)

    Henriksen, Dennis B; Alexandersen, Peter; Byrjalsen, Inger

    2004-01-01

    -CTX), a marker of bone resorption. In contrast, GLP-2 was found to have a neutral effect on bone formation, as assessed by serum osteocalcin. Since increased s-CTX levels are normally observed at night, we conducted bedtime studies in healthy postmenopausal women. The objective was to study the effect of GLP-2...... injection on bone turnover given at bedtime. A total of 81 postmenopausal women were included in two randomised placebo-controlled studies. In conclusion, we found a dose-related reduction of s-CTX after injection of GLP-2 (P ....07) by the treatment, suggestive of a stimulative effect on bone formation. An area under the curve (AUC0-10 h) analysis for s-CTX after GLP-2 injection confirmed the dose-related decrease as compared to placebo (P

  8. Effects of a Mikania laevigata extract on bone resorption and RANKL expression during experimental periodontitis in rats

    Directory of Open Access Journals (Sweden)

    Bruno B. Benatti

    2012-06-01

    Full Text Available OBJECTIVES: The Mikania laevigata extract (MLE (popularly known in Brazil as "guaco" possesses anti-inflammatory properties. In the present study we tested the effects of MLE in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying such effects. MATERIAL AND METHODS: Periodontal disease was induced by a ligature placed around the mandibular first molars of each animal. Male Wistar rats were divided into 4 groups: non-ligated animals treated with vehicle; non-ligated animals treated with MLE (10 mg/kg, daily; ligature-induced animals treated with vehicle and ligature-induced animals treated with MLE (10 mg/kg, daily. Thirty days after the induction of periodontal disease, the animals were euthanized and mandibles and gingival tissues removed for further analysis. RESULTS: Morphometric analysis of alveolar bone loss demonstrated that MLE-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-κB ligand (RANKL measured by immunohistochemistry. Moreover, gingival tissues from the MLE-treated group showed decreased neutrophil migration myeloperoxidase (MPO assay. CONCLUSIONS: These results indicate that MLE may be useful to control bone resorption during progression of experimental periodontitis in rats.

  9. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Science.gov (United States)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  10. Unprotected autogenous bone block grafts in anterior maxilla: Resorption rates and clinical outcomes

    Directory of Open Access Journals (Sweden)

    Kosanić Ivan

    2017-01-01

    Full Text Available Background/Aim. The use of autogenous bone grafts for augmentation of the resorbed alveolar ridge is still considered the gold standard in implant dentistry. The aim of this study was to analyze the resorption rate of autogenous bone block grafts from the retromolar region placed in the frontal segment of the upper jaw unprotected by barrier membranes, to assess the stability of implants placed into the grafted bone, as well as to monitor its changes during the healing period. Methods. The study included 18 patients with a total of 20 grafted sites. The residual alveolar ridge was measured before and after the augmentation and prior to implant placement. All implants were restored with provisional crowns within 48 hours after the placement. Implant stability was assessed using resonance frequency analysis. Results. The average period from ridge augmentation to reentry was 5.4 months (range 4–6 months. At reentry the healed alveolar ridge had a mean width of 6.1 ± 1.27 mm. The mean calculated width gain was 3.04 ± 1.22 mm. The overall surface resorption of block grafts was 0.68 ± 0.69 mm (18.85%. At the time of implant placement the mean value of implant stability quotient (ISQ was 71.25 ± 5.77. The lowest ISQ values were noted after three weeks of healing, followed by a gradual increase until week 12. After 12 weeks implants showed significantly higher ISQ values compared to primary stability (p < 0.05 Wilcoxon signed ranks test. During the 3-years followup period no cases of implant loss were recorded. Conclusion. Despite a significant resorption of bone grafts, it was possible to place implants in all the cases and to use the immediate loading protocol without affecting implant survival rate. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.175021

  11. Acute hypotension induced by aortic clamp vs. PTH provokes distinct proximal tubule Na+ transporter redistribution patterns

    DEFF Research Database (Denmark)

    Leong, Patrick K K; Yang, Li E; Lin, Harrison W

    2004-01-01

    . This study aimed to determine the effects of acute hypotension, induced by aortic clamp or by high-dose PTH (100 microg PTH/kg), on renal hemodynamics and proximal tubule Na/H exchanger isoform 3 (NHE3) and type IIa Na-P(i) cotransporter protein (NaPi2) distribution. Subcellular distribution was analyzed...... clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (

  12. Acute regulation of circulating parathyroid hormone (PTH) molecular forms by calcium: utility of PTH fragments/PTH(1-84) ratios derived from three generations of PTH assays.

    Science.gov (United States)

    D'Amour, Pierre; Räkel, Agnès; Brossard, Jean-Hugues; Rousseau, Louise; Albert, Caroline; Cantor, Tom

    2006-01-01

    The quantitative evaluation of circulating PTH peaks revealed by PTH assays after HPLC separation constitutes the best way to study the behavior of PTH molecular forms, but it is also impractical. The objective of the study was to investigate the regulation of circulating PTH molecular forms by calcium through the use of PTH fragments/PTH (1-84) ratios derived from PTH assays with different specificities before and after HPLC separation of circulating PTH. CaCl2 and Na citrate were infused in eight volunteers. PTH was measured in serum and HPLC fractions at different calcium concentrations in PTH assays reacting with regions 1-2 (CA), 12-18 (T), and 65-69 (C) of the PTH structure. From hypo- to hypercalcemia, the C/CA ratio had the highest range (1.92 to 9.75; P < 0.001), and the C/T ratio had a higher range (1.69 to 6.11; P < 0.01) than the T/CA ratio (1.15 to 1.86). Human (h) PTH (1-84) represented 32.7 and 4.3% of circulating PTH in hypo- and hypercalcemic HPLC profiles, respectively. These numbers were 5 and 0.9% for amino-terminal (N)-PTH, an amino-terminal form of PTH distinct from hPTH (1-84), 7.3 and 6.8% for non-(1-84) PTH or large C-PTH fragments with a partially preserved N structure, and 54.9 and 88.1% for C-PTH fragments missing a N structure. The HPLC C-PTH fragments to hPTH (1-84) ratio had the most extensive range (1.67 to 20.58). Despite their quantitative differences, all ratios identified identical behavior of PTH fragments relative to PTH (1-84). PTH assay ratios are an adequate tool to investigate the modulation of PTH molecular forms, even if all PTH assays show some undesirable cross-reactivity with certain circulating forms of PTH.

  13. Cadmium-induced formation of multinucleated osteoclast-like cells in vitro

    International Nuclear Information System (INIS)

    Konz, R.P.; Choi, T.T.; Seed, T.M.

    1990-01-01

    Mononuclear, progenitor-enriched bone marrow cells fuse into multinucleated osteoclast-like (MN-OS) cells during 10 to 20 days of culture. As cadmium (Cd) exposure has been linked to increased bone resorption, we asked if Cd would increase (1) MN-OS cell formation and (2) 45 Ca release from bone, when marrow cells were cultured in the presence of 45 Ca-prelabeled dog femur slices. Results show that, on day 21, the percentage of MN-OS cells (≥3 nuclei/cell) was 1.4 ± 0.1% (mean ± SE, n=4) for control cultures (medium + bone slice + cells), 3.6 ± 0.1% for cultures with 10 nM parathyroid hormone (PTH) added, and 7.1 ± 1.5% with 10 nM Cd added. Starting on day 10, we found MN-OS cells with centrally located nuclei, a clear zone, and ruffled borders typical of activated osteoclasts; these activated cells appeared almost exclusively in the +Cd and +PTH cultures. During 21 days, 256 ± 9 CPM 45 Ca was released per well from the bone slices in cultures with cells, compared to 209 ± 11 CPM 45 Ca was released in cultures without cells (mean ± SE, n=16). However, neither Cd nor PTH significantly increased the cell-mediated release of 45 Ca. Thus, both Cd and PTH at 10 nM stimulated the formation of MN-OS cells; however, another factor may have been required to cause MN-OS cells of resorb bone

  14. Changes in markers of bone formation and resorption in a bed rest model of weightlessness

    Science.gov (United States)

    Lueken, S. A.; Arnaud, S. B.; Taylor, A. K.; Baylink, D. J.

    1993-01-01

    To study the mechanism of bone loss in physical unloading, we examined indices of bone formation and bone resorption in the serum and urine of eight healthy men during a 7 day -6 degrees head-down tilt bed rest. Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest. An index of formation, skeletal alkaline phosphatase (SALP), did not change during bed rest and showed a moderate 15% increase 1 week after reambulation. In contrast to SALP, serum osteocalcin (OC) began increasing the day preceding the increase in Hyp, remained elevated for the duration of the bed rest, and returned to pre-bed rest values within 5 days of reambulation. Similarly, DPD increased significantly at the onset of bed rest, remained elevated for the duration of bed rest, and returned to pre-bed rest levels upon reambulation. On the other hand, the other three indices of resorption, Hyp, PD, and TRAP, remained elevated for 2 weeks after reambulation. The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD. The bed rest values of both these markers were significantly elevated compared to both the pre-bed rest values and the post-bed rest values. The sequence of changes in the circulating markers of bone metabolism indicated that increases in serum OC are the earliest responses of bone to head-down tilt bed rest.

  15. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    International Nuclear Information System (INIS)

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R.; Jones, K.W.

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig

  16. Effect of polygonimitin C on bone formation and resorption in human ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of polygonimitin C (PC) on bone formation and resorption in human osteoblast-like MG63 cells. Methods: MG63 cells were treated with PC at doses of 0, 20, 40 or 80 μg/mL for 48 h, with an untreated group as control. The effect of PC on alkaline phosphatase (ALP) activity in MG63 cells ...

  17. The effect of semelil (angipars® on bone resorption and bone formation markers in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Hasani-Ranjbar Shirin

    2012-12-01

    Full Text Available Abstract Background and purpose of the study Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers. Methods In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months. Result 31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α. Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029 Conclusion In conclusion, the findings of this study indicate that Semelil (Angipars® had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered.

  18. The effect of ovalbumin on orthodontic induced root resorption.

    Science.gov (United States)

    Aghili, Hosseinagha; Ardekani, Mohammad Danesh; Meybodi, Seyed Amir Reza Fatahi; Toodehzaeim, Mohammad Hossein; Modaresi, Jalil; Mansouri, Reza; Momeni, Ehsan

    2013-09-01

    This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA), and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. In general, the differences were insignificant (P root resorption than the group in which neither force nor ovalbumin was applied (P > 0.001). Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  19. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    Science.gov (United States)

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  20. Measurement of bone mineral density using DEXA and biochemical markers of bone turnover in 5-year survivors after orthotopic liver transplantation

    International Nuclear Information System (INIS)

    Xu Hao; Eichstaedt, H.

    1998-01-01

    Purpose: To observe bone loss and bone metabolism status in 5-year survivors after orthotopic liver transplantation (OLT). Methods: Measurement of bone mineral density (BMD) of the lumbar spine (L2∼L4) and femoral neck using dual energy X-ray absorptiometry (DEXA) and analysis of biochemical markers of bone turnover, such as ostecalcin (OSC), bone alkaline phosphatase (BAP), carboxy-terminal propeptide of type I procollagen (PICP), carboxy-terminal cross-linked telo-peptide of type I collagen (ICTP), PTH and 25-hydroxy-vitamin D (25-OH-D). These markers were measured in 31 5-year survivors after OLT, 34 patients with chronic liver failure (CLF) before OLT and 38 normal subjects. Results: Age-matched Z-score of BMD (Z-score) at L2∼L4 was significantly higher in 5-year survivors than that in patients with CLF before OLT. Incidence of osteoporosis (Z-score<-2.0) in 5-year survivors was significantly lower than that in patients with CLF before OLT. Although serum concentrations of bone formation and bone resorption markers in 5-year survivors were high than those of normal subjects, as compared to patients with CLF before OLT, serum OSC was increased, serum ICTP and BAP were reduced, serum PICP was unchanged. Serum PTH and 25-OH-D level was normal. Conclusions: In 5-year survivors following liver transplantation there was a reduction in bone loss and incidence of osteoporosis and an improvement of bone metabolism

  1. ALX 111: ALX1-11, parathyroid hormone (1-84) - NPS Allelix, PREOS, PTH, recombinant human parathyroid hormone, rhPTH (1-84).

    Science.gov (United States)

    2003-01-01

    Parathyroid Hormone; TOP) has been designed to assess the bone-building and fracture-reducing potential of the drug, and over 2600 postmenopausal women with osteoporosis who have not received previous drug therapy for osteoporosis have been enrolled. Treatment will be completed in September 2003, but more than 75% of patients enrolled in the TOP study have chosen to enrol in an Open Label Extension Study (OLES), which allows for a total treatment period of up to 24 months. NPS Pharmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. In September 2002, NPS Pharmaceuticals announced that it has met its patient enrolment target (n > 150) for its POWER (PTH for Osteoporotic Women on Estrogen Replacement) study; a 24-month phase III trial initiated in Europe in November 2001. In this trial, women with osteoporosis receive SC injections of ALX 111 or placebo, in combination with their existing hormone replacement therapies, to test the bone building potential of the drug. In addition to the POWER study, a clinical trial sponsored by the National Institutes of Health (NIH) is being conducted to evaluate the potential of ALX 111 to build bone in combination with another osteoporosis medication. The 'PaTH' study (PTH/alendronate) is designed to assess the effect of various combinations and sequential uses of ALX 111 and Merck's Fosamax, a drug for slowing the loss of bone due to osteoporosis. The PaTH study, initiated in May 2000 and scheduled to conclude in September 2003, involved 238 patients with postmenopausal osteoporosis. It is thought that alendronic acid and ALX 111, when administered in combination, may act in an additive manner to treat osteoporosis because they act in different ways; alendronic acid acts to inhibit resorption and ALX 111 speeds up bone formation and resorption, with a net increase in formation. Results of this study are still being analysed but preliminary results appear to be

  2. Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1.

    Directory of Open Access Journals (Sweden)

    Shinya Nakamura

    Full Text Available Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3 at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1 is a direct target of nuclear factor of activated T cells 1 (NFATc1 and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL, and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.

  3. Vitamin D supplementation has minor effects on parathyroid hormone and bone turnover markers in vitamin D-deficient bedridden older patients.

    Science.gov (United States)

    Björkman, Mikko; Sorva, Antti; Risteli, Juha; Tilvis, Reijo

    2008-01-01

    to evaluate the effects of vitamin D supplementation on parathyroid function and bone turnover in aged, chronically immobile patients. a randomised double-blind controlled trial. two hundred and eighteen long-term inpatients aged over 65 years. the patients were randomised into treatment groups of I-III, each receiving 0 IU, 400 IU and 1200 IU cholecalciferol per day, respectively. In case of inadequate consumption of dairy products, patients received a daily calcium substitution of 500 mg. plasma concentrations of 25-hydroxyvitamin D (25-OHD), intact parathyroid hormone (PTH), amino-terminal propeptide of type I procollagen (PINP), a marker of bone formation, and carboxy-terminal telopeptide of type I collagen (ICTP), a marker of bone resorption, were measured at baseline and after 6 months. the patients (age 84.5 years) were chronically bedridden. The baseline 25-OHD was low (23 nmol/l), correlated inversely with PINP, and tended to associate inversely with PTH. The prevalence of vitamin D deficiency (VDD) (25-OHD < 50 nmol/l) was 98% and PTH was elevated in 23% of the patients. Vitamin D supplementation significantly increased 25-OHD concentrations (124% group II, 204% group III) and decreased PTH (-7% group II, -8% group III). PINP tended to decrease, but ICTP tended to increase, and only their ratio decreased significantly. The tendency of ICTP to increase was inconsistent. Changes in 25-OHD correlated inversely with those in PTH and PINP. vitamin D supplementation has minor effects on PTH and bone turnover in chronically immobilised aged patients with VDD. Further comparative studies and meta-analyses are warranted to elucidate the confounding effects of different mobility levels on the benefits of vitamin D supplementation in patients with differing baseline PTH levels.

  4. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    International Nuclear Information System (INIS)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Jamal, Shazia; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-01-01

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  5. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  6. [Bone Cell Biology Assessed by Microscopic Approach. The effect of parathyroid hormone and teriparatide on bone].

    Science.gov (United States)

    Takahata, Masahiko

    2015-10-01

    Continuous exposure to parathyroid hormone (PTH) leads to hypercalcemia and a decrease in bone volume, which is referred to as its catabolic effect, while intermittent exogenously administered PTH leads to an anabolic effect on bone. Intermittent administration of PTH dramatically increases bone remodeling and modeling through their direct and indirect effects on the functional cells of bone remodeling units and their precursors. These effects on bone metabolism differ according to dosing frequency of PTH. Therefore, different dosing frequency of PTH shows different therapeutic effects on bone in terms of bone volume and bone quality in patients with osteoporosis.

  7. A novel approach to inhibit bone resorption

    DEFF Research Database (Denmark)

    Panwar, Preety; Søe, Kent; Guido, Rafael VC

    2016-01-01

    BACKGROUND AND PURPOSE: Cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Potent active site-directed inhibitors have been developed and showed variable success in clinical trials. These inhibitors block the entire activity of CatK and thus may interfere with other...... pathways. The present study investigates the antiresorptive effect of an exosite inhibitor that selectively inhibits only the therapeutically relevant collagenase activity of CatK. EXPERIMENTAL APPROACH: Human osteoclasts and fibroblasts were used to analyse the effect of the exosite inhibitor, ortho......-dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY...

  8. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    Science.gov (United States)

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Three-dimensional studies on resorption spaces and developing osteons.

    Science.gov (United States)

    Tappen, N C

    1977-07-01

    Resorption spaces and their continuations as developing osteons were traced in serial cross sections from decalcified long bones of dogs, baboons and a man, and from a human rib. Processes of formation of osteons and transverse (Volkmann's) canals can be inferred from three-dimensional studies. Deposits of new osseous tissue begin to line the walls of the spaces soon after termination of resorption. The first deposits are osteoid, usually stained very darkly by the silver nitrate procedure utilized, but a lighter osteoid zone adjacent to the canals occurs frequently. Osteoid linings continue to be produced as lamellar bone forms around them; the large canals of immature osteons usually narrow very gradually. Frequently they terminate both proximally and distally as resorption spaces, indicating that osteons often advance in opposite directions as they develop. Osteoclasts of resorption spaces tunnel preferentially into highly mineralized bone, and usually do not use previously existing canals as templates for their advance. Osteons evidently originate by localized resorption of one side of the wall of an existing vascular channel in bone, with subsequent orientation of the resorption front along the axis of the shaft. Advancing resorption spaces also apparently stimulate the formation of numerous additional transverse canal connections to neighboring longitudinal canals. Serial tracing and silver nitrate differential staining combine to reveal many of the processes of bone remodeling at work, and facilitate quantitative treatment of the data. Further uses in studies of bone tissue and associated cells are recommended.

  10. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    International Nuclear Information System (INIS)

    Li Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang Leo; Li Qing; Swain, Michael

    2010-01-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  11. Calcium intake in winter pregnancy attenuates impact of vitamin D inadequacy on urine NTX, a marker of bone resorption.

    Science.gov (United States)

    O'Brien, Eileen C; Kilbane, Mark T; McKenna, Malachi J; Segurado, Ricardo; Geraghty, Aisling A; McAuliffe, Fionnuala M

    2018-04-01

    Pregnancy is characterised by increased bone turnover, but high bone turnover with resorption exceeding formation may lead to negative maternal bone remodelling. Recent studies are conflicting regarding the effect of calcium on skeletal health in pregnancy. The aim of this study was to examine the seasonal effect of serum 25-hydroxyvitamin D (25OHD) and dietary calcium on a marker of bone resorption. This was prospective study of 205 pregnant women [two cohorts; early pregnancy at 13 weeks (n = 96), and late pregnancy at 28 weeks (n = 109)]. Serum 25OHD and urine cross-linked N-telopeptides of type I collagen (uNTX) were measured at both time points. Intakes of vitamin D and calcium were recorded using 3-day food diaries at each trimester. Compared to summer pregnancies, winter pregnancies had significantly lower 25OHD and significantly higher uNTX. Higher calcium intakes were negatively correlated with uNTX in winter, but not summer. In late pregnancy, compared to those reporting calcium intakes ≥1000 mg/day, intakes of <1000 mg/day were associated with a greater increase in uNTX in winter pregnancies than in summer (41.8 vs. 0.9%). Increasing calcium intake in winter by 200 mg/day predicted a 13.3% reduction in late pregnancy uNTX. In late pregnancy, during winter months when 25OHD is inadequate, intakes of dietary calcium <1000 mg/day were associated with significantly increased bone resorption (uNTX). Additional dietary calcium is associated with reduced bone resorption in late pregnancy, with greater effect observed in winter. Further research regarding optimal dietary calcium and 25OHD in pregnancy is required, particularly for women gestating through winter.

  12. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...... treatment. Histologic examination of tubular bones showed hyperostosis presumably due to prostaglandin-induced rapid formation of primitive bone. The additional finding of extensive resorption of the outer cortical surface and bone formation at the inner surface suggested a reversible phase after...

  13. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  14. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  15. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  16. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  17. The effect of ovalbumin on orthodontic induced root resorption

    Directory of Open Access Journals (Sweden)

    Hosseinagha Aghili

    2013-01-01

    Full Text Available Background: This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. Materials and Methods: A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA, and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. Results: In general, the differences were insignificant (P > 0.05. As the only exception, the group in which both ovalbumin and force were applied had significantly more root resorption than the group in which neither force nor ovalbumin was applied (P < 0.001. Conclusion: Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  18. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  19. Higher bone resorption excretion in South Asian women vs. White Caucasians and increased bone loss with higher seasonal cycling of vitamin D: Results from the D-FINES cohort study.

    Science.gov (United States)

    Darling, A L; Hart, K H; Gossiel, F; Robertson, F; Hunt, J; Hill, T R; Johnsen, S; Berry, J L; Eastell, R; Vieth, R; Lanham-New, S A

    2017-05-01

    Few data exist on bone turnover in South Asian women and it is not well elucidated as to whether Western dwelling South Asian women have different bone resorption levels to that of women from European ethnic backgrounds. This study assessed bone resorption levels in UK dwelling South Asian and Caucasian women as well as evaluating whether seasonal variation in 25-hydroxyvitamin D [25(OH)D] is associated with bone resorption in either ethnic group. Data for seasonal measures of urinary N-telopeptide of collagen (uNTX) and serum 25(OH)D were analysed from n=373 women (four groups; South Asian postmenopausal n=44, South Asian premenopausal n=50, Caucasian postmenopausal n=144, Caucasian premenopausal n=135) (mean (±SD) age 48 (14) years; age range 18-79years) who participated in the longitudinal D-FINES (Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England) cohort study (2006-2007). A mixed between-within subjects ANOVA (n=192) showed a between subjects effect of the four groups (PAsian and premenopausal Asian groups. Season specific age-matched-pairs analyses showed that in winter (P=0.04) and spring (P=0.007), premenopausal Asian women had a 16 to 20nmolBCE/mmol Cr higher uNTX than premenopausal Caucasian women. The (amplitude/mesor) ratio (i.e. seasonal change) for 25(OH)D was predictive of uNTX, with estimate (SD)=0.213 (0.015) and 95% CI (0.182, 0.245; PAsian women than would be expected for their age, being greater than same-age Caucasian women, and similar to postmenopausal Asian women. This highlights potentially higher than expected bone resorption levels in premenopausal South Asian women which, if not offset by concurrent increased bone formation, may have future clinical and public health implications which warrant further investigation. Individuals with a larger seasonal change in 25(OH)D concentration showed an increased bone resorption, an association which was larger than that of the 25(OH)D yearly average, suggesting it may be as

  20. Role of acidosis-induced increases in calcium on PTH secretion in acute metabolic and respiratory acidosis in the dog.

    Science.gov (United States)

    López, Ignacio; Aguilera-Tejero, Escolástico; Estepa, José Carlos; Rodríguez, Mariano; Felsenfeld, Arnold J

    2004-05-01

    Recently, we showed that both acute metabolic acidosis and respiratory acidosis stimulate parathyroid hormone (PTH) secretion in the dog. To evaluate the specific effect of acidosis, ionized calcium (iCa) was clamped at a normal value. Because iCa values normally increase during acute acidosis, we now have studied the PTH response to acute metabolic and respiratory acidosis in dogs in which the iCa concentration was allowed to increase (nonclamped) compared with dogs with a normal iCa concentration (clamped). Five groups of dogs were studied: control, metabolic (clamped and nonclamped), and respiratory (clamped and nonclamped) acidosis. Metabolic (HCl infusion) and respiratory (hypoventilation) acidosis was progressively induced during 60 min. In the two clamped groups, iCa was maintained at a normal value with an EDTA infusion. Both metabolic and respiratory acidosis increased (P acidosis, the increase in iCa was progressive and greater (P respiratory acidosis, in which iCa increased by 0.04 mM and then remained constant despite further pH reductions. The increase in PTH values was greater (P respiratory acidosis). In the nonclamped metabolic acidosis group, PTH values first increased and then decreased from peak values when iCa increased by > 0.1 mM. In the nonclamped respiratory acidosis group, PTH values exceeded (P acidosis. In conclusion, 1) both metabolic acidosis and respiratory acidosis stimulate PTH secretion; 2) the physiological increase in the iCa concentration during the induction of metabolic and respiratory acidosis reduces the magnitude of the PTH increase; 3) in metabolic acidosis, the increase in the iCa concentration can be of sufficient magnitude to reverse the increase in PTH values; and 4) for the same degree of acidosis-induced hypercalcemia, the increase in PTH values is greater in metabolic than in respiratory acidosis.

  1. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  2. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  3. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  4. Beneficial role of periosteum in distraction osteogenesis of mandible. Its preservation prevents the external bone resorption

    International Nuclear Information System (INIS)

    Takeuchi, Sawako; Matsuo, Akira; Chiba, Hiroshige

    2010-01-01

    Distraction osteogenesis (DO) is a surgical process of new bone generation through the gradual extension of two segments of existing bone. DO is applied for maxillofacial surgeries to manage defects in mandibular continuity. Vertical DO with an oral device is often employed to augment the alveolar bone height for better implant anchorage for esthetic purposes or functional prosthetic requirements. To determine how the periosteum affects the vertical DO in mandibular reconstruction, we extracted the teeth and resected the alveolar parts of the mandible on both sides of dogs, along with removal of the surrounding periosteum in the right, but not left side. Three months later, box-shaped bone segments (vectors) were prepared from the resected alveolar part, and the segments were vertically elongated using a distraction device on both sides at 0.9 mm/day for one week. The extent of bone formation after distraction was determined with micro-focused computed tomography and by measuring incorporation of tetracycline and calcein with confocal laser scanning microscopy. During the initial two months after distraction, new bone formation was observed more prominently in the left side than in the right side of mandible with the periosteum. However, this difference was less clear during the bone-remodeling period. One notable change was the reduced height of the alveolar part of the right-side mandible, a sign of external bone resorption, observed in two out of three dogs at 6-month post-consolidation. These findings suggest that preservation of periosteum prevents the external bone resorption during the vertical DO of mandible. (author)

  5. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Ries, W.L.; Seeds, M.C.; Key, L.L.

    1989-01-01

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  6. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application.

    Science.gov (United States)

    Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas

    2013-03-01

    To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

  7. The potential of mangosteen (Garcinia mangostana peel extract, combined with demineralized freeze-dried bovine bone xenograft, to reduce ridge resorption and alveolar bone regeneration in preserving the tooth extraction socket

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2017-01-01

    Conclusion: The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.

  8. Nuclear medicine diagnostic experience for 25 patients with parathyroid disease accompanied elevated serum PTH level

    International Nuclear Information System (INIS)

    Su Li; Huang Chenggang; Niu Wenqiang; Wu Liwen

    2010-01-01

    Objective: To explore nuclear medicine diagnostic method for parathyroid disease accompanied elevated serum parathyroid hormone (PTH) level. Methods: The images of 25 patients with parathyroid disease were obtained by SPECT 99 Tc m -MIBI double-phase parathyroid imaging and 99 Tc m -methylene diphosphonate ( 99 Tc m -MDP) whole-body static bone imaging. All subject were measured serum PTH, calcium, phosphorus and alkaline phosphatase. Results: (1) Serum PTH level increased to varying degrees in patients with primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT). (2) PHPT and SHPT showed significant change before and after surgery (t=6.24 and t=6.85, P 99 Tc m -MIBI were above 90%. (4) Whole-body bone imaging results of SHPT patients showed complex and diverse caused by high background, increased uptakes mainly. 99 Tc m -MIBI dual-phase parathyroid imaging showed hyperparathyroidism in varying degree, up to 56% or more. Conclusion: Determination of serum PTH combined SPECT for parathyroid and whole-body bone imaging showed high clinical value in diagnosis and treatment of parathyroid disease. (authors)

  9. Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin

    OpenAIRE

    Salinas-Muñoz, M.; Garrido-Flores, M.; Baeza, M.; Huamán-Chipana, P.; García-Sesnich, J.; Bologna, R.; Vernal, R.; Hernández, M.

    2017-01-01

    Objectives The aim of this study is to assess the levels and diagnostic accuracy of a set of bone resorption biomarkers, including TRAP-5, RANKL, and OPG in symptomatic and asymptomatic apical lesions and controls. Materials and methods Apical tissues from symptomatic and asymptomatic apical periodontitis patients and periodontal ligaments from healthy teeth extracted for orthodontic reasons were processed for tissue homogenization and the levels of TRAP-5, RANKL, and OPG were determined by m...

  10. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT.

    NARCIS (Netherlands)

    Klijn, R.J.; Beucken, J.J.J.P van den; Bronkhorst, E.M.; Berge, S.J.; Meijer, G.J.; Jansen, J.B.M.J.

    2012-01-01

    INTRODUCTION: No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft

  12. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients

    NARCIS (Netherlands)

    Bunck, M.C.M.; Poelma, M.; Eekhoff, E.M.; Schweizer, A.; Heine, R.J.; Nijpels, G.; Foley, J.E.; Diamant, M.

    2012-01-01

    Background: Bone metabolism is a dynamic process that is influenced by food ingestion. Endogenous incretins have been shown to be important regulators of bone turnover. The aim of the present study was to assess whether a dipeptidylpeptidase (DPP)-4 inhibitor affects markers of bone resorption and

  13. Effects of clodronate on early alveolar bone remodeling and root resorption related to orthodontic forces: a histomorphometric analysis.

    Science.gov (United States)

    Choi, Josefina; Baek, Seung-Hak; Lee, Jae-Il; Chang, Young-Il

    2010-11-01

    The objective of this study was to evaluate the short-term effects of clodronate, a first-generation bisphosphonate, on early alveolar bone remodeling and root resorption related to orthodontic tooth movement. The samples consisted of 54 sex-matched Wistar rats (weight, 180-230 g) allocated to the 2.5 mmol/L clodronate, 10 mmol/L clodronate, and control groups (n = 18 for each group). After application of a nickel-titanium closed-coil spring (force, 60 g) between the maxillary central incisor and first molar, 2.5 mmol/L of clodronate, 10 mmol/L of clodronate, or saline solution was injected into the subperiosteum adjacent to the maxillary first molar every third day. All animals received tetracycline, calcein, and alizarin red by intraperitoneal injection at 1, 6, and 14 days, respectively. The amounts of tooth movement were measured at 3, 6, 9, 12, and 15 days. The animals were killed at 4, 7, and 17 days. Histomorphometric analyses of bone mineral appositional rate, labeled surface, percentage of root resorption area, and number of root resorption lacunae of the mesiobuccal root of the maxillary first molar at 4, 7, and 17 days were done. One-way analysis of variance (ANOVA) with the post-hoc test were done for statistical analyses. Rats in the 10 mmol/L clodronate group had significant decreases of tooth movement (12 and 15 days, P root resorption area and numbers of root resorption lacunae (7 day, P root resorption related to orthodontic tooth movement, patients should be informed about a possible decrease in the amount of tooth movement and a prolonged period of orthodontic treatment. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Identification of A Novel Root Resorptive Function of Osteopontin Gene

    Directory of Open Access Journals (Sweden)

    M. Seifi

    2008-12-01

    Full Text Available Objective: Osteopontin (OPN has been proposed to play a role in bone resorption. With regard to bone and cementum/dentin structural and histological similarities, it was hy-pothesized that expression of this gene might be increased in resorptive lacunae during orthodontic tooth movement.Materials and Methods: Fixed Nickel-Titanium closed coil springs (Dentaurum® capa-ble of delivering approximately 60 gf were applied for mesial movement of maxillary left first molars in 26 male 8-week-old Wistar rats. The right maxillary molar served as inter-nal control for each subject. After 21 days, the rats were sacrificed. Tissues from 13 rats were examined by histomorphometric analysis and the scratched material from resorptive lacunae on mesial sides of the roots was used for extracting messenger ribonucleic acid (mRNA in RT-PCR reactions. T-test and Wilcoxon signed-rank test served for statistical analyses.Results: Histomorphometric analysis of histologic sections revealed an increased resorbed area in test group compared to control animals (P<0.001. The integrity of mRNA con-firmed by RT-PCR for housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH. Densitometric analysis of OPN mRNA on electrophoresis gel showed an in-crease in background levels of OPN in resorptive lacunae of test group (P<0.001.Conclusion: Data indicates that in the controlled environment of this study, an increase in OPN expression is associated with root resorption induced by orthodontic tooth move-ment.

  15. Inhibitory effects on bone resorption in postmenopausal osteoporosis model mice by delivery of serum calcium decreasing factor (caldecrin) gene

    International Nuclear Information System (INIS)

    Oi, Michi; Kido, Seisui; Hasegawa, Hiroya; Fujimoto, Kengo; Tomomura, Mineko; Kanegae, Haruhide; Suda, Naoto; Tomomura, Akito

    2011-01-01

    Osteoporosis is a common condition in which decrease in the bone volume and strength occurs due to increased bone resorption. Caldecrin is a serine protease, with a molecular weight of 28kDa, and it is the causative factor of hypocalcemia frequently seen in acute pancreatitis. Recent reports have shown that caldecrin also acts to inhibit both differentiation of the osteoclasts and function of the mature osteoclasts. In this study, the osteoporosis model mice were used and bilateral ovariectomy was conducted in these mice. Effect of bone absorption was estimated after introducing genetically the pCaldecrin-IRES-hrGFP expressing vector into the femoral muscle by use of the hemagglutinating virus of Japan (HVJ)-liposomes. After the bilateral ovariectomy, serum calcium levels were raised and the bone mass of the femur was decreased. However, in the genetically introduced groups of the model mice, serum calcium levels were significantly lowered. Concomitantly, significant increase in bone density, trabecular width and number of trabecular was observed. Moreover, based on the histological findings, inhibition of bone resorption in the caldecrin-introduced osteoporosis model mice was confirmed. The present study indicates that caldecrin can be expected to become a novel cure for osteoporosis. (author)

  16. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model

    Science.gov (United States)

    Kirschneck, Christian; Maurer, Michael; Wolf, Michael; Reicheneder, Claudia; Proff, Peter

    2017-01-01

    Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 1/2/3): (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology—(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg·kg−1 per day s.c. of L(−)-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT–qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment. PMID:28960194

  17. Changes in calcitropic hormones, bone markers and insulin-like growth factor I (IGF-I) during pregnancy and postpartum: a controlled cohort study.

    Science.gov (United States)

    Møller, U K; Streym, S; Mosekilde, L; Heickendorff, L; Flyvbjerg, A; Frystyk, J; Jensen, L T; Rejnmark, L

    2013-04-01

    Pregnancy and lactation cause major changes in calcium homeostasis and bone metabolism. This population-based cohort study presents the physiological changes in biochemical indices of calcium homeostasis and bone metabolism during pregnancy and lactation We describe physiological changes in calcium homeostasis, calcitropic hormones and bone metabolism during pregnancy and lactation. We studied 153 women planning pregnancy (n=92 conceived) and 52 non-pregnant, age-matched female controls. Samples were collected prior to pregnancy, once each trimester and 2, 16 and 36 weeks postpartum. The controls were followed in parallel. P-estradiol (E2), prolactin and 1,25-dihydroxyvitamin D (1,25(OH)2D) increased (phormone (P-PTH) and calcitonin decreased (pgrowth factor I (IGF-I) was suppressed (pbone resorption and formation rose and fall, respectively (pbone formation markers increased in association with IGF-I changes (pbone turnover markers were associated with lactation status (pbone markers indicated a negative bone balance. The rise in bone formation in late pregnancy may be initiated by a spike in IGF-I levels. The high bone turnover in lactating women may be related to high prolactin and PTH levels, low E2 levels and perhaps increased parathyroid hormone-related protein levels.

  18. Bone disease in primary hyperparathyroidism

    Science.gov (United States)

    Bandeira, Francisco; Cusano, Natalie E.; Silva, Barbara C.; Cassibba, Sara; Almeida, Clarissa Beatriz; Machado, Vanessa Caroline Costa; Bilezikian, John P.

    2015-01-01

    Bone disease in severe primary hyperparathyroidism (PHPT) is described classically as osteitis fibrosa cystica (OFC). Bone pain, skeletal deformities and pathological fractures are features of OFC. Bone mineral density is usually extremely low in OFC, but it is reversible after surgical cure. The signs and symptoms of severe bone disease include bone pain, pathologic fractures, proximal muscle weakness with hyperreflexia. Bone involvement is typically characterized as salt-and-pepper appearance in the skull, bone erosions and bone resorption of the phalanges, brown tumors and cysts. In the radiography, diffuse demineralization is observed, along with pathological fractures, particularly in the long bones of the extremities. In severe, symptomatic PHPT, marked elevation of the serum calcium and PTH concentrations are seen and renal involvement is manifested by nephrolithiasis and nephrocalcinosis. A new technology, recently approved for clinical use in the United States and Europe, is likely to become more widely available because it is an adaptation of the lumbar spine DXA image. Trabecular bone score (TBS) is a gray-level textural analysis that provides an indirect index of trabecular microarchitecture. Newer technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have provided further understanding of the microstructural skeletal features in PHPT. PMID:25166047

  19. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuo [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Li, Xianan [Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Cheng, Liang [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Wu, Hongwei [Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Zhang, Can [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Li, Kanghua, E-mail: lkh8738@sina.com [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China)

    2015-10-30

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  20. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    International Nuclear Information System (INIS)

    Yang, Shuo; Li, Xianan; Cheng, Liang; Wu, Hongwei; Zhang, Can; Li, Kanghua

    2015-01-01

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  1. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Altan, Mehmet Fatih; Kanter, Mehmet; Donmez, Senayi; Kartal, Murat Emre; Buyukbas, Sadik

    2007-01-01

    Extracts of the seeds of Nigella sativa (NS), an annual herbaceous plant of the Ranunculaceae family, have been used for many years for therapeutic purposes, including their potential anti-diabetic properties. The aim of the present study was to test the hypothesis that combined treatment with NS and human parathyroid hormone (hPTH) is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, biomechanical behaviour and strength in insulin-dependent diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) at a single dose of 50mg/kg. The diabetic rats received NS (2ml/kg/day, i.p.), hPTH (6microg/kg/day, i.p.) or NS and hPTH combined for 4 weeks, starting 8 weeks after STZ injection. The beta-cells of the pancreatic islets of Langerhans were examined by immunohistochemical methods. In addition, bone sections of femora were processed for histomorphometry and biomechanical analysis. In diabetic rats, the beta-cells were essentially negative for insulin-immunoreactivity. NS treatment (alone or in combination with hPTH) significantly increased the area of insulin immunoreactive beta-cells in diabetic rats; however, hPTH treatment alone only led to a slightly increase in the insulin-immunoreactivity. These results suggest that NS might be used in a similar manner to insulin as a safe and effective therapy for diabetes and might be useful in the treatment of diabetic osteopenia.

  2. [The replacement therapy of rPTH(1-84) in established rat model of hypothyroidism].

    Science.gov (United States)

    Ding, Zhiwei; Li, Tiancheng; Liu, Yuhe; Xiao, Shuifang

    2015-12-01

    To investigate the replacement therapy of rPTH(1-84) (recombinant human parathyroid hormone (1-84)) to hypothyroidism in established rat model. Rat model of hypothyroidism was established by resecting parathyroids. A total of 30 rats with removal of parathyroids were divided into 6 groups randomly, 5 in each group, and applied respectively with saline injection (negative control group), calcitriol treatment (positive control group) and quadripartite PTH administration with dose of 20, 40, 80 and 160 µg/kg (experimental groups). Saline and rPTH(1-84) were injected subcutaneously daily. Calcitriol was gavaged once a day. Sham-operation was conducted in 5 rats of negative control group. To verify the authenticity of the rat model with hypothyroidism, the serum was insolated centrifugally from rat blood that was obtained from angular vein at specific time to measure calcium and phosphorus concentration. Urine in 12 hours was collected by metabolic cages and the calcium concentration was measured. After 10-week drug treatment, the experiment was terminated and bilateral femoral bone and L2-5 lumbar vertebra were removed from rats. Bone mineral density (BMD)of bilateral femoral bone and lumbar vertebra was analyzed by dual X-ray absorptiometry (DXA). The concentration of bone alkaline phosphatase (BALP) in serum was determined by radioimmunoassay. The rat model with hypothyroidism was obtained by excising parathyroid gland and was verified by monitoring calcium and phosphorus concentration subsequently. Administration of rPTH(1-84) in the dose of 80 or 160 µg/kg made serum calcium and phosphorus back to normal levels, with no significant difference between the doses (P>0.05). The BMD in each group of rats with rPTH(1-84) administration was increased significantly (P0.05). Calcium and phosphorus return to normal level by administration of rPTH(1-84) in the dose of 80 µg/kg or 160 µg/kg, with increase in BMD. Calcitriol can return the level of calcium to normal and

  3. Transient Increased Calcium and Calcitriol Requirements After Discontinuation of Human Synthetic Parathyroid Hormone 1-34 (hPTH 1-34) Replacement Therapy in Hypoparathyroidism.

    Science.gov (United States)

    Gafni, Rachel I; Guthrie, Lori C; Kelly, Marilyn H; Brillante, Beth A; Christie, C Michele; Reynolds, James C; Yovetich, Nancy A; James, Robert; Collins, Michael T

    2015-11-01

    Synthetic human PTH 1-34 (hPTH 1-34) replacement therapy in hypoparathyroidism maintains eucalcemia and converts quiescent bone to high-turnover bone. However, the skeletal and metabolic effects of drug discontinuation have not been reported. Nine subjects with hypoparathyroidism received subcutaneous injections of hPTH 1-34 two to three times daily for 19.8 to 61.3 months and then transitioned back to calcium and calcitriol. Biochemistries and bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) were assessed at baseline, while on treatment, and at follow-up 3 to 12 months after drug discontinuation. Two subjects developed hypocalcemia when hPTH 1-34 was abruptly discontinued. Thus, to avoid hypocalcemia, subjects were slowly weaned from hPTH 1-34 over several weeks. When hPTH 1-34 was stopped, subjects were requiring two to three times pretreatment doses of calcitriol and calcium to maintain blood calcium levels. Doses were gradually reduced over many weeks until calcium levels were stable on doses similar to baseline. Bone-specific alkaline phosphatase (BSAP), N-telopeptide (NTX), and osteocalcin (OC) increased significantly with hPTH 1-34; at follow-up, BSAP and NTX had returned to baseline while OC was still slightly elevated. During treatment, BMD was unchanged at the hip and lateral spine but declined at the anterior-posterior (AP) spine, radius, and total body. During weaning, BMD increased, with the hip and lateral spine exceeding pre-hPTH 1-34 values and the whole body returning to baseline. AP spine was increased non-significantly compared to baseline at follow-up. hPTH 1-34 must be gradually weaned in hypoparathyroid patients with high doses of oral medications given to avoid hypocalcemia. The transient increased requirements accompanied by increased BMD after long-term hPTH 1-34 therapy suggest a reversal of the expanded remodeling space favoring bone formation as the skeleton returns to a low-turnover state, reminiscent of the hungry

  4. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis.

    Directory of Open Access Journals (Sweden)

    Lihui Li

    Full Text Available This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1 control group, (2 sham-operated group, (3 OVX (Ovariectomy group, (4 DES-OVX (Diethylstilbestrol-OVX group, and (5 Ex-OVX (Exercise-OVX group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%, total resorption surface (TRS%, trabecular formation surface (TFS%, mineralization rate (MAR, bone cortex mineralization rate (mAR, and osteoid seam width (OSW were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2, interleukin-6 (IL-6, and cyclooxygenase-2 (Cox-2 were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2, calcitonin (CT, osteocalcin (BGP, and parathyroid hormone (PTH were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.

  5. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  6. Pegvisomant-induced serum insulin-like growth factor-I normalization in patients with acromegaly returns elevated markers of bone turnover to normal

    DEFF Research Database (Denmark)

    Parkinson, C; Kassem, M; Heickendorff, Lene

    2003-01-01

    Active acromegaly is associated with increased biochemical markers of bone turnover. Pegvisomant is a GH receptor antagonist that normalizes serum IGF-I in 97% of patients with active acromegaly. We evaluated the effects of pegvisomant-induced serum IGF-I normalization on biochemical markers...... of bone and soft tissue turnover, as well as levels of PTH and vitamin D metabolites, in 16 patients (nine males; median age, 52 yr; range, 28-78 yr) with active acromegaly (serum IGF-I at least 30% above upper limit of an age-related reference range). Serum procollagen III amino-terminal propeptide...... (PIIINP) and type I procollagen amino-terminal propeptide, osteocalcin (OC), bone-related alkaline phosphatase, C-terminal cross-linked telopeptide of type I collagen (CTx), albumin-corrected calcium, intact PTH, 25-hydroxy vitamin D, 1,25-dihydroxy vitamin D [1,25-(OH)(2) vit D], urinary type 1 collagen...

  7. The mode of progression of subperiosteal resorption in the hyperparathyroidism of chronic renal future

    International Nuclear Information System (INIS)

    Meema, H.E.; Oreopoulos, D.G.; Toronto Univ., Ontario

    1983-01-01

    Subperiosteal resorption in finger phalanges is usually thought to be the result of osteoclastic bone resorption on the periosteal surface of bone, progressive centripetally with creation of the serrated appearances and ''lace-like'' patterns in periosteal cortical bone. Our longitudinal microradioscopic observations in patients with secondary hyperparathyroidism of chronic renal failure have revealed evidence of another pathogenetic mechanism: by the enlargement of intracortical juxtaperiosteal resorption spaces, the remaining thin layer of bone is broken down from inside the bone, i.e., a centrifugal rather then centripetal process. (orig.)

  8. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, K.; Sorensen, M.G.; Jensen, V.K.

    2008-01-01

    Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process is ......, including carbonic anhydrase II, the NHEs, and potassium-chloride cotransporters, are all involved in resorption but do not seem to directly be involved in acidification of the lysosomes Udgivelsesdato: 2008/9......Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process...

  9. Treatment with Potassium Bicarbonate Lowers Calcium Excretion and Bone Resorption in Older Men and Women

    Science.gov (United States)

    Dawson-Hughes, Bess; Harris, Susan S.; Palermo, Nancy J.; Castaneda-Sceppa, Carmen; Rasmussen, Helen M.; Dallal, Gerard E.

    2009-01-01

    Context: Bicarbonate has been implicated in bone health in older subjects on acid-producing diets in short-term studies. Objective: The objective of this study was to determine the effects of potassium bicarbonate and its components on changes in bone resorption and calcium excretion over 3 months in older men and women. Design, Participants, and Intervention: In this double-blind, controlled trial, 171 men and women age 50 and older were randomized to receive placebo or 67.5 mmol/d of potassium bicarbonate, sodium bicarbonate, or potassium chloride for 3 months. All subjects received calcium (600 mg of calcium as triphosphate) and 525 IU of vitamin D3 daily. Main Outcome Measures: Twenty-four-hour urinary N-telopeptide and calcium were measured at entry and after 3 months. Changes in these measures were compared across treatment groups in the 162 participants included in the analyses. Results: Bicarbonate affected the study outcomes, whereas potassium did not; the two bicarbonate groups and the two no bicarbonate groups were therefore combined. Subjects taking bicarbonate had significant reductions in urinary N-telopeptide and calcium excretion, when compared with subjects taking no bicarbonate (both before and after adjustment for baseline laboratory value, sex, and changes in urinary sodium and potassium; P = 0.001 for both, adjusted). Potassium supplementation did not significantly affect N-telopeptide or calcium excretion. Conclusions: Bicarbonate, but not potassium, had a favorable effect on bone resorption and calcium excretion. This suggests that increasing the alkali content of the diet may attenuate bone loss in healthy older adults. PMID:18940881

  10. Multicellular tumor spheroid interactions with bone cells and bone

    International Nuclear Information System (INIS)

    Wezeman, F.H.; Guzzino, K.M.; Waxler, B.

    1985-01-01

    In vitro coculture techniques were used to study HSDM1C1 murine fibrosarcoma multicellular tumor spheroid (HSDM1C1-MTS) interactions with mouse calvarial bone cells having osteoblastic characteristics and mouse bone explants. HSDM1C1-MTS attached to confluent bone cell monolayers and their attachment rate was quantified. HSDM1C1-MTS interaction with bone cells was further demonstrated by the release of 3 H-deoxyuridine from prelabeled bone cells during coculture with multicellular tumor spheroids. HSDM1C1-MTS-induced cytotoxicity was mimicked by the addition of 10(-5) M prostaglandin E2 (PGE2) to 3 H-deoxyuridine-labeled bone cells. The effects of low (10(-9) M) and high (10(-5) M) concentrations of PGE2 on bone cell proliferation were also studied. Higher concentrations of PGE2 inhibited bone cell proliferation. HSDM1C1-MTS resorbed living explants in the presence of indomethacin, suggesting that other tumor cell products may also participate in bone resorption. HSDM1C1-MTS caused direct bone resorption as measured by the significantly elevated release of 45 Ca from prelabeled, devitalized calvaria. However, the growth of a confluent bone cell layer on devitalized, 45 Ca-prelabeled calvaria resulted in a significant reduction in the amount of 45 Ca released subsequent to the seeding of HSDM1C1-MTS onto the explants. Bone cells at the bone surface may act as a barrier against invasion and tumor cell-mediated bone resorption. Violation of this cellular barrier is achieved, in part, by tumor cell products

  11. Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing.

    Science.gov (United States)

    Warden, Stuart J; Komatsu, David E; Rydberg, Johanna; Bond, Julie L; Hassett, Sean M

    2009-03-01

    Fracture healing is thought to be naturally optimized; however, recent evidence indicates that it may be manipulated to occur at a faster rate. This has implications for the duration of morbidity associated with bone injuries. Two interventions found to accelerate fracture healing processes are recombinant human parathyroid hormone [1-34] (PTH) and low-intensity pulsed ultrasound (LIPUS). This study aimed to investigate the individual and combined effects of PTH and LIPUS on fracture healing. Bilateral midshaft femur fractures were created in Sprague-Dawley rats, and the animals treated 7 days/week with PTH (10 microg/kg) or a vehicle solution. Each animal also had one fracture treated for 20 min/day with active-LIPUS (spatial-averaged, temporal-averaged intensity [I(SATA)]=100 mW/cm(2)) and the contralateral fracture treated with inactive-LIPUS (placebo). Femurs were harvested 35 days following injury to permit micro-computed tomography, mechanical property and histological assessments of the fracture calluses. There were no interactions between PTH and LIPUS indicating that their effects were additive rather than synergistic. These additive effects were contrasting with LIPUS primarily increasing total callus volume (TV) without influencing bone mineral content (BMC), and PTH having the opposite effect of increasing BMC without influencing TV. As a consequence of the effect of LIPUS on TV but not BMC, it decreased volumetric bone mineral density (vBMD) resulting in a less mature callus. The decreased maturity and persistence of cartilage at the fracture site when harvested offset any beneficial mechanical effects of the increased callus size with LIPUS. In contrast, the effect of PTH on callus BMC but not TV resulted in increased callus vBMD and a more mature callus. This resulted in PTH increasing fracture site mechanical strength and stiffness. These data suggest that PTH may have utility in the treatment of acute bone fractures, whereas LIPUS at an I(SATA) of

  12. Intercellular Communication between Keratinocytes and Fibroblasts Induces Local Osteoclast Differentiation: a Mechanism Underlying Cholesteatoma-Induced Bone Destruction.

    Science.gov (United States)

    Iwamoto, Yoriko; Nishikawa, Keizo; Imai, Ryusuke; Furuya, Masayuki; Uenaka, Maki; Ohta, Yumi; Morihana, Tetsuo; Itoi-Ochi, Saori; Penninger, Josef M; Katayama, Ichiro; Inohara, Hidenori; Ishii, Masaru

    2016-06-01

    Bone homeostasis is maintained by a balance in activity between bone-resorbing osteoclasts and bone-forming osteoblasts. Shifting the balance toward bone resorption causes osteolytic bone diseases such as rheumatoid arthritis and periodontitis. Osteoclast differentiation is regulated by receptor activator of nuclear factor κB ligand (RANKL), which, under some pathological conditions, is produced by T and B lymphocytes and synoviocytes. However, the mechanism underlying bone destruction in other diseases is little understood. Bone destruction caused by cholesteatoma, an epidermal cyst in the middle ear resulting from hyperproliferation of keratinizing squamous epithelium, can lead to lethal complications. In this study, we succeeded in generating a model for cholesteatoma, epidermal cyst-like tissue, which has the potential for inducing osteoclastogenesis in mice. Furthermore, an in vitro coculture system composed of keratinocytes, fibroblasts, and osteoclast precursors was used to demonstrate that keratinocytes stimulate osteoclast differentiation through the induction of RANKL in fibroblasts. Thus, this study demonstrates that intercellular communication between keratinocytes and fibroblasts is involved in the differentiation and function of osteoclasts, which may provide the molecular basis of a new therapeutic strategy for cholesteatoma-induced bone destruction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Parathyroid hormone (PTH) blood test

    Science.gov (United States)

    ... PTH) intact molecule; Intact PTH; Hyperparathyroidism - PTH blood test; Hypoparathyroidism - PTH blood test ... drinking for some period of time before the test. Most often, you will not need to fast ...

  14. Bone-remodeling transcript levels are independent of perching in end-of-lay white leghorn chickens.

    Science.gov (United States)

    Dale, Maurice D; Mortimer, Erin M; Kolli, Santharam; Achramowicz, Erik; Borchert, Glenn; Juliano, Steven A; Halkyard, Scott; Sietz, Nick; Gatto, Craig; Hester, Patricia Y; Rubin, David A

    2015-01-23

    Osteoporosis is a bone disease that commonly results in a 30% incidence of fracture in hens used to produce eggs for human consumption. One of the causes of osteoporosis is the lack of mechanical strain placed on weight-bearing bones. In conventionally-caged hens, there is inadequate space for chickens to exercise and induce mechanical strain on their bones. One approach is to encourage mechanical stress on bones by the addition of perches to conventional cages. Our study focuses on the molecular mechanism of bone remodeling in end-of-lay hens (71 weeks) with access to perches. We examined bone-specific transcripts that are actively involved during development and remodeling. Using real-time quantitative PCR, we examined seven transcripts (COL2A1 (collagen, type II, alpha 1), RANKL (receptor activator of nuclear factor kappa-B ligand), OPG (osteoprotegerin), PTHLH (PTH-like hormone), PTH1R (PTH/PTHLH type-1 receptor), PTH3R (PTH/PTHLH type-3 receptor), and SOX9 (Sry-related high mobility group box)) in phalange, tibia and femur. Our results indicate that the only significant effect was a difference among bones for COL2A1 (femur > phalange). Therefore, we conclude that access to a perch did not alter transcript expression. Furthermore, because hens have been used as a model for human bone metabolism and osteoporosis, the results indicate that bone remodeling due to mechanical loading in chickens may be a product of different pathways than those involved in the mammalian model.

  15. Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae

    Directory of Open Access Journals (Sweden)

    M Krause

    2014-09-01

    Full Text Available Due to their well-established fracture risk reduction, bisphosphonates are the most frequently used therapeutic agent to treat osteoporosis. Bisphosphonates reduce fracture risk by suppressing bone resorption, but the lower bone turnover could have a negative impact on bone quality at the tissue level. Here, we directly assess the structural and mechanical characteristics of cancellous bone from the lumbar vertebrae (L5 in non-treated osteoporotic controls (n = 21, mid-term alendronate-treated osteoporotic patients (n = 6, and long-term alendronate-treated osteoporotic patients (n = 7. The strength and toughness of single trabeculae were evaluated, while the structure was characterised through measurements of microdamage accumulation, mineralisation distribution, and histological indices. The alendronate-treated cases had a reduced eroded surface (ES/BS, p < 0.001 and a higher bone mineralisation in comparison to non-treated controls (p = 0.037, which is indicative of low turnover associated with treatment. However, the amount of microdamage and the mechanical properties were similar among the control and treatment groups. As the tissue mineral density (TMD increased significantly with alendronate treatment compared to non-treated osteoporotic controls, the reduction in resorption cavities could counterbalance the higher TMD allowing the alendronate-treated bone to maintain its mechanical properties and resist microdamage accumulation. A multivariate analysis of the possible predictors supports the theory that multiple factors (e.g., body mass index, TMD, and ES/BS can impact the mechanical properties. Our results suggest that long-term alendronate treatment shows no adverse impact on mechanical cancellous bone characteristics.

  16. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23.

    Science.gov (United States)

    Sapir-Koren, Rony; Livshits, Gregory

    2014-01-01

    Body phosphate homeostasis is regulated by a hormonal counter-balanced intestine-bone-kidney axis. The major systemic hormones involved in this axis are parathyroid hormone (PTH), 1,25-dihydroxyvitamin-D, and fibroblast growth factor-23 (FGF23). FGF23, produced almost exclusively by the osteocytes, is a phosphaturic hormone that plays a major role in regulation of the bone remodeling process. Remodeling composite components, bone mineralization and resorption cycles create a continuous influx-efflux loop of the inorganic phosphate (Pi) through the skeleton. This "bone Pi loop," which is formed, is controlled by local and systemic factors according to phosphate homeostasis demands. Although FGF23 systemic actions in the kidney, and for the production of PTH and 1,25-dihydroxyvitamin-D are well established, its direct involvement in bone metabolism is currently poorly understood. This review presents the latest available evidence suggesting two aspects of FGF23 bone local activity: (a) Regulation of FGF23 production by both local and systemic factors. The suggested local factors include extracellular levels of Pi and pyrophosphate (PPi), (the Pi/PPi ratio), and another osteocyte-derived protein, sclerostin. In addition, 1,25-dihydroxyvitamin-D, synthesized locally by bone cells, may contribute to regulation of FGF23 production. The systemic control is achieved via PTH and 1,25-dihydroxyvitamin-D endocrine functions. (b) FGF23 acts as a local agent, directly affecting bone mineralization. We support the assumption that under balanced physiological conditions, sclerostin, by para- autocrine signaling, upregulates FGF23 production by the osteocyte. FGF23, in turn, acts as a mineralization inhibitor, by stimulating the generation of the major mineralization antagonist-PPi. © 2014 International Union of Biochemistry and Molecular Biology.

  17. Systemic therapy of bone metastases

    International Nuclear Information System (INIS)

    Skripekova, A.

    2012-01-01

    Complications of bone metastases can seriously influence quality of life of the patients including of their independence in activities of daily living. Bisfosfonates are reducing skeletal morbidity in solid tumors and in multiple myeloma by 30 - 50% (1). They are not only used in active antineoplastic therapy in the prevention of skeletal complications by bone metastases but they are also significantly useful in prevention of the decrease of osseous mass by hormonal manipulation. Preclinical and in part clinical data suppose that there is some role of bisfosfonates in prevention of formation of metastases by early cancer. Denosumab is fully humanized antibody against RANKL (receptor activator of nuclear factor κ-B ligand) which is very important in pathogenesis of bone resorption induced by osteoclasts. In this work we discuss about pathological mechanisms of bone resorption in multiple myeloma and solid tumors, we resume data from randomized clinical trials and we focus on the application of anti resorption therapy in clinical practice. (author)

  18. Implant angulation: 2-year retrospective analysis on the influence of dental implant angle insertion on marginal bone resorption in maxillary and mandibular osseous onlay grafts.

    Science.gov (United States)

    Ramaglia, Luca; Toti, Paolo; Sbordone, Carolina; Guidetti, Franco; Martuscelli, Ranieri; Sbordone, Ludovico

    2015-05-01

    The purpose of this study was to determine the existence of correlations between marginal peri-implant linear bone loss and the angulation of implants in maxillary and mandibular augmented areas over the course of a 2-year survey. Dependent variables described the sample of the present retrospective chart review. By using three-dimensional radiographs, input variables, describing the implant angulation (buccal-lingual angle [φ] and mesial-distal angle [θ]) were measured; outcome variables described survival rate and marginal bone resorption (MBR) around dental implants in autogenous grafts (10 maxillae and 14 mandibles). Pairwise comparisons and linear correlation coefficient were computed. The peri-implant MBR in maxillary buccal and palatal areas appeared less intensive in the presence of an increased angulation of an implant towards the palatal side. Minor MBR was recorded around mandibular dental implants positioned at a right angle and slightly angulated towards the mesial. Resorption in buccal areas may be less intensive as the angulation of placed implants increases towards the palatal area in the maxilla, whereas for the mandible, a greater inclination towards the lingual area could be negative. In the mandibular group, when the implant was slightly angulated in the direction of the distal area, bone resorption seemed to be more marked in the buccal area. In the planning of dental implant placement in reconstructed alveolar bone with autograft, the extremely unfavourable resorption at the buccal aspect should be considered; this marginal bone loss seemed to be very sensitive to the angulation of the dental implant.

  19. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB powder for two weeks beginning on postnatal day 21 (PND21 significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5% for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT of tibia, demonstrated that bone mineral density (BMD and content (BMC were dose-dependently increased in BB-fed rats compared to controls (P<0.05. Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption.

  20. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    Science.gov (United States)

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  1. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  2. Nonsurgical management of horizontal root fracture associated external root resorption and internal root resorption

    Directory of Open Access Journals (Sweden)

    Shiraz Pasha

    2016-01-01

    Full Text Available Horizontal root fractures, which frequently affect the upper incisors, usually result from a frontal impact. As a result, combined injuries occur in dental tissues such as the pulp, dentin, cementum, periodontal ligament, and alveolar bone. Internal root canal inflammatory resorption involves a progressive loss of intraradicular dentin without adjunctive deposition of hard tissues adjacent to the resorptive sites. It is frequently associated with chronic pulpal inflammation, and bacteria might be identified from the granulation tissues when the lesion is progressive to the extent that it is identifiable with routine radiographs. With the advancement in technology, it is imperative to use modern diagnostic tools such as cone beam computed tomography and radiovisuography to diagnose and confirm the presence and extent of resorptions and fractures and their exact location. This case report presents a rare case having internal root resorption and horizontal root fracture with external inflammatory root resorption both which were treated successfully following guidelines by International Association of Dental Traumatology by nonsurgical treatment with 1 year follow-up.

  3. Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients.

    Science.gov (United States)

    Tu, Min-Yu; Chen, Hsiao-Ling; Tung, Yu-Tang; Kao, Chao-Chih; Hu, Fu-Chang; Chen, Chuan-Mu

    2015-01-01

    Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg) supplemented with calcium bicarbonate (CaCO3, 1,500 mg) and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD) values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA) at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX) in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC) turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH) increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients. ClinicalTrials.gov NCT02361372.

  4. Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients.

    Directory of Open Access Journals (Sweden)

    Min-Yu Tu

    Full Text Available Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg supplemented with calcium bicarbonate (CaCO3, 1,500 mg and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients.ClinicalTrials.gov NCT02361372.

  5. Bone-Remodeling Transcript Levels Are Independent of Perching in End-of-Lay White Leghorn Chickens

    Directory of Open Access Journals (Sweden)

    Maurice D. Dale

    2015-01-01

    Full Text Available Osteoporosis is a bone disease that commonly results in a 30% incidence of fracture in hens used to produce eggs for human consumption. One of the causes of osteoporosis is the lack of mechanical strain placed on weight-bearing bones. In conventionally-caged hens, there is inadequate space for chickens to exercise and induce mechanical strain on their bones. One approach is to encourage mechanical stress on bones by the addition of perches to conventional cages. Our study focuses on the molecular mechanism of bone remodeling in end-of-lay hens (71 weeks with access to perches. We examined bone-specific transcripts that are actively involved during development and remodeling. Using real-time quantitative PCR, we examined seven transcripts (COL2A1 (collagen, type II, alpha 1, RANKL (receptor activator of nuclear factor kappa-B ligand, OPG (osteoprotegerin, PTHLH (PTH-like hormone, PTH1R (PTH/PTHLH type-1 receptor, PTH3R (PTH/PTHLH type-3 receptor, and SOX9 (Sry-related high mobility group box in phalange, tibia and femur. Our results indicate that the only significant effect was a difference among bones for COL2A1 (femur > phalange. Therefore, we conclude that access to a perch did not alter transcript expression. Furthermore, because hens have been used as a model for human bone metabolism and osteoporosis, the results indicate that bone remodeling due to mechanical loading in chickens may be a product of different pathways than those involved in the mammalian model.

  6. Distribution of genes for parathyroid hormone (PTH)-related peptide, Indian hedgehog, PTH receptor and patched in the process of experimental spondylosis in mice.

    Science.gov (United States)

    Nakase, Takanobu; Ariga, Kenta; Meng, Wenxiang; Iwasaki, Motoki; Tomita, Tetsuya; Myoui, Akira; Yonenobu, Kazuo; Yoshikawa, Hideki

    2002-07-01

    Little is known about the molecular mechanisms underlying the process of spondylosis. The authors determined the extent of genetic localization of major regulators of chondrogenesis such as Indian hedgehog (Ihh) and parathyroid hormone (PTH)-related peptide (PTHrP) and their receptors during the development of spondylosis in their previously established experimental mouse model. Experimental spondylosis was induced in 5-week-old ICR mice. The cervical spines were chronologically harvested, and histological sections were prepared. Messenger (m) RNA for PTHrP, Ihh, PTH receptor (PTHR; a receptor for PTHrP), patched (Ptc; a receptor for Ihh), bone morphogenetic protein (BMP)-6, and collagen type X (COL10; a marker for mature chondrocyte) was localized in the tissue sections by performing in situ hybridization. In the early stage, mRNA for COL10, Ihh, and BMP-6 was absent; however, mRNA for PTHrP, PTHR, and Ptc was detected in the anterior margin of the cervical discs. In the late stage, evidence of COL10 mRNA began to be detected, and transcripts for Ihh, PTHrP, and BMP-6 were localized in hypertrophic chondrocytes adjacent to the bone-forming area in osteophyte. Messenger RNA for Ptc and PTHR continued to localize at this stage. In control mice, expression of these genes was absent. The localization of PTHrP, Ihh, BMP-6, and the receptors PTHR and Ptc demonstrated in the present experimental model indicates the possible involvement of molecular signaling by PTHrP (through the PTHR), Ihh (through the Ptc), and BMP-6 in the regulation of chondrocyte maturation leading to endochondral ossification in spondylosis.

  7. Does simvastatin stimulate bone formation in vivo?

    Directory of Open Access Journals (Sweden)

    Chorev Michael

    2003-04-01

    Full Text Available Abstract Background Statins, potent compounds that inhibit cholesterol synthesis in the liver have been reported to induce bone formation, both in tissue culture and in rats and mice. To re-examine potential anabolic effects of statins on bone formation, we compared the activity of simvastatin (SVS to the known anabolic effects of PTH in an established model of ovariectomized (OVX Swiss-Webster mice. Methods Mice were ovariectomized at 12 weeks of age (T0, remained untreated for 5 weeks to allow development of osteopenia (T5, followed by treatment for 8 weeks (T13. Whole, trabecular and cortical femoral bone was analyzed by micro-computed tomography (micro CT. Liquid chromatography/mass spectrometry (LC/MS was used to detect the presence of SVS and its active metabolite, simvastatin β-hydroxy acid (SVS-OH in the mouse serum. Results Trabecular BV/TV at T13 was 4.2 fold higher in animals treated with PTH (80 micro-g/kg/day compared to the OVX-vehicle treated group (p in vivo study. Conclusions While PTH demonstrated the expected anabolic effect on bone, SVS failed to stimulate bone formation, despite our verification by LC/MS of the active SVS-OH metabolite in mouse serum. While statins have clear effects on bone formation in vitro, the formulation of existing 'liver-targeted' statins requires further refinement for efficacy in vivo.

  8. THE BENEFIT OF SOY BEAN- CHOCOLATE BEVERAGE ON BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS

    OpenAIRE

    Ainun Rani, Nur; Astuti, Nurpudji; Rasyid, Haerani; Bahar, Burhanuddin

    2011-01-01

    THE BENEFIT OF SOY BEAN- CHOCOLATE BEVERAGE ON BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS Nur Ainun Rani1, Nurpudji A. Taslim,1,2 Haerani Rasyid1,2, Burhanuddin Bahar3 Department of Clinical Nutrition Faculty of Medicine 1, Department of Nutrition2 Faculty of Medicine, Faculty of Public Health3, Hasanuddin University, Makassar ABSTRACT Background Soybeans and chocolate contain isoflavones, which is the active substance which is recommended as an hormone replacem...

  9. Feasibility Study of a Standardized Novel Animal Model for Cervical Vertebral Augmentation in Sheep Using a PTH Derivate Bioactive Material

    Directory of Open Access Journals (Sweden)

    Karina Klein

    2014-08-01

    Full Text Available Prophylactic local treatment involving percutaneous vertebral augmentation using bioactive materials is a new treatment strategy in spine surgery in humans for vertebral bodies at risk. Standardized animal models for this procedure are almost non-existent. The purpose of this study was to: (i prove the efficacy of PTH derivate bioactive materials for new bone formation; and (ii create a new, highly standardized cervical vertebral augmentation model in sheep. Three different concentrations of a modified form of parathyroid hormone (PTH covalently bound to a fibrin matrix containing strontium carbonate were used. The same matrix without PTH and shams were used as controls. The bioactive materials were locally injected. Using a ventral surgical approach, a pre-set amount of material was injected under fluoroscopic guidance into the intertrabecular space of three vertebral bodies. Intravital fluorescent dyes were used to demonstrate new bone formation. After an observation period of four months, the animals were sacrificed, and vertebral bodies were processed for µCT, histomorphometry, histology and sequential fluorescence evaluation. Enhanced localized bone activity and new bone formation in the injected area could be determined for all experimental groups in comparison to the matrix alone and sham with the highest values detected for the group with a medium concentration of PTH.

  10. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes.

    Science.gov (United States)

    Gooi, J H; Pompolo, S; Karsdal, M A; Kulkarni, N H; Kalajzic, I; McAhren, S H M; Han, B; Onyia, J E; Ho, P W M; Gillespie, M T; Walsh, N C; Chia, L Y; Quinn, J M W; Martin, T J; Sims, N A

    2010-06-01

    The therapeutic goal of increasing bone mass by co-treatment of parathyroid hormone (PTH) and an osteoclast inhibitor has been complicated by the undefined contribution of osteoclasts to the anabolic activity of PTH. To determine whether active osteoclasts are required at the time of PTH administration, we administered a low dose of the transient osteoclast inhibitor salmon calcitonin (sCT) to young rats receiving an anabolic PTH regimen. Co-administration of sCT significantly blunted the anabolic effect of PTH as measured by peripheral quantitative computer tomography (pQCT) and histomorphometry in the femur and tibia, respectively. To determine gene targets of sCT, we carried out quantitative real time PCR and microarray analysis of metaphyseal samples 1.5, 4 and 6.5h after administration of a single injection of PTH, sCT or PTH+sCT. Known targets of PTH action, IL-6, ephrinB2 and RANKL, were not modified by co-administration with sCT. Surprisingly, at all time points, we noted a significant upregulation of sclerostin mRNA by sCT treatment, as well as down-regulation of two other osteocyte gene products, MEPE and DMP1. Immunohistochemistry confirmed that sCT administration increased the percentage of osteocytes expressing sclerostin, suggesting a mechanism by which sCT reduced the anabolic effect of PTH. Neither mRNA for CT receptor (Calcr) nor labeled CT binding could be detected in sclerostin-enriched cells differentiated from primary calvarial osteoblasts. In contrast, osteocytes freshly isolated from calvariae expressed a high level of Calcr mRNA. Furthermore immunohistochemistry revealed co-localization of CT receptor (CTR) and sclerostin in some osteocytes in calvarial sections. Taken together these data indicate that co-treatment with sCT can blunt the anabolic effect of PTH and this may involve direct stimulation of sclerostin production by osteocytes. These data directly implicate calcitonin as a negative regulator of bone formation through a previously

  11. Effect of interleukin-4 on orthodontic tooth movement and associated root resorption.

    Science.gov (United States)

    Hakami, Zaki; Kitaura, Hideki; Kimura, Keisuke; Ishida, Masahiko; Sugisawa, Haruki; Ida, Hiroto; Jafari, Saeed; Takano-Yamamoto, Teruko

    2015-02-01

    Interleukin-4 (IL-4) is a recognized immunomodulatory cytokine that regulates bone homeostasis. However, the influence of IL-4 on orthodontic tooth movement (OTM) and subsequent root resorption is still unknown. Therefore, the purpose of this study was to investigate the effect of IL-4 on tooth movement and its associated root resorption in a mouse model. The maxillary first molars of four male mice for each experimental group were subjected to mesial force by a nickel titanium coil spring for 12 days. Control mice were not given appliances and injections. Varying doses of IL-4 were injected locally, adjacent to the first molar. Two sets of experiments were designed. The first set was composed of three groups: the control, treatment with phosphate-buffered saline (PBS), or 1.5 µg/day of IL-4. The second set was composed of five groups: the control, treatment with 0 (PBS only), 0.015, 0.15, or 1.5 µg/day of IL-4. The distance of OTM was measured and tartrate-resistant acid phosphatase positive cells along the loaded alveolar bone and root surface were identified. The root resorption associated with OTM was evaluated by a scanning electron microscope. The amount of OTM and the number of osteoclasts were significantly decreased in the IL-4-treated mice. Moreover, IL-4 significantly suppressed force-induced odontoclasts and root resorption. IL-4 inhibits tooth movement and prevents root resorption in the mouse model. These results suggest that IL-4 could be used as a useful adjunct to regulate the extent of OTM and also to control root resorption. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment.

    Science.gov (United States)

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness ( P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness ( P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities.

  13. Inhibition of bone resorption by Tanshinone VI isolated from Salvia miltiorrhiza Bunge

    Directory of Open Access Journals (Sweden)

    V. Nicolin

    2010-05-01

    Full Text Available During the last decade, a more detailed knowledge of molecular mechanisms involved in osteoclastogenesis has driven research efforts in the development and screening of compound libraries of several small molecules that specifically inhibit the pathway involved in the commitment of the osteoclast precursor cells. Natural compounds that suppress osteoclast differentiation may have therapeutic value in treating osteoporosis and other bone erosive diseases such as rheumatoid arthritis or metastasis associated with bone loss. In ongoing investigation into anti-osteoporotic compounds from natural products we have analyzed the effect of Tanshinone VI on osteoclasts differentiation, using a physiologic three-dimensional osteoblast/bone marrow model of cell co-culture. Tanshinone VI is an abietane diterpene extracted from the root of Salvia miltiorrhiza Bunge (Labiatae, a Chinese traditional crude drug, ‘’Tan-Shen’’. Tashinone has been widely used in clinical practice for the prevention of cardiac diseases, arthritis and other inflammation-related disorders based on its pharmacological actions in multiple tissues. Although Tanshinone VI A has been used as a medicinal agent in the treatment of many diseases, its role in osteoclast-related bone diseases remains unknown. We showed previously that Tanshinone VI greatly inhibits osteoclast differentiation and suppresses bone resorption through disruption of the actin ring; subsequently, we intended to examine the precise inhibitory mechanism of Tanshinone VI on osteoclast differentiating factor. This study shows, for the first time, that Tanshinone VI prevents osteoclast differentiation by inhibiting RANKL expression and NFkB induction.

  14. Role of carotenoid β-cryptoxanthin in bone homeostasis

    Directory of Open Access Journals (Sweden)

    Yamaguchi Masayoshi

    2012-04-01

    Full Text Available Abstract Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin, β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC., has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects.

  15. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice.

    Science.gov (United States)

    Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan

    2017-10-15

    The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.

  16. Using Micro-Computed Tomography to Evaluate the Dynamics of Orthodontically Induced Root Resorption Repair in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Xiaolin Xu

    Full Text Available To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force.Forces of 20 g, 50 g or 100 g were delivered to the left maxillary first molars of fifteen 10-week-old rats for 14 days. Each rat was subjected to micro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point.From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, tooth movement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized.The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position.

  17. Comparison of calcium carbonate and aluminium hydroxide as phosphate binders on biochemical bone markers, PTH(1-84), and bone mineral content in dialysis patients

    DEFF Research Database (Denmark)

    Jespersen, B; Jensen, J D; Nielsen, H K

    1991-01-01

    Bone mineral content, estimated by single-photon absorptiometry of the forearm, serum values of intact parathyroid hormone (PTH(1-84], osteocalcin, alkaline phosphatase, 1,25-dihydroxycholecalciferol (1,25(OH)2D3), and aluminium were determined during treatment with calcium carbonate (CaCO3......) or aluminium hydroxide (Al(OH)3) in 11 dialysis patients participating in a randomised cross-over study. Each treatment period lasted 6 months. Serum phosphorus was maintained in the range 1.5-2.0 mmol/l. During Al(OH)3 treatment bone mineral content (BMC) decreased by 11% per half-year (mean), but only by 3...... 0.05), osteocalcin decreased (89% versus 117%, P less than 0.01), alkaline phosphatase decreased (92% versus 116%, P less than 0.05), and aluminium decreased (56% versus 189%, P less than 0.05). 1,25(OH)2D3 remained unchanged in both periods. No increase in soft-tissue calcification was demonstrated...

  18. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    Science.gov (United States)

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  19. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken

    Directory of Open Access Journals (Sweden)

    Pinheiro Pedro LC

    2012-07-01

    Full Text Available Abstract Background The parathyroid hormone (PTH-family consists of a group of structurally related factors that regulate calcium and bone homeostasis and are also involved in development of organs such as the heart, mammary gland and immune system. They interact with specific members of family 2 B1 G-protein coupled receptors (GPCRs, which have been characterised in teleosts and mammals. Two PTH/PTHrP receptors, PTH1R and PTH2R exist in mammals and in teleost fish a further receptor PTH3R has also been identified. Recently in chicken, PTH-family members involved in calcium transport were characterized and specific PTHRs are suggested to exist although they have not yet been isolated or functionally characterized. The aim of this study is to further explore the evolution and function of the vertebrate PTH/PTHrP system through the isolation, phylogenetic analysis and functional characterization of the chicken receptors. Results Two PTHRs were isolated in chicken and sequence comparison and phylogenetic analysis indicate that the chicken receptors correspond to PTH1R and PTH3R, which emerged prior to the teleost/tetrapod divergence since they are present in cartilaginous fish. The vertebrate PTH2R receptor and its ligand TIP39 have been lost from bird genomes. Chicken PTH1R and PTH3R have a divergent and widespread tissue expression and are also evident in very early embryonic stages of development. Receptor stimulation studies using HEK293 cells stably expressing the chicken PTH1R and PTH3R and monitoring cAMP production revealed they are activated by chicken 1–34 N-terminal PTH-family peptides in a dose dependent manner. PTH-L and PTHrP were the most effective peptides in activating PTH1R (EC50 = 7.7 nM and EC50 = 22.7 nM, respectively. In contrast, PTH-L (100 nM produced a small cAMP accumulation on activation of PTH3R but PTHrP and PTH (EC50 = 2.5 nM and EC50 = 22.1 nM, respectively readily activated the receptor. PTHr

  20. Treatment of postmenopausal women with osteoporosis with PTH(1-84) for 36 months: treatment extension study

    NARCIS (Netherlands)

    Zanchetta, J.R.; Bogado, C.E.; Cisari, C.; Aslanidis, S.; Greisen, H.; Fox, J.; Lems, W.F.

    2010-01-01

    Objective: To determine the safety and efficacy of full-length parathyroid hormone, PTH(184), treatment for up to 36 months by evaluating bone mineral density (BMD) changes, bone histomorphometric indices, and clinical fracture incidence in postmenopausal women with osteoporosis. Background: The TOP

  1. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle

    International Nuclear Information System (INIS)

    Perna, A.F.; Smogorzewski, M.; Massry, S.G.

    1988-01-01

    Chronic renal failure (CRF) is associated with impaired long chain fatty acids (LCFA) oxidation by skeletal muscle mitochondria. This is due to reduced activity of carnitine palmitoyl transferase (CPT). These derangements were attributed to the secondary hyperparathyroidism of CRF, since prior parathyroidectomy in CRF rats reversed these abnormalities and PTH administration to normal rats reproduced them. It was proposed that these effects of PTH are mediated by its ionophoric property leading to increased entry of calcium into skeletal muscle. A calcium channel blocker may, therefore, correct these derangements. The present study examined the effects of verapamil on LCFA oxidation, CPT activity by skeletal muscle mitochondria, and 45 Ca uptake by skeletal muscle obtained from CRF rats and normal animals treated with PTH with and without verapamil. Both four days of PTH administration and 21 days of CRF produced significant (P less than 0.01) reduction in LCFA oxidation and CPT activity of skeletal muscle mitochondria, and significant (P less than 0.01) increment in 45 Ca uptake by skeletal muscle. Simultaneous treatment with verapamil corrected all these derangements. Administration of verapamil alone to normal rats did not cause a significant change in any of these parameters. The data are consistent with the proposition that the alterations in LCFA in CRF or after PTH treatment are related to the ionophoric action of the hormone and could be reversed by a calcium channel blocker

  2. In vitro and preclinical assessment of an intranasal spray\\ud formulation of parathyroid hormone PTH 1-34 for the treatment of osteoporosis

    OpenAIRE

    Williams, Allan J.; Jordan, Faron; King, Gareth; Lewis, Andrew L.; Illum, Lisbeth; Masud, Tahir; Perkins, Alan C.; Pearson, Richard G.

    2017-01-01

    Osteoporosis treatment with PTH 1-34 injections significantly reduces the incidence of bone fracture. Potential further reductions in fracture rate should be observed through nasal spray delivery to address the poor compliance associated with patient dislike of repeated PTH 1-34 subcutaneous injections. In vitro human osteoblast-like Saos-2 cell intracellular cAMP levels were used to define PTH 1-34 nasal spray formulation bioactivity. The chemically synthesised PTH 1-34 had an EC50 of 0.76nM...

  3. The role of the BH3-only protein Noxa in bone homeostasis.

    Science.gov (United States)

    Idrus, Erik; Nakashima, Tomoki; Wang, Ling; Hayashi, Mikihito; Okamoto, Kazuo; Kodama, Tatsuhiko; Tanaka, Nobuyuki; Taniguchi, Tadatsugu; Takayanagi, Hiroshi

    2011-07-08

    Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    Science.gov (United States)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  5. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Figeac, Florence; Andersen, Ditte C.; Nipper Nielsen, Casper A.

    2018-01-01

    /TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss....... resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E...

  6. Parathyroid hormone and bone healing

    DEFF Research Database (Denmark)

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-01-01

    , no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial...

  7. Effects of increasing age, dosage, and duration of PTH treatment on BMD increase--a meta-analysis

    DEFF Research Database (Denmark)

    Schwarz, Peter; Jorgensen, Niklas Rye; Mosekilde, Leif

    2012-01-01

    were included. By metaregression analysis, we found that the increase in spine BMD (Z-score) after PTH treatment was blunted by increasing age (R (2) = 0.27; 2p = 0.01, slope -0.023 Z-scores per year, 11 studies). By increasing PTH dosage (μg/d), spine BMD increased significantly (2p = 0.......002) with a slope of +0.011 Z-scores/μg/d of teriparatide. Furthermore, the duration of treatment was positively correlated to spine BMD (P ......We studied the effects of increasing age, dosage, and duration of parathyroid hormone (PTH) treatment on changes in bone mineral density (BMD). Randomized placebo controlled trials on PTH treatment in men or women were retrieved from PubMed (1951 to present), Web of Science (1945 to present...

  8. Effects of add on PTH(1-84) substitution therapy in hypoparathyroidism: results from a double-blind randomised controlled study

    DEFF Research Database (Denmark)

    Sikjær, Tanja Tvistholm; Rejnmark, Lars; Mosekilde, Leif

    -phosphate levels within the physiological range. Compared with placebo, participants randomised to PTH (1-84) reduced their daily dose of calcium supplements by 68 % (pvitamin D dose by 53% (pneed of calcium supplements...... and 7 were not in need of active vitamin D. With the actual add on therapy there were no change in renal calcium excretion in response to treatment. Compared with placebo, bone mineral density (BMD) decreased significantly at the hip (-1.59 ± 0.57%), lumbar spine (-1.76 ± 1.03%) and whole body (-1...... bone packets. In conclusion, PTH substitution therapy is capable of maintaining normal p-calcium levels with a significantly reduced need for calcium supplements and active vitamin D. In contrast to the effect of PTH(1-84) treatment in patients with osteoporosis, causing an increase in BMD...

  9. Correlation of Vitamin D status and orthodontic-induced external apical root resorption.

    Science.gov (United States)

    Tehranchi, Azita; Sadighnia, Azin; Younessian, Farnaz; Abdi, Amir H; Shirvani, Armin

    2017-01-01

    Adequate Vitamin D is essential for dental and skeletal health in children and adult. The purpose of this study was to assess the correlation of serum Vitamin D level with external-induced apical root resorption (EARR) following fixed orthodontic treatment. In this cross-sectional study, the prevalence of Vitamin D deficiency (defined by25-hydroxyvitamin-D) was determined in 34 patients (23.5% male; age range 12-23 years; mean age 16.63 ± 2.84) treated with fixed orthodontic treatment. Root resorption of four maxillary incisors was measured using before and after periapical radiographs (136 measured teeth) by means of a design-to-purpose software to optimize data collection. Teeth with a maximum percentage of root resorption (%EARR) were indicated as representative root resorption for each patient. A multiple linear regression model and Pearson correlation coefficient were used to assess the association of Vitamin D status and observed EARR. P 0.05). This study suggests that Vitamin D level is not among the clinical variables that are potential contributors for EARR. The prevalence of Vitamin D deficiency does not differ in patients with higher EARR. These data suggest the possibility that Vitamin D insufficiency may not contribute to the development of more apical root resorption although this remains to be confirmed by further longitudinal cohort studies.

  10. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  11. New anabolic therapies in osteoporosis.

    Science.gov (United States)

    Rubin, Mishaela R; Bilezikian, John P

    2003-03-01

    Anabolic agents represent an important new advance in the therapy of osteoporosis. Their potential might be substantially greater than the anti-resorptives. Because the anti-resorptives and anabolic agents work by completely distinct mechanisms of action, it is possible that the combination of agents could be significantly more potent than either agent alone. Recent evidence suggests that a plateau in BMD might occur after prolonged exposure to PTH. Anti-resorptive therapy during or after anabolic therapy might prevent this skeletal adaptation. Protocols to consider anabolic agents as intermittent recycling therapy would be of interest. Of all the anabolics, PTH is the most promising. However, there are unanswered questions about PTH. More studies are needed to document an anabolic effect on cortical bone. More large-scale studies are needed to further determine the reduction in nonvertebral fractures with PTH, especially at the hip. In the future, PTH is likely to be modified for easier and more targeted delivery. Oral or transdermal delivery systems may become available. Recently, Gowen et al have described an oral calcilytic molecule that antagonizes the parathyroid cell calcium receptor, thus stimulating the endogenous release of PTH. This approach could represent a novel endogenous delivery system for intermittent PTH administration. Rising expectations that anabolic therapies for osteoporosis will soon play a major role in treating this disease are likely to fuel further studies and the development of even more novel approaches to therapy.

  12. OPG/RANKL/RANK cytokine system in renal osteodystrophy

    Directory of Open Access Journals (Sweden)

    Ivica Avberšek-Lužnik

    2007-11-01

    Full Text Available Background: Renal osteodystrophy is one of the most common complications affecting patients with endstage renal disease treated with hemodialysis (HD. The action of calciotropic hormones in renal osteodystrophy is regulated by the OPG/RANKL/RANK system. Its function is modulated by interleukines, calcitriol and parathyroid hormone (PTH.The aim of our study was to confirm that this system is involved in the pathogenesis of renal osteodystrophy and supports the mechanism of PTH action on bone.Methods: 106 HD patients (mean age 60 years and 50 healthy volunteers (mean age 64 years were enrolled in the study. In serum samples of patients and controls we determined concentrations of OPG, RANKL, tartarat resistant acid phosphatase 5b (TRAP 5b, serum Cterminal telopeptide cross-links of type I collagen (CTx, bone specific alkaline phosphatase (BALP, osteocalcin (OC and parathyroid hormone (PTH. We compared serum measurements of HD patients and controls and assessed the correlation of OPG and RANKL with bone markers. The most frequent OPG promotor gene polymorphisms were also determined. SPSS 12.1 for Windows was used for statistical analysis.Results: Median OPG concentrations were approximately three times higher in HD patients (0.804 µg/l than in healthy volunteers (0.272 µg/l. Mean serum RANKL concentrations were 1.66- fold higher in HD patients (1.36 pmol/l than in controls (0.82 pmol/l. Serum RANKL levels significantly differed between patients with and without calcitriol therapy (p = 0.001. After dividing HD patients into tertiles according to PTH, we observed significantly higher OPG values in the lower and RANKL in the upper tertile (p < 0.001. OPG did not correlate with bone resorption markers. Only weak correlation of bone formation markers with osteocalcin was noted. In contrast to OPG, RANKL correlated well with PTH, OC and CTX. OPG promoter gene polymorphisms (149 T → C, 163 A → G, 950 T → C do not influence OPG expression and

  13. Consequences of a plant-based diet with low dairy consumption on intake of bone-relevant nutrients.

    Science.gov (United States)

    Merrill, Ray M; Aldana, Steven G

    2009-05-01

    This study examines the extent to which a plant-based dietary intervention that discourages consumption of dairy products and meat influences bone-relevant nutrients. A randomized controlled study design was used to evaluate the Coronary Health Improvement Project. The Project is a heart disease prevention intervention administered in an intensive 40-hour educational course delivered over a 4-week period. Participants were evaluated at baseline, 6 weeks, and 6 months. After 6 weeks, participants in the intervention group compared with the control group experienced significant increases in magnesium and daily intake of fruit, vegetables, and grains but significant decreases in dairy servings per day and calcium and vitamin D from food. After 6 months, those in the intervention group showed significant increases in daily intake of fruit, vegetables, and grains and significant decreases in dairy servings per day, daily meat consumption, and protein, phosphorous, calcium, total calcium, and vitamin D from food. Serum calcium levels are the primary determinant of parathyroid hormone (PTH) release, and within 6 weeks, the intervention group's PTH levels were elevated from baseline and significantly different from the control group's PTH levels. At 6 months, urinary type I collagen N-telopeptide (NTx) levels were significantly greater in the intervention group compared with the control group. The Coronary Health Improvement Project increases the intake of important food items but decreases calcium and vitamin D consumption. There is also some evidence of an increase in NTx biomarkers, consistent with increased bone resorption.

  14. Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture.

    Science.gov (United States)

    Sanz-Salvador, Lucía; García-Pérez, Miguel Ángel; Tarín, Juan J; Cano, Antonio

    2015-02-01

    Changes in bone density and bone markers suggest that pregnancy is associated with deterioration of bone mass in the mother. The metabolism of calcium resets to allow for the needs imposed by the building of the fetal skeleton. The fetus contributes to the process through the output of regulators from the placenta. Understanding of the whole process is limited, but some changes are unambiguous. There is an increase in the circulating levels of vitamin D, but its functional impact is unclear. Fetal parathyroid hormone (PTH) and PTH-related peptide (PTHrp) play an indirect role through support of a calcium gradient that creates hypercalcemia in the fetus. Placental GH, which increases up to the end of pregnancy, may exert some anabolic effects, either directly or through the regulation of the IGF1 production. Other key regulators of bone metabolism, such as estrogens or prolactin, are elevated during pregnancy, but their role is uncertain. An increase in the ratio of receptor activator of nuclear factor kappa B ligand (RANKL) to osteoprotegerin (OPG) acts as an additional pro-resorbing factor in bone. The increase in bone resorption may lead to osteoporosis and fragility fracture, which have been diagnosed, although rarely. However, the condition is transitory as long-term studies do not link the number of pregnancies with osteoporosis. Prevention is limited by the lack of identifiable risk factors. When fractures are diagnosed, rest, analgesics, or, when indicated, orthopedic intervention have demonstrated efficacy. Systemic treatment with anti-osteoporotic drugs is effective, but the potential harm to the fetus imposes caution in their use. © 2015 European Society of Endocrinology.

  15. Establishment of reference values in a healthy population and interpretation of serum PTH concentrations in hemodialyzed patients according to the KDIGO Guidelines using the Lumipulse® G whole PTH (3rd generation) assay.

    Science.gov (United States)

    Cavalier, Etienne; Salsé, Margot; Dupuy, Anne-Marie; Bargnoux, Anne-Sophie; Watar, Florence; Souberbielle, Jean-Claude; Delanaye, Pierre; Cristol, Jean-Paul

    2018-04-01

    3rd generation PTH assays only detect the bioactive 1-84 fragment. Since standardization is still lacking, each new PTH assay requires to establish reference values and to assess the impact in the medical care of the mineral and bone disorders in hemodialyzed patients. Using Fujirebio Lumipulse G wPTH assay, serum PTH levels were measured in a population of 439 healthy subjects from France and Belgium PTH levels were also determined in 119 hemodialyzed patients. These patients were classified according to the KDIGO recommendation. Reference range was found to be 6.5 (90%CI: 6.0-7.0) - 41.8 (90% CI: 38.1-43.7). In hemodialysis patients, Passing-Bablock regression between 3rd generation PTH from Fujirebio and DiaSorin was DiaSorin = 1.01 xFujirebio-2.4 with a slope not different from 1.0(95%CI: 0.96-1.04) and a non-significant intercept, ranging from -6.0 to 0.1. Hemodialysis patients with a PTH concentration below 2-fold the Upper Limit of Normality (ULN), within the KDIGO range and upper 9-fold upper limit were respectively 33.6%, 54.6%, 11.8% (Fujirebio Lumipulse) and 36.1%, 51.3% and 12.6% (Diasorin Liaison). We determined a reference range with the 3rd generation PTH assay from Fujirebio. In a hemodialysis population, 3rd generation assays from Fujirebio and DiaSorin provide similar results. To the best of our knowledge, this is the first time that we can show similar PTH results obtained by 2 different 3rd generation PTH assays in healthy subjects and hemodialyzed patients without mathematically processing them. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. ROL' POLOVYKh GORMONOV V REGULYaTsII KOSTNOGO OBMENA i mineral'noy plotnostikostnoy tkani u muzhchin v pozdnie sroki posle allotransplantatsii trupnoy pochki

    Directory of Open Access Journals (Sweden)

    I A PRONChENKO

    2006-08-01

    Full Text Available Lumbal spine and hip bone mineral density (BMD, bone turnover markers [bone alkaline phosphatase (bALP, osteocalcin (OC, aminoterminal procollagen I propeptide, bone acid phosphatase (bACP, ß-crosslaps (CTX], sex hormones [testosterone, estradiol (E2, sex hormone-binding globulin (SHBG, free androgen index (FAI, free estrogen index (FEI], parathyroid hormone (PTH, osteoprotegerin (OPG and insulin-like growth factor-1 (IGF-1] were determined in 39 men in age 42±10 years (33 with well renal function and 6 - with renal failure (RF 44±26 months following KT receiving triple immunosuppressive therapy (CysA, prednisolone and azathioprine. Increased CTX, bACP, OC and decreased bALP so as BMD were associated in men following KT with low testosterone, SHBG and IGF-1 and high E2, OPG and PTH. There was more degree of bone turnover disturbances, decreased BMD, PTH hypersecretion and low FAI in RF. There were significant positive relationships between serum testosterone and E2, FEI and FAI, bALP and E2, bALP and FEI, femur BMD and FAI, femur BMD and FEI, OPG and E2, IGF-1 and PTH. There were significant inverse correlations between serum CTX and FAI, CTX and FEI, hip (spine BMD and SHBG, hip (spine BMD and PTH so as between PTH and FAI, PTH and FEI. So bone turnover disturbances, hip BMD losses and PTH hypersecretion in men at late time following KT associated with sex hormone deficiency. Predictor of high bone turnover and as vertebral as femur bone losses after KT besides PTH hypersecretion was serum SHBG. Decreased IGF-1 was the reason of bone forming suppression and possibly was following cyclosporine hepatotoxicity. OPG increasing was associated partly with high estradiol and was compensatory to attenuation of bone resorption and bone losses.

  17. Influence of Secondary Hyperparathyroidism Induced by Low Dietary Calcium, Vitamin D Deficiency, and Renal Failure on Circulating Rat PTH Molecular Forms.

    Science.gov (United States)

    D'Amour, Pierre; Rousseau, Louise; Hornyak, Stephen; Yang, Zan; Cantor, Tom

    2011-01-01

    Rats(r) with secondary hyperparathyroidism were studied to define the relationship between vitamin D metabolites and rPTH levels measured by 3 different rat ELISAs. Controls and renal failure (RF) rats were on a normal diet, while 2 groups on a low-calcium (-Ca) or a vitamin D-deficient (-D) diet. RF was induced surgically. Mild RF rats had normal calcium and 25(OH)D but reduced 1,25(OH)(2)D levels (P < .001) with a 2.5-fold increased in rPTH (P < .001). Severe RF rats and those on a -Ca or -D diet had reduced calcium (P < .01) and 25(OH)D levels (P < .05), with rPTH increased by 2 (-Ca diet; P < .05), 4 (-D diet; P < .001), and 20-folds (RF; P < .001) while 1,25(OH)(2)D was high (-Ca diet: P < .001) or low (-D diet, RF: P < .001). 25(OH)D and 1,25(OH)(2)D were positively and negatively related on the -Ca and -D diets, respectively. rPTH molecular forms behaved as expected in RF and on -Ca diet, but not on -D diet with more C-rPTH fragments when less were expected. This may be related to the short-time course of this study compared to prior studies.

  18. 15-deoxy-δ12,14-prostaglandin j2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss.

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    Full Text Available Breast cancer is the major cause of cancer death in women worldwide. The most common site of metastasis is bone. Bone metastases obstruct the normal bone remodeling process and aberrantly enhance osteoclast-mediated bone resorption, which results in osteolytic lesions. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2 is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ that has anti-inflammatory and antitumor activity at micromolar concentrations through PPARγ-dependent and/or PPARγ-independent pathways. We investigated the inhibitory activity of 15d-PGJ2 on the bone loss that is associated with breast cancer bone metastasis and estrogen deficiency caused by cancer treatment. 15d-PGJ2 dose-dependently inhibited viability, migration, invasion, and parathyroid hormone-related protein (PTHrP production in MDA-MB-231 breast cancer cells. 15d-PGJ2 suppressed receptor activator of nuclear factor kappa-B ligand (RANKL mRNA levels and normalized osteoprotegerin (OPG mRNA levels in hFOB1.19 osteoblastic cells treated with culture medium from MDA-MB-231 cells or PTHrP, which decreased the RANKL/OPG ratio. 15d-PGJ2 blocked RANKL-induced osteoclastogenesis and inhibited the formation of resorption pits by decreasing the activities of cathepsin K and matrix metalloproteinases, which are secreted by mature osteoclasts. 15d-PGJ2 exerted its effects on breast cancer and bone cells via PPARγ-independent pathways. In Balb/c nu/nu mice that received an intracardiac injection of MDA-MB-231 cells, subcutaneously injected 15d-PGJ2 substantially decreased metastatic progression, cancer cell-mediated bone destruction in femora, tibiae, and mandibles, and serum PTHrP levels. 15d-PGJ2 prevented the destruction of femoral trabecular structures in estrogen-deprived ICR mice as measured by bone morphometric parameters and serum biochemical data. Therefore, 15d-PGJ2 may be beneficial for the prevention and treatment of breast cancer

  19. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    2015-01-01

    Full Text Available Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines and systemic (e.g., calcitonin and estrogens factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  20. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    Science.gov (United States)

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  1. Calcium-41 as a long-term biological tracer for bone resorption

    Science.gov (United States)

    Elmore, David; Bhattacharyya, Maryka H.; Sacco-Gibson, Nancy; Peterson, David P.

    1990-12-01

    The use of 41Ca (half-life 1 × 10 5 yr) as a tracer for studying calcium metabolism in living systems is compared to the shorter-lived radionuclides 45Ca (165 d) and 47Ca (45 d) and the stable isotopes 42Ca and 44Ca. The feasibility of using accelerator mass spectrometry (AMS) measurements of 41Ca for studying multi-year calcium resorption in humans was tested as part of a companion study that used 45Ca to measure the effects of dietary cadmium on calcium metabolism in dogs. It was shown that Ca resorbed from prelabeled bones correlates well with 45Ca for a period of 28 weeks. The advantage of 41Ca is that, even with a negligible radiation dose, it can be measured by AMS long after the 45Ca becomes unmeasurable.

  2. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    Science.gov (United States)

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  3. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken

    Directory of Open Access Journals (Sweden)

    Power Deborah M

    2010-12-01

    Full Text Available Abstract Background Parathyroid hormone (PTH and PTH-related peptide (PTHrP belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34 and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken. Results The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34 region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors. Conclusions The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2, PTH (2 and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L, the exception is placental mammals which

  4. Consumption of vitamin D-and calcium-fortified soft white cheese lowers the biochemical marker of bone resorption TRAP 5b in postmenopausal women at moderate risk of osteoporosis fracture.

    Science.gov (United States)

    Bonjour, Jean-Philippe; Benoit, Valérie; Rousseau, Brigitte; Souberbielle, Jean-Claude

    2012-04-01

    The prevention of increased bone remodeling in postmenopausal women at low 10-y risk of osteoporotic fractures essentially relies on reinforcement of environmental factors known to positively influence bone health, among which nutrition plays an important role. In institutionalized women in their mid-eighties, we previously found that consumption of fortified soft plain cheese increased vitamin D, calcium, and protein intakes, reduced bone resorption biochemical markers, particularly the serum bone specific acid phosphatase tartrate resistant acid phosphatase, isoform 5b (TRAP 5b) that reflects osteoclast activity, and stimulated the serum bone anabolic factor insulin-like growth factor-I (IGF-I). Whether these effects occur in much younger women was tested in a prospective control study. Seventy-one healthy postmenopausal women aged 56.6 ± 3.9 y (mean ± SD) with low spontaneous supply of both Ca and vitamin D were randomized to consume daily (treated, n = 36) or not (controls, n = 35) two servings (2 × 100 g) of skimmed-milk, soft plain cheese for 6 wk. The vitamin D and Ca-fortified dairy product provided daily: 661 kJ, 2.5 μg vitamin D, 400 mg calcium, and 13.8 g protein. At the end of the intervention, the decrease in TRAP 5b and the increase in IGF-I were greater in the treated than in the control group (P women, consumption by healthy postmenopausal women of a vitamin D and calcium-fortified dairy product that also increases the protein intake, reduces the serum concentration of the bone resorption biomarker TRAP 5b. This response, combined with the increase in serum IGF-I, is compatible with a nutrition-induced reduction in postmenopausal bone loss rate.

  5. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  6. [Bone Cell Biology Assessed by Microscopic Approach. Bone histomorphometry of remodeling, modeling and minimodeling].

    Science.gov (United States)

    Yamamoto, Noriaki; Shimakura, Taketoshi; Takahashi, Hideaki

    2015-10-01

    Bone histomorphometry is defined as a quantitative evaluation of bone remodeling. In bone remodeling, bone resorption and bone formation are coupled with scalloped cement lines. Another mechanism of bone formation is minimodeling which bone formation and resorption are independent. The finding of minimodeling appeared in special condition with metabolic bone disease or anabolic agents. We need further study for minimodeling feature and mechanism.

  7. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  8. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    Science.gov (United States)

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation

    DEFF Research Database (Denmark)

    Thudium, Christian S; Moscatelli, Ilana; Flores, Carmen

    2014-01-01

    that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult......Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating...... osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone...

  10. The effect of mechanical vibration on orthodontically induced root resorption.

    Science.gov (United States)

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Kalajzic, Zana; Nanda, Ravindra

    2016-09-01

    To investigate the effect of low-frequency mechanical vibration (LFMV) on orthodontically induced root resorption. Forty male CD1, 12-week-old mice were used for the study. The mice were randomly divided into five groups: group 1 (baseline)-no spring and no mechanical vibration, group 2-orthodontic spring but no vibration, group 3-orthodontic spring and 5 Hz of vibration applied to the maxillary first molar, group 4-orthodontic spring and 10 Hz of vibration applied to maxillary first molar, and group 5-orthodontic spring and 20 Hz of vibration applied to maxillary first molar. In the different experimental groups, the first molar was moved mesially for 2 weeks using a nickel-titanium coil spring delivering 10 g of force. LFMVs were applied at 5 Hz, 10 Hz, and 20 Hz. Microfocus X-ray computed tomography imaging was used to analyze root resorption. Additionally, to understand the mechanism, we applied LFMV to MC3T3 cells, and gene expression analyses were done for receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). Orthodontic tooth movement leads to decreased root volume (increased root resorption craters). Our in vivo experiments showed a trend toward increase in root volume with different frequencies of mechanical vibration. In vitro gene expression analyses showed that with 20 Hz of mechanical vibration, there was a significant decrease in RANKL and a significant increase in OPG expression. There was a trend toward decreased root resorption with different LFMVs (5 Hz, 10 Hz, and 20 Hz); however, it was not more statistically significant than the orthodontic-spring-only group.

  11. The role of active ingredients nanopowder Stichopus hermanii gel to bone resorption in tension area of orthodontic tooth movement

    Directory of Open Access Journals (Sweden)

    Noengki Prameswari

    2017-12-01

    Full Text Available Background: Orthodontic tooth movement is a continual and balanced process between bone deposition and bone resorption in pressure and tension sites. Stichopus hermanii is one of the best fishery commodities in Indonesia. It is natural and contains various active ingredients such as hyaluronic acid, chondroitin sulphate, cell growth factor, eicosa pentaenoic acid (EPA docosa hexaenoic acid (DHA and flavonoid that potentially play a role in orthodontic tooth movement. Purpose: The aim of this study was to investigate the active ingredients of nanopowder Stichopus hermanii promoting bone resorption in tension area orthodontic tooth movement. Methods: A quantitative test for active ingredients of stichopus hermanii was conducted. Thirty two male Cavia cobaya were divisibled became four groups. K (– groups as a negative control group (without treatment, K (+ groups as a positive control group which were provided with a separator rubber for orthodontic tooth movement, and P1, P2 groups, which were treated with 3% and 3.5% stichopus hermanii for orthodontic tooth movement. After treatment the cavia cobaya were sacrificed. TRAP-6 expression as a osteoclast marker was examined by means of an immunohistochemistry method. Results: A one-way Anova test confirmed that TRAP-6 expression was significantly increased with p = 0.00 (p≤0,05 in P2 compared to K (+. P2 to K (–, P2 to P1 and P1 to K (+ had no significant differences Conclusion: Nanopowder Stichopus hermanii 3.5% has an active ingredient that could increase osteoclast activity to resorb periodontal ligament and alveolar bone in tension areas of orthodontic tooth movement.

  12. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Lotfi, Ali; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa; Bargrizan, Majid

    2016-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group (CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS) and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (Proot resorption by providing more oxygen and angiogenesis. PMID:27551674

  13. Secondary Hyperparathyroidism and Bone Turnover in Elderly with Bone Loss - Original Investigation

    Directory of Open Access Journals (Sweden)

    Nurdan Peker

    2006-12-01

    Full Text Available Bone loss is common in the elderly. Parathyroid hormone (PTH, which regulates serum calcium levels,calcitonin and vitamin D metabolites have various effects on skeletal system. The aim of this study was to assess secondary hyperparathyroidism (HPTH and bone turnover in elderly with bone loss. Fifty-five patients (9 men,46 women older than 65 years with bone loss were included in the study. Bone mineral density was measured by dual energy x-ray absorptiomety (DXA at L1-4 vertebrae and proximal femur regions. Patients with T scores <-1.5 at one of the measurement sites were included in the study. Study subjects were assessed in terms of fracture history, sunbathing and walking activity. Routine biochemical tests, serum osteocalcin (OC and C-telopeptide type 1 collagen (CTX and lateral thoracal and lumbar vertebrae radyographic evaluation was performed. Our results showed that 70.9% of the patients had HPTH. Total femur BMD values and femur neck T scores were significantly lower in HPTH group than PTH normal one (p=0.05, p=0.03. Serum OC and CTX levels were higher in both groups. There was a negative correlation with femur neck BMD and CTX (r=0,321. There was no correlation between serum PTH levels and lumbar vertebrae and proximal femur BMD values. Serum PTH and alkaline phosphatase levels showed a significant positive correlation. In conclusion secondary HPTH and increased bone turnover is common elderly with bone loss. Adequate calcium and vitamin D intake is important the older people. (Osteoporoz Dünyasından 2006; 12: 70-3

  14. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ken-ichiro, E-mail: ken1nai@med.shimane-u.ac.jp; Yamaguchi, Toru, E-mail: yamaguch@med.shimane-u.ac.jp; Kanazawa, Ippei, E-mail: ippei.k@med.shimane-u.ac.jp; Sugimoto, Toshitsugu, E-mail: sugimoto@med.shimane-u.ac.jp

    2015-05-29

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-kB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10{sup −8} M human parathyroid hormone (PTH)-(1–34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. - Highlights: • AGEs are involved in bone quality deterioration in diabetes mellitus (DM). • AGEs increased sclerostin as well as apoptosis, and decreased RANKL in osteocytes. • The effects of AGEs on osteocyte function were antagonized by human PTH-(1–34). • AGEs may cause low bone turnover and cortical porosity in DM. • PTH may be effective in bone quality deterioration by improving osteocyte function.

  15. Predisposing factors to severe external root resorption associated to orthodontic treatment.

    Science.gov (United States)

    Picanço, Gracemia Vasconcelos; de Freitas, Karina Maria Salvatore; Cançado, Rodrigo Hermont; Valarelli, Fabricio Pinelli; Picanço, Paulo Roberto Barroso; Feijão, Camila Pontes

    2013-01-01

    The aim of this study was to evaluate predisposing factors among patients who developed moderate or severe external root resorption (Malmgren's grades 3 and 4), on the maxillary incisors, during fixed orthodontic treatment in the permanent dentition. Ninety-nine patients who underwent orthodontic treatment with fixed edgewise appliances were selected. Patients were divided into two groups: G1 - 50 patients with no root resorption or presenting only apical irregularities (Malmgren's grades 0 and 1) at the end of the treatment, with mean initial age of 16.79 years and mean treatment time of 3.21 years; G2 - 49 patients presenting moderate or severe root resorption (Malmgren's grades 3 and 4) at the end of treatment on the maxillary incisors, with mean initial age of 19.92 years and mean treatment time of 3.98 years. Periapical radiographs and lateral cephalograms were evaluated. Factors that could influence the occurrence of severe root resorption were also recorded. Statistical analysis included chi-square tests, Fisher's exact test and independent t tests. The results demonstrated significant difference between the groups for the variables: Extractions, initial degree of root resorption, root length and crown/root ratio at the beginning, and cortical thickness of the alveolar bone. It can be concluded that: Presence of root resorption before the beginning of treatment, extractions, reduced root length, decreased crown/root ratio and thin alveolar bone represent risk factors for severe root resorption in maxillary incisors during orthodontic treatment.

  16. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    Science.gov (United States)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  17. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    Science.gov (United States)

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Kidney transplantation restored uncoupled bone turnover in end-stage renal disease.

    Science.gov (United States)

    Kawarazaki, Hiroo; Shibagaki, Yugo; Kido, Ryo; Nakajima, Ichiro; Fuchinoue, Shohei; Ando, Katsuyuki; Fujita, Toshiro; Fukagawa, Masafumi; Teraoka, Satoshi; Fukumoto, Seiji

    2012-07-01

    While kidney transplantation (KTx) reverses many disorders associated with end-stage renal disease (ESRD), patients who have received KTx often have chronic kidney disease and bone and mineral disorder (CKD-MBD). However, it is unknown how bone metabolism changes by KTx. Living donor-KTx recipients (n = 34) at Tokyo Women's Medical University were prospectively recruited and the levels of bone-specific alkaline phosphatase (BAP) and serum cross-linked N-telopeptides of Type 1 collagen (NTX) were measured before, 6 and 12 months after transplantation. Before KTx, serum BAP was within the reference range in more than half of patients while NTX was high in most patients. Serum NTX was higher in patients with longer dialysis durations compared to that with shorter durations before KTx. However, there was no difference in serum BAP between these patients. After KTx, BAP increased while NTX decreased along with the decline of PTH. In addition, the numbers of patients who showed high BAP and NTX were comparable after KTx. These results suggest that bone formation is suppressed and uncoupled with bone resorption in patients with ESRD and this uncoupling is restored by KTx. Further studies are necessary to clarify the mechanism of bone uncoupling in patients with ESRD.

  19. Invasive cervical root resorption: Engineering the lost tissue by regeneration

    Directory of Open Access Journals (Sweden)

    Dexton Antony Johns

    2013-01-01

    Full Text Available Invasive cervical resorption (ICR is a localized resorptive process that commences on the surface of the root below the epithelial attachment and the coronal aspect of the supporting alveolar process, namely the zone of the connective tissue attachment′ early diagnosis, elimination of the resorption and restorative management are the keys to a successful outcome. Treatment done was a combined non-surgical root canal therapy, surgical treatment to expose the resorptive defect and the resorptive defect was filled up with reverse sandwich technique and finally the bony defect filled with platelet rich fibrin (PRF, hydroxylapatite and PRF membrane. Significant bone fill was obtained in our case after a 2 year follow-up period. This case report presents a treatment strategy that might improve the healing outcomes for patients with ICR.

  20. Pregnancy-associated plasma protein-A modulates the anabolic effects of parathyroid hormone in mouse bone.

    Science.gov (United States)

    Clifton, Kari B; Conover, Cheryl A

    2015-12-01

    Intermittent parathyroid hormone (PTH) is a potent anabolic therapy for bone, and several studies have implicated local insulin-like growth factor (IGF) signaling in mediating this effect. The IGF system is complex and includes ligands and receptors, as well as IGF binding proteins (IGFBPs) and IGFBP proteases. Pregnancy-associated plasma protein-A (PAPP-A) is a metalloprotease expressed by osteoblasts in vitro that has been shown to enhance local IGF action through cleavage of inhibitory IGFBP-4. This study was set up to test two specific hypotheses: 1) Intermittent PTH treatment increases the expression of IGF-I, IGFBP-4 and PAPP-A in bone in vivo, thereby increasing local IGF activity. 2) In the absence of PAPP-A, local IGF activity and the anabolic effects of PTH on bone are reduced. Wild-type (WT) and PAPP-A knock-out (KO) mice were treated with 80 μg/kg human PTH 1-34 or vehicle by subcutaneous injection five days per week for six weeks. IGF-I, IGFBP-4 and PAPP-A mRNA expression in bone were significantly increased in response to PTH treatment. PTH treatment of WT mice, but not PAPP-A KO mice, significantly increased expression of an IGF-responsive gene. Bone mineral density (BMD), as measured by DEXA, was significantly decreased in femurs of PAPP-A KO compared to WT mice with PTH treatment. Volumetric BMD, as measured by pQCT, was significantly decreased in femoral midshaft (primarily cortical bone), but not metaphysis (primarily trabecular bone), of PAPP-A KO compared to WT mice with PTH treatment. These data suggest that stimulation of PAPP-A expression by intermittent PTH treatment contributes to PTH bone anabolism in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823

  2. Root resorption following periodontally accelerated osteogenic orthodontics

    Directory of Open Access Journals (Sweden)

    Donald J Ferguson

    2016-01-01

    Full Text Available Background: Literature evidence suggests that root resorption, an adverse side effect of orthodontic therapy, may be decreased under conditions of alveolar osteopenia, a condition characterized by diminished bone density and created secondary to alveolar corticotomy (Cort surgery. Purpose: To compare root resorption of the maxillary central incisors following nonextraction orthodontic therapy with and without Cort surgery. Materials and Methods: The sample comprised two groups, with and without Cort and was matched by age and gender: Cort-facilitated nonextraction orthodontics with 27 subjects, 53 central incisors of mean age 24.8 ± 10.2 years, and conventional (Conv nonextraction orthodontics with 27 subjects, 54 incisors with mean age of 19.6 ± 8.8 years. All periapical radiographs were taken with the paralleling technique; total tooth lengths of the right and left central incisors were measured by projecting and enlarging the periapical radiographs exactly 8 times. Results: t-tests revealed a significant decrease in treatment time in the Cort group (6.3 ± 8.0 vs. 17.4 ± 20.2 months, P = 0.000. Pretreatment root lengths were not significantly different (P = 0.11, but Conv had significantly shorter roots at posttreatment when compared with Cort (P = 0.03. Significant root resorption (P < 0.01 occurred in both Cort (0.3 mm and Conv (0.7 mm, but the increment of change was significantly greater in Conv (P < 0.03. The variable SNA increased significantly in the Cort (P = 0.001 group and decreased significantly in the Conv group (P < 0.001. Conclusions: Based on the conditions of this study, it may be concluded that Cort-facilitated nonextraction orthodontic therapy results in less root resorption and enhanced alveolar support within a significantly reduced clinical service delivery time frame. Rapid orthodontic treatment and reduced apical root resorption are probably due to the transient osteopenia induced by the Cort surgery and inspired by

  3. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers.

    Science.gov (United States)

    Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C

    2004-01-01

    To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.

  4. Further studies on the intermediary metabolism of bone in vitro and a monoclonal cell line (MMB-1) derived from bone: effects of parathyroid hormone and acetazolamide

    International Nuclear Information System (INIS)

    Nichols, F.C.

    1981-01-01

    The mechanism/mechanisms by which PTH affects Ca homeostasis between blood and bone have not been clearly established. Most studies of metabolic acid production in bone took place during the late 1950s and early 1960s. Since that time, assay techniques for metabolic acid production have been improved for greater sensitivity, more has been learned as to how PTH mediates its cellular responses, and techniques for cell isolation and culture have dramatically improved. These improvements have made possible new approaches to the study of short term effects of PTH on metabolic acid production in bone. Chapter 1 explores the potential of bone to utilize substrates other than glucose for metabolic energy transfer. Chapter 2 characterizes glucose metabolism in mouse calvaria in vitro and explores effects of PTH, acetazolamide, and C1 13,850 on calvaria oxidative metabolism. Chapter 3 describes PTH effects on glucose metabolism of MMB-1 cells, a monoclonal cell line reported to possess osteoblast-like characteristics

  5. The effect of budesonide on orthodontic induced root resorption.

    Science.gov (United States)

    Aghili, Hosseinagha; Meybodi, Seyed Amir Reza Fatahi; Ardekani, Mohammed Danesh; Bemanianashkezari, Mohammad Hassan; Modaresi, Jalil; Masomi, Yousef; Moghadam, Mahdjoube Goldani

    2015-01-01

    The aim of this study was to evaluate the hypothesis that budesonide increases the susceptibility of teeth to root resorption during the course of orthodontic treatment. A randomized controlled trial design (animal study) was employed. Budesonide was administered in test group for 14 days during which orthodontic force was applied to upper right molar. Afterwards, root resorption was measured on mesio-cervical and disto-apical parts of the mesial root on transverse histological sections. ANOVA and Bonfferoni tests were used. Statistical significance was considered to be P ≤ 0.05. In general, the subgroups in which the force was applied showed significantly greater root resorption. Where force was applied there was no significant difference, whether budesonide was administered or not. While where there was no force, a group who received budesonide showed significantly greater root resorption than the other, unless at the coronal level where the difference was not significant. Within the limitations of this study, it seems budesonide could increase root resorption, but in the presence of orthodontic force this effect is negligible.

  6. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    Science.gov (United States)

    2015-12-01

    E Production of Osteoblasts, and Attenuates the Inflammatory Bone Loss Induced by Lipopolysaccharide. ISRN Pharmacol, 2012. 2012: p. 439860. 17...Kobayashi M, Watanabe K, Yokoyama S, et al. Capsaicin, a TRPV1 Ligand, Suppresses Bone Resorption by Inhibit- ing the Prostaglandin E Production of...example, mechanoreceptors in the skin respond to bending and stretching and can provide information about touch. Pacini’s corpuscle consists of onion like

  7. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption

    International Nuclear Information System (INIS)

    Wachi, Takanori; Shuto, Takahiro; Shinohara, Yoshinori; Matono, Yoshinari; Makihira, Seicho

    2015-01-01

    Although interest in peri-implant mucositis and peri-implantitis has recently been increasing, the mechanisms driving these diseases remain unknown. Here, the effects of titanium ions on the inflammation and bone resorption around an implant were investigated. First, the accumulated amount of Ti ions released into gingival and bone tissues from an implant exposed to sodium fluoride solution was measured using inductively coupled plasma mass spectrometry. Next, the cellular responses in gingival and bone tissues to Ti ions and/or Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) were assessed using a rat model. More Ti ions were detected in the gingival tissues around an implant after treatment with sodium fluoride (pH 4.2) than in its absence, which suggests that the fluoride corroded the implant surface under salivary buffering capacity. The injection of Ti ions (9 ppm) significantly increased the mRNA expression and protein accumulation of chemokine (C–C motif) ligand 2, as well as the ratio of receptor activator of nuclear factor-κB ligand to osteoprotegerin, in rat gingival tissues exposed to P. gingivalis-LPS in a synergistic manner. In addition, the enhanced localization of toll-like receptor 4, which is an LPS receptor, was observed in gingival epithelium loaded with Ti ions (9 ppm). These data suggest that Ti ions may be partly responsible for the infiltration of monocytes and osteoclast differentiation by increasing the sensitivity of gingival epithelial cells to microorganisms in the oral cavity. Therefore, Ti ions may be involved in the deteriorating effects of peri-implant mucositis, which can develop into peri-implantitis accompanied by alveolar bone resorption

  8. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  9. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    Science.gov (United States)

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  10. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  11. Association between root resorption incident to orthodontic treatment and treatment factors.

    Science.gov (United States)

    Motokawa, Masahide; Sasamoto, Tomoko; Kaku, Masato; Kawata, Toshitsugu; Matsuda, Yayoi; Terao, Akiko; Tanne, Kazuo

    2012-06-01

    The purpose of this study was to clarify the prevalence and degree of root resorption induced by orthodontic treatment in association with treatment factors. The files of 243 patients (72 males and 171 females) aged 9-51 years were randomly selected from subjects treated with multi-bracket appliances. The severity of root resorption was classified into five categories on radiographs taken before and after treatment. The subjects were divided into extraction (n = 113 patients, 2805 teeth) and non-extraction (n = 130 patients, 3616 teeth) groups and surgical (n = 56 patients, 1503 teeth) and non-surgical treatment (n = 187 patients, 4918 teeth) groups. These subjects were also divided into two or three groups based on the duration of multiloop edgewise archwire (MEAW) treatment, elastic use, and total treatment time: 0 month (T1; n = 184 patients, 4831 teeth), range 1-6 months (T2; n = 37 patients, 994 teeth), more than 6 months (T3; n = 22 patients, 596 teeth); range 0-6 months (n = 114 patients, 3016 teeth) more than 6 months (n = 129 patients, 3405 teeth); range 1-30 months (n = 148 patients, 3913 teeth) and more than 30 months (n = 95 patients, 2508 teeth). The prevalence of overall and severe root resorption evaluated by the number of subjects and teeth was compared with a chi-square test. A Student's t-test for unpaired data was used to determine any statistically significant differences. The prevalence of severe root resorption based on the number of teeth was significantly higher in the group with extractions (P root resorption (P root resorption was not significantly different between the subjects treated with or without surgery, but there was a significant increase when treatment time was prolonged (P root movement of the upper central incisors and the distance from their root apices to the cortical bone surface (P root resorption. These results indicate that orthodontic treatment with extractions, long-term use of a MEAW appliance and elastics, treatment

  12. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

    Directory of Open Access Journals (Sweden)

    Fabrizio Accardi

    2015-01-01

    Full Text Available Multiple myeloma (MM is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.

  13. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo.

    Science.gov (United States)

    Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S

    2015-05-01

    The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in

  14. The Relationship Between the FRAX Tool and Bone Turnover Markers in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Murat Uludağ

    2013-08-01

    Full Text Available Aim: In this study, we aimed to show the correlation between the ten-year fracture risk, calculated with FRAX and bone turnover markers (BTM in a group of postmenopausal women with osteoporosis. Material and Methods: Twenty-four postmenopausal women diagnosed as osteoporosis were included. Patients were assessed for duration of menopause, secondary diseases, medication, habits of nutrition, previous fracture, and family history of fracture. Weight and height measurements were obtained. Bone mineral density (BMD was measured by dual-energy X-ray absorptiometry (DXA, with a Hologic-QDR 4500 plus device. The ten-year risk for major as well as hip fractures were calculated with the FRAX tool. Serum calcium, phosphorus, magnesium, 25-OH Vitamin D, parathormone (PTH, alkaline phosphatase (ALP, and biochemical markers of bone formation (Osteocalcin, Bone-ALP and resorption ( N-terminal collagen type 1 and C terminal collagen type 1 were determined. Results: The mean age of patients was 64.3±8.6 (46-80 years. The mean ten-year major fracture and hip fracture risks were 19.5±6.2% and 16.0±5.1%, respectively. There was a strong correlation between the duration of menopause and hip fracture risk (r: 0.878, p=0.022. There was also a strong relationship between hip fracture risk and NTX (r: 0.759, p=0.042. Conclusion: Resorption markers of bone turnover are relevant components in determining fracture risk. Rate of bone remodeling is a parameter which is not included in the FRAX tool. Since FRAX is an established tool for assessing the ten-year fracture risk, we assessed and found a correlation between hip fracture risk and NTX. Further studies, in larger groups of patients need to make clear the impact of BTM in this tool. (Turkish Journal of Osteoporosis 2013;19: 38-41

  15. [Bone Cell Biology Assessed by Microscopic Approach. Response to mechanical stress by osteocyte network].

    Science.gov (United States)

    Komori, Toshihisa

    2015-10-01

    Osteocytes were considered to be involved in the response to mechanical stress from their network structure. However, it was difficult to prove the function because of the lack of animal models for a long time. Recently, the function of osteocytes was clarified using various knockout and transgenic mice. Osteocyte death causes bone remodeling, which is a repair process induced by osteocyte necrosis but not by the loss of the function of live osteocytes. The osteocyte network mildly inhibits bone formation and mildly stimulates bone resorption in physiological condition. In unloaded condition, it strongly inhibits bone formation and strongly stimulates bone resorption, at least in part, through the induction of Sost in osteocytes and Rankl in osteoblasts.

  16. Improvement of adynamic bone disease after renal transplantation.

    Science.gov (United States)

    Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E

    2006-01-01

    Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

  17. Management of Minerals and Bone Disorders after Kidney Transplantation

    Science.gov (United States)

    Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Kovesdy, Csaba P.; Mucsi, Istvan; Bunnapradist, Suphamai

    2012-01-01

    Purpose of review Mineral and bone disorders (MBD), inherent complications of moderate and advanced chronic kidney disease (CKD), occur frequently in kidney transplant recipients. However, much confusion exists about clinical application of diagnostic tools and preventive or treatment strategies to correct bone loss or mineral disarrays in transplanted patients. We have reviewed the recent evidence about prevalence and consequences of MBD in kidney transplant recipients and examined diagnostic, preventive and therapeutic options to this end. Recent findings Low turnover bone disease occurs more frequently after kidney transplantation according to bone biopsy studies. The risk of fracture is high, especially in the first several months after kidney transplantation. Alterations in minerals (calcium, phosphorus and magnesium) and biomarkers of bone metabolism (PTH, alkaline phosphatase, vitamin D and FGF-23) are observed with varying impact on post-transplant outcomes. Calcineurin inhibitors are linked to osteoporosis, whereas steroid therapy may lead to both osteoporosis and varying degrees of osteonecrosis. Sirolimus and everolimus might have a bearing on osteoblasts proliferation and differentiation or decreasing osteoclast mediated bone resorption. Selected pharmacologic interventions for treatment of MBD in transplant patients include steroid withdrawal, the use of bisphosphonates, vitamin D derivatives, calcimimetics, teriparatide, calcitonin and denosumab. Summary MBD following kidney transplantation is common and characterized by loss of bone volume and mineralization abnormalities often leading to low turnover bone disease. Although there are no well-established therapeutic approaches for management of MBD in renal transplant recipients, clinicians should continue individualizing therapy as needed. PMID:22614626

  18. Frequency of the external resorptions of root apex

    Directory of Open Access Journals (Sweden)

    Opačić-Galić Vanja

    2004-01-01

    Full Text Available Root resorptions present a significant problem in endodontic therapy of the affected teeth and in dentistry in general. The objective of this study was to analyze, based on epidemiological and statistical research, the frequency of clinical incidence of pathological root resorptions in everyday practice related to localization, type of tooth, age and sex of patients. Radiographie documentation of patients treated from 1997 till 2002 at the Department of Conservative Dentistry and Endodontics, Faculty of Stomatology in Belgrade, was used as baseline for this study. Retroalveolar radiographs of teeth with visible signs of resorptions were singled out from 15654 patients' clinical records used for this study. The external resorptions were shown as radiolucent areas localized on various outer root surfaces, followed by significant or less significant resorption of lamina dura and alveolar bone. Out of all teeth analyzed in this study, 594 (3.79% showed some kind of resorption. The external resorptions were found to be more present in the upper jaw (55.10% and molars (50.30% than in the lower jaw (44.90% and single root teeth (49.70%, but in both cases without significant statistical differences. The most frequent localization of resorptions was root apex (82.44%. In regard to age, the most frequent resorptions were recorded in patients aged between 21 and 30 years (28.40%, and the lowest incidence was found in the youngest population (5.51%. The results also showed that resorptions were more frequent among the female population (59.04% than among the male population (40.96%. Based on these results, we may conclude that the external root resorptions are not a frequent clinical phenomenon. Proper and early diagnostics of such tissue pathology is one of the basic prerequisites for successful endodontic therapy of the affected root.

  19. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  20. Significance of CEA, CA15-3 and biochemical markers of bone turnover in the diagnosis of bone metastasis from breast cancer

    International Nuclear Information System (INIS)

    Fan Guanglei; Wan Renming; Peng Mingya; Luan Yufen; Zhao Jun; Liu Jianwen; Xu Longbao

    2013-01-01

    Objective: To evaluate the significance of tumor markers CEA and CA15-3, and biochemical markers of bone turnover (total procollagen type Ⅰ amino-terminal propeptide (TP Ⅰ NP), β-isomerized carboxyterminal propeptide (β-CTx), ALP and PTH) in the diagnosis of bone metastasis from breast cancer. Methods: A total of 78 patients (all females) with mean age (56.72 ± 10.76) years, who were diagnosed with breast cancer, were included in this study. The patients were divided into two groups based on radionuclide bone imaging: with bone metastasis (n=32) and without bone metastasis (n=46). The serum concentrations of CEA, CA15-3, TP Ⅰ NP, β-CTx, PTH, ALP were measured. Gleason scores were evaluated. The diagnostic value was evaluated by ROC curve.The two groups were compared using two-sample t test. The correlations between bone metastasis and tumor markers, bone metastasis and biochemical markers of bone turnover were analyzed with Pearson correlation and logistic analysis. Results: The serum levels of CEA, CA15-3, TP Ⅰ NP, β-CTx, PTH and ALP were significantly higher in the group with bone metastasis than those in the group without bone metastasis (t: 4.16-7.56, all P<0.05). For the diagnosis of bone metastasis from breast cancer, the AUC of CEA, CA15-3, TP Ⅰ NP, [β-CTx, PTH and ALP was 0.815, 0.887, 0.869, 0.852, 0.844, 0.731, respectively. Using the cut-off values of 4.18 μg/L for CEA, 0.04 U/L for CA15-3, 49.70 μg/L for TP Ⅰ NP, 0.47 pg/L for β-CTx,54.90 ng/L for PTH and 49.90 U/L for ALP, the sensitivities were 56.3% (18/32), 75.0% (24/32), 78.1% (25/32), 81.3% (26/32), 78.1% (25/32), 68.8% (22/32) and the specificities were 80.4% (37/46), 84.8% (39/46), 76.1% (35/46), 78.3% (36/46), 69.6% (32/46), 58.7% (27/46), respectively. CEA, CA15-3, TP Ⅰ NP, β-CTx, PTH, ALP and Gleason score were positively correlated with the presence of bone metastasis (r: 0.267-0.636, all P<0.05). CEA, CA15-3, TP Ⅰ NP, β-CTx, PTH and Gleason score were independent

  1. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    Directory of Open Access Journals (Sweden)

    Paula Cabrini Scheibel

    2014-10-01

    Full Text Available OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI and external apical root resorption (EARR after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1 and after 12 months of treatment (T2. ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157. CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction.

  2. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    Science.gov (United States)

    Scheibel, Paula Cabrini; Ramos, Adilson Luiz; Iwaki, Lilian Cristina Vessoni; Micheletti, Kelly Regina

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI) and external apical root resorption (EARR) after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1) and after 12 months of treatment (T2). ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157). CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction. PMID:25715722

  3. The Effect of Ovariectomy and Orchiectomy on Orthodontic Tooth Movement and Root Resorption in Wistar Rats.

    Science.gov (United States)

    Seifi, Massoud; Ezzati, Baharak; Saedi, Sara; Hedayati, Mehdi

    2015-12-01

    Root resorption (RR) after orthodontic tooth movement (OTM) is known as a multifactorial complication of orthodontic treatments. Hormonal deficiencies and their effect on bone turnover are reported to have influences on the rate of tooth movement and root resorption. This study was designed to evaluate the effect of female and male steroid sex hormones on tooth movement and root resorption. Orthodontic appliances were placed on the right maxillary first molars of 10 ovariectomized female and 10 orchiectomized male Wistar rats as experimental groups and 10 female and 10 male healthy Wistar rats as control groups. NiTi closed-coil springs (9mm, Medium, 011"×.030", Ortho Technology(®); Tampa, Florida) were placed between the right incisors and the first right maxillary molars to induce tipping movement in the first molars with the application of a 60g force. After 21 days, the rats were sacrificed and tooth movement was measured by using a digital caliper (Guanglu, China). Orthodontic induced root resorption (OIRR) was assessed by histomorphometric analysis after hematoxylin and eosin staining of sections of the mesial root. The rate of tooth movement was significantly higher in all female rats, with the root resorption being lower in the experimental group. The rate of tooth movement in experimental male rats was significantly higher than the control group (p= 0.001) and the rate of root resorption was significantly lower in the experimental group (p= 0.001). It seems that alterations in plasma levels of estrogen, progesterone, and testosterone hormones can influence the rate of OTM and RR. The acceleration in tooth movement increased OTM and decreased RR.

  4. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  5. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  6. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Wang

    Full Text Available BACKGROUND: Osteoarthritis (OA is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA would help in our understanding of its process and underlying mechanism. OBJECTIVE: To explore whether injection of monosodium iodoacetate (MIA into the upper compartment of rat TMJ could induce OA-like lesions. METHODS: Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. RESULTS: The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. CONCLUSIONS: Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.

  7. Orthopantomographic study of the alveolar bone level on periodontal disease

    International Nuclear Information System (INIS)

    Lee, Ki Sik; You, Dong Soo

    1972-01-01

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  8. Orthopantomographic study of the alveolar bone level on periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sik; You, Dong Soo [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  9. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  10. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdiet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  11. The estrogen-related receptors (ERRs): potential targets against bone loss.

    Science.gov (United States)

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  12. Pharmacokinetic and Pharmacodynamic Characteristics of Subcutaneously Applied PTH-1-37

    Directory of Open Access Journals (Sweden)

    Wolf-Georg Forssmann

    2016-08-01

    Full Text Available Background/Aims: Parathyroid hormone (PTH derivatives exert pronounced renal and osteoanabolic properties when given intermittently. The current study was performed to assess the pharmacokinetic and pharmacodynamic properties as well as safety of subcutaneously applied PTH-1-37 after repeated dosing in healthy subjects. Methods: This randomized, double-blind, dose-escalating, placebo and active comparator controlled study was conducted in 33 healthy postmenopausal women. Subjects were allocated to one of five treatment options: 10, 20, or 40 µg PTH-1-37, 20 µg PTH-1-34 or placebo, administered as once daily subcutaneous doses for three days. Plasma drug concentrations and serum levels of endogenous PTH-1-84, and calcium as markers of biological activity were monitored during the treatment. Results: PTH was absorbed rapidly from the subcutaneous tissue with a median tmax of 30 minutes for 20 and 40 µg of PTH-1-37. tmax was 45 minutes for 20 µg PTH-1-34. Elimination half-lives were estimated as 76 ± 34 min and 70 ± 13 min for 20 µg and 40 µg PTH-1-37 (mean ± SD, and 78 ± 34 for 20 µg PTH-1-34. Both PTH fragments (PTH-1-37 and PTH-1-34 increased serum calcium. For PTH-1-37 the effect on serum calcium was dose-dependent. Suppression of endogenous PTH-1-84 was seen after the application of both PTH-1-37 and PTH-1-34. During the study period, the subjects experienced no unexpected or serious adverse events. Conclusions: PTH-1-37 is rapidly absorbed after s.c. injection, has a short plasma elimination half-life, and does not accumulate during multiple dosing. Biological activity was demonstrated by rising serum calcium and decreasing endogenous PTH-1-84 in blood plasma. The study drugs were well tolerated and safe. Our investigation presents data that PTH-1-37 is an excellent drug candidate for intervening with syndromes of dysregulation of calcium metabolism.

  13. Rat parathyroid hormone (rPTH) ELISAs specific for regions (2-7), (22-34) and (40-60) of the rat PTH structure: influence of sex and age.

    Science.gov (United States)

    D'Amour, Pierre; Rousseau, Louise; Hornyak, Stephen; Yang, Zan; Cantor, Tom

    2010-09-15

    Rat (r) PTH ELISAs were used to study the influence of age and sex on rPTH levels and circulating PTH molecular forms separated by HPLC. Standard curves and saturation analysis were undertaken to define epitopes. Rats were sacrificed at approximately 27, 47 and 75days. Relevant biochemical parameters and 25(OH) vitamin D were measured. Differences between sexes were analyzed by Kruskal-Wallis ANOVA, followed by Dunn's test. Epitopes were localized in regions 2-7, 22-34 and 40-60 of rPTH structure for whole (W), total (T) and carboxyl (C) rPTH ELISAs. The W-rPTH assay only detected rPTH(1-84) and N-PTH in circulation while the T-PTH assay further detected large C-rPTH fragments. The C-rPTH assay detected all circulating rPTH molecular forms including smaller C-rPTH fragments. In both sexes, weight (p<0.001), ionized calcium, creatinine, albumin and 25(OH)D values (p<0.001) increased with age, while phosphate and alkaline phosphatase decreased (p<0.001). In male rats, W-rPTH remained unchanged, while T-rPTH rose slightly (p<0.05) and C-rPTH declined by half with time (p<0.001). In female rats, W-rPTH (p<0.05), T-rPTH (p<0.001) and C-rPTH (p<0.01) all increased in older animals. In both sexes, C-rPTH/W-rPTH and C-rPTH/T-rPTH ratios decreased between 25 and 47 days, to rise again between 47 and 75 days. The initial decrease may represent an adaptation to weaning and a change of diet between 25 and 47 days while the rise corresponds to higher calcium and 25(OH)D levels between 47 and 75 days. These changes were more pronounced in female rats, indicating an influence of sex on PTH molecular form secretion or metabolism. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  15. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts

    Directory of Open Access Journals (Sweden)

    Alison B. Shupp

    2018-06-01

    Full Text Available The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.

  16. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  17. Bone Cells Dynamics during Peri-Implantitis: a Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Maria Helena Fernandes

    2016-09-01

    Full Text Available Objectives: The present manuscript aims a detailed characterization of the bone cells dynamics during physiological bone remodelling and, subsequently, to address the cellular and molecular mechanisms that play a fundamental role in the immune-inflammatory-induced uncoupled bone remodelling observed in peri-implantitis. Results: An intimate relationship between the immune system and bone is acknowledged to be determinant for bone tissue remodelling and integrity. Due to the close interaction of immune and bone cells, the two systems share a number of surface receptors, cytokines, signalling pathways and transcription factors that are involved in mutual regulatory mechanisms. This physiological equilibrium is disturbed in pathological conditions, as verified in peri-implantitis establishment and development. Activation of the innate and adaptive immune response, challenged by the local bacterial infection, induces the synthesis of high levels of a variety of pro- and anti-inflammatory cytokines that disturb the normal functioning of the bone cells, by uncoupling bone resorption and formation, ending up with a net alveolar bone loss and subsequent implant failure. Most data points to an immune-inflammatory induced osteoclast differentiation and function, as the major underlying mechanism to the uncoupled bone resorption to bone formation. Further, the disturbed functioning of osteoblasts, reflected by the possible expression of a fibro-osteoblastic phenotype, may also play a role. Conclusions: Alveolar bone loss is a hallmark of peri-implantitis. A great deal of data is still needed on the cellular and humoral crosstalk in the context of an integrated view of the osteoimmunologic interplay occurring in the peri-implantitis environment subjacent to the bone loss outcome.

  18. Serum vitamin D and parathormone (PTH) concentrations as ...

    African Journals Online (AJOL)

    Rania Naguib Abdel Mouteleb Abdel Reheem

    2012-10-06

    Oct 6, 2012 ... concentrations as predictors of the development and ... of vitamin D might be a risk marker of development or progression of ... 25(OH) 2 D3 may lead to increased, uncontrolled angio- ... PTH excess can reduce glucose tolerance16 and induce ... was separated and stored frozen at 20° C. Routine blood.

  19. A digital subtraction radiography based tool for periodontal bone resorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schiabel, Homero; Rodrigues, Eveline B., E-mail: homero@sc.usp.br [University of Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Dept. of Electrical Engineering; Rubira-Bullen, Izabel R.F. [University of Sao Paulo (USP), Bauru, SP (Brazil). Bauru Dentistry School

    2011-07-01

    The aim of this paper was to describe an aided diagnosis scheme for periodontal bone resorption so that the dentist can make an early diagnosis of the periodontal disease and establish the best treatment plan to increase the success of healing. Three ways of displaying the results are provided: qualitative, simple quantitative and colored-percentage quantitative views. A total of 72 pairs of in vitro radiographic images were used. The main procedure registers the images perspective projection aimed to align them in rotation and translation, and is followed by the application of a contrast correction technique. The results from the subtraction were evaluated firstly by the comparison between the actual and the digital sizes corresponding to the holes made by drills in phantoms. The mean error was 4.2%. The method was also applied to actual tooth radiographic images and could detect clearly the effect of treatment of periodontal diseases. It is dependent on the reproducibility of the process of radiographs acquisition and digitization, but the calculated mean error allows to conclude its better efficacy compared to usual procedures in this field. (author)

  20. A digital subtraction radiography based tool for periodontal bone resorption analysis

    International Nuclear Information System (INIS)

    Schiabel, Homero; Rodrigues, Eveline B.; Rubira-Bullen, Izabel R.F.

    2011-01-01

    The aim of this paper was to describe an aided diagnosis scheme for periodontal bone resorption so that the dentist can make an early diagnosis of the periodontal disease and establish the best treatment plan to increase the success of healing. Three ways of displaying the results are provided: qualitative, simple quantitative and colored-percentage quantitative views. A total of 72 pairs of in vitro radiographic images were used. The main procedure registers the images perspective projection aimed to align them in rotation and translation, and is followed by the application of a contrast correction technique. The results from the subtraction were evaluated firstly by the comparison between the actual and the digital sizes corresponding to the holes made by drills in phantoms. The mean error was 4.2%. The method was also applied to actual tooth radiographic images and could detect clearly the effect of treatment of periodontal diseases. It is dependent on the reproducibility of the process of radiographs acquisition and digitization, but the calculated mean error allows to conclude its better efficacy compared to usual procedures in this field. (author)

  1. Health of periodontal tissues and resorption status after orthodontic treatment of impacted maxillary canines.

    Science.gov (United States)

    Oz, A Z; Ciger, S

    2018-03-01

    The aim of the present study was to evaluate the changes of incisor root resorption associated with impacted maxillary canines and health of periodontal tissues around maxillary canines erupted with orthodontic treatment. Twenty patients with a unilateral palatally impacted maxillary canine were included in the study. Cone-beam computed tomography images taken before and after orthodontic treatment were compared with the contralateral canines serving as control teeth. Root resorption was present in 10% of central and 40% of lateral incisors before treatment. After treatment, the incidence of resorption decreased. The thickness of the buccal bone surrounding the impacted canines was similar to that surrounding the contralateral canines, except in the apical area. Periodontal pocket depth and alveolar bone loss were greater for the impacted canine teeth than for the contralateral canines. Incisor root resorption associated with impacted canine teeth showed signs of repair after orthodontic treatment. Slight differences related to periodontal health were found between the previously impacted teeth and contralateral canine teeth.

  2. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats.

    Science.gov (United States)

    Kirschneck, Christian; Wolf, Michael; Reicheneder, Claudia; Wahlmann, Ulrich; Proff, Peter; Roemer, Piero

    2014-12-05

    The anchorage mechanisms currently used in orthodontic treatment have various disadvantages. The objective of this study was to determine the applicability of the osteoporosis medication strontium ranelate in pharmacologically induced orthodontic tooth anchorage. In 48 male Wistar rats, a constant orthodontic force of 0.25 N was reciprocally applied to the upper first molar and the incisors by means of a Sentalloy(®) closed coil spring for two to four weeks. 50% of the animals received strontium ranelate at a daily oral dosage of 900 mg per kilogramme of body weight. Bioavailability was determined by blood analyses. The extent of tooth movement was measured both optometrically and cephalometrically (CBCT). Relative alveolar gene expression of osteoclastic markers and OPG-RANKL was assessed by qRT-PCR and root resorption area and osteoclastic activity were determined in TRAP-stained histologic sections of the alveolar process. Compared to controls, the animals treated with strontium ranelate showed up to 40% less tooth movement after four weeks of orthodontic treatment. Gene expression and histologic analyses showed significantly less osteoclastic activity and a significantly smaller root resorption area. Blood analyses confirmed sufficient bioavailability of strontium ranelate. Because of its pharmacologic effects on bone metabolism, strontium ranelate significantly reduced tooth movement and root resorption in orthodontic treatment of rats. Strontium ranelate may be a viable agent for inducing tooth anchorage and reducing undesired root resorption in orthodontic treatment. Patients under medication of strontium ranelate have to expect prolonged orthodontic treatment times. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events

    OpenAIRE

    Feller, Liviu; Khammissa, Razia A. G.; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan

    2016-01-01

    Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resor...

  4. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption.

    Science.gov (United States)

    Wisitrasameewong, W; Kajiya, M; Movila, A; Rittling, S; Ishii, T; Suzuki, M; Matsuda, S; Mazda, Y; Torruella, M R; Azuma, M M; Egashira, K; Freire, M O; Sasaki, H; Wang, C Y; Han, X; Taubman, M A; Kawai, T

    2017-06-01

    Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Pasteurella pneumotropica ( Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor-α, interleukin-1β, and RANKL in the gingival tissue compared with the control site without ligature ( P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti- Pp IgG antibody nor in vitro anti- Pp T

  5. Relation of bone mineral density with homocysteine and cathepsin K levels in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Madhukar Mittal

    2018-01-01

    Full Text Available Background: Homocysteine (HCY interferes with collagen cross-linking in bones and stimulates osteoclast activity. The activated osteoclasts secrete cathepsin K (CathK, a cysteine protease, in eminent quantity during bone resorption. Hyperhomocysteinemia may effect bone mineral density (BMD through CathK. We, therefore, examined the relation between HCY and BMD along with CathK, 25-hydroxyvit-D (25[OH]D, intact parathyroid hormone (iPTH, and Vitamin B12. Materials and Methods: We recruited a total of 93 postmenopausal women between the age group of 45–60 years, attending the Endocrinology outpatient department at King George's Medical University, Lucknow. BMD was done by DXA scan using Hologic QDR1000 system. Based on the WHO criteria, patients were segregated into three groups as follows; normal bone mass, osteopenia, and osteoporosis. All women underwent routine biochemical laboratory parameters, HCY, Vitamin B12, and CathK levels. Results: Among 93 postmenopausal women, 56% (52 had osteoporosis. Nineteen percent (18 had normal BMD (mean age, 53.22 ± 8.5 years and 23 (25% had osteopenia (mean age 52.86 ± 6.67 years. The mean age in the osteoporetic group was 56.2 ± 6.9 years. The median (interquartile range levels of HCY in the three groups were 14.5 μmol/L (12.2–24.7, 15.05 μmol/L (12.1–19.9 and 13.2 μmol/L (10.3–17.0, respectively. CathK levels were similar in three groups 7.6 ng/ml (7.0–80.5, 8.3 ng/ml (7.3–8.5, and 8.6 ng/ml (7.2–8.9. Both HCY and CathK were found positively associated with serum phosphorus (r = 0.584, P < 2.01 and r = 0.249, P < 0.05, respectively. Levels of HCY positively correlate with PTH (r = 0.303, P < 0.01 and inversely with Vitamin B12 (r = −0.248, P < 0.05. No significant association was seen between CathK level and 25(OH D, iPTH, serum calcium. Conclusion: Low bone mass by DXA is a significant problem in postmenopausal females. HCY and CathK do not reliably correlate with bone loss in

  6. Effects of calcitonin on orthodontic tooth movement and associated root resorption in rats.

    Science.gov (United States)

    Guan, Ling; Lin, Suai; Yan, Weijun; Chen, Lei; Wang, Xiaofeng

    2017-11-01

    Our main aim was to evaluate the effects of calcitonin (CT) on orthodontic tooth movement (OTM) and orthodontic root resorption in a rat model. Eighty male Wistar rats were randomly divided into five groups. Rats in the negative control group were not given any appliances or injections. All the remaining rats were used to establish a model of OTM. The positive control group were then injected with normal saline, while rats in the three experimental groups were injected with 0.2 IU, 1 IU or 5 IU/kg/day CT. Nickel-titanium closed-coil springs were used to deliver an initial 50 g mesial force to the left maxillary first molar for 14 days in rats in the positive control group and the experimental groups. Each group was randomly subdivided into two groups, one for analysis of tooth movement, tissue changes and tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone, the other to examine root resorption by scanning electron microscopy. The OTM distance, the number of force-induced osteoclasts and root resorption areas were significantly decreased in CT-injected rats in a dose-dependent manner. Administration of CT reduces the root resorption area and may therefore be effective as a novel adjunctive orthodontic approach to diminish undesired tooth movement via enhancing anchorage or preventing relapse after OTM.

  7. Parathyroid Hormone (1-34 Might Not Improve Early Bone Healing after Sinus Augmentation in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Jisun Huh

    2017-01-01

    Full Text Available Purpose. This study evaluated the effect of administering intermittent parathyroid hormone [PTH (1-34, henceforth PTH] on the early-stage bone healing of maxillary sinus augmentation in healthy rabbits. Materials and Methods. Bovine bone mineral was grafted on the sinuses of 20 female New Zealand white rabbits. The animals were randomly divided into two groups, PTH (n=10 or saline (n=10, in which either PTH or saline was injected subcutaneously 5 days a week for 2 weeks. Half of the animals in each group were killed at 2 weeks postoperatively and the other half were killed at 4 weeks postoperatively. The dosage of PTH was 10 μg/kg/day. Radiographic and histomorphometric analyses were performed. Result. The new bone area (NBA did not differ significantly between the PTH and saline groups. The NBA in the PTH group in the total augmented area and in the demarcated window, center, and Schneiderian membrane regions increased significantly from 2 to 4 weeks. The number of osteoclasts decreased significantly from 2 to 4 weeks in both groups, with no difference between the two groups. Conclusion. Intermittent PTH might not stimulate new bone formation in healthy rabbits during the first 4 weeks of healing.

  8. The carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen in serum as a marker of bone resorption

    DEFF Research Database (Denmark)

    Hassager, C; Jensen, L T; Pødenphant, J

    1994-01-01

    Carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) in serum has recently been proposed as a new biochemical marker of bone resorption. In the present study we compared serum ICTP with radiopharmaceutical and histomorphometric measurements of bone turnover...... in postmenopausal women with mild osteoporosis, and assessed the effect of hormone replacement therapy (HRT) (2 mg 17 beta-estradiol plus 1 mg norethisterone daily) and anabolic steroid therapy (50 mg nandrolone decanoate (ND) i.m. every 3 weeks) on serum ICTP in two double-blind placebo-controlled studies with 55...... to 75-year-old women. Serum ICTP measured by radioimmunoassay (RIA) correlated significantly with the 24-hour whole body retention of 99m-technetium diphosphonate (Rho = 0.47, P

  9. Expanding the net: The re-evaluation of the multidimensional nomogram calculating the upper limit of normal PTH (maxPTH) in the setting of secondary hyperparathyroidism and the development of the MultIdimensional Predictive hyperparaTHyroid model (Mi-PTH).

    Science.gov (United States)

    Rajhbeharrysingh, Uma; El Youssef, Joseph; Leon, Enrique; Lasarev, Michael R; Klein, Robert; Vanek, Chaim; Mattar, Samer; Berber, Eren; Siperstein, Allan; Shindo, Maisie; Milas, Mira

    2016-01-01

    The multidimensional nomogram calculating the upper limit of normal PTH (maxPTH) model identifies a personalized upper limit of normal parathyroid hormone (PTH) and successfully predicts classical primary hyperparathyroidism (PHP). We aimed to assess whether maxPTH can distinguish normocalcemic PHP (NCPHP) from secondary hyperparathyroidism (SHP), including subjects who underwent bariatric surgery (BrS). A total of 172 subjects with 359 complete datasets of serum calcium (Ca), 25-OH vitamin D, and intact PTH from Oregon were analyzed: 123 subjects (212 datasets) with PHP and 47 (143) with SHP, including 28 (100) with previous BrS. An improved prediction model, MultIdimensional evaluation for Primary hyperparaTHyroidism (Mi-PTH), was created with the same variables as maxPTH by the use of a combined cohort (995 subjects) including participants from previous studies. In the Oregon cohort, maxPTH's sensitivity was 100% for classical PHP and 89% for NCPHP, but only 50% for normohormonal PHP (NHPHP) and 40% specific for SHP. In comparison, although sensitivity for NCPHP was similar (89%), Mi-PTH vastly improved SHP specificity (85%). In the combined cohort, Mi-PTH had better sensitivity of 98.5% (vs 95%) and specificity 97% (vs 85%). MaxPTH was sensitive in detecting PHP; however, there was low specificity for SHP, especially in patients who underwent BrS. The creation of Mi-PTH provided improved performance measures but requires further prospective evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    Science.gov (United States)

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  11. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  12. Short-term effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men.

    Science.gov (United States)

    Kristensen, Mette; Jensen, Marlene; Kudsk, Jane; Henriksen, Marianne; Mølgaard, Christian

    2005-12-01

    In the Western world, increased consumption of carbonated soft drinks combined with a decreasing intake of milk may increase the risk of osteoporosis. This study was designed to reflect the trend of replacing milk with carbonated beverages in a group of young men on a low-calcium diet and studies the effects of this replacement on calcium homeostasis and bone turnover. This controlled crossover intervention study included 11 healthy men (22-29 years) who were given a low-calcium basic diet in two 10-day intervention periods with an intervening 10-day washout. During one period, they drank 2.5 l of Coca Cola per day and during the other period 2.5 l of semi-skimmed milk. Serum concentrations of calcium, phosphate, 25-hydroxycholecalciferol, 1,25-dihydroxycholecalciferol (1,25(OH)2D), osteocalcin, bone-specific alkaline phosphatase (B-ALP) and cross-linked C-telopeptides (CTX), plasma intact parathyroid hormone (PTH) and urinary cross-linked N-telopeptides (NTX) were determined at baseline and endpoint of each intervention period. An increase in serum phosphate (Pcola period compared to the milk period. Also, bone resorption was significantly increased following the cola period, seen as increased serum CTX (Pcola with a low-calcium diet induces increased bone turnover compared to a high intake of milk with a low-calcium diet. Thus, the trend towards a replacement of milk with cola and other soft drinks, which results in a low calcium intake, may negatively affect bone health as indicated by this short-term study.

  13. Pegvisomant-induced serum insulin-like growth factor-I normalization in patients with acromegaly returns elevated markers of bone turnover to normal

    DEFF Research Database (Denmark)

    Parkinson, C; Kassem, M; Heickendorff, Lene

    2003-01-01

    of bone and soft tissue turnover, as well as levels of PTH and vitamin D metabolites, in 16 patients (nine males; median age, 52 yr; range, 28-78 yr) with active acromegaly (serum IGF-I at least 30% above upper limit of an age-related reference range). Serum procollagen III amino-terminal propeptide...... (PIIINP) and type I procollagen amino-terminal propeptide, osteocalcin (OC), bone-related alkaline phosphatase, C-terminal cross-linked telopeptide of type I collagen (CTx), albumin-corrected calcium, intact PTH, 25-hydroxy vitamin D, 1,25-dihydroxy vitamin D [1,25-(OH)(2) vit D], urinary type 1 collagen...... (CTx and urinary type 1 collagen cross-linked N-telopeptide/creatinine ratio). 1,25-(OH)(2) vit D decreased and intact PTH increased significantly, but 25-hydroxy vitamin D was unaffected. A significant decline in calculated calcium clearance was observed. The decrease in serum IGF-I correlated...

  14. Oxidation of PTH: in vivo feature or effect of preanalytical conditions?

    NARCIS (Netherlands)

    Ursem, Stan R.; Vervloet, Marc G.; Hillebrand, Jacquelien J. G.; de Jongh, Renate T.; Heijboer, Annemieke C.

    2018-01-01

    Background: Posttranslational oxidation of parathyroid hormone (PTH) modifies its biological activity. Measurement of non-oxidized PTH (n-oxPTH) could be an improvement in assessing PTH status, as intact PTH may rather reflect oxidative stress. However, it is debated whether oxidation of PTH occurs

  15. Glucocorticoid Signaling and Bone Biology.

    Science.gov (United States)

    Komori, T

    2016-11-01

    Since glucocorticoids remain an effective therapeutic option for the treatment of many inflammatory and autoimmune diseases, glucocorticoid-induced osteoporosis is the most common form of secondary osteoporosis. Fractures may occur in as many as 30-50% of patients receiving chronic glucocorticoid therapy. Under physiological conditions, glucocorticoids are required for normal bone development due to their regulation of osteoblast differentiation, possibly via the Wnt/β-catenin pathway and TSC22D3. However, serum levels of endogenous corticosterone are elevated in aged mice and glucocorticoids exert negative effects on the survival of osteoblasts and osteocytes as well as angiogenesis. Glucocorticoid treatments impair bone formation and enhance bone resorption. Excess glucocorticoids induce osteoblast and osteocyte apoptosis by increasing pro-apoptotic molecules, reactive oxygen species, and endoplasmic reticulum stress and suppressing the Wnt/β-catenin pathway. Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but passed some threshold, the process of autophagy leads the cells to apoptosis. Excess glucocorticoids impair osteoblastogenesis by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1. However, the findings are controversial and the involvement of Wnt antagonists requires further study. Excess glucocorticoids reduce the phosphorylation of Akt and GSK3β, which enhances the degradation of β-catenin. Excess glucocorticoids have been shown to modulate the expression of miRNAs, including miR-29a, miR-34a-5p, and miR-199a-5p, which regulate the proliferation and differentiation of osteoblast lineage cells. Excess glucocorticoids also enhance bone resorption by reducing OPG expression, increasing Rankl expression and reactive oxygen species, and prolonging the life span of osteoclasts; however, they also suppress the bone-degrading capacity of osteoclasts by disturbing the organization of the cytoskeleton. © Georg Thieme Verlag KG

  16. Melatonin: Bone Metabolism in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Fanny López-Martínez

    2012-01-01

    Full Text Available Throughout life, bone tissue undergoes a continuous process of resorption and formation. Melatonin, with its antioxidant properties and its ability to detoxify free radicals, as suggested by Conconi et al. (2000 may interfere in the osteoclast function and thereby inhibit bone resorption, as suggested by Schroeder et al. (1981. Inhibition of bone resorption may be enhanced by a reaction of indoleamine in osteoclastogenesis. That it has been observed melatonin, at pharmacological doses, decrease bone mass resorption by suppressing through down regulation of the RANK-L, as suggested by Penarrocha Diago et al. (2005 and Steflik et al. (1994. These data point an osteogenic effect towards that may be of melatonin of clinical importance, as it could be used as a therapeutic agent in situations in which would be advantageous bone formation, such as in the treatment of fractures or osteoporosis or their use as, a bioactive surface on implant as suggested by Lissoni et al. (1991.

  17. Treatment of root fracture with accompanying resorption using cermet cement.

    Science.gov (United States)

    Lui, J L

    1992-02-01

    A method of treating an apical root fracture with accompanying resorption at the junction of the fracture fragments using glass-cermet cement is described. Endodontically, the material had previously been used for repair of lateral resorptive root defects and retrograde root fillings. Complete bone regeneration was observed three years post-operatively following treatment of the root fracture in the conventional manner. The various advantages of glass-cermet cement as a root filling material used in the technique described are discussed.

  18. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    Science.gov (United States)

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  19. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    Full Text Available Parathyroid Hormone (PTH can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R, which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1 promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA, exchange proteins activated by cAMP (Epac, protein kinase C (PKC or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these

  20. High dose teriparatide (rPTH1-34) therapy increases callus volume and enhances radiographic healing at 8-weeks in a massive canine femoral allograft model.

    Science.gov (United States)

    Nishitani, Kohei; Mietus, Zachary; Beck, Christopher A; Ito, Hiromu; Matsuda, Shuichi; Awad, Hani A; Ehrhart, Nicole; Schwarz, Edward M

    2017-01-01

    Small animal studies have demonstrated significant high-dose recombinant parathyroid hormone1-34 (rPTH1-34) effects on intercalary allograft healing. Towards a human adjuvant therapy to decrease non-unions, we evaluated rPTH1-34 safety and efficacy in a clinically relevant canine femoral allograft model. Adult female mongrel hounds (n = 20) received a 5cm mid-diaphyseal osteotomy reconstructed with a plated allograft, and were randomized to: 1) Placebo (n = 5; daily saline), 2) Continuous rPTH1-34 (n = 7; 5 μg/kg/day s.c. from day 1-55 post-op), or 3) Delayed rPTH1-34 (n = 8; 5 μg/kg/day s.c. from day 14-28 post-op). Safety was assessed by physical behavior and blood calcium monitoring. Cone beam CT (CB-CT) was performed on days 14, 28 and 56 post-op to assess 2D cortical healing, 3D bone volume, and Union Ratio. Biomechanical testing and dynamic histomorphometry were also performed. The high drug dose was poorly tolerated, as most dogs receiving rPTH1-34 had to be given intravenous saline, and one dog died from hypercalcemia. Continuous rPTH1-34 significantly increased 2D healing and callus volumes at 4-weeks versus Placebo, and sustained the significant increase in cortical union at 8-week (p<0.05). These rPTH1-34 effects were confirmed by histomorphometry, revealing significant increases in mineral apposition rates (MAR) on host bone and graft-host junctions (p<0.05). Delayed rPTH1-34 significantly increased callus volume and MAR at 8 weeks (p<0.05). Although no biomechanical differences were observed, as expected for early healing, the results demonstrated that 2D RUST scoring significantly correlated with torsional biomechanics (p<0.01). In conclusion, 8-weeks of intermittent high-dose rPTH1-34 treatment significantly increases callus formation and accelerates bony union of intercalary massive allografts in a clinically relevant canine model, but with serious side-effects from hypercalcemia.

  1. High dose teriparatide (rPTH1-34 therapy increases callus volume and enhances radiographic healing at 8-weeks in a massive canine femoral allograft model.

    Directory of Open Access Journals (Sweden)

    Kohei Nishitani

    Full Text Available Small animal studies have demonstrated significant high-dose recombinant parathyroid hormone1-34 (rPTH1-34 effects on intercalary allograft healing. Towards a human adjuvant therapy to decrease non-unions, we evaluated rPTH1-34 safety and efficacy in a clinically relevant canine femoral allograft model. Adult female mongrel hounds (n = 20 received a 5cm mid-diaphyseal osteotomy reconstructed with a plated allograft, and were randomized to: 1 Placebo (n = 5; daily saline, 2 Continuous rPTH1-34 (n = 7; 5 μg/kg/day s.c. from day 1-55 post-op, or 3 Delayed rPTH1-34 (n = 8; 5 μg/kg/day s.c. from day 14-28 post-op. Safety was assessed by physical behavior and blood calcium monitoring. Cone beam CT (CB-CT was performed on days 14, 28 and 56 post-op to assess 2D cortical healing, 3D bone volume, and Union Ratio. Biomechanical testing and dynamic histomorphometry were also performed. The high drug dose was poorly tolerated, as most dogs receiving rPTH1-34 had to be given intravenous saline, and one dog died from hypercalcemia. Continuous rPTH1-34 significantly increased 2D healing and callus volumes at 4-weeks versus Placebo, and sustained the significant increase in cortical union at 8-week (p<0.05. These rPTH1-34 effects were confirmed by histomorphometry, revealing significant increases in mineral apposition rates (MAR on host bone and graft-host junctions (p<0.05. Delayed rPTH1-34 significantly increased callus volume and MAR at 8 weeks (p<0.05. Although no biomechanical differences were observed, as expected for early healing, the results demonstrated that 2D RUST scoring significantly correlated with torsional biomechanics (p<0.01. In conclusion, 8-weeks of intermittent high-dose rPTH1-34 treatment significantly increases callus formation and accelerates bony union of intercalary massive allografts in a clinically relevant canine model, but with serious side-effects from hypercalcemia.

  2. Treatment of renal osteopathy by Rocaltrol, with special reference to parathormone levels and X-ray examinations

    International Nuclear Information System (INIS)

    Schmitt, R.L.

    1981-01-01

    The effects of treatment of renal osteopathy with 1.25 (OH) 2 D 3 was evaluated in 24 chronic hemodialysis patients. The best results of treatment were displayed in patients in whom 1.25 (OH) 2 D 3 determined only a slow rise in plasma calcium levels. In these patients iPTH, alkaline phosphatase levels, and osteoblast counts in bone biopsies were initially high. Definite improvement of bone resorption was found on X-ray examination. In contrast in patients with low iPTH, low alkaline phosphatase levels, and low osteoblast counts, administration of 1.25 (OH) 2 D 3 determined a fast rise of plasma calcium levels. No X-ray modifications could be detected. (orig.) [de

  3. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over.

    Science.gov (United States)

    Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim

    2018-03-21

    Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.

  4. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    Science.gov (United States)

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  6. The study in the relationship between serum calcium and serum parathyroid hormone (PTH) by employing the various kits of PTH assay

    International Nuclear Information System (INIS)

    Torizumi, Kazutami; Aibata, Hirofumi; Taniguchi, Yoshiyuki; Kiji, Shigeyuki; Ueyoshi, Akitaka; Shimizu, Eiji; Okamoto, Yukiharu; Tuda, Tadaaki; Ota, Kiichiro

    1987-01-01

    In order to evaluate the influences of serum PTH assay in the various concentrations of serum calcium, we divided into three groups which serum calcium had below 8.0 mg/dl, 8.2 mg/dl to 9.8 mg/dl and above 10.0 mg/dl at random samples and assayed PTH in serum sample, using various kits of PTH assay obtained from commercial sources. Our results suggested that the measurement of serum PTH influenced by the concentration of serum calcium and therefore, should be taken an attention of serum calcium in each sample. (author)

  7. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics.

    Science.gov (United States)

    Draenert, Miriam; Draenert, Alice; Draenert, Klaus

    2013-04-01

    Cancellous bone defects surrounded by still intact bone structures never heal. Ceramics offer a solution providing osteoconductive scaffolds. The purpose of the study is to evaluate whether structured β-TCP and HA implants can reconstruct cancellous bone defects, which role micro- and macro-porosity, stiffness and surface area play; finally the indication for both materials based on its resorbability. 10 German Shepard dogs were operated on both tibial heads implanting shell-like fully interconnected ceramic cylinders, using a wet grinding hollow drill coated with diamonds. β-TCP was compared with HA. A polychromatic sequential labelling with 4 different fluorochromes controlled bone formation dynamics. Non-decalcifying histology after perfusion fixation and vessel casting was performed. μ-CT was combined with high resolution microradiography and histology on thin ground crossections. The stages after 6 weeks, 2, 3, 4 months and 15 months were evaluated. In spite of osseointegration of HA and β-TCP, the osseointegration of both materials was completely different. Both shell-like bone void fillers were osseointegrated in a sandwich-like manner. HA yielded primarily a reinforcement of the recipient's cancellous-bone bed and full osseointegration after 4 months, whereas β-TCP-implants were fully osseointegrated after 6 weeks. HA did not show signs of resorption. The resorption of the β-TCP resulted during remodelling. The final stage showed restitution "ad integrum" of the β-TCP defects with a physiological architecture, whereas HA was integrated in the cancellous bone construction providing 600 μm measuring macropores showing osteoinductive properties. Copyright © 2013 Wiley Periodicals, Inc.

  8. Congenital adrenal hyperplasia: a case report with premature teeth exfoliation and bone resorption.

    Science.gov (United States)

    Angelopoulou, Matina V; Kontogiorgos, Elias; Emmanouil, Dimitris

    2015-06-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive disorder characterized by insufficient production of cortisol. The aim of this case report was to present a child with CAH, premature exfoliation of primary teeth and accelerated eruption of his permanent teeth related to bone resorption. A 4.5-year-old Caucasian boy with CAH and long-term administration of glucocorticoids was referred for dental restoration. Clinical examination revealed primary molars with worn stainless steel crowns, severe attrition of the upper canines, and absence of the upper incisors. Before the completion of treatment, abnormal mobility of the first upper primary molars and the lower incisors was detected, and a few days later the teeth exfoliated prematurely. Histologic examination revealed normal tooth structure. Alkaline phosphatase and blood cells values were normal. Eruption of the permanent dentition was also accelerated. Tooth mobility was noticed in the permanent teeth as soon as they erupted, along with bone destruction. Examination revealed an elevated level of receptor activator of nuclear factor-κB ligand and lower-than-normal osteoprotegerin and vitamin D levels. The patient was treated with vitamin D supplements, and his teeth have been stable ever since. CAH is a serious chronic disorder appearing in children with accelerated dental development and possibly premature loss of primary teeth. Copyright © 2015 by the American Academy of Pediatrics.

  9. A new condyle implant design concept for an alloplastic temporomandibular joint in bone resorption cases.

    Science.gov (United States)

    Ramos, António; Mesnard, Michel

    2016-10-01

    The purpose of this article is to present and evaluate an innovative intramedullary implant concept developed for total alloplastic reconstruction in bone resorption cases. The main goal of this innovative concept is to avoid the main problems experienced with temporomandibular (TMJ) devices on the market, associated with bone fixation and changes in kinematics. A three-dimensional finite element model was developed based on computed tomography (CT) scan images, before and after implantation of the innovative implant concept. To validate the numerical model, a clean cadaveric condyle was instrumented with four rosettes and loaded before and after implantation with the innovative concept TMJ implant. The experimental results validate the numerical models comparing the intact and implanted condyles, as they present good correlation. They show that the most critical region is around rosette #1, with an increase in strains in the proximal region of the condyle of 140%. The maximum principal strain and stress generated with the implant is less than 2200 με and 75 MPa in the posterior region of the cortical bone. Shortly after insertion of this press-fit implant, stress and strain results appear to be within the normal limits and show some similarities with the intact condyle. If these responses do not change over time, the screw fixation used at present could be avoided or replaced. This solution reduces bone resection and lessens surgical damage to the muscles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model.

    Science.gov (United States)

    Kirschneck, Christian; Fanghänel, Jochen; Wahlmann, Ulrich; Wolf, Michael; Roldán, J Camilo; Proff, Peter

    2017-03-01

    Many adult orthodontic patients suffer from chronic periodontitis with recurrent episodes of active periodontal inflammation. As their number is steadily increasing, orthodontists are more and more frequently challenged by respective treatment considerations. However, little is currently known regarding interactive effects on undesired dental root resorption (DRR), tooth movement velocity, periodontal bone loss and the underlying cellular and tissue reactions. A total of 63 male Fischer344 rats were used in three consecutive experiments employing 21 animals each (A/B/C), randomly assigned to 3 experimental groups (n=7, 1/2/3), respectively: (A) CBCT; (B) histology/serology; (C) RT-qPCR-(1) control; (2) orthodontic tooth movement (OTM) of the first/second upper left molars (NiTi coil spring, 0.25N); (3) OTM with experimentally induced periodontitis (cervical silk ligature). After 14days of OTM, we quantified blood leukocyte level, DRR, osteoclast activity and relative gene expression of inflammatory and osteoclast marker genes within the dental-periodontal tissue as well as tooth movement velocity and periodontal bone loss after 14 and 28 days. The experimentally induced periodontal bone loss was significantly increased by concurrent orthodontic force application. Periodontal inflammation during OTM on the other hand significantly augmented the extent of DRR, relative expression of inflammatory/osteoclast marker genes, blood leukocyte level and periodontal osteoclast activity. In addition, contrary to previous studies, we observed a significant increase in tooth movement velocity. Although accelerated tooth movement would be favourable for orthodontic treatment, our results suggest that orthodontic interventions should only be performed after successful systematic periodontal therapy and paused in case of recurrent active inflammation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Andreassen, Kim V; Thudium, Christian S

    2012-01-01

    Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium wa...... dependent and independent of their resorptive activity, secrete factors stimulating osteoblastic bone formation.......Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium...... release. The osteoblastic cell line 2T3 was treated with 50% of CM or non-CM for 12days. Bone formation was assessed by Alizarin Red extraction. CM from mature osteoclasts induced bone formation, while CM from macrophages did not. Non-resorbing osteoclasts generated from osteopetrosis patients showed...

  12. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    International Nuclear Information System (INIS)

    Kwon, Jong Won; Kang, Heung Sik; Hong, Sung Hwan

    2010-01-01

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices

  13. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won [Samsung Medical Center, Sungkyunkwan University, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-10-15

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

  14. Cancer-induced bone loss and associated pain-related behavior is reduced by risedronate but not its phosphonocarboxylate analog NE-10790

    DEFF Research Database (Denmark)

    Hald, Andreas; Hansen, Rikke Rie; Thomsen, Mette W

    2009-01-01

    Prostate, breast and lung cancers readily develop bone metastases which lead to fractures, hypercalcemia and pain. Malignant growth in the bones depends on osteoclast-mediated bone resorption and in this regard bisphosphonate compounds, which have high-bone affinity and inhibit osteoclast activit...

  15. Bone growth during rapamycin therapy in young rats

    Directory of Open Access Journals (Sweden)

    He Yu-Zhu

    2009-01-01

    Full Text Available Abstract Background Rapamycin is an effective immunosuppressant widely used to maintain the renal allograft in pediatric patients. Linear growth may be adversely affected in young children since rapamycin has potent anti-proliferative and anti-angiogenic properties. Methods Weanling three week old rats were given rapamycin at 2.5 mg/kg daily by gavage for 2 or 4 weeks and compared to a Control group given equivalent amount of saline. Morphometric measurements and biochemical determinations for serum calcium, phosphate, iPTH, urea nitrogen, creatinine and insulin-growth factor I (IGF-I were obtained. Histomorphometric analysis of the growth plate cartilage, in-situ hybridization experiments and immunohistochemical studies for various proteins were performed to evaluate for chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption. Results At the end of the 2 weeks, body and tibia length measurements were shorter after rapamycin therapy associated with an enlargement of the hypertrophic zone in the growth plate cartilage. There was a decrease in chondrocyte proliferation assessed by histone-4 and mammalian target of rapamycin (mTOR expression. A reduction in parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP and an increase in Indian hedgehog (Ihh expression may explain in part, the increase number of hypertrophic chondrocytes. The number of TRAP positive multinucleated chondro/osteoclasts declined in the chondro-osseous junction with a decrease in the receptor activator of nuclear factor kappa β ligand (RANKL and vascular endothelial growth factor (VEGF expression. Although body and tibial length remained short after 4 weeks of rapamycin, changes in the expression of chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption which were significant after 2 weeks of rapamycin improved at the end of 4 weeks. Conclusion When given to young rats, 2 weeks of rapamycin

  16. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    Energy Technology Data Exchange (ETDEWEB)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2013-04-15

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP.

  17. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    International Nuclear Information System (INIS)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan

    2013-01-01

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP

  18. Otosclerosis: Temporal Bone Pathology.

    Science.gov (United States)

    Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J

    2018-04-01

    Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  20. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Estrogen-Related Receptors and the control of bone cell fate.

    Science.gov (United States)

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2016-09-05

    Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    International Nuclear Information System (INIS)

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-01-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered) ). Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research highlights: → 3-Day imatinib treatment. → Causes growth plate anomalies in young rats. → Causes biomechanical changes and significant bone loss at distal trabecular bone. → Results in loss of osteoclasts at osteochondral junction.

  3. Bone uptake of Tc-99m MIBI in patients with hyperparathyroidism

    International Nuclear Information System (INIS)

    Zhao, Yunyun; Wang, Qian

    2014-01-01

    The study aimed to investigate the incidence of bone uptake of tracer on Tc-99m MIBI imaging and explore its influencing factors and significance for diagnosis of metabolic bone disease (MBD) in patients with hyperparathyroidism (HPT). Seventy-nine consecutive patients with histopathologically confirmed HPT (63 primary and 16 secondary) who had preoperative Tc-99m MIBI imaging were retrospectively evaluated. Serum calcium (Ca), phosphorus (P), and intact parathyroid hormone (iPTH) were measured for all patients, and serum alkaline phosphatase (ALP) was measured for 62 patients. Of the 79 patients, 50 underwent bone mineral density (BMD) examination and 30 underwent bone scintigraphy. The incidence and characteristics of abnormal bone uptake of MIBI were recorded. Mann-Whitney test was performed to determine if serum iPTH, Ca, P, ALP, and BMD were different between the patients with and without MIBI bone uptake. Logistic regression analysis was used to analyze the factors that influence the bone uptake of MIBI. The concordance rate between Tc-99m MIBI imaging and bone scintigraphy in delineating MBD was calculated. Tc-99m MIBI imaging disclosed the abnormal bone uptake of tracer in 22 (27.8%) patients. Of them, 19 showed diffusely increased activity in skeleton, 2 showed focal uptake in brown tumors, and one showed both above patterns. Patients with bone uptake MIBI had higher level of serum iPTH (Z=-4.34, P < 0.001) and ALP (Z=-3.50, P < 0.001) than those without bone uptake. Logistic regression analysis also showed that bone uptake of MIBI was correlated with serum iPTH (OR=4.42, P < 0.001) and ALP (OR=3.21, P=0.002). Among the 30 patients that underwent bone scintigraphy, 76.7% patients showed signs of MBD, and the concordance rate between Tc-99m MIBI imaging and bone scintigraphy was 60% for detecting MBD. Bone uptake of MIBI in patients with HPT is commonly related to a high level of iPTH and ALP; it probably reflects an active stage of MBD, and it should be

  4. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D

    International Nuclear Information System (INIS)

    Engstroem, Annette; Skerving, Staffan; Lidfeldt, Jonas; Burgaz, Ann; Lundh, Thomas; Samsioe, Goeran; Vahter, Marie; Akesson, Agneta

    2009-01-01

    Cadmium is a widespread environmental pollutant, which is associated with increased risk of osteoporosis. It has been proposed that cadmium's toxic effect on bone is exerted via impaired activation of vitamin D, secondary to the kidney effects. To test this, we assessed the association of cadmium-induced bone and kidney effects with serum 1,25-dihydroxyvitamin D (1,25(OH) 2 D); measured by enzyme immunoassay. For the assessment, we selected 85 postmenopausal women, based on low (0.14-0.39 μg/L) or high (0.66-2.1 μg/L) urinary cadmium, within a cross-sectional population-based women's health survey in Southern Sweden. We also measured 25-hydroxy vitamin D, cadmium in blood, bone mineral density and several markers of bone remodeling and kidney effects. Although there were clear differences in both kidney and bone effect markers between women with low and high cadmium exposure, the 1,25(OH) 2 D concentrations were not significantly different (median, 111 pmol/L (5-95th percentile, 67-170 pmol/L) in low- and 125 pmol/L (66-200 pmol/L) in high-cadmium groups; p=0.08). Also, there was no association between 1,25(OH) 2 D and markers of bone or kidney effects. It is concluded that the low levels of cadmium exposure present in the studied women, although high enough to be associated with lower bone mineral density and increased bone resorption, were not associated with lower serum concentrations of 1,25(OH) 2 D. Hence, decreased circulating levels of 1,25(OH) 2 D are unlikely to be the proposed link between cadmium-induced effects on kidney and bone

  5. Bioavailable 25(OHD but Not Total 25(OHD Is an Independent Determinant for Bone Mineral Density in Chinese Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Chenguang Li

    2017-02-01

    Full Text Available Total 25(OHD levels were determined to assess bone health in elderly populations; however, the bioavailability of 25(OHD is regulated by the albumin and vitamin D binding protein (DBP levels and DBP variations. Whether bioavailable 25(OHD level is a superior biomarker for vitamin D than total 25(OHD level regarding the BMD and the bone metabolism were not yet fully understood. With a community based cross-sectional study of 967 postmenopausal women, we found that the variant rs7041, but not rs4588, of DBP was significantly associated with the blood DBP level, which was positively correlated with the total 25(OHD level but negatively associated with bioavailable 25(OHD levels. Both total and bioavailable 25(OHD levels were significantly correlated with the BMD value in postmenopausal women; however, only the bioavailable 25(OHD level was an independent determinant of the BMD values when adjusted for age, body mass index and bone turnover biomarkers (OST and β-CTX. The bioavailable and total 25(OHD were negatively correlated with bone formation biomarkers (OST, PINP and ALP and PTH levels, while they were positively correlated with osteoprotegerin (OPG level; however, the bone resorption biomarker (β-CTX was not correlated with the 25(OHD levels. An increment of PTH level, along with reduced bioavailable 25(OHD levels, was evident when the bioavailable 25(OHD level was <5 ng/mL, which may be the optimal cutpoint for sufficient vitamin D in Chinese elderly women. The blood calcium, magnesium, ALP, TSH, FGF23, and phosphorus levels were not correlated with the total or the bioavailable 25(OHD levels. These results suggested that high bioavailable 25(OHD levels were correlated with reduced bone turnover processes and were a biomarker superior to total 25(OHD for vitamin D in assessing the risks of bone-related diseases. The results indicate that the bioavailable 25(OHD level should be determined in assessing the bone health.

  6. In vitro and in vivo biological responses to a novel radiopacifying agent for bone cement

    Science.gov (United States)

    Wang, J.S; Diaz, J; Sabokbar, A; Athanasou, N; Kjellson, F; Tanner, K.E; McCarthy, I.D; Lidgren, L

    2005-01-01

    Iodixanol (IDX) and iohexol (IHX) have been investigated as possible radiopacification agents for polymethylmethacrylate (PMMA) bone cement, to replace the currently used barium sulphate and zirconia. IDX and IHX are both water-soluble iodine-based contrast media and for the last 20 years have been used extensively in clinical diagnostic procedures such as contrast media enhanced computed tomography, angiography and urography. One of the major reasons to remove the current radiopacifying agents is their well-documented cytotoxicity and their potential to increase bone resorption. Using in vitro bone resorption assays, the effect of PMMA particles plus IDX or IHX to induce osteoclast formation and lacunar resorption on dentine slices has been investigated. These responses have been compared with the in vitro response to PMMA particles containing the conventional radiopacifying agents, that is, barium sulphate and zirconia. In parallel, the in vivo reaction, in terms of new bone formation, to particles of these materials has been tested using a bone harvest chamber in rabbit tibiae. In vitro cell culture showed that PMMA containing IHX resulted in significantly less bone resorption than PMMA containing the conventional opacifiers. In vivo testing, however, showed no significant differences between the amounts of new bone formed around cement samples containing the two iodine-based opacifying agents in particulate form, although both led to fewer inflammatory cells than particles of PMMA containing zirconia. Our results suggest that a non-ionic radiopacifier could be considered as an alternative to the conventional radiopacifying agents used in biomaterials in orthopaedic surgery. PMID:16849166

  7. Remodeling of the Mandibular Bone Induced by Overdentures Supported by Different Numbers of Implants.

    Science.gov (United States)

    Li, Kai; Xin, Haitao; Zhao, Yanfang; Zhang, Zhiyuan; Wu, Yulu

    2016-05-01

    The objective of this study was to investigate the process of mandibular bone remodeling induced by implant-supported overdentures. computed tomography (CT) images were collected from edentulous patients to reconstruct the geometry of the mandibular bone and overdentures supported by implants. Based on the theory of strain energy density (SED), bone remodeling models were established using the user material subroutine (UMAT) in abaqus. The stress distribution in the mandible and bone density change was investigated to determine the effect of implant number on the remodeling of the mandibular bone. The results indicated that the areas where high Mises stress values were observed were mainly situated around the implants. The stress was concentrated in the distal neck region of the distal-most implants. With an increased number of implants, the biting force applied on the dentures was almost all taken up by implants. The stress and bone density in peri-implant bone increased. When the stress reached the threshold of remodeling, the bone density began to decrease. In the posterior mandible area, the stress was well distributed but increased with decreased implant numbers. Changes in bone density were not observed in this area. The computational results were consistent with the clinical data. The results demonstrate that the risk of bone resorption around the distal-most implants increases with increased numbers of implants and that the occlusal force applied to overdentures should be adjusted to be distributed more in the distal areas of the mandible.

  8. Early changes in parameters of bone and mineral metabolism during therapy for hyper- and hypothyroidism.

    Science.gov (United States)

    Sabuncu, T; Aksoy, N; Arikan, E; Ugur, B; Tasan, E; Hatemi, H

    2001-01-01

    The effects of thyroid hormones on various organs and metabolic systems have been the focus of intensive research. In this study we investigated the mechanisms of the changes in some parameters of bone and mineral metabolism before and during treatment of hyper- and hypothyroidism. Our study groups were as follows; 1) Untreated hyperthyroid patients (n= 38), 2) Hyperthyroid patients treated for three months (n=21), 3) Untreated hypothyroid patients (n=27), 4) Hypothyroid patients treated for three months (n= 20), and 5) Euthyroid control subjects (age, weight, sex and menopausal status matched) (n = 47). As expected, the mean serum calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), and urinary Ca/creatinine and deoxypyridinoline (D-Pyr)/creatinine levels were higher in group-1 than in the control group. Serum PTH level was lower in group-1 than in group-5. However, after treatment for three months (group-2) we found that the serum and urinary levels of these parameters (except ALP) were not different than in the control group. Group-3 and group-4 did not show any differences in these parameters compared with group-5. Covariance analysis showed that urinary D-Pyr excretion had a positive, independent relationship to the serum free T3 level and age (P hyperthyroid patients, and with the treatment, particularly, in the period of first three months the bone resorption markers decrease rapidly. If the treatment is maintained the decrease slows, becoming more gradual. However, bone formation markers like ALP remain high in hyperthyroid patients during the treatment. In the light of this data, it is possible to conclude that osteoblastic activity lasts longer in hyperthyroidism. On the other hand, we demonstrated that these bone formation and resorption markers do not seem to be different in hypothyroid patients, even during the treatment, compared to the euthyroid controls.

  9. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  10. Methanol Extract of Euchelus asper Prevents Bone Resorption in Ovariectomised Mice Model

    Directory of Open Access Journals (Sweden)

    Babita Balakrishnan

    2014-01-01

    Full Text Available Marine molluscs are widely distributed throughout the world and many bioactive compounds exhibiting antiviral, antitumor, antileukemic, and antibacterial activity have been reported worldwide. The present study was designed to investigate the beneficial effect of methanol extract of Euchelus asper (EAME on estrogen deficiency induced osteoporosis in ovariectomised mice model. Forty-two female Swiss albino mice were randomly assigned into Sham operated (Sham group and six ovariectomised (OVX subgroups such as OVX with vehicle (OVX; OVX with estradiol (2 mg/kg/day; OVX with EAME of graded doses (25, 50, 100, and 200 mg/kg/day. Bone turnover markers like serum alkaline phosphatase (ALP, serum acid phosphatase (ACP, serum calcium, and histological investigations of tibia and uterus were analysed. Metaphyseal DNA content of the femur bone was also studied. Antiosteoclastogenic activity of EAME was examined. Administration of EAME was able to reduce the increased bone turnover markers in the ovariectomised mice. Histomorphometric analysis revealed an increase in bone trabeculation and restoration of trabecular separation by EAME treatment. Metaphyseal DNA content of the femur of the OVX mice was increased by EAME administration. EAME also showed a potent antiosteoclastogenic behaviour. Thus, the present study reveals that EAME was able to successfully reduce the estrogen deficiency induced bone loss.

  11. New treatment of periodontal diseases by using NF-kappaB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Morita, Shosuke; Tsukamoto, Ikuyo; Osako, Mariana Kiomy; Nakagami, Futoshi; Shimosato, Takashi; Minobe, Noriko; Morishita, Ryuichi

    2009-09-01

    Nuclear factor-kappa B (NF-kappaB) is involved in osteoclast differentiation and activation. Thus, the blockade of the NF-kappaB pathway might be a novel therapeutic strategy for treating bone metabolic diseases. Periodontitis is subgingival inflammation caused by bacterial infection; this disease also is thought to be a chronic focal point responsible for systemic diseases. In this study, NF-kappaB decoy oligodeoxynucleotides (ODNs) were topically applied for experimental periodontitis in a debris-accumulation model and wound healing in a bone-defect model of beagle dogs to investigate the effect of decoy ODN on bone metabolism. Application of NF-kappaB decoy ODN significantly reduced interleukin-6 activity in crevicular fluid and improved alveolar bone loss in the analysis of dental radiographs and DEXA. Direct measurement of exposed root that lost alveolar bone support revealed that NF-kappaB decoy treatment dramatically protected bone from loss. In a bone-defect model, NF-kappaB decoy ODN promoted the healing process as compared with control scrambled decoy in micro-CT analysis. Overall, inhibition of NF-kappaB by decoy strategy prevented the progression of bone loss in periodontitis and promoted the wound healing in bone defects through the inhibition of osteoclastic bone resorption. Targeting of NF-kappaB might be a potential therapy in various bone metabolic diseases.

  12. Treatment of renal osteopathy by Rocaltrol, with special reference to parathormone levels and X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.L.

    The effects of treatment of renal osteopathy with 1.25 (OH)/sub 2/D/sub 3/ was evaluated in 24 chronic hemodialysis patients. The best results of treatment were displayed in patients in whom 1.25 (OH)/sub 2/D/sub 3/ determined only a slow rise in plasma calcium levels. In these patients iPTH, alkaline phosphatase levels, and osteoblast counts in bone biopsies were initially high. Definite improvement of bone resorption was found on X-ray examination. In contrast in patients with low iPTH, low alkaline phosphatase levels, and low osteoblast counts, administration of 1.25 (OH)/sub 2/D/sub 3/ determined a fast rise of plasma calcium levels. No X-ray modifications could be detected.

  13. Laminar resorption in modified osteo-odonto-keratoprosthesis procedure: a cause for concern.

    Science.gov (United States)

    Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rachapalle, Sudhir Reddi

    2014-08-01

    To analyze the cases of lamina resorption following the modified osteo-odonto-keratoprosthesis (MOOKP) procedure. Retrospective case series. Case records of 18 eyes (20 laminae) of 17 patients who showed evidence of lamina resorption out of the 85 eyes (87 laminae) of 82 patients that underwent MOOKP procedure between March 2003 and March 2013 were analyzed. Of the 17 patients (20 laminae), 1 underwent MOOKP procedure following multiple graft failures, 6 (7 laminae) belonged to the chemical injury group, and 10 (12 laminae) to the Stevens-Johnson syndrome (SJS) group. Resorption was noted in 20 out of 87 laminae (22.98%). The need for removal of lamina/extrusion was noted in 3 out of the 7 laminae in the chemical injury group and 8 out of the 12 laminae in the SJS group. The mean duration to the first sign suggestive of resorption among patients of SJS was 36.7 months and among patients of chemical injury was 43 months. Vitritis was the presenting feature (7 of 20 laminae, 35%) indicative of early resorption, and the occurrence of the same in eyes with lamina resorption was noted to be statistically significant in comparison to controls (P<.001). Sixteen out of 20 laminae showed evidence of resorption superiorly. Vitritis was the most common presenting feature of lamina resorption and could be an indicator of lamina resorption. Resorption of the laminae was noted to occur along the aspect with thinner bone support in all eyes. Incidence of severe resorption with extrusion of cylinder/requiring lamina removal was noted to be higher among patients with SJS. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    International Nuclear Information System (INIS)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun; Chung, Won-Yoon

    2014-01-01

    acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice

  15. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice.

  16. High-dose therapy improved the bone remodelling compartment canopy and bone formation in multiple myeloma

    DEFF Research Database (Denmark)

    Hinge, Maja; Delaissé, Jean-Marie; Plesner, Torben

    2015-01-01

    transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed......Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling....... Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell...

  17. Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis.

    Science.gov (United States)

    Ikić Matijašević, M; Flegar, D; Kovačić, N; Katavić, V; Kelava, T; Šućur, A; Ivčević, S; Cvija, H; Lazić Mosler, E; Kalajzić, I; Marušić, A; Grčević, D

    2016-12-01

    Our study aimed to determine the functional activity of different osteoclast progenitor (OCP) subpopulations and signals important for their migration to bone lesions, causing local and systemic bone resorption during the course of collagen-induced arthritis in C57BL/6 mice. Arthritis was induced with chicken type II collagen (CII), and assessed by clinical scoring and detection of anti-CII antibodies. We observed decreased trabecular bone volume of axial and appendicular skeleton by histomorphometry and micro-computed tomography as well as decreased bone formation and increased bone resorption rate in arthritic mice in vivo. In the affected joints, bone loss was accompanied with severe osteitis and bone marrow hypercellularity, coinciding with the areas of active osteoclasts and bone erosions. Flow cytometry analysis showed increased frequency of putative OCP cells (CD3 - B220 - NK1.1 - CD11b -/lo CD117 + CD115 + for bone marrow and CD3 - B220 - NK1.1 - CD11b + CD115 + Gr-1 + for peripheral haematopoietic tissues), which exhibited enhanced differentiation potential in vitro. Moreover, the total CD11b + population was expanded in arthritic mice as well as CD11b + F4/80 + macrophage, CD11b + NK1.1 + natural killer cell and CD11b + CD11c + myeloid dendritic cell populations in both bone marrow and peripheral blood. In addition, arthritic mice had increased expression of tumour necrosis factor-α, interleukin-6, CC chemokine ligand-2 (Ccl2) and Ccl5, with increased migration and differentiation of circulatory OCPs in response to CCL2 and, particularly, CCL5 signals. Our study characterized the frequency and functional properties of OCPs under inflammatory conditions associated with arthritis, which may help to clarify crucial molecular signals provided by immune cells to mediate systemically enhanced osteoresorption. © 2016 British Society for Immunology.

  18. A role for PERK in the mechanism underlying fluoride-induced bone turnover

    International Nuclear Information System (INIS)

    Sun, Fei; Li, Xining; Yang, Chen; Lv, Peng; Li, Guangsheng; Xu, Hui

    2014-01-01

    While it has been well-documented that excessive fluoride exposure caused the skeletal disease and osteoblasts played a critical role in the advanced skeletal fluorosis, the underlying mechanism that mediated these effects remain poorly understood. The present study was undertaken to examine the effect of fluoride on bone of rats and MC3T3-E1 cells in vitro. Herein we found pathological features of high bone turnover in fluoride-treated rats, which was supported by an increase of osteogenic and osteoclastogenic genes expression in different stages of fluoride exposure. The skeletal toxicity of fluoride was accompanied by activation of endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR). A novel finding of this study was that expression of PKR-like endoplasmic reticulum kinase (PERK) was the same trend with receptor activator for nuclear factor-κ B ligand (RANKL), and NF-E2 p45-related factor 2 (Nrf2) was the same trend with Runt-related transcription factor 2 (Runx2) in bones of rats exposed to varied fluoride condition. Based on these data, we hypothesized that up-regulation of PERK probably played a role in mediating bone turnover induced by fluoride. Action of fluoride on MC3T3-E1 cells differentiation was demonstrated through analysis of alkaline phosphatase (ALP) activity and mineralized nodules formation. Meantime, an increase of binding immunoglobulin protein (BiP) expression indicated the active ER stress in cells exposed to various dose of fluoride. Blocking PERK expression using siRNA showed the obvious decrease of osteogenic and osteoclastogenic factors expression in MC3T3-E1 cells exposed to certain dose of fluoride that could positively stimulate osteoblastic viability. In conclusion these findings underscore the importance of PERK in modulating fluoride induced bone formation and bone resorption. Understanding the link between PERK and bone turnover could probe into the mechanism underlying different bone lesion of

  19. Denosumab for bone diseases: translating bone biology into targeted therapy.

    Science.gov (United States)

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  20. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA.

    Science.gov (United States)

    Bagi, Cedo M; Berryman, Edwin; Zakur, David E; Wilkie, Dean; Andresen, Catharine J

    2015-11-06

    Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA. Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and

  1. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Science.gov (United States)

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  2. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    I-Ping Chen

    2014-12-01

    Full Text Available More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.

  3. Increasing dietary phosphorus intake from food additives: potential for negative impact on bone health.

    Science.gov (United States)

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2014-01-01

    It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health

  4. Osteoclasts prefer aged bone

    DEFF Research Database (Denmark)

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I

    2007-01-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling...... of aged bones....

  5. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone

    NARCIS (Netherlands)

    Tami, A.E.; Leitner, M.M.; Baucke, M.G.; Mueller, T.L.; Lenthe, van G.H.; Müller, R.; Ito, K.

    2009-01-01

    In osteoporotic bones, resorption exceeds formation during the remodelling phase of bone turnover. As a consequence, decreased bone volume and bone contact result in the peri-implant region. This may subsequently lead to loss of fixation. In this study we investigated whether the presence of

  6. Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid.

    Science.gov (United States)

    Sirisoontorn, Irin; Hotokezaka, Hitoshi; Hashimoto, Megumi; Gonzales, Carmen; Luppanapornlarp, Suwannee; Darendeliler, M Ali; Yoshida, Noriaki

    2012-05-01

    The effect of zoledronic acid, a potent and novel bisphosphonate, on tooth movement and orthodontically induced root resorption in osteoporotic animals systemically treated with zoledronic acid as similarly used in postmenopausal patients has not been elucidated. Therefore, this study was undertaken. Fifteen 10-week-old female Wistar rats were divided into 3 groups: ovariectomy, ovariectomy + zoledronic acid, and control. Only the ovariectomy and ovariectomy + zoledronic acid groups underwent ovariectomies. Two weeks after the ovariectomy, zoledronic acid was administered only to the ovariectomy + zoledronic acid group. Four weeks after the ovariectomy, 25-g nickel-titanium closed-coil springs were applied to observe tooth movement and orthodontically induced root resorption. There were significant differences in the amounts of tooth movement and orthodontically induced root resorption between the ovariectomy and the control groups, and also between the ovariectomy and the ovariectomy + zoledronic acid groups. There was no statistically significant difference in tooth movement and orthodontically induced root resorption between the ovariectomy + zoledronic acid and the control groups. Zoledronic acid inhibited significantly more tooth movement and significantly reduced the severity of orthodontically induced root resorption in the ovariectomized rats. The ovariectomy + zoledronic acid group showed almost the same results as did the control group in both tooth movement and orthodontically induced root resorption. Zoledronic acid inhibits excessive orthodontic tooth movement and also reduces the risk of severe orthodontically induced root resorption in ovariectomized rats. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Zoledronate induces apoptosis in cells from fibro-cellular membrane of unicameral bone cyst (UBC).

    Science.gov (United States)

    Yu, John; Chang, Seong-Sil; Suratwala, Sanjeev; Chung, Woo-Sik; Abdelmessieh, Peter; Lee, Hahn-Jun; Yang, Jay; Lee, Francis Young-In

    2005-09-01

    Unicameral bone cyst (UBC) is a benign cystic lesion in children which is prone to fracture. Various treatments are available, but recurrence after different types of percutaneous injection therapy can cause bone destruction and pathologic fracture. The potential therapeutic effects of anti-resorptive agents, such as bisphosphonates, have not been investigated for UBC. The objective of this study was to characterize the cells from the fibro-cellular membrane of unicameral bone cyst (UBC cells) and to determine whether zoledronate, a nitrogen-containing bisphosphonate, could induce apoptosis in UBC cells. Flow cytometry and immunoblotting were performed in order to determine whether zoledronate induced apoptosis. Cells derived from normal human trabecular bones were used as controls against UBC cells to compare the effect of zoledronate in inducing apoptosis. Immunohisto/cytochemistry (IHC/ICC) and mini-array analyses were performed on tissues and cultured cells. Isolated peripheral blood mononuclear cells were incubated with conditioned media from the UBC cells to determine whether they are capable of inducing osteoclastogenesis. UBC membrane is composed of cells staining positively with CD68, SDF-1, STRO-1 and RANKL, but in vitro cells showed no staining with antibodies to CD68 and STRO-1, suggesting that there was a clonal selection of stromal cells during cell culture. UBC cells also express RUNX2 (runt-related transcription factor-2, core binding factor-1), a key transcription factor for osteoblastic differentiation. In addition, media collected from UBC cells induced a generation of multi-nucleated osteoclast-like cells of peripheral blood mononuclear cells. Zoledronate induced apoptosis of UBC cells in a dose-dependent manner. Apoptosis was evidenced by induction of the active cleaved form of caspase-3. The baseline apoptotic fractions were similar in UBC cells and trabecular bone cells. However, in the overall apoptotic fractions in this study, trabecular

  8. Low parathyroid hormone levels in bedridden geriatric patients with vitamin D deficiency.

    Science.gov (United States)

    Björkman, Mikko P; Sorva, Antti J; Risteli, Juha; Tilvis, Reijo S

    2009-06-01

    To identify the clinical conditions associated with low parathyroid hormone (PTH) in patients with vitamin D deficiency and to evaluate the stability of the blunted PTH response to vitamin D deficiency over 6 months. Secondary analysis of a randomized double-blind controlled vitamin D supplementation trial. Four long-term care hospitals in Helsinki, Finland. Two hundred eighteen chronically bedridden patients. Plasma 25-hydroxyvitamin D (25-OHD), intact PTH, amino-terminal propeptide of type I procollagen (PINP), carboxy-terminal telopeptide of type I collagen (ICTP), activities of daily living (ADLs), and body mass index (BMI) were measured at baseline and at 6 months. Patient records were reviewed for demographic data. PTH was within reference values (8-73 ng/L) despite low 25-OHD level (bedridden patients with vitamin D deficiency. Attenuated parathyroid function appears to be associated with immobilization that causes accelerated bone resorption. Further studies addressing the possible adverse effects of low PTH are warranted.

  9. Physical properties of root cementum: part 20. Effect of fluoride on orthodontically induced root resorption with light and heavy orthodontic forces for 4 weeks: a microcomputed tomography study.

    Science.gov (United States)

    Karadeniz, Ersan Ilsay; Gonzales, Carmen; Nebioglu-Dalci, Oyku; Dwarte, Dennis; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2011-11-01

    The major side effect of orthodontic treatment is orthodontically induced inflammatory root resorption. Fluoride was previously shown to reduce the volume of the root resorption craters in rats. However, the effect of fluoride on orthodontically induced inflammatory root resorption in humans has not yet been investigated. The aim of this study was to investigate the effect of high and low amounts of fluoride intake from birth on orthodontically induced inflammatory root resorption under light (25 g) and heavy (225 g) force applications. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from 2 cities in Turkey with high and low fluoride concentrations in the public water of ≥ 2 and ≤ 0.05 ppm, respectively. The patients were randomly separated into 4 groups of 12 each: group 1, high fluoride intake and heavy force; group 2, low fluoride intake and heavy force; group 3, high fluoride intake and light force; and group 4, low fluoride intake and light force. Light or heavy buccal tipping orthodontic forces were applied on the maxillary first premolars for 28 days. At day 28, the teeth were extracted, and the samples were analyzed with microcomputed tomography. Fluoride reduced the volume of root resorption craters in all groups; however, this effect was significantly different with high force application (P = 0.015). It was also found that light forces caused less root resorption than heavy forces. There was no statistical difference in the amount of root resorption observed on root surfaces (buccal, lingual, mesial, and distal) in all groups. However, the middle third of the roots showed the least root resorption. With high fluoride intake and heavy force application, less root resorption was found in all root surfaces and root thirds. Fluoride may reduce the volume of root resorption craters. This effect is significant with heavy force applications (P root showed significantly greater root

  10. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  11. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Science.gov (United States)

    SCHWARTZ, João Paulo; RAVELI, Taísa Boamorte; ALMEIDA, Kélei Cristina de Mathias; SCHWARTZ-FILHO, Humberto Osvaldo; RAVELI, Dirceu Barnabé

    2015-01-01

    Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT). Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years) with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0) and after Herbst treatment (T1). All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%. Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders. Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance. PMID:26537718

  12. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Directory of Open Access Journals (Sweden)

    João Paulo SCHWARTZ

    2015-10-01

    Full Text Available Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT.Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0 and after Herbst treatment (T1. All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%.Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders.Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance.

  13. Increasing Dietary Phosphorus Intake from Food Additives: Potential for Negative Impact on Bone Health123

    Science.gov (United States)

    Takeda, Eiji; Yamamoto, Hironori; Yamanaka-Okumura, Hisami; Taketani, Yutaka

    2014-01-01

    It is important to consider whether habitual high phosphorus intake adversely affects bone health, because phosphorus intake has been increasing, whereas calcium intake has been decreasing in dietary patterns. A higher total habitual dietary phosphorus intake has been associated with higher serum parathyroid hormone (PTH) and lower serum calcium concentrations in healthy individuals. Higher serum PTH concentrations have been shown in those who consume foods with phosphorus additives. These findings suggest that long-term dietary phosphorus loads and long-term hyperphosphatemia may have important negative effects on bone health. In contrast, PTH concentrations did not increase as a result of high dietary phosphorus intake when phosphorus was provided with adequate amounts of calcium. Intake of foods with a ratio of calcium to phosphorus close to that found in dairy products led to positive effects on bone health. Several randomized controlled trials have shown positive relations between dairy intake and bone mineral density. In our loading test with a low-calcium, high-phosphorus lunch provided to healthy young men, serum PTH concentrations showed peaks at 1 and 6 h, and serum fibroblast growth factor 23 (FGF23) concentrations increased significantly at 8 h after the meal. In contrast, the high-calcium, high-phosphorus meal suppressed the second PTH and FGF23 elevations until 8 h after the meal. This implies that adequate dietary calcium intake is needed to overcome the interfering effects of high phosphorus intake on PTH and FGF23 secretion. FGF23 acts on the parathyroid gland to decrease PTH mRNA and PTH secretion in rats with normal kidney function. However, increased serum FGF23 is an early alteration of mineral metabolism in chronic kidney disease, causing secondary hyperthyroidism, and implying resistance of the parathyroid gland to the action of FGF23 in chronic kidney disease. These findings suggest that long-term high-phosphorus diets may impair bone health

  14. Alteração do teor de cálcio no banho de DP para 2,5 mEq/L é eficaz no reestabelecimento dos valores preconizados por diretrizes atuais em pacientes com PTH < 150 pg/dL Low-calcium peritoneal dialysis solution is effective in bringing PTH levels to the range recommended by current guidelines in patients with PTH levels < 150 pg/dL

    Directory of Open Access Journals (Sweden)

    Thyago Proença de Moraes

    2010-09-01

    Full Text Available INTRODUÇÃO/OBJETIVO: A doença óssea adinâmica (DOA é um achado comum em diálise peritoneal (PD e é considerada fator de risco para desenvolvimento de fraturas e doença cardiovascular. Dados do BRAZPD apontam as soluções de cálcio a 3,5 mEq/L presentes na maioria das prescrições no país, que possui quase 9.000 pacientes em PD. É comum o balanço positivo de cálcio com concentrações a 3,5 mEq/L contribuindo para o desenvolvimento de DOA. Diretrizes atuais recomendam um PTHi na DRC V em diálise entre 2 e 9 vezes (150-500 pg/mL o valor máximo da normalidade. O objetivo deste estudo foi avaliar a resposta em 6 meses do PTH-i após a conversão para solução de cálcio a 2,5 mEq/L de pacientes que usavam soluções com cálcio a 3,5 mEq/L e com PTH-i basal INTRODUCTION/OBJECTIVE: Adinamic bone disease (ABD is a common finding in peritoneal dialysis (PD and is associated with higher risk of developing cardiovascular and bone disease. Data from BRAZPD indicates that 3.5 mEq/L calcium PD solutions represents the majority of PD prescriptions in the country. A positive calcium balance can contribute to ABD development. Currently guidelines suggest that PTH-i levels in end stage renal disease should be kept from 150-300 pg/mL. The purpose of this study is to evaluate 6 month PTH-i response after conversion to 2.5 mEq/L calcium PD solution in patients with baseline PTH-i levels < 150 pg/mL. METHODS: Prospective, observational study of all prevalent patients (at least 90 days on therapy on PD of a single Brazilian center from January 2008 to May 2009. Inclusion criteria (1 be in use of a PD solution with 3.5mEq/L of calcium; (2 baseline PTH leves < 150 pg/ mL. According to clinical practice patients could be switched to PD solutions with 2.5 mEq/L of calcium. RESULTS: 35 patients (age 62 ± 17 years were included. Of these 22 were converted to 2.5 mEq/L calcium solutions. Diabetic nephropathy (36% was the main cause of renal disease

  15. Decrease in the expression of the type 1 PTH/PTHrP receptor (PTH1R on chondrocytes in animals with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Skwara Adrian

    2010-04-01

    Full Text Available Abstract Background To evaluate the expression of the type 1 PTH/PTHrP receptor (PTH1R on chondrocytes from hyaline cartilage over the course of osteoarthritis (OA. Methods In 12 NZW rabbits, the anterior cruciate ligament (ACL was resected to create anterior instability of the knee. In 12 control rabbits, only a sham operation, without resection of the ACL, was performed. Four animals from each group were killed at 3, 6, and 12 weeks. After opening the knee joint, OA was macroscopically graded and hyaline cartilage of the load-bearing area was evaluated histologically according to the Mankin scale and by immunostaining for PTH1R. Results There was a positive linear correlation between the time after surgery and the macroscopic and histologic OA scores. The scores in the control group were constant over the time course. Immunostaining showed significantly less expression of PTH1R in the experimental compared to the control group after 6 (P Conclusions The results show an in vivo decrease in the expression of PTH1R on chondrocytes over the time course of OA. Further studies are needed to evaluate whether new treatment approaches could evolve from this knowledge.

  16. Sodium and bone health

    DEFF Research Database (Denmark)

    Teucher, B.; Dainty, J. R.; Spinks, C. A.

    2008-01-01

    High salt intake is a well-recognized risk factor for osteoporosis because it induces calciuria, but the effects of salt on calcium metabolism and the potential impact on bone health in postmenopausal women have not been fully characterized. This study investigated adaptive mechanisms in response.......9 Versus 11.2 g) diets, reflecting lower and upper intakes in post men opausal women consuming a Western-style diet, were provided. Stable isotope labeling techniques were used to measure calcium absorption and excretion, compartmental modeling was undertaken to estimate bone calcium balance......, and biomarkers of bone formation and resorption were measured in blood and urine. Moderately high salt intake (11.2 g/d) elicited a significant increase in urinary calcium excretion (p = 0.0008) and significantly affected bone calcium balance with the high calcium diet 0.024). Efficiency of calcium absorption...

  17. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-06-15

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  18. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    International Nuclear Information System (INIS)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae

    2004-01-01

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  19. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  20. Immunological Reaction in TNF-α-Mediated Osteoclast Formation and Bone Resorption In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2013-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF-α may play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF-κB ligand (RANKL to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF-α on bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF-α is considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL- 12, IL-18, and interferon-γ (IFN-γ strongly inhibit osteoclast formation. IL-12, IL-18, and IFN-γ induce apoptosis in bone marrow cells treated with TNF-α  in vitro, and osteoclastogenesis is inhibited by the interactions of TNF-α-induced Fas and Fas ligand induced by IL-12, IL-18, and IFN-γ. This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF-α-mediated osteoclastogenesis in vitro and in vivo.

  1. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation.

    Science.gov (United States)

    Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P

    2017-07-01

    Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. A Comparison between the Effects of Aerobic Dance Training on Mini-Trampoline and Hard Wooden Surface on Bone Resorption, Health-Related Physical Fitness, Balance, and Foot Plantar Pressure in Thai Working Women.

    Science.gov (United States)

    Sukkeaw, Wittawat; Kritpet, Thanomwong; Bunyaratavej, Narong

    2015-09-01

    To compare the effects of aerobic dance training on mini-trampoline and hard wooden surface on bone resorption, health-related physical fitness, balance, and foot plantar pressure in Thai working women. Sixty-three volunteered females aged 35-45 years old participated in the study and were divided into 3 groups: A) aerobic dance on mini-trampoline (21 females), B) aerobic dance on hard wooden surface (21 females), and C) control group (21 females). All subjects in the aerobic dance groups wore heart rate monitors during exercise. Aerobic dance worked out 3 times a week, 40 minutes a day for 12 weeks. The intensity was set at 60-80% of the maximum heart rate. The control group engaged in routine physical activity. The collected data were bone formation (N-terminal propeptine of procollagen type I: P1NP) bone resorption (Telopeptide cross linked: β-CrossLaps) health-related physical fitness, balance, and foot plantar pressure. The obtained data from pre- and post trainings were compared and analyzed by paired samples t-test and one way analysis of covariance. The significant difference was at 0.05 level. After the 12-week training, the biochemical bone markers of both mini-trampoline and hard wooden surface aerobic dance training subjects decreased in bone resorption (β-CrossLaps) but increased in boneformation (P1NP). Health-related physical fitness, balance, and foot plantar pressure were not only better when comparing to the pre-test result but also significantly different when comparing to the control group (p trampoline showed that leg muscular strength, balance and foot plantar pressure were significantly better than the aerobic dance on hard wooden surface (p trampoline and hard wooden surface had positive effects on biochemical bone markers. However, the aerobic dance on mini-trampoline had more leg muscular strength and balance including less foot plantar pressure. It is considered to be an appropriate exercise programs in working women.

  3. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  4. In vitro and preclinical assessment of an intranasal spray formulation of parathyroid hormone PTH 1-34 for the treatment of osteoporosis.

    Science.gov (United States)

    Williams, Allan J; Jordan, Faron; King, Gareth; Lewis, Andrew L; Illum, Lisbeth; Masud, Tahir; Perkins, Alan C; Pearson, Richard G

    2018-01-15

    Osteoporosis treatment with PTH 1-34 injections significantly reduces the incidence of bone fracture. Potential further reductions in fracture rate should be observed through nasal spray delivery to address the poor compliance associated with patient dislike of repeated PTH 1-34 subcutaneous injections. In vitro human osteoblast-like Saos-2 cell intracellular cAMP levels were used to define PTH 1-34 nasal spray formulation bioactivity. The chemically synthesised PTH 1-34 had an EC 50 of 0.76nM. Absorption enhancers polyethylene glycol (15)-hydroxystearate (Solutol ® HS15), poloxamer 407, chitosan or sodium hyaluronate did not diminish the bioactivity of PTH 1-34 within an in vitro cell culture model (p >0.05). We also demonstrated the effectiveness of the transmucosal absorption enhancer Solutol ® HS15 in a nasal spray formulation using a preclinical pharmacokinetic model. In Sprague-Dawley rats without the absorption enhancer the uptake of PTH 1-34 into the blood via intranasal delivery produced a Cmax of 2.1±0.5ng/ml compared to 13.7±1.6ng/ml with Solutol ® HS15 enhancer (p=0.016) and a Cmax14.8±8ng/ml in subcutaneous injections. Together these data illustrate that the nasal spray formulation bioactivity in vitro is not affected by the nasal spray absorption enhancers investigated, and the Solutol ® HS15 nasal spray formulation had an equivalent pharmacokinetic profile to subcutaneous injection in the rat model. The Solutol ® HS15 formulation therefore demonstrated potential as a PTH 1-34 nasal spray formulation for the treatment of osteoporosis. Copyright © 2017. Published by Elsevier B.V.

  5. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  6. Malignancy-Induced Hypercalcemia—Diagnostic Challenges

    Directory of Open Access Journals (Sweden)

    Claire Hoyoux

    2017-11-01

    Full Text Available Hypercalcemia in children is a rare metabolic finding. The clinical picture is usually non-specific, and the etiology includes several entities (metabolic, nutritional, drug-induced, inflammatory, cancer-associated, or genetic depending on the age at presentation, but severe hypercalcemia is associated mainly with malignancy in childhood and sepsis in neonates. Severe parathyroid hormone (PTH-suppressed hypercalcemia is challenging and requires multidisciplinary diagnostic and therapeutic approaches to (i confirm or rule out a malignant cause, (ii treat it and its potentially dangerous complications. We report a case of severe and complicated PTH-independent hypercalcemia in a symptomatic 3-year-old boy. His age, severity of hypercalcemia and its complicated course, and the first imaging reports were suggestive of malignancy. The first bone and kidney biopsies and bone marrow aspiration were normal. The definitive diagnosis was a malignant-induced hypercalcemia, and we needed 4 weeks to assess other differential diagnoses and to confirm, on histopathological and immunochemical base, the malignant origin of hypercalcemia. Using this case as an illustrative example, we suggest a diagnostic approach that underlines the importance of repeated histology if the clinical suspicion is malignancy-induced hypercalcemia. Effective treatment is required acutely to restore calcium levels and to avoid complications.

  7. Impact of antiepileptic drugs on bone health: Need for monitoring, treatment, and prevention strategies

    Directory of Open Access Journals (Sweden)

    Ekta Arora

    2016-01-01

    Full Text Available Epilepsy is the most common neurological disorder affecting approximately 50 million people worldwide. In India, overall prevalence of epilepsy is reported to be 5.59/1000 population. Antiepileptic drugs (AEDs constitute the main-stay of treatment with a large number of AEDs available in the market. High incidence of adverse effects is a major limitation with AEDs. One of the major concerns is significant metabolic effects on the bone. However, little attention has been paid to this issue because most of the bone effects remain subclinical for a long time and may take years to manifest clinically. The main effects include hypocalcemia, hypophosphatemia, reduced serum levels of Vitamin D, increase in parathormone (PTH levels, and alterations in bone turnover markers. The CYP450 enzyme-inducing AEDs such as phenytoin, phenobarbital, carbamazepine, and primidone are the most common AEDs associated with bone disorders while the data regarding the effect of valproate and newer AEDs such as lamotrigine, gabapentin, vigabatrin, levetiracetam, and topiramate on bone metabolism and bone density are scanty and controversial. Deficiency of Vitamin D is commonly described as a cause for the bone loss in epileptic patients while others being decreased absorption of calcium, increased PTH levels, and inhibition of calcitonin secretion, etc. However, there are no formal practical guidelines for the management of bone disease among those taking AEDs. Evidence-based strategies regarding monitoring, prevention, and treatment of bone diseases in patients on AED therapy are needed.

  8. The exploration of the changes in bone metabolism in patients with abnormal thyroid function

    International Nuclear Information System (INIS)

    Chu Shaolin; Li Xiaohong; Lei Qiufang; Ye Peihong; Chai Luhua

    2001-01-01

    To explore the changes in bone metabolism with abnormal thyroid function, BGP and PTH in 91 patients with hyperthyroidism, 37 patients with hypothyroidism, 51 controls, were measured by means of IRMA, calcaneus heel bone density (BMD) was measured by means of 241 Am single photon absorptiometry. BGP levels in hyperthyroidism were significantly higher than those in controls (P < 0.001). BGP levels in hypothyroidism were significantly lower than those in controls (P < 0.001). PTH levels in hyperthyroidism were a little lower than those in controls (P < 0.05). PTH levels in hypothyroidism were significantly higher than those in controls (P < 0.001). The measurement of BMD showed that the prevalence rates of osteoporosis (OP) in hyperthyroidism and hypothyroidism were significantly higher than those in controls. In hyperthyroidism and hypothyroidism groups the age of OP tends to be younger. The patients with hyperthyroidism over 55 years of age were all suffered from OP. The changes in BGP and PTH were earlier than BMD, so BGP and PTH can be used as sensitive indicator of the changes in bone metabolism with abnormal thyroid function, especially for curative effect observations

  9. Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption.

    Science.gov (United States)

    Pereira, S; Lavado, N; Nogueira, L; Lopez, M; Abreu, J; Silva, H

    2014-10-01

    Orthodontic-induced external apical root resorption (EARR) is a complex phenotype determined by poorly defined mechanical and patient intrinsic factors. The aim of this work was to construct a multifactorial integrative model, including clinical and genetic susceptibility factors, to analyze the risk of developing this common orthodontic complication. This retrospective study included 195 orthodontic patients. Using a multiple-linear regression model, where the dependent variable was the maximum% of root resorption (%EARRmax) for each patient, we assessed the contribution of nine clinical variables and four polymorphisms of genes involved in bone and tooth root remodeling (rs1718119 from P2RX7, rs1143634 from IL1B, rs3102735 from TNFRSF11B, encoding OPG, and rs1805034 from TNFRSF11A, encoding RANK). Clinical and genetic variables explained 30% of%EARRmax variability. The variables with the most significant unique contribution to the model were: gender (P < 0.05), treatment duration (P < 0.001), premolar extractions (P < 0.01), Hyrax appliance (P < 0.001) and GG genotype of rs1718119 from P2RX7 gene (P < 0.01). Age, overjet, tongue thrust, skeletal class II and the other polymorphisms made minor contributions. This study highlights the P2RX7 gene as a possible factor of susceptibility to EARR. A more extensive genetic profile may improve this model. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  11. Intermittent Administration of Parathyroid Hormone [1-34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    Full Text Available We examined whether intermittent administration of parathyroid hormone [1-34] (PTH[1-34]; 60 μg/kg/day can prevent the negative effects of titanium (Ti particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1-34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM, and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1-34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone-implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1-34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1-34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.

  12. Effect on thyroid function and serum PTH, BGP, CT of small dose of iodine 131 combined with Methimazole in patients with hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Jia-Yin Qiu

    2016-03-01

    Full Text Available Objective: To observe the effect on thyroid function and serum PTH, BGP, CT of small dose of iodine 131 combined with Methimazole in patients with hyperthyroidism. Methods: A total of 104 patients with hyperthyroidism willing be incorporated into the study were randomly divided into the observation group (54 cases and the control group (50 cases. The control group was treated with Methimazole, and the observation group was given a small dose of iodine 131 the basised on the control group. For 2 months, to observe the changes of thyroid function (TT3, TT4, FT3, FT4 and TSH and bone metabolism related indexes (PTH, BGP and CT of the two groups. Results: (1 After treatment, TT3, FT3, TT4 and FT4 of the two groups decreased with before, and the observation group improved more significantly than the control group, with statistical difference; TSH of the two groups had no significant change. (2 After treatment, BGP and CT of the two groups decreased and PTH increased, the observation group improved more significantly than the control group, with statistical difference. Conclusion: small dose of iodine 131 combined with Methimazole can correct thyroid function and bone metabolism quickly in patients with hyperthyroidism.

  13. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    Science.gov (United States)

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  14. External cervical resorption: diagnostic and treatment tips

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    Full Text Available ABSTRACT External cervical resorption is caused, almost exclusively, by dental trauma - especially those characterized by concussion - and is a dental disease to be diagnosed and treated accurately by endodontists. However, the vast majority of the cases is initially diagnosed by an orthodontist, due to the imaging possibilities in standardized documentations. Among the causes of external cervical resorption, it is common to mistakenly attribute it to orthodontic treatment, traumatic occlusion or even to chronic inflammatory periodontal disease. External cervical resorption is associated to dental trauma in several situations mentioned in this paper. In old cases, and eventually still nowadays, it may have been induced by internal tooth bleaching, which is increasingly less frequent in endodontically treated teeth. There are some tips to be followed and some care that must be taken during the diagnosis and treatment of external cervical resorption clinical cases. The present study lists foundations that will allow the professional to perform safely and accurately in each specific case. Some of these tips and care measures are of orthodontic nature.

  15. Vitamin D, parathyroid hormone, and acroosteolysis in systemic sclerosis.

    Science.gov (United States)

    Braun-Moscovici, Yolanda; Furst, Daniel E; Markovits, Doron; Rozin, Alexander; Clements, Philip J; Nahir, Abraham Menahem; Balbir-Gurman, Alexandra

    2008-11-01

    .Sclerodactyly with acroosteolysis (AO) and calcinosis are prominent features of systemic sclerosis (SSc), but the pathogenesis of these findings is poorly understood. Vitamin D and parathyroid hormone (PTH) have a crucial role in bone metabolism and resorption and may affect AO and calcinosis. We assessed vitamin D and PTH in patients with SSc. Medical records of 134 consecutive patients with SSc (American College of Rheumatology criteria) followed at the rheumatology department during the years 2003-2006 were reviewed for clinical assessment, laboratory evaluation [including 25(OH) vitamin D, calcium, phosphorus, alkaline phosphatase, PTH, creatinine, and albumin]; imaging data confirming AO and/or calcinosis. Patients followed routinely at least once a year were included (81 patients). Of these, 60 patients' medical records were found to have complete, relevant clinical, laboratory, and radiographic imaging. Thirteen patients had diffuse disease and 47 limited disease - 51 women and 9 men, 44 Jews and 16 Arabs; mean age 55 +/- 14 years; disease duration 8 +/- 6 years. AO with or without calcinosis was observed in 42 patients (70%). Vitamin D deficiency was found in 46% of patients (16 out of 44 Jewish patients, 10 out of 16 Arab patients). PTH was elevated in 21.7% of patients. Significant correlations were observed between acroosteolysis and PTH (p = 0.015), calcinosis (p = 0.009), and disease duration (p = 0.008), and between PTH and vitamin D levels (p = 0.01). All patients had normal serum concentrations of calcium, phosphorus, magnesium, and albumin, and liver and kidney functions. In this group of Mediterranean patients with SSc, the incidence of vitamin D deficiency and secondary hyperparathyroidism was surprisingly high. This finding correlated with the occurrence of AO and calcinosis. Low levels of vitamin D may reflect silent malabsorption and might be a risk factor for secondary hyperparathyroidism and bone resorption. Traditional dress habits and low

  16. Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin.

    Science.gov (United States)

    Salinas-Muñoz, M; Garrido-Flores, M; Baeza, M; Huamán-Chipana, P; García-Sesnich, J; Bologna, R; Vernal, R; Hernández, M

    2017-11-01

    The aim of this study is to assess the levels and diagnostic accuracy of a set of bone resorption biomarkers, including TRAP-5, RANKL, and OPG in symptomatic and asymptomatic apical lesions and controls. Apical tissues from symptomatic and asymptomatic apical periodontitis patients and periodontal ligaments from healthy teeth extracted for orthodontic reasons were processed for tissue homogenization and the levels of TRAP-5, RANKL, and OPG were determined by multiplex assay. Marker levels were analyzed by Kruskal Wallis test, and diagnostic accuracy was analyzed with ROC curves. Higher levels of RANKL, OPG, and RANKL/OPG ratio were determined in both types of apical lesions compared to healthy periodontal ligament, whereas higher TRAP-5 levels were found only in symptomatic apical lesions (p apical lesions versus healthy controls (AUC = 0.69, p asymptomatic apical periodontitis (AUC = 0.71, p Apical lesions showed higher RANKL and OPG levels than healthy tissues. TRAP-5 levels were the highest in symptomatic apical lesions, suggesting that these represent a progressive state, and showed diagnostic potential. Clinically symptomatic apical periodontitis might represent biologically progressive apical lesions based on TRAP5 levels. TRAP5 has diagnostic potential to identify these lesions, representing a candidate prognostic biomarker.

  17. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Ding, Ming; Overgaard, Søren

    2015-01-01

    Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss...... in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research........ Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6mg/kg/day, 5 times weekly) for 7months. At 7months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed...

  18. IL-17 receptor A signaling is protective in infection-stimulated periapical bone destruction.

    Science.gov (United States)

    AlShwaimi, Emad; Berggreen, Ellen; Furusho, Hisako; Rossall, Jonathan Caleb; Dobeck, Justine; Yoganathan, Subbiah; Stashenko, Philip; Sasaki, Hajime

    2013-08-15

    IL-17 is a pleiotropic cytokine produced by Th17 T cells that induces a myriad of proinflammatory mediators. However, different models of inflammation report opposite functional roles of IL-17 signal in terms of its effects on bone destruction. In this study we determined the role of IL-17RA signal in bone resorption stimulated by dentoalveolar infections. Infrabony resorptive lesions were induced by surgical pulp exposure and microbial infection of mouse molar teeth. IL-17 was strongly induced in periapical tissues in wild-type (WT) mice by 7 d after the infection but was not expressed in uninfected mice. Dentoalveolar infections of IL-17RA knockout (KO) mice demonstrated significantly increased bone destruction and more abscess formation in the apical area compared with WT mice. Infected IL-17RA KO mice exhibited significantly increased neutrophils and macrophages compared with the WT littermates at day 21, suggesting a failure of transition from acute to chronic inflammation in the IL-17RA KO mice. The expression of IL-1 (both α and β isoforms) and MIP2 were significantly upregulated in the IL-17RA KO compared with WT mice at day 21 postinfection. The development of periapical lesions in IL-17RA KO mice was significantly attenuated by neutralization of IL-1β and MIP2. Taken together, these results demonstrate that IL-17RA signal seems to be protective against infection-induced periapical inflammation and bone destruction via suppression of neutrophil and mononuclear inflammation.

  19. Conservative Management of Invasive Cervical Resorption: A Case Report

    Directory of Open Access Journals (Sweden)

    Farhan Raza Khan

    2013-01-01

    Full Text Available Invasive cervical resorption is a condition that affects the root surface area below the epithelial attachment. Multiple treatment modalities are advocated, involving exposure of the invasive defect, removal of the granulation tissue and sealing with various restorative materials. This report demonstrates conservative treatment of a patient presenting with peri-apical periodontitis in upper right central and lateral incisors, along with Class II invasive resorption defect cervically on the mesial aspect of the central incisor, as a result of trauma. As the patient was not willing for any surgical intervention, only ortho-grade root canal treatment was carried out in both teeth, with Calcium hydroxide as intra-canal medicament. At three year follow-up, the patient remains asymptomatic demonstrating radiographic evidence of infilling of defect with bone-like tissue.Within the limitations of this report, it was seen that this conservative method for halting the progression of invasive cervical resorption could be under taken in patients who are un-willing for surgical intervention or in whom surgery is contra-indicated.

  20. Estrogen directly attenuates human osteoclastogenesis, but has no effect on resorption by mature osteoclasts

    DEFF Research Database (Denmark)

    Sørensen, M G; Henriksen, K; Dziegiel, Morten Hanefeld

    2006-01-01

    + monocytes were cultured in the presence of M-CSF and RANKL to induce osteoclast differentiation. Addition of 0.1-10 nM 17beta-estradiol to differentiating osteoclasts resulted in a dose-dependent reduction in tartrate resistant acid phosphatase (TRACP) activity reaching 60% at 0.1 nM. In addition, 17beta-estradiol...... inhibited bone resorption, as measured by the release of the C-terminal crosslinked telopeptide (CTX), by 60% at 0.1 nM, but had no effect on the overall cell viability. In contrast to the results obtained with differentiating osteoclasts, addition of 17beta-estradiol (0.001-10 nM) to mature osteoclasts did...

  1. Expression of RANKL/OPG during bone remodeling in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H., E-mail: tnk@ymghp.jp [Department of Orthopedic Surgery, Yamaguchi Grand Medical Center, 77 Ohsaki, Hofu, Yamaguchi 747-8511 (Japan); Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); Mine, T. [Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Ogasa, H. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Taguchi, T. [Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Liang, C.T. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); National Health Research Institutes, Taipei 115, Taiwan (China)

    2011-08-12

    Highlights: {yields} This is the first study to determine the relationship between osteogenic differentiation and RANKL/OPG expression during bone remodeling in vivo. {yields} The OPG expression peak occurred during the bone formation phase, whereas the marked elevation of RANKL expression was observed during the bone resorption phase. {yields} Histological analysis showed that RANKL/OPG immunoreactivity was predominantly associated with bone marrow cells in the marrow cavity. {yields} The present study confirmed that RANKL/OPG are key factors linking bone formation to resorption during the bone remodeling process. -- Abstract: The interaction between receptor activator of nuclear factor {kappa}B ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation. Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen {alpha}1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The

  2. Expression of RANKL/OPG during bone remodeling in vivo

    International Nuclear Information System (INIS)

    Tanaka, H.; Mine, T.; Ogasa, H.; Taguchi, T.; Liang, C.T.

    2011-01-01

    Highlights: → This is the first study to determine the relationship between osteogenic differentiation and RANKL/OPG expression during bone remodeling in vivo. → The OPG expression peak occurred during the bone formation phase, whereas the marked elevation of RANKL expression was observed during the bone resorption phase. → Histological analysis showed that RANKL/OPG immunoreactivity was predominantly associated with bone marrow cells in the marrow cavity. → The present study confirmed that RANKL/OPG are key factors linking bone formation to resorption during the bone remodeling process. -- Abstract: The interaction between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation. Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen α1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The expression of bone formation

  3. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    Science.gov (United States)

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bone Mineral Status in Children and Adolescents with Klinefelter Syndrome

    Directory of Open Access Journals (Sweden)

    Stefano Stagi

    2016-01-01

    Full Text Available Objective. Klinefelter syndrome (KS has long-term consequences on bone health. However, studies regarding bone status and metabolism during childhood and adolescence are very rare. Patients. This cross-sectional study involved 40 (mean age: 13.7±3.8 years KS children and adolescents and 80 age-matched healthy subjects. For both patient and control groups, we evaluated serum levels of ionised and total calcium, phosphate, total testosterone, luteinising hormone, follicle stimulating hormone, parathyroid hormone (PTH, 25-hydroxyvitamin D (25(OHD, 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline concentrations. We also calculated the z-scores of the phalangeal amplitude-dependent speed of sound (AD-SoS and the bone transmission time (BTT. Results. KS children and adolescents showed significantly reduced AD-SoS (p<0.005 and BTT (p<0.0005 z-scores compared to the controls. However, KS patients presented significantly higher PTH (p<0.0001 and significantly lower 25(OHD (p<0.0001, osteocalcin (p<0.05, and bone alkaline phosphatase levels (p<0.005. Interestingly, these metabolic bone disorders were already present in the prepubertal subjects. Conclusions. KS children and adolescents exhibited impaired bone mineral status and metabolism with higher PTH levels and a significant reduction of 25-OH-D and bone formation markers. Interestingly, this impairment was already evident in prepubertal KS patients. Follow-ups should be scheduled with KS patients to investigate and ameliorate bone mineral status and metabolism until the prepubertal ages.

  5. Effect of Ramadan fasting in Saudi Arabia on serum bone profile and immunoglobulins.

    Science.gov (United States)

    Bahijri, Suhard M; Ajabnoor, Ghada M; Borai, Anwar; Al-Aama, Jumana Y; Chrousos, George P

    2015-10-01

    Each year Muslims fast from dawn to sunset for 1 month (Ramadan). In Saudi Arabia, the sleep-wake cycle during Ramadan is severely disturbed and is associated with abolition of the circadian cortisol rhythm, exposing Saudis to continuously increased cortisol levels, which may influence the immune response. In addition to cortisol, sleep and fasting affect the secretion of parathyroid hormone (PTH) and hence bone metabolism. Our objective was to investigate the effect of Ramadan type fasting on secretory patterns of PTH, markers of bone metabolism, and serum immunoglobulins. Blood samples from healthy young volunteers were collected at 9 a.m. and 9 p.m. (± 1 hour) before (Shaban) and 2 weeks into Ramadan. Calcium, phosphorus, magnesium, albumin, alkaline phosphatase, 25-OH vitamin D, intact PTH (iPTH), and immunoglobulin (Ig) A, M and G were measured. During Ramadan, evening-adjusted calcium was higher (p = 0.036) and phosphate lower (p Ramadan mean morning phosphate was higher and the evening level lower was than Shabaan values (p = 0.010 and p Ramadan (p = 0.003 and p = 0.021 for morning and evening, respectively). Changes in dietary practices during Ramadan modulated PTH secretion to a pattern which might be beneficial to bone health. Combined effects of fasting and disturbed sleep led to a noted decrease in IgG level. Therefore, a possible beneficial effect of fasting on bone turnover is combined with decreased immune response.

  6. Calcium homestasis markers of bone metabolism in feline hyperthyroidism - A review

    OpenAIRE

    Cardoso, M. J L; Muniz, L. M R [UNESP; Gasparini, T. J.; Melussi, M.

    2007-01-01

    Hyperthyroidism is the most frequent endocrine disease in old-aged cats. It is a illness provoked by the excess of circulating thyroid hormones. Hyperthyroidism causes alteration in bone metabolism with predominance of activity resorption. The evaluation of bone metabolism can be made by measuring serum and urinary markers of bone metabolism or bone mineral densitometry. Osteoblasts are responsible cells for bone formation while the osteoclasts are for resorption. In physiological situation o...

  7. Effects of Cinnamoyloxy-mammeisin from Geopropolis on Osteoclast Differentiation and Porphyromonas gingivalis-Induced Periodontitis.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Ramos-Junior, Erivan Schnaider; Franchin, Marcelo; Taira, Thaise Mayumi; Beutler, John A; Franco, Gilson Cesar Nobre; Ikegaki, Masaharu; de Alencar, Severino Matias; Fukada, Sandra Yasuyo; Rosalen, Pedro Luiz

    2017-06-23

    Bone-loss-related diseases such as rheumatoid arthritis, osteomyelitis, osteoporosis, and periodontitis are associated with high rates of morbidity worldwide. These disorders are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. In this context, we evaluated the effect of cinnamoyloxy-mammeisin (CNM), an anti-inflammatory coumarin found in Melipona scutellaris geopropolis, on key targets related to bone remodeling. In the present study we investigated the in vitro effects of CNM on osteoclast differentiation and M-CSF+RANKL-induced osteoclastogenic marker expression. Additionally, the interference of CNM treatment on osteoclast activity was evaluated by zymography and resorption area. Finally, we assessed the capacity of the compound to mitigate alveolar bone loss in vivo in experimental murine periodontitis induced by Porphyromonas gingivalis. We observed that treatment with CNM impaired osteoclast differentiation, as evidenced by a reduced number of tartrate-resistant acid-phosphatase-positive multinucleated cells (TRAP+) as well as the expression of osteoclastogenic markers upon M-CSF+RANKL-induced stimulation. Similarly, we observed reduced gelatinolytic and resorption capacity in M-CSF+RANKL-induced cells in vitro. Lastly, CNM attenuated alveolar bone loss in an experimental murine periodontitis model. These findings indicate that CNM may be considered a promising treatment for bone loss diseases.

  8. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M.; Gil, Francisco Javier; Boyd, Steven K.; Rodríguez, Daniel

    2016-01-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  9. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria [Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby (Denmark); Manzanares-Céspedes, Maria Cristina [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Sevilla, Pablo [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), Barcelona (Spain); Nart, José [Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Sant Cugat (Spain); Manzanares, Norberto [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Manero, José M. [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain); Gil, Francisco Javier [Universitat Internacional de Catalunya, Sant Cugat (Spain); Boyd, Steven K. [McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta (Canada); Rodríguez, Daniel, E-mail: daniel.rodriguez.rius@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain)

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  10. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Caiazza, S.; Falcinelli, G.; Pintucci, S. (Istituto Superiore di Sanita, Rome (Italy))

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized.

  11. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized

  12. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  13. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo

    DEFF Research Database (Denmark)

    Henriksen, Kim; Gram, Jeppe; Høegh-Andersen, Pernille

    2005-01-01

    of osteoclast markers, morphology, and localization of proteins involved in bone resorption, such as ClC-7 and cathepsin K. The ability to resorb bone was also normal. In vivo, we compared the bone resorption and bone formation response to T3 in ADOI patients and age- and sex-matched controls. We found...

  14. DON-induced changes in bone homeostasis in mink dams

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2017-09-01

    Full Text Available Introduction: The aim of the study was to investigate the mechanical and geometric properties as well as bone tissue and mineral density of long bones in mink dams exposed to deoxynivalenol (DON since one day after mating, throughout gestation (ca. 46 d and lactation to pelt harvesting. Material and Methods: Thirty clinically healthy multiparous minks (Neovison vison of the standard dark brown type were used. After the mating, the minks were randomly assigned into two equal groups: nontreated control group and DON group fed wheat contaminated naturally with DON at a concentration of 1.1 mg·kg-1 of feed. Results: The final body weight and weight and length of the femur did not differ between the groups. However, DON contamination decreased mechanical endurance of the femur. Furthermore, DON reduced the mean relative wall thickness and vertical wall thickness of the femur, while vertical cortical index, midshaft volume, and cross-sectional moment of inertia increased. Finally, DON contamination did not alter bone tissue density, bone mineral density, or bone mineral content, but decreased the values of all investigated structural and material properties. Conclusion: DON at applied concentration probably intensified the process of endosteal resorption, which was the main reason for bone wall thinning and the weakening of the whole bone.

  15. Locally delivered ethyl-2,5-dihydroxybenzoate using 3D printed bone implant for promotion of bone regeneration in a osteoporotic animal model

    Directory of Open Access Journals (Sweden)

    B-J Kwon

    2018-01-01

    Full Text Available Osteoporosis is a disease characterized by low bone mass, most commonly caused by an increase in bone resorption that is not matched by sufficient bone formation. The most common complications of postmenopausal osteoporosis are bone-related defects and fractures. Fracture healing is a multifactorial bone regeneration process, influenced by both biological and mechanical factors related to age, osteoporosis and stability of the osteosynthesis. During the treatment of bone defects in osteoporotic conditions, imbalanced bone remodeling is the leading cause for implant failure. To overcome these problems, ethyl-2,5-dihydroxybenzoate (E-2,5-DHB, a drug that promotes bone formation and inhibits bone resorption, was used. E-2,5-DHB-incorporating titanium (Ti implants using poly(lactic-co-glycolic acid (PLGA coating for local delivery of E-2,5-DHB were developed and the effects on bone healing of femoral defects were evaluated in an osteoporotic model. The release of E-2,5-DHB resulted in decreased bone resorption and increased bone formation around the implant. Thus, it was confirmed that, in the osteoporotic model, bone healing was increased and implant fixation was enhanced. These results suggested that E-2,5-DHB-coated Ti implants have great potential as an ultimate local drug delivery system for bone tissue scaffolds.

  16. Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-08-01

    Full Text Available Aconitum pseudo-laeve var. erectum (APE has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL/osteoprotegerin (OPG ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1 and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases.

  17. PTH Assays: Understanding What We Have and Forecasting What We Will Have

    Directory of Open Access Journals (Sweden)

    Jose Gilberto H. Vieira

    2012-01-01

    Full Text Available Parathyroid hormone (PTH assays have evolved continuously for the last 50 years. Since the first radioimmunoassay was described in 1963, several assays based on immunological identification have been published (first generation assays. The routine assays used nowadays are immunometric “sandwich-type”. They are based on two different monoclonal antibodies, one amino-terminal and the other carboxyl terminal specific. These second generation assays are widely available and adapted to most of the automation platforms. The specificity of the amino terminal antibody defines if the immunometric assay measures only the bioactive PTH circulating form (including the first amino terminal amino acids or the “intact” PTH, which includes, besides bioactive PTH, other “long” carboxyl-terminal forms, for example, 7–84-PTH. Assays for “intact” PTH are the most commonly available and the potential advantage of the bioactive PTH assays is still debatable. Next generation of assays will be based on different principles, mainly mass spectrometry in samples submitted to a prior purification and fragmentation steps. These assays will provide information about the whole spectra of PTH peptides in circulation, with a significant increase of the information regarding this biologically important peptide hormone.

  18. The association between body composition, 25(OH)D, and PTH and bone mineral density in black African and Asian Indian population groups.

    Science.gov (United States)

    George, Jaya A; Micklesfield, L K; Norris, S A; Crowther, N J

    2014-06-01

    There are few data on the contribution of body composition to bone mineral density (BMD) in non-Caucasian populations. We therefore studied the contribution of body composition, and possible confounding of 25-hydroxyvitamin D and PTH, to BMD at various skeletal sites in black African (BA) and Asian Indian (AI) subjects. This was a cross-sectional study in Johannesburg, South Africa. BMD, body fat, and lean mass were measured using dual x-ray absorptiometry and abdominal fat distribution by ultrasound in 714 healthy subjects, aged 18-65 years. Whole-body (subtotal), hip, femoral neck, and lumbar spine (lumbar) BMD were significantly higher in BA than AI subjects (P < .001 for all). Whole-body lean mass positively associated with BMD at all sites in both ethnic groups (P < .001 for all) and partially explained the higher BMD in BA females compared with AI females. Whole-body fat mass correlated positively with lumbar BMD in BA (P = .001) and inversely with subtotal BMD in AI subjects (P < .0001). Visceral adiposity correlated inversely with subtotal BMD in the BA (P = .037) and with lumbar BMD in the AI group (P = .005). No association was found between serum 25-hydroxyvitamin D and BMD. PTH was inversely associated with hip BMD in the BA group (P = .01) and with subtotal (P = .002), hip (P = .001), and femoral BMD (P < .0001) in the AI group. Significant differences in whole-body and site-specific BMD between the BA and AI groups were observed, with lean mass the major contributor to BMD at all sites in both groups. The contribution of other components of body composition differed by site and ethnic group.

  19. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    Science.gov (United States)

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  20. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  1. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 (China); Fan, Qiming; Tang, Tingting [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Gu, Dongyun, E-mail: dongyungu@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China (China); School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  2. PTH Gene Polymorphism and Breast Cancer Risk in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Nurgul Sikhayeva

    2014-12-01

    Full Text Available Introduction. Breast cancer is the most common type of cancer among women. In Kazakhstan, breast cancer holds first place among causes of women death caused by cancer in the 45-55 year age group . Many studies have shown that the risk of acquiring breast cancer may be related to the level of calcium in the blood serum. One of the important regulators of calcium metabolism in the body is the parathyroid hormone. Single nucleotide polymorphisms in the gene encoding the parathyroid hormone (PTH are associated with breast cancer development risk, and may modify the associative interaction between the levels of calcium intake and breast cancer. Experimental studies have shown that PTH gene has a carcinogenic effect. At least three studies showed a weak positive correlation between the risk of acquiring breast cancer and primary hyperparathyroidism, a state with high levels of PTH and often high levels of calcium. The aim of this investigation was to evaluate potential association between PTH gene polymorphism and breast cancer risk among Kazakhstani women.Methods. Female breast cancer patients (n = 429 and matched control women (n = 373 were recruited into a case – control study,. Genomic DNA was extracted from peripheral venous blood of study participants using Wizard® Genomic DNA Purification Kit (Promega, USA. Detection of PTH gene polymorphism (rs1459015 was done by means of the TaqMan® SNP Genotyping Assay of real-time PCR. Statistical analysis was conducted using SPSS 19.0.Results. PTH gene alleles were in Hardy–Weinberg equilibrium (p > 0.05. Distribution was 59% CC, 35% CT, 6% TT in the group with breast cancer and 50% CC, 43% CT, 6% TT in the control group. Total difference (between the group with breast cancer and the control group in allele frequencies for PTH polymorphism was not significant (p > 0.05. No association was found between rs1459015 TT and breast cancer risk (OR = 1.039; 95%, CI 0.740 - 1.297; p = 0.893.Conclusion. We

  3. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  4. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  5. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  6. An insight in to Paget′s disease of bone

    Directory of Open Access Journals (Sweden)

    Robin Sabharwal

    2014-01-01

    Full Text Available Paget′s disease of bone (PDB is a common disorder which may affect one or many bones. Although many patients are asymptomatic, a variety of symptoms and complications may occur. PDB is a focal disorder of bone turnover characterized by excessive bone resorption coupled with bone formation. PDB begins with a period of increased osteoclastic activity and bone resorption, followed by increased osteoblast production of woven bone that is poorly mineralized. In the final phase of the disease process, dense cortical and trabecular bone deposition predominates, but the bone is sclerotic and poorly organized and lacks the structural integrity and strength of normal bone. This article briefly reviews the etiopathogenesis, clinical radiographic and histological features of Paget′s disease.

  7. Teriparatide Induced Delayed Persistent Hypercalcemia

    Directory of Open Access Journals (Sweden)

    Nirosshan Thiruchelvam

    2014-01-01

    Full Text Available Teriparatide, a recombinant PTH, is an anabolic treatment for osteoporosis that increases bone density. Transient hypercalcemia is a reported side effect of teriparatide that is seen few hours following administration of teriparatide and resolves usually within 16 hours of drug administration. Persistent hypercalcemia, although not observed in clinical trials, is rarely reported. The current case describes a rare complication of teriparatide induced delayed persistent hypercalcemia.

  8. Systemic effects of fluoxetine on the amount of tooth movement, root resorption, and alveolar bone remodeling during orthodontic force application in rat

    Directory of Open Access Journals (Sweden)

    Mehdi Rafiei

    2015-01-01

    Full Text Available Background: Antidepressant drugs such as fluoxetine are of the most commonly used drugs among the public. These drugs may impact the regulation of bone cell functioning, and thus affect orthodontic tooth movement. The aim of this study was to determine the effect of fluoxetine on tooth movements during orthodontic treatment in rats. Materials and Methods: In this study, 30 male rats were randomly assigned into two groups and injected with fluoxetine 10 mg/kg (experimental group and normal saline (control group for a period of 1-month intraperitoneally 5 times/week. Then, the rats were anesthetized and a nickel-titanium closed-coil spring was placed between the left maxillary first molar and left maxillary central incisors of all samples, and then fluoxetine (experimental group and normal saline (control group were injected for another 3 weeks by the same method. After measuring tooth movements, rats were sacrificed, and histomorphometric analyses were conducted and the obtained data were statistically analyzed using independent t-test and the significance was set at 0.05. Results: Following the fluoxetine injection, the mean amount of tooth movements in the experimental group was reduced compared to the control group, which was not statistically significant (P = 0.14. There was no significant difference between the two groups regarding bone apposition rate (P = 0.83, external root resorption rate (P = 0.1, and mean number of root resorption lacunae (P = 0.16. Conclusion: Within the limitations of this study, systemic use of fluoxetine may cause insignificant reduction of tooth movement rate in rats; however, this subject needs more evaluations.

  9. Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

    DEFF Research Database (Denmark)

    L.S., Bislev; T., Sikjaer; L., Rolighed

    2015-01-01

    Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the reninnullangiotensinnullaldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD......). In addition to increased PTH levels, low vitamin D levels may also directly increase risk of CVD, as vitamin D, itself, has been shown to inhibit the RAAS. Angiotensin II, aldosterone and cortisol all negatively impact bone health. Hyperaldosteronism is associated with a reversible secondary...... hyperparathyroidism due to increased renal calcium excretion. Moreover, the angiotensin II receptor is expressed by human parathyroid tissue, and angiotensin may therefore directly stimulates PTH secretion. An increased bone loss is found in patients with hyperaldosteronism. The angiotensin II receptor seems main...

  10. Bone mineral density and metabolic indices in hyperthyroidism.

    Science.gov (United States)

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  11. [Root resorption and orthodontic treatment].

    Science.gov (United States)

    Sebbar, M; Bourzgui, F

    2011-09-01

    The aim of our study was to investigate the prevalence of root resorption during and at the end of orthodontic treatment and to assess its relationship with age, sex and treatment with or without extractions. Our study included 82 patients (51 women and 31 men) aged between 6 and 38 years, who received orthodontic treatment. Evaluation of root resorption was performed on panoramics at the beginning and at the end of orthodontic treatment. All the teeth were observed. The degree of root resorption was increased respectively by the standards in four ordinal levels (4). Data analysis was performed by Epi Info 6.0. Root resorption was present in all the teeth and maxillary incisors are the most affected. The correlation between age and root resorption was significant (p = 0.008). Women were more affected by resorption (P = 0.002). Patients treated with extraction showed more root resorption (p = 0.12). Our results suggest that orthodontic treatment is involved in the development of root resorption. The most often teeth resorbed are maxillary incisors. Age, sex and orthodontic extractions can be considered as risk factors for root resorption.

  12. Does methamphetamine affect bone metabolism?

    International Nuclear Information System (INIS)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-01-01

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10 mg/kg METH groups (n = 6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5 mg/kg METH showed an increased locomotor activity, whereas those receiving 10 mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5 mg/kg METH group, but not in the 10 mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5 mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10 mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that

  13. Does methamphetamine affect bone metabolism?

    Science.gov (United States)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-05-07

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might

  14. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    Science.gov (United States)

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Cellular and Molecular Pathways Leading to External Root Resorption

    Science.gov (United States)

    Iglesias-Linares, A.; Hartsfield, J.K.

    2016-01-01

    External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component—specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels. PMID:27811065

  17. miR-218 is involved in the negative regulation of osteoclastogenesis and bone resorption by partial suppression of p38MAPK-c-Fos-NFATc1 signaling: Potential role for osteopenic diseases.

    Science.gov (United States)

    Qu, Bo; Xia, Xun; Yan, Ming; Gong, Kai; Deng, Shaolin; Huang, Gang; Ma, Zehui; Pan, Xianming

    2015-10-15

    The increased osteoclastic activity accounts for pathological bone loss in diseases including osteoporosis. MicroRNAs are widely accepted to be involved in the regulation of osteopenic diseases. Recently, the low expression of miR-218 was demonstrated in CD14(+) peripheral blood mononuclear cells (PBMCs) from patients with postmenopausal osteoporosis. However, its role and the underlying mechanism in osteoporosis are still undefined. Here, an obvious decrease in miR-218 expression was observed during osteoclastogenesis under receptor activator of nuclear factor κB ligand (RANKL) stimulation, in both osteoclast precursors of bone marrow macrophages (BMMs) and RAW 264.7. Further analysis confirmed that overexpression of miR-218 obviously attenuated the formation of multinuclear mature osteoclasts, concomitant with the decrease in Trap and Cathepsin K levels, both the master regulators of osteoclastogenesis. Moreover, miR-218 up-regulation dramatically inhibited osteoclast precursor migration, actin ring formation and bone resorption. Mechanism assay demonstrated that miR-218 overexpression attenuated the expression of p38MAPK, c-Fos and NFATc1 signaling molecules. Following preconditioning with P79350, an agonist of p38MAPK, the inhibitor effect of miR-218 on osteoclastogenesis and bone-resorbing activity was strikingly ameliorated. Together, this study revealed a crucial role of miR-218 as a negative regulator for osteoclastogenesis and bone resorption by suppressing the p38MAPK-c-Fos-NFATc1 pathway. Accordingly, this research will provide a promising therapeutic agent against osteopenic diseases including osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Release of lead from bone in pregnancy and lactation

    International Nuclear Information System (INIS)

    Manton, W.I.; Angle, C.R.; Stanek, K.L.; Kuntzelman, D.; Reese, Y.R.; Kuehnemann, T.J.

    2003-01-01

    Concentrations and isotope ratios of lead in blood, urine, 24-h duplicate diets, and hand wipes were measured for 12 women from the second trimester of pregnancy until at least 8 months after delivery. Six bottle fed and six breast fed their infants. One bottle feeder fell pregnant for a second time, as did a breast feeder, and each was followed semicontinuously for totals of 44 and 54 months, respectively. Bone resorption rather than dietary absorption controls changes in blood lead, but in pregnancy the resorption of trabecular and cortical bone are decoupled. In early pregnancy, only trabecular bone (presumably of low lead content) is resorbed, causing blood leads to fall more than expected from hemodilution alone. In late pregnancy, the sites of resorption move to cortical bone of higher lead content and blood leads rise. In bottle feeders, the cortical bone contribution ceases immediately after delivery, but any tendency for blood leads to fall may be compensated by the effect of hemoconcentration produced by the postpartum loss of plasma volume. In lactation, the whole skeleton undergoes resorption and the blood leads of nursing mothers continue to rise, reaching a maximum 6-8 months after delivery. Blood leads fall from pregnancy to pregnancy, implying that the greatest risk of lead toxicity lies with first pregnancies

  19. Assessment of therapeutic effect in patients with secondary hyperparathyroidism using bone scintigraphy

    International Nuclear Information System (INIS)

    Kaida, Hayato; Ishibashi, Masatoshi; Baba, Kenkichi; Okuda, Seiya; Hayabuchi, Naofumi; Nishida, Hidemi; Hiromatsu, Yuji

    2005-01-01

    The semi-quantitative method of bone scintigraphy [bone to soft tissue (B/ST) ratio] has been used in diagnosing and evaluating systemic metabolic bone diseases. The aim of this study is to evaluate of the therapeutic effect of secondary hyperparathyroidism (SHP). The subjects were ten hemodialysis patients with SHP. Seven patients underwent parathyroidectomy (PTX), and 22-Oxacalcitoriol (derivative of 1, 25-dihydroxyvitamin D 3 ) (OCT) was given to three patients. Bone scintigraphy and blood tests [intact parathyroid hormone (PTH), alkaline phosphatase (ALP), calcium (Ca), phosphorus (P), bone alkaline phosphatase (BALP), and deoxypridinoline (DPYD)] were performed before and after treatment. Regions of interest were drown around cranium, lumbar vertebrae, femoral neck and soft tissue of left medial thigh to calculate the B/ST ratio. The B/ST ratios of cranium, lumbar vertebrae, and femoral neck were reduced significantly after PTX (cranium, p=0.0079, lumbar vertebrae, p=0.0282, femoral neck, p=0.0252). Intact PTH, ALP, Ca, P, BALP and DPYD levels were reduced significantly after PTX (intact PTH, p=0.003, Ca, p=0.0005, P, p=0.0393, ALP, p=0.005 1, DPYD, p=0.0232, BALP, p=0.0324). After OCT administration, the B/ST ratio of each bony region showed tendency to diminish, although not significantly. Intact PTH levels were reduced significantly, although ALP, BALP, and DPYD levels were not. Ca and P levels were increased significantly because of the medicinal action of OCT. The B/ST ratio of cranium may be non-invasive method and have potential in evaluating the therapeutic effect of SHP. (author)

  20. Royal Jelly Prevents Osteoporosis in Rats: Beneficial Effects in Ovariectomy Model and in Bone Tissue Culture Model

    Directory of Open Access Journals (Sweden)

    Saburo Hidaka

    2006-01-01

    Full Text Available Royal jelly (RJ has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham, ovariectomized (OVX, OVX given 0.5% (w/w raw RJ, OVX given 2.0% (w/w RJ, OVX given 0.5% (w/w protease-treated RJ (pRJ, OVX given 2.0% (w/w pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w RJ and 0.5–2.0% (w/w pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH.